BENTHIC MACROINVERTEBRATE MONITORING
HOG ISLAND

Quality Assurance Project Plan

EPA Grant Funding Source:
Grant #:

Project Coordinator: Joe Graham, Sediment Data and Monitoring Coordinator
Wisconsin Department of Natural Resources
Address

Principal Investigators: Wisconsin Department of Natural Resources
Lake Superior Research Institute

Prepared: May 2011
Revision #: 0
Prepared by: Tracey Ledder, WDNR

Approvals:

Joseph Graham, Project Coordinator

Donalea Dinsmore, WDNR Quality Assurance Coordinator

Kurt Schmude, Lake Superior Research Institute

Date:

6/13/2011

6/27/2011

5/23/2011
BENTHIC MACROINVERTEBRATE MONITORING
HOG ISLAND

Quality Assurance Project Plan

EPA Grant Funding Source:
Grant #:

Project Coordinator: Joe Graham, Sediment Data and Monitoring Coordinator
Wisconsin Department of Natural Resources
Address

Principal Investigators: Wisconsin Department of Natural Resources
Lake Superior Research Institute

Prepared: May 2011
Revision #: 0
Prepared by: Tracey Ledder, WDNR

Approvals: Date:

__
Joseph Graham, Project Coordinator

__
Donalea Dinsmore, WDNR Quality Assurance Coordinator

__
Kurt Schmude, Lake Superior Research Institute
Distribution List

Project Coordinator Joe Graham, WDNR
Office of Great Lakes Donalea Dinsmore, QC Coordinator
Lake Superior Research Institute Kurt Schmude
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

SECTION ONE: PROJECT DESCRIPTION .. 1

1.1 PROJECT ORGANIZATION ... 1

1.2 PROJECT BACKGROUND .. 1

 1.2.1 Location and General Information ... 2

 1.2.2 Topography .. 2

 1.2.3 Site History .. 2

1.3 PAST DATA COLLECTION ACTIVITIES ... 3

1.4 PROJECT OBJECTIVES AND TASKS ... 3

1.5 QUALITY OBJECTIVES AND CRITERIA ... 4

1.6 TRAINING .. 4

1.7 DOCUMENTS AND RECORDS .. 4

SECTION TWO: DATA GENERATION AND ACQUISITION .. 4

2.1 SAMPLING DESIGN ... 4

2.2 SAMPLING METHODS ... 5

 2.2.1 Sediment Samples Chemical Analyses .. 5

 2.2.2 Sediment Samples Macroinvertebrates ... 5

 2.2.3 Sample Containers, Preservation and Holding Times .. 5

 2.2.4 Decontamination Procedures ... 5

2.3 SAMPLING HANDLING AND CUSTODY ... 6

 2.3.1 Field Handling Procedures ... 6

 2.3.2 Laboratory Handling Procedures ... 6

2.4 ANALYTICAL METHODS .. 6

 2.4.1 Field Analytical Procedures .. 6

 2.4.2 Laboratory Analytical Procedures .. 6

2.5 QUALITY CONTROL ... 7

2.6 EQUIPMENT MAINTENANCE .. 7

 2.6.1 Field Instrument Preventative Maintenance ... 7

 2.6.2 Laboratory Instrument Preventative Maintenance ... 7
2.7 INSTRUMENT CALIBRATION

2.7.1 Field Instrument Calibration

2.7.2 Laboratory Instrument Calibration

Each laboratory calibrates analytical instrumentation according to their Standard Operating Procedures.

2.8 INSPECTION OF SUPPLIES

2.9 NON-DIRECT MEASUREMENTS

2.10 DATA MANAGEMENT

SECTION THREE: ASSESSMENT AND OVERSIGHT

3.1 ASSESSMENTS AND RESPONSE ACTION

3.2 REPORTS TO MANAGEMENT

SECTION FOUR: DATA VALIDATION AND USE

4.1 DATA REVIEW

4.2 VERIFICATION AND VALIDATION METHODS

4.3 DATA USE

FIGURES
Figure 1 Location
Figure 2 Sample Locations

TABLES
Table 1 Laboratory Methods and Detection Limits
Table 2 Quality Control Limits

APPENDICES
Appendix A Chain of Custody Form
Appendix B Lake Superior Research Institute SOPs
Appendix C PACE Analytical Services SOP
EXECUTIVE SUMMARY
Remediation of the Hog Island Inlet/Newton Creek in 2005 removed 44,340 cy of sediment from the inlet. This was the second project to utilize Great Lakes Legacy Act funds and the first remediation-to-restoration project in the St. Louis River Area of Concern. Validation sampling after dredging of PAH and lead contaminated sediments showed that the remediation goals had been met. Post-remediation monitoring in 2006 showed the beginnings of recovery of the benthic community.

This site requires further monitoring for benthic community recovery determination and for updated information on the site for removal from the Wisconsin impaired waters list. Results from 2011 benthic macroinvertebrate samplings will assist in the determination of this site’s habitat restoration status, and that determination would contribute toward the removal of the impaired habitat BUI within the AOC. Sediment sampling in the isthmus area will be tied to PID screenings in order to investigate residual contaminant levels in that area as relates to habitat restoration and health and safety considerations for site workers.

SECTION ONE: PROJECT DESCRIPTION

1.1 PROJECT ORGANIZATION
The Wisconsin Department of Natural Resources, Sediment Data and Monitoring Coordinator, will oversee this project, and carry out sediment sampling, assisted by the St. Louis River AOC Coordinator. Sediment cores and benthic organism analyses will be carried out by Lake Superior Research Institute.

Project Manager – Joseph Graham, Sediment Data and Monitoring Coordinator, WDNR
Project Support – Tracey Ledder, St.Louis River Area of Concern Coordinator, WDNR
QA Manager – Donalea Dinsmore, Office of the Great Lakes, WDNR
Laboratory Manager, biology – Kurt Schmude, Lake Superior Research Institute
Laboratory Manager, chemistry – Ron Arneson, State Lab of Hygiene, WDNR Liaison

- Kate Grams, Quality Assurance, PACE

1.2 PROJECT BACKGROUND
This project will provide post-remediation monitoring of the benthic macroinvertebrate population for the Hog Island Inlet remediation carried out in 2005. Newton Creek and Hog Island Inlet were shown to contain elevated levels of polycyclic aromatic hydrocarbons (PAHs), diesel range organics (DRO) and metals in the early 1990s. (Final Construction Documentation and Post-Remediation Monitoring Report, Hog Island Inlet Remedial Action, December, 2006, SEH). Several remediation steps have occurred over the last decade. Dredging in 2005 removed sediment from the Hog Island Inlet and lower section of Newton Creek to the goal of 2.6 mg/Kg TPAH to prevent negative affects to benthic organisms and fish.
1.2.1 Location and General Information
The project site is Hog Island Inlet, within the St. Louis River, northeast of Superior, Wisconsin, immediately west of the Superior inlet on Lake Superior. Douglas County is the land owner. Hog Island Inlet is bordered by Ogdensburg Pier, Hog Island, the Hog Island isthmus wetland, and the mainland shore. Hog Island is undeveloped. The Ogdensburg Pier was previously developed as a coal storage area and petroleum depot but is currently vacant. A series of railroad tracks lie along the southwest side of the Inlet. State Highway 2 runs parallel to the railroad tracks and mainland shore at higher elevations. Figure 1 shows the location of the Hog Island Inlet.

1.2.2 Topography
The Inlet is a sheltered bay wetland connected to Superior Bay by a 50-foot wide channel. The inlet is approximately 17-acres, and is separated from the adjacent Loon’s Foot Landing, on the east, by a narrow isthmus. The post-remediation depths range from one to seven feet. Hog Island, rising approximately 15 feet above the water on the east side of the inlet, was created by navigation channel dredging disposal of sediment in the 1920s and 1930s. Newton Creek enters the Inlet from the west, winding 1.5 miles from the Murphy Oil refinery through forested wetlands and residential areas before entering the Inlet.

Surficial soils in the vicinity of the area consist of Ontonagon silty clay loam and Rudyard-Bergland clay soils. These are moderately well drained to poorly drained soils formed in clayey lacustrine deposits. Surficial soils in the vicinity of the site are underlain by a thick sequence of glacial till and offshore lacustrine soils belonging to the Miller Creek Formation.

1.2.3 Site History
The Hog Island Inlet is part of the St. Louis River Area of Concern and is identified in the Remedial Action Plan, Stage One (1992). Hog Island itself was created by deposition of navigation channel dredge materials in the 1920s and 1930s, the isthmus was most likely created at a later date. Newton Creek, a tributary to the Hog Island Inlet, was determined to be contaminated with petroleum products in the early 1990’s. Newton Creek (WDNR, 1995) was subcategorized into 12 segments (A-L), with Segment A being the most upstream segment of the creek (downstream from the Murphy Oil impoundment area). Cleanup of Newton Creek focused on the impoundment area and Segments A through K, beginning in 1997.

An Ecological Risk Assessment and Human Health Risk Assessment were completed in September 2003, prior to remediation of Hog Island Inlet/Newton Creek Segment L. The Ecological Risk Assessment concluded that the ecological risk associated with contaminated sediments was high. Dry weight concentrations of TPAH showed good correlation to toxicity test results. The concentration threshold for TPAHs associated with no or lowest observed effects was in the 2 to 3 mg/kg range. The Human Health Risk Assessment concluded that non-carcinogenic hazards at Hog Island Inlet were within acceptable ranges for both adults and adolescents engaging in recreational activities. The carcinogenic risk associated with swimming was slightly elevated for both adults and adolescents, but within acceptable limits for wading, shore use and fish consumption.

Dredging removed 60,520 tons of contaminated sediment from the Inlet and Newton Creek segment L in 2005 to meet a site remediation goal of 2.6 mg/Kg TPAH.
1.3 PAST DATA COLLECTION ACTIVITIES
Several sampling events in Newton Creek and the Hog Island Inlet occurred prior to site remediation in 2005. These sampling events included surface water and sediment chemistry, sediment toxicity and macroinvertebrate population studies.

Sediments were dredged from the Inlet and lower segment of Newton Creek. Post-remediation confirmation sampling of sediments for PAH analyses was carried out in 2005. The results showed that the target TPAH concentration goal of 2.6 mg/Kg was met. The most recent site sampling in June, 2006, included sediment traps and Hess stream bottom sampling in Newton Creek (Segments A, B, D, F, G, and L) and sediment core samples at three previously sampled locations within Hog Island Inlet and the previous background location. The Inlet and Segment L toxicity studies indicated no significant reduction of survival to organisms exposed to post-remediation sediments, and benthic populations showed potentially increased diversity, indicating a positive step toward improved environmental quality (it was noted that one year may not have been enough time post-remediation to re-establish an adequate organic sediment bed habitat).

1.4 PROJECT OBJECTIVES AND TASKS
This site requires further monitoring for benthic community recovery determination and for updated information on the site for removal from the Wisconsin impaired waters list. Results from 2011 benthic macroinvertebrate samplings will assist in the determination of this site’s habitat restoration status, and that determination would contribute toward the removal of the impaired habitat BUI and degradation of benthos BUI within the AOC.

The project will conduct sediment core sampling in 2011, repeating sites and methods used in previous years/studies (3 Hog Island Inlet stations (H-1, H-10, and H-30) and 1 reference station (WL-2, near Loons Foot Landing) to assess recovery/re-colonization of benthic macroinvertebrates. Five replicates per station will be sampled for a total of 20 core samples. Sampling will be conducted by the end of September, and samples analyzed for benthic macroinvertebrates by the Lake Superior Research Institute (LSRI). The ideal date for sampling macroinvertebrates will be the month of June, in order to have a seasonal comparison with the previous samplings.

Contractors for Douglas County have noted sheens and petroleum odors, strong enough to induce headaches, while working on habitat restoration in the wetlands at the isthmus to Hog Island. This area was screened for visual contamination in 2002 and none was noted, there are only limited analytical results for the isthmus (Newton Creek System Sediment Contamination Site Characterization Report, 1995). This area was not remediated in 2005, or previously, because no free product was observed and sediment concentrations were below the remediation goal. In order to better understand the sheens and petroleum odor at the Site, a photoionization detector (PID) will be utilized to screen sediment head space for volatiles. Sediment samples (n=4) across the “neck” of the isthmus to Hog Island will be analyzed for PAHs, DRO, TOC, and lead at locations chosen by higher PID responses. The DRO analysis, which detects diesel range organics including natural biodegradation organics, will include chromatograms. The lab will also supply a DRO standard chromatogram. The background sample, WL-2, will provide a background chromatogram for comparison.
1.5 QUALITY OBJECTIVES AND CRITERIA
Macroinvertebrate populations will be sampled at the same sites and in the same manner as sampled previously (Final Construction Documentation and Post-Remediation Monitoring Report, Hog Island Inlet Remedial Action). Taxa richess and total densities will be compared to the 2006 post-remediation sampling. The objective is to determine if the benthic macroinvertebrate population is recovering post-remediation, while habitat restoration is occurring.

The remediation goal of 2.6 mg/Kg TPAH will be the benchmark for PAH analyses at the isthmus. Laboratory analyses of DRO and PAHs will be utilized with the PID screening readings to approximate the residual contaminant levels on the isthmus. This information will be utilized by the WDNR, Douglas County and other site workers for safety and health considerations. The chromatograms will allow a qualitative estimate of the relative concentrations of DRO and natural biodegradation products that may be measured during the DRO analyses.

1.6 TRAINING
Staff and students involved in the macroinvertebrate sampling and identification will have undergone training as required by LSRI (see LSRI SOP FS/13).

Laboratory analysts at the State Lab of Hygiene will have undergone training as specified in their program.

Laboratory analysts at PACE Analytical Services will have undergone training as specified in PACE SOP S-GB-0-019-Rev.03.

PID screenings will be carried out by staff familiar with this method, following calibration and use procedures as described in the Instruction Manual (Thermo Environmental Instruments, OVM 580 B Instruction Manual, Franklin, MA, 1/96).

1.7 DOCUMENTS AND RECORDS
Documents and files related to this project will be kept with the St. Louis River Area of Concern files in the Superior office. Records include field data sheets and shipment documentation, laboratory records of sample handling, project records including contracts, and final report. Coring, sampling picking and sample identification lab sheets will be kept in the LSRI project file for five years.

Digital data (laboratory results and project files) will be added to the SWIMS database.

SECTION TWO: DATA GENERATION AND ACQUISITION

2.1 SAMPLING DESIGN
Sediment core samples for macroinvertebrate analyses will be taken in the Hog Island inlet at four sites previously sampled (or as close to as possible as allowed by site conditions). Sediment cores will be taken at a depth of 15cm, five replicates per sample site. Core samples will be taken at three sites within the Hog Island Inlet, and at one background site, used previously (referred to as Loon’s Foot Landing).
Multiple sediment head space readings will be taken within the isthmus for volatile organic components screening by photoionization detector (PID). At least four transects will be run, from mainland to island, depending on water depth and accessibility. Periodic ambient air readings of the PID will be recorded as well. Four sediment samples, for analyses of DRO, PAH, TOC and lead, will be taken across the isthmus based on PID screening results. See Figure 2.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Station ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL-2</td>
<td>163297</td>
<td>46.702198</td>
<td>-92.035736</td>
</tr>
<tr>
<td>HI-1</td>
<td>163248</td>
<td>46.70327</td>
<td>-92.03884</td>
</tr>
<tr>
<td>HI-10</td>
<td>163258</td>
<td>46.70513</td>
<td>-92.04089</td>
</tr>
<tr>
<td>HI-30</td>
<td>163354</td>
<td>46.704853</td>
<td>-92.041374</td>
</tr>
</tbody>
</table>

2.2 SAMPLING METHODS

2.2.1 Sediment Samples Chemical Analyses

Sediment samples for laboratory analyses of PAH, TOC and lead will be taken with a stainless steel scoop. The vegetative matter will be removed and the top six inches of sediment will be homogenized and collected in enough volume for the required sample containers.

A dedicated plastic syringe (30 mL) will be used to collect sediment for DRO analysis in the same location. The syringe contents will be immediately placed in a tared 60-mL VOC vial supplied by PACE, three vials are recommended. The syringe will then be filled again, capped and shipped with the sediment vials for dry weight analysis.

2.2.2 Sediment Samples Macroinvertebrates

Sediment cores for macroinvertebrates will be taken by the Lake Superior Research Institute according to LSRI SOP FS/22.

2.2.3 Sample Containers, Preservation and Holding Times

Sample containers for laboratory analyses will be supplied by the State Lab of Hygiene and PACE Analytical Services. Sediment samples will be placed on ice, and shipped overnight to the appropriate Lab. A Chain-of-Custody form will accompany each cooler shipped.

Macroinvertebrate sample containers will consist of 1-liter plastic jars provided by LSRI. Sediment samples will be preserved in the field with 10% formalin solution and taken to the laboratory for picking and identification. Samples not picked within one week will be re-preserved with 70-80% ethanol solution.

2.2.4 Decontamination Procedures

Stainless steel sediment scoops will be used for sediment sample collection. Each scoop will be cleaned with tap water and Alconox, rinsed with distilled water, dried and wrapped in aluminum foil prior to site work. Each wrapped scoop will be placed into a plastic closeable bag and returned to the foil wrap and bag after its use on site. The scoops will be cleaned after site work is completed in the same manner in which they were pre-cleaned (detergent and water may be used initially, if necessary).
2.3 SAMPLING HANDLING AND CUSTODY

2.3.1 Field Handling Procedures
Sediment samples for macroinvertebrates will be labeled both inside and outside of each jar. Staff at LSRI will be assisted in the field by WDNR staff. Samples will be labeled according to historical location identification numbers (ie, HI-##). Field data will be recorded including core length, number of replicates, mesh size and preservative.

Four transects will be run between the mainland and the island for PID screening. Samples for PID screening will be placed in a numbered closeable plastic bag, sediment clumps will be carefully broken up by hand. Bag numbers will be recorded in relation to field transect location. Bags will be allowed to warm in the sun for 15 minutes (or alternatively, inside a warm vehicle) before the PID intake tube is introduced into the air space in the bag and the volatiles measured. After reading with the PID, readings will be recorded by number and site location, and the sediment will either be discarded on site or added to vials to be sent to the two laboratories for analyses. Ambient air will periodically be read with the PID as well and readings recorded.

Sample jars and vials for laboratory analyses will be labeled with appropriate identification information (site name, sample identification, date). Samples will be labeled for the site and year taken (ie, WL-11-1 through WL-11-4), as they are taken, utilizing PID readings to select locations. Sample containers will be placed in plastic bags and stored on ice immediately. Samples will be shipped by overnight courier. A separate Chain of Custody form will be filled out for each laboratory. See Appendix A.

2.3.2 Laboratory Handling Procedures
Macroinvertebrate samples will be picked in the LSRI laboratory according to LSRI SOP FS/14. Samples are rinsed with tap water, sieved, and specimens transferred into 3.7 mL scintillation vials. Vials are preserved with 70-80% denatured ethyl alcohol.

Samples will be logged in and analyzed according to each analytical laboratory’s standard operating procedures. Samples should arrive at the labs on ice.

2.4 ANALYTICAL METHODS

2.4.1 Field Analytical Procedures
A photo-ionization detector unit will be procured from the Rhinelander office. The unit will be calibrated prior to field screening. Four transects, northwest to southeast, will be screened within the isthmus, from the Island to the mainland. Sediments will be scooped into a numbered Ziploc bag and manually disrupted inside the bag. The bag will be kept in a warm location for at least 15 minutes. The PID intake tube will be inserted into a small opening in the bag seal to read the headspace. Readings will be recorded on a field sheet. The calibration will be checked and recorded at the end of the day.

2.4.2 Laboratory Analytical Procedures
Macroinvertebrate samples will be identified according to LSRI SOP FS/13. Specimens will be identified to species when possible. Peer reviewed and published taxonomic keys are utilized. All student identifications are verified by the Senior Invertebrate Taxonomist. See LSRI SOPs in Appendix B.

Polycyclic-aromatic hydrocarbons (PAHs) will be analyzed according to Wisconsin State Lab of Hygiene ESS Org Method 1580. Total Organic Carbon (TOC) will be analyzed according to ESS Org Method 1560.
Lead will be analyzed according to EHD Metal Method 400.2 (Sample preparation EHD Metals Method 100.1, and digestion by EHD Metals Method 750.1).

Samples will be analyzed for DRO according to PACE SOP S-GB-0-019-Rev.03. The method is a solvent extraction, gas chromatography procedure. Detection and quantitation is based on FID detection response compared to a diesel component standard. See SOP in Appendix C.

2.5 QUALITY CONTROL
Quality control for the macroinvertebrate analyses will consist of sample picking and identification checks according to LSRI’s SOPs.

Quality control in the State Lab of Hygiene will be carried out according to the laboratory Quality Assurance Management Plan and method SOPs.

PACE Analytical Services, Green Bay, is a Wisconsin-certified laboratory (Laboratory ID: 405132750). Quality control is handled according to laboratory Quality Assurance Management Plans and, for DRO analysis, SOP S-GB-0-019-Rev.03 (Wisconsin modified method for determination of diesel range organics).

2.6 EQUIPMENT MAINTENANCE
2.6.1 Field Instrument Preventative Maintenance
The PID is maintained according to an annual schedule. Daily maintenance includes battery charging, calibration and lamp window cleaning when necessary. These procedures are described in the Thermo Environmental Instruments OVM 580B Instruction Manual.

2.6.2 Laboratory Instrument Preventative Maintenance
Each analytical laboratory maintains equipment according to their Standard Operating Procedures and Quality Assurance Management Plans.

2.7 INSTRUMENT CALIBRATION
2.7.1 Field Instrument Calibration
The PID unit will be calibrated to background zero and a 100 isobutylene calibration gas at the beginning and end of each day, according to the unit’s Instruction Manual (Thermo Environmental Instruments, OVM 580 B Instruction Manual, Franklin, MA, 1/96). Calibration responses will be recorded on field sheets that include PID data.

2.7.2 Laboratory Instrument Calibration
Each laboratory calibrates analytical instrumentation according to their Standard Operating Procedures.

2.8 INSPECTION OF SUPPLIES
Sample bottles and vials will be supplied by the appropriate analytical laboratory. Sample containers will be inspected for being pre-cleaned and intact, with the method appropriate preservative. If there is a problem with the received sample containers, the appropriate laboratory will be contacted immediately so that the correct number of the correct containers and preservative can be shipped.
2.9 NON-DIRECT MEASUREMENTS
No non-direct measurements are planned for this project.

2.10 DATA MANAGEMENT
Project documents and data will be added into the Wisconsin Department of Natural Resources SWIMS database.

SECTION THREE: ASSESSMENT AND OVERSIGHT

3.1 ASSESSMENTS AND RESPONSE ACTION
Field conditions at time of sampling may require adjustments in sampling method or locations. Reasons for changes will be documented and the project coordinator contacted for permission to continue. Weather conditions may require a delay in sampling (flood events) or site conditions may require adjustment of sampling locations.

Any sample handling or quality control check problems during chemical analyses may require that the analyses be re-run or the samples be re-taken. The Project Coordinator will make the necessary decisions.

3.2 REPORTS TO MANAGEMENT
Lake Superior Research Institute will provide a final report including sampling and sample identification information, along with a basic comparison of 2011 results to the previous site results.

Each analytical laboratory will provide a results package for the sediment analyses. The State Lab of Hygiene will provide data to SWIMS. We will request SWIMS compatible reporting from PACE in order to add that data to SWIMS. PACE will also provide chromatograms of DRO samples.

The project coordinator will report to the Office of Great Lakes on field work accomplished and analyses accomplished on a semi-annual schedule.

SECTION FOUR: DATA VALIDATION AND USE

4.1 DATA REVIEW
The macroinvertebrate data will undergo data review according to LSRI’s SOPs.

Each analytical laboratory will review their analyses and flag any quality control items according to their procedures. This review will be included in the final data package.

4.2 VERIFICATION AND VALIDATION METHODS
Project personnel will compare resulting detection/quantification levels and quality control for the sediment sample results to the project criteria. It is the intent that detection level problems be identified to the Project Coordinator during the analysis so that corrective actions can be taken.
4.3 DATA USE
Benthic community data generated during this sampling event will be compared to existing pre- and post-remediation data. An increase in benthic community diversity, including species known to be less tolerant to organic pollution, will indicate that the site remediation has been successful.

The results of the sediment analysis and PID screening will be utilized for future site safety planning and habitat restoration decisions for the isthmus. This data and its interpretation will be shared with Douglas County staff working on the habitat restoration project.
Figure 1 Location
* Benthic Core Samples (approx. location)
†Sediment Samples dependent on PID readings

FIGURE 2 Sample Locations
Table 1 Laboratory Methods and Limits of Detection

State Lab of Hygiene

ESS ORG METHOD 1580 Polynuclear Aromatic Hydrocarbons in Soil and Sediment by GC/MS
SW846 Method 8270D

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>DNR Parameter Description</th>
<th>Units</th>
<th>LOD</th>
<th>LOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>61078</td>
<td>1-METHYL NAPHTHALENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78305</td>
<td>2-METHYL NAPHTHALENE</td>
<td>NG/G, WET</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>99484</td>
<td>3,6-DIMETHYL NAPHTHALENE (WET WT)</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78309</td>
<td>ACENAPHTHENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78347</td>
<td>ACENAPHTHYLENE</td>
<td>NG/G, WET</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>78348</td>
<td>ANTHRACENE</td>
<td>NG/G, WET</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>78342</td>
<td>BENZO (A) ANTHRACENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78343</td>
<td>BENZO (A) PYRENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78344</td>
<td>BENZO (B) FLUORANTHENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>61075</td>
<td>BENZO (E) PYRENE</td>
<td>NG/G, WET</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>78349</td>
<td>BENZO (G H I) PERYLENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78345</td>
<td>BENZO (K) FLUORANTHENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78346</td>
<td>CHRYSENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78352</td>
<td>DIBENZO (A H) ANTHRACENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78323</td>
<td>FLUORANTHENE</td>
<td>NG/G, WET</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>78350</td>
<td>FLUORENE</td>
<td>NG/G, WET</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>78353</td>
<td>INDENO (1,2,3-C D) PYRENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78331</td>
<td>NAPHTHALENE</td>
<td>NG/G, WET</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>78351</td>
<td>PHENANTHRENE</td>
<td>NG/G, WET</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>78354</td>
<td>PYRENE</td>
<td>NG/G, WET</td>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

ESS ORG METHOD 1560 Total Organic Carbon in Sediment by the Slurry Method
SW846 Method 9060

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>DNR Parameter Description</th>
<th>Units</th>
<th>LOD</th>
<th>LOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>81951</td>
<td>CARBON TOTAL ORGANIC</td>
<td>UG/G, DRY</td>
<td>2270</td>
<td>7220</td>
</tr>
</tbody>
</table>

EHD METALS METHOD 100.1, rev. 2, Preparation of Solid Samples for Metals Analysis, April, 2011.

EHD METALS METHOD 750.1, rev. 1, Digestion of Solid Samples for ICP, March, 2008.

EHD METALS METHOD 400.2, rev. 3, ICP, March, 2011.

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>DNR Parameter Description</th>
<th>Units</th>
<th>LOD</th>
<th>LOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>61852 or 1052</td>
<td>Lead</td>
<td>mg/kg, dry</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

PACE Analytical Services, Green Bay

SOP S-GB-O-019-Rev.03

WI Modified Method for Determination of DRO

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>DNR Parameter Description</th>
<th>Units</th>
<th>DL</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diesel Range Organic</td>
<td>Mg/Kg, DRY</td>
<td>0.994</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Parameter</td>
<td>Blank</td>
<td>Laboratory Control</td>
<td>Duplicate</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>State Lab</td>
<td>PAH</td>
<td>< LOD each parameter</td>
<td>Within 30%</td>
<td>Within LIMS QC limits</td>
</tr>
<tr>
<td></td>
<td>TOC</td>
<td>< LOD</td>
<td></td>
<td>Within LIMS QC limits</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>< LOD</td>
<td>Within published limits for purchased standards</td>
<td>Within LIMS QC limits</td>
</tr>
<tr>
<td>PACE</td>
<td>DRO</td>
<td>< 50 ug/L</td>
<td>Within 20% of expected value</td>
<td>Within 20%</td>
</tr>
</tbody>
</table>
Section A: Required Client Information
- **Company:** [Enter Company Name]
- **Address:** [Enter Address]
- **Email To:** [Enter Email]
- **Phone:** [Enter Phone Number]
- **Fax:** [Enter Fax Number]

Section B: Required Project Information
- **Report To:** [Enter Contact Name]
- **Attention:** [Enter Contact Title]
- **Copy To:** [Enter Copy To]
- **Pace Quote Reference:** [Enter Quote Reference]
- **Project Name:** [Enter Project Name]
- **Pace Project Manager:** [Enter Project Manager Name]

Section C: Invoice Information
- **Company Name:** [Enter Company Name]
- **Address:** [Enter Address]
- **Email To:** [Enter Email]
- **Phone:** [Enter Phone Number]
- **Fax:** [Enter Fax Number]

Section D: Required Client Information

SAMPLE ID
- One Character per box. (A-Z, 0-9 / ,-)
- Sample IDs MUST BE UNIQUE

Valid Matrix Codes
- **CODE**
- **MATRIX**
 - WATER
 - GAS
 - OIL
 - SOL
 - ORG
 - SL
 - OIL
 - SOL
 - ORG
 - SL
 - OIL
 - SOL
 - ORG
 - SL

MATRIX CODE
- **COLLECTED**
- **SAMPLE TEMP AT COLLECTION**
- **SAMPLE TYPE**
 - WATER
 - WASTE WATER
 - PRODUCT
 - SOIL
 - SOL
 - ORG
 - SL
 - OIL
 - TISSUE

Sample Conditions
- **RELINQUISHED BY / AFFILIATION**
- **DATE**
- **TIME**
- **ACCEPTED BY / AFFILIATION**
- **DATE**
- **TIME**

Sampler Name and Signature
- **PRINT Name of SAMPLER:** [Enter Name]
- **SIGNATURE of SAMPLER:** [Enter Signature]
- **DATE Signed (MM/DD/YY):** [Enter Date]

Regulatory Agency
- NPDES
- GROUND WATER
- DRINKING WATER
- UST
- RCRA
- OTHER

Site
- GA
- IL
- IN
- MI
- NC
- OH
- SC
- WI
- OTHER

Location
- OFFICE
- FIELD

Date Collected
- [Enter Date]

Analysis
- [Enter Analysis Details]

Additional Comments:
- [Enter Additional Comments]
STANDARD OPERATING PROCEDURE

WI MODIFIED METHOD FOR DETERMINATION OF DIESEL RANGE ORGANICS

Reference Methods:
Modified DRO Method for Determining Diesel Range Organics
– Wisconsin DNR – September 1995

SOP NUMBER: S-GB-O-019-REV.03
EFFECTIVE DATE: Date of Final Signature
SUPERSEDES: S-GB-O-019-Rev.02

APPROVAL

Nils Melberg, Laboratory General Manager 4/05/2010
Kate Grams, Laboratory Quality Manager 03/25/2010
Glen Coder, Department Manager 03/25/2010

PERIODIC REVIEW
SIGNATURES BELOW INDICATE NO CHANGES HAVE BEEN MADE SINCE APPROVAL.

© 2002 - 2010 Pace Analytical Services, Inc. This Standard Operating Procedure may not be reproduced, in part or in full, without written consent of Pace Analytical Services, Inc. Whether distributed internally or as a “courtesy copy” to clients or regulatory agencies, this document is considered confidential and proprietary information.

Any printed documents in use within a Pace Analytical Services, Inc. laboratory have been reviewed and approved by the persons listed on the cover page. They can only be deemed official if proper signatures are present.

This is COPY# 15 Distributed on 4/29/11 by JLB and is CONTROLLED or X UNCONTROLLED
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Purpose</td>
<td>3</td>
</tr>
<tr>
<td>2. Scope and Application</td>
<td>3</td>
</tr>
<tr>
<td>3. Summary of Method</td>
<td>3</td>
</tr>
<tr>
<td>4. Interferences</td>
<td>3</td>
</tr>
<tr>
<td>5. Safety</td>
<td>4</td>
</tr>
<tr>
<td>6. Definitions</td>
<td>4</td>
</tr>
<tr>
<td>7. Sample Collection, Preservation and Handling</td>
<td>5</td>
</tr>
<tr>
<td>8. Equipment and Supplies</td>
<td>5</td>
</tr>
<tr>
<td>9. Reagents and Standards</td>
<td>6</td>
</tr>
<tr>
<td>10. Calibration</td>
<td>7</td>
</tr>
<tr>
<td>11. Procedure</td>
<td>7</td>
</tr>
<tr>
<td>12. Quality Control</td>
<td>12</td>
</tr>
<tr>
<td>13. Method Performance</td>
<td>13</td>
</tr>
<tr>
<td>14. Pollution Prevention and Waste Management</td>
<td>14</td>
</tr>
<tr>
<td>15. References</td>
<td>14</td>
</tr>
<tr>
<td>16. Tables, Diagrams, Flowcharts, Appendices, Addenda etc.</td>
<td>14</td>
</tr>
<tr>
<td>17. Revisions</td>
<td>15</td>
</tr>
</tbody>
</table>
1. PURPOSE

1.1 The purpose of this Standard Operating Procedure (SOP) is to provide a consistent format to measure the concentration of diesel range organics in water and soil. This corresponds to a hydrocarbon range of C10 - C28 and a boiling point range between approximately 170°C and 430°C.

2. SCOPE AND APPLICATION

2.1 The policies and procedures contained in this SOP are applicable to all personnel involved in the planning, coordination, preparation, use and revision of SOPs.

2.2 The Practical Quantitation Limit (PQL) of this method for diesel range organics is approximately 2.0 mg/kg for soils and 50 ug/L for groundwater.

2.3 This method is based on a solvent extraction, Gas Chromatography (GC) procedure. This method should be used by, or under supervision of, analysts experienced in solvent extraction and the use of gas chromatographs. The analysts should be skilled in the interpretation of gas chromatograms and their use as a quantitative tool.

2.4 The method is designed to measure mid-range petroleum products such as diesel or fuel oil. Components greater than C28 present in products such as motor oils or lubricating oils are detectable under the conditions of the method. If, based on a review of the chromatograph the presence of these product types is suspected, additional analyses may be performed. These addition efforts are not contained within this method.

3. SUMMARY OF METHOD

3.1 This method provides gas chromatographic conditions for the detection of volatile petroleum fractions such as diesel, fuel oil #2, or kerosene. Samples are analyzed utilizing extraction to dissolve the organic constituents. The extract is dried, concentrated and injected into a capillary column gas chromatograph. The gas chromatograph is temperature programmed to facilitate separation of organic compounds. Detection and quantitation is based on FID detector response compared to a diesel component standard.

3.2 This method is suitable for the analysis of waters, soils, or wastes.

3.3 Soil core samples are collected in wide mouth vials with minimum handling to reduce loss of contaminants. Solvent preservation by extraction is performed in the lab.

3.4 This method is based in part on 1) USEPA SW-846: the 3rd edition of methods 8000 and 8100; 2) work by the EPA Total Petroleum Hydrocarbons Methods Committee; and 3) work by the Wisconsin Ad-Hoc Committee on LUST Program Analytical 4) Requirements and Wisconsin State Laboratory of Hygiene.

4. INTERFERENCES

4.1 Other organic compounds, including chlorinated hydrocarbons, phenols, and phthalate esters are measurable. As defined in the method, the DRO results include these compounds. Spills of neat products should be quantified by specific analysis for the product in question.
4.2 Washing all glassware with hot soapy water and then rinsing it with tap water and methylene chloride reduce method interferences. Reagent blanks must be analyzed with each batch or for every 20 samples to demonstrate that the samples are free from method interferences.

4.3 Contamination by carryover can occur whenever high-level and low-level samples are sequentially analyzed. Whenever an unusually concentrated sample is encountered, it should be followed by analysis of a solvent blank to check for cross-contamination.

5. **SAFETY**

5.1 All samples, standards, and reagents should be treated as hazardous. Safety glasses, gloves, and lab coats are to be worn. The toxicity or carcinogenicity of each reagent used in this method has not been precisely defined. However, each chemical compound should be treated as a potential health hazard. Exposure to these chemicals must be reduced to the lowest possible level by a safe technique. Special care should be taken when handling the high concentration acids and oxidizing reagents used for sample digestion.

5.2 The laboratory is responsible for maintaining a current awareness file of OSHA regulations regarding the safe handling of any chemical. A reference file of Material Safety Data Sheets (MSDS) and a formal safety plan are made available to all personnel involved in chemical analysis and should be consulted prior to handling samples and standards.

5.3 Excess reagents, samples and method process wastes are characterized and disposed of in an acceptable manner. For further information on waste management consult the current version of S-GB-S-006, *Waste Handling and Management*, most current revision.

6. **DEFINITIONS**

6.1 Definitions can be found in Section 10 of the most recent version of the Pace Analytical Services, Inc. Quality Manual.

6.2 Diesel Range Organics (DRO): All chromatographic peaks eluting between n-decane (n-C10) and n-octacosane (n-C28). Quantitation is based on direct comparison of the area within this range to the total area of the 10 components in the Diesel Component Standard.

6.3 Diesel Component Standard: A ten-component blend of typical diesel compounds (Table 1). This standard serves as a quantitation standard and a retention time window for diesel range organics.

6.4 Diesel Component Spike: A reagent water or method blank sample spiked with the Diesel Component Standard and run with 5% of all samples as a quality control check. At a minimum 1 Diesel Component Spike must be run.
7. **SAMPLE COLLECTION, PRESERVATION AND HANDLING**

7.1 Aqueous samples should be collected in a one liter amber bottle with a teflon-lined cap. The Teflon liner must contact the sample. Samples must be preserved with 5 mls of 50% HCl at the time of collection. Cool samples to 4°C after collection. Extraction must be performed on waters within seven days of collection. Analysis must take place within 47 days of collection.

7.2 Soil can be collected using a 30 mL plastic syringe with the end sliced off. A sufficient number of vials (three is recommended) should be collected to provide for backup analyses in the event of breakage. One vial should be collected for dry weight determination. Samples should be collected in tared 60 mL VOC vials. Using a cut off syringe add a soil volume of 15-20 mLs (corresponding to about 25 g) to the vial or fill to mark on the vial. Excessive soil handling should be avoided. Be sure to clean all sediment from the vial threads. Samples can also be collected using the EnCore sampler. They are then transferred to 2 oz clear jars in the lab. Cool all samples to 4°C immediately after collection. Shipping time should be minimized. It is optimal for the lab to receive the samples within 4 days. 25 mLs of extraction solvent must be added to the soil sample within 10 days of sampling to insure preservation. The same solvent used for extraction must be used for calibration and analysis. For more details on soil sampling requirements see the "LUST Program QA Requirements." Analysis must take place within 47 days of collection. 35.4 grams is the maximum weight allowed for the WI MOD. DRO method. If the DRO sample >35.4g the sample is subsampled and flagged.

7.3 Sample temperature must be determined upon receipt to the lab. If the sample was shipped in ice and solid ice is still present report the sample as "received on ice." Exact sample temperature need not be reported for samples received on ice. If, however, the sample was cooled using "blue ice" packs, or the ice used in shipping has melted then the temperature of a "temperature blank" must be reported. If the ice used to ship the sample has melted the temperature of the melt water may be substituted for a temperature blank. Note: If blue ice packs are used, precooling of samples to 4°C with ice or by refrigeration is necessary.

7.4 The pH of all water samples must be determined unless the lab supplied sample vials containing acid for field preservation. The pH measurement may be performed on left over sample.

8. **EQUIPMENT AND SUPPLIES**

8.1 Gas chromatograph

8.1.1 Gas Chromatograph: Hewlett-Packard Series II equipped with a Hewlett-Packard 7673 AutomaticSampler.

8.1.2 Columns:

8.1.2.1 Column 1: 10 M x .53 mm DB-5, 0.32 micron film thickness; temperature limits - 60°C to 330°C, Restek

8.1.2.2 Other columns may be used - capillary columns are required. The column must be capable of resolving typical diesel components, and the solvent front from C10.

8.1.3 Detector: Flame ionization (FID).
8.2 Heated Water Bath used in a hood

8.3 Nitrogen evaporator with high purity nitrogen gas source.

8.4 Mettler BB600 Balance - A top-loading balance capable of weighing to the nearest 0.01 gram.

8.5 Elma Transsonic Digital Ultrasonic Bath.

8.6 Pressure Filter Apparatus.

8.7 VOC Vials and Bottles: Wide mouth 60 ml VOC vials with Teflon/silicone septa for soils. Amber 1 liter bottles with Teflon lined caps and preserved with 5.0 mL HCL for waters. Bottles are obtained from Eagle-Picher Environmental Services.

8.8 Separatory funnel – Labline or Chemisphere, 2000 ml with Teflon or glass stopcock.

8.9 Micro syringes - Hamilton or equivalent, 10 uL, 25 uL, 50 uL and 100 uL.

8.10 Disposable pipettes: Baxter Scientific Products.

8.11 Class A Volumetric(s): 2mL, 5mL, 10mL, 25mL, 50mL, 100mL.

8.12 TurboVap II Concentration Workstation.

8.13 Labline Extraction Mixer.

9. REAGENTS AND STANDARDS

9.1 Reagent Water: Barnstead Nanopure Infinity Ultra pure water system.

9.2 Solvents: Burdick and Jackson methylene chloride pesticide grade or equivalent.

9.3 Sodium Sulfate – Fisher S415-212 AR granular, anhydrous. Purify by heating at 400°F for 4 hours in a shallow tray.

9.5 Stock Standards: Stock standard for the diesel components in methylene chloride Diesel Range Organics (20 mg/ml) obtained from Restek (Cat# 31064).

9.5.1 Transfer the stock standard solution into a Teflon-sealed screw-cap/crimp cap bottle. Store, with minimal headspace, at -10 C to -20 C and protect from light.

9.5.2 Standards must be replaced after 6 months or sooner if comparison with check standards indicates a problem.

9.5.3 ICV Stock Standard for the diesel components in hexane Diesel Range Organics (20 mg/ml) obtained from Supelco (Cat# DRH-001S-10X).
9.6 Diesel Component Standard: Using stock standard solutions, prepare Diesel Component Standard in a solvent, as needed. These standards should be stored with minimal headspace for volatiles and should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.

9.7 Calibration Standards: Prepare Calibration standards at a minimum of five concentration levels in solvent from the Diesel Component Standard (20 mg/ml from Restek). One of the concentration levels should be around the MDL. The remaining concentration levels should correspond to the working range of the GC.

10. **CALIBRATION**

10.1 Run the Diesel Component Standard at five concentration levels at and above the PQL and covering the linear range of the instrument. These levels are 50, 100, 250, 500, 1000 and 2000 ug/ml. Calibration standards are prepared by diluting the standard stock solution (20 mg/ml) from Restek with methylene chloride in 1, 2 and 10mL volumetric flasks. The stock standard is injected with a microsyringe below the surface of the methylene chloride in the volumetric and then the volumetric is diluted to the mark. The calibration standards are transferred to 2 mL vials with disposable pipettes. The vials are sealed with Teflon-lined aluminum crimp seals.

10.2 Inject each calibration standard. Tabulate peak area for the ten components against the mass injected. The results are used to prepare a calibration curve by linear regression.

10.3 Initial calibration accuracy must be evaluated before any samples are analyzed through the analysis of an Initial Calibration Verification standard (ICV) which includes all compounds of interest. The ICV should be at or near the midpoint of the calibration range, derived from a source independent of the calibration standard, (i.e., second source), and must quantitate within +/- 20% of the expected value. The ICV concentration is at 250 ug/l for the diesel fraction.

10.4 The working calibration curve must be verified on each working day by the injection of a calibration standard. If the response for the calibration standard varies from the predicted response by more than 20%, a new calibration curve must be prepared. The working range of the calibration curve is from 0-2000 ug/mL. The calibration check is at a concentration of 250 mg/L.

10.5 Reporting Limit Verification Standard (RLVS) – A standard prepared at the concentration of the Pace Reporting Limit. It is analyzed after the calibration and monthly thereafter, recovery 60-140% of true value. If outside the limits, reanalyze once. If still outside the limits, recalibrate.

11. **PROCEDURE**

11.1 Samples are analyzed by GC/FID. Waters are extracted using a separatory funnel technique. Soils are extracted in vial or jar. Details are given in section 12.4. After the extracts are concentrated, a volume is injected directly onto the GC.

11.2 Gas Chromatography

11.2.1 Set FID Detector to 300 C and injector to 300 C. MACH- 50 C for 1 minute, then 250 C/min to 320 C/min, hold for 5 min run time = 7 min

11.2.2 NOTE: Other conditions may be used.
11.3 Retention Time Window and Quantitation

11.3.1 Diesel Range Organics (DRO): All chromatographic peaks eluting between n-decane and n-octacosane. Quantitation is based on direct comparison of the area within this range to the total area of the 10 components in the Diesel Component Standard.

11.3.2 The retention time window is defined as beginning approximately .1 minutes before the retention time of decane and ending .1 minutes after the retention time of octacosane in the calibration run. PACE uses an HP-Chem software macro to automatically establish a DRO window and integrate fuel peaks within the window.

11.3.3 Quantify by summing all peak areas eluting between n-decane and n-octacosane. The baseline is kept constant over this range.

11.4 Sample preparation

11.4.1 Water extraction - Separatory Funnel

11.4.1.1 Transfer the sample to the 2-L separatory funnel. If the sample is in a 1-liter or smaller bottle, mark the water meniscus on the side of the sample bottle for later determination of the sample volume. If the sample is in a larger bottle, mark the water meniscus on the side of the sample bottle for sample volume determination. Pour the sample into a 2-liter separatory funnel. For blanks and quality control standards, pour 1 liter of reagent water into the separatory funnel.

11.4.1.2 Note the initial pH. If the sample bottle does not state that it is preserved, then check the pH using Whatman pH indicator paper.

11.4.1.3 Add 60 mLs solvent to the sample bottle to rinse the inner walls (same solvent used for the calibration standards). Transfer the solvent to the separatory funnel. Extract the sample by shaking it for three minutes with the Labline Extraction Mixer set at 30 cycles a minute.

11.4.1.4 Allow the layers to separate.

11.4.1.5 Drain the solvent layer through a funnel filled with Na2SO4 into a TurboVap concentrator tube.

11.4.1.6 Repeat the extraction once more using a 60 mL aliquot of solvent. Collect the solvent in the same tube described in 11.4.1.5.

11.4.1.7 Use the TurboVap II at 35-C in Sensor mode to concentrate sample to ~ 1ml. The pressure should be set at 11 psi. If the extract is highly colored or a precipitate forms during concentration, the final volume may be higher.

11.4.1.8 If the extract is highly colored or a precipitate forms during concentration, the final volume may be higher.

11.4.1.9 After the concentrator tube or TurboVap concentrator tube has cooled, rinse the sides of the bottom half the tube with a small amount of solvent. Bring the final volume to 1 mL. Transfer the extract to two 2ml vials with Pasteur pipettes.

11.4.1.10 Record the prep information for the extraction and concentration steps. The sample extract is ready for analysis in section 12.5.4.
11.4.2 Solvent Extraction for soil/sediment: This method is based on extracting the sediment/soil with solvent. An aliquot of the extract is concentrated and injected on the GC.

11.4.2.1 Weigh the tarred sample vials to determine the actual weight. See SOP: S-GB-O-018, DRO Weight Determination most current revision. If weight is not available, the sample is sub-sampled and weight is documented on the extraction log sheet.

11.4.2.2 Add 25 grams of dried Na2SO4.

11.4.2.3 Add 25 ml of methylene chloride within 10 days of sample date.

11.4.2.4 Well mix the sample by stirring with a steel spatula Sonicate for 20 minutes.

11.4.2.5 Allow sediment to settle until a layer of solvent is apparent.

11.4.2.6 Decant the solvent into a filtering funnel pre-assembled with a glass wool plug and sodium sulfate. The sample extract is collected in a 60 mL disposable vial set underneath the funnel.

11.4.2.7 Repeat extraction once more as described in sections 12.4.2.3 and 12.4.2.4 except only 15 ml of CH2Cl2 is used. Pour all solvent and sample extract into the filter funnel, rinse the extraction jar with CH2Cl2 to remove any residual sample contents and pour into funnel. Rinse the sodium sulfate with CH2Cl2 and place the pressure filter apparatus on top of the funnel to pressure filter the sample into the 60 mL collection vessel. After all the sample extract has been pressure filtered, proceed to concentration.

11.4.2.8 Add 1-2 boiling chips to each 60 mL disposable vial containing sample extract and attach a three-ball micro-Snyder column.

11.4.2.9 Place the sample on the water bath with the bottom of the 60 mL vial partially immersed in water. The water bath temperature should range between 75° to 85° C. After heating to temperature, the balls in the micro-Snyder column should actively chatter but not flood with solvent.

11.4.2.10 Remove the 60 mL vial from the water bath when the extract volume has concentrated to approximately 500 uL. After the unit has cooled, rinse the Snyder column with CH2Cl2 collect solvent into the vial and remove the Snyder column. Transfer the sample aliquot into a 2mL autosampler vial marked and verified with 0.5, 1 and 1.5mL volume markings and adjust the final volume to 1mL.

11.4.2.11 Silica gel may be used as a clean up of the extract to remove any polar compounds that may be present. If silica gel is used on sample extracts it must also be used on all QC sample extracts.

11.4.3 Inject 1 uL of the concentrated extract onto the GC and proceed with the analysis.

11.4.4 If the sample extract exceeds the working range of the calibration curve, the sample must be run at a dilution that places the concentration of the extract in approximately the upper half of the calibration curve. The acceptable on column range is 900-2000 ppm or mg/L.
11.5 Calculations:

11.5.1 DRO Calculation: The concentration of Diesel Range organics in the sample is determined from a summation of peak area for all chromatographic peaks eluting between n-decane and n-octacosane, using the calibration curve. Refer to Section (Retention Time Windows and Quantitation). From linear regression of calibration standard GC response (R) against their known concentrations (C in ug/ml) derive the following linear equation:

\[C = mR + b \]

Using the slope (m) and the intercept (b) from this equation the concentration of the sample can be calculated from the following equations:

Water samples:

\[Cs = \frac{(mRs + b) (Ve) (D)}{Vs} \]

Soil samples:

\[Cs = \frac{(mRs + b) (Ve) (D)}{W} \]

Where:

- \(Cs \) = Concentration of sample in ug/L for waters and mg/kg on a dry weight basis for soils
- \(m \) = slope of the calibration curve
- \(Rs \) = GC response of sample in the DRO retention time window
- \(b \) = intercept of calibration curve
- \(Ve \) = total volume of sample extract (after concentration) in ml
- \(Vs \) = volume of water sample in liters
- \(D \) = dilution factor of water or soil extract as diluted
- \(W \) = total dry weight of soil sample in grams

11.5.2 PACE has automated data processing. The integrated results are automatically processed against the linear regression curve, transferred to EpicPro and then corrected for extraction volume, sample weight or sample volume and percent solids for soil samples.
Auto program:
Login to EpicPro through Windows.
Select Import Data.
Select Semivolatiles and then DRO.
Select the number of DRO instrument and directory.
Click on field names in row and then on Start Import.
Delete out any samples that need to be rerun.
Select Send To LIMS.
Select Create a New Worksheet.
Name the worksheet DRO (instrument #) (date run was started).
Close the door.
Select Enter Results and By Worksheet.
Chose the worksheet that was just named.
Select Calculate Results.
Close the door and exit EpicPro.
Another person in the Semivolatile section goes in to EpicPro to review the data and mark the samples approved.

11.5.3 The initial result off the GC, the total solids, dilution factor and the weight of the sample are sent to LIMS through the auto program. The final volume of 1.0 ml is preset in LIMS. The initial volume for waters is preset at 1.0 L. If a sample is not blown down to 1.0 ml or a water sample is not 1.0 liters, these parameters must be changed manually in LIMS.

11.5.4 The LIMS calculation.

IA=Initial amount - Value off the GC-transferred automatically in mg/L units.
D=Dilution factor - Transferred automatically.
V=Final volume - Set at 1.0 mL for waters, or 1mL for soils (Must be changed manually if different.)
W=Weight - Soil weight in grams transferred automatically.
 For waters initial volume is set at 1.0L. (Must be changed manually if not 1.0L.)
S=SOL% - Total solids is transferred automatically for soils.
 SOL% is set at 100% for waters.

DRO water result = (IA*D*V)/W
Results are in ug/L with reporting to 2.0 significant figures.

\[
\frac{(mg/L)\times ml}{L^2} \times \frac{mg}{1000ml} \times \frac{ug}{L} = \text{Water units.}
\]

DRO soil result = (IA*D*V)/(W*S)
Results are in mg/kg with reporting to 2.0 significant figures.

\[
\text{mg} \times \frac{1}{L} \times \frac{1000g}{1L} \times \frac{mg}{1000ml} \times \frac{1L}{g} \times \frac{1kg}{1000ml} = \text{Soil units.}
\]
11.5.5 Peak areas measured from blanks may not be subtracted from sample peak areas. Peaks from blank samples, which interfere in the window, and are above detection limits must be reported.

11.5.6 If there were significant peaks outside the chromatographic window, this fact must be reported. The analysis is extended at a minimum of 5 minutes after the last diesel component standard.

11.5.7 Comments on the chromatogram and/or other problems regarding the sample should be entered into the LIMS comment section and the reports.

12. QUALITY CONTROL

12.1 The analyst must make an initial demonstration of the ability to generate acceptable accuracy and precision with this method by successful analysis of the following:

12.1.1 Replicate Water spikes. Analysis of 5 replicates at a concentration of 250 ug/l with recoveries between 75%-115% of the known concentration. The RSD must be <20%.

12.1.2 Replicate Soil spikes. Analysis of 5 replicates at a concentration of 20 mg/kg with all recoveries between 70% and 130% and precision of all the replicates within 20%. Soil spikes should be prepared and analyzed as described in section 11.

12.2 With every batch of 20 samples or less the lab must analyze:

12.2.1 Duplicate Laboratory Spike - Water: The RPD must be <20%. The replicate spikes must be between 75%-115% of the known concentration. Water component spikes are prepared from an intermediate standard in which 3250 uL of the 20 mg/ml Diesel Component Standard (Restek) is injected into a 250.0 mL volumetric flask and brought up to volume with methylene chloride. 1000 uL of the intermediate standard is then injected into 1.0 L of organic free water and extracted using the method described in section 11.4.1. The final theoretical concentration of the water spikes is 250 ug/L.

12.2.2 Duplicate Soil Spike. The soil spike is prepared by spiking the Diesel component Standard into a sample of clean Ottawa sand. Soil spikes must be prepared at least 24 hours before extraction and analysis with a batch of samples and should be held at 4 C. 25 grams of Ottawa sand is injected with 250 uL of 2000 ug/mL DRO standard from Restek. 25 mL of methylene chloride is added to the sand and the sample is stored at 4 C. The spike is ready to be extracted with a batch of samples. The theoretical value of the spike extract is 20.0 mg/kg. The spike recovery must be between 70% and 120%. The RPD must be <20%.

12.3 Calibration Standard: The peak area must fall within 20% of the value predicted by the calibration curve. A 250 ug/mL standard is prepared by diluting 250 uL of 10 mg/mL DRO standard to 10 mL with methylene chloride in a 10 mL volumetric flask.

12.4 Solvent Blank - Methylene Chloride

12.5 Method Blank - Water: Barnstead purified water is processed through the method in the same manner as a sample. If the concentration exceeds 50 ug/L, the samples associated with batch must be rerun or flagged.
12.6 Method Blank - Soil: Sand is processed through the entire extraction procedure. If the concentration exceeds 2.0 mg/kg, the sample associated with that batch must be flagged or rerun.

12.7 The correlation coefficient of the calibration curve used to quantitate samples must be at least 0.990.

12.8 If any of the criteria above are not met, the problem must be corrected before further samples are analyzed. Any samples run between the last QC samples that meet the criteria and those that have fallen out should be rerun. If this is not possible that data must be flagged.

12.9 Solvent blanks should be run after samples suspected of being highly concentrated to prevent carryover.

12.10 One of the duplicate spikes must be run at the beginning of the set of 20 samples and the other spike should be run after samples have run on the instrument.

12.11 Pace Reporting Limit Standard (PRLS) – A standard prepared at the concentration of the Pace Reporting Limit. It is analyzed after the calibration and monthly thereafter, recovery 60-140% of true value. If outside the limits, reanalyze once. If still outside the limits, recalibrate

13. **METHOD PERFORMANCE**

13.1 There are several requirements that must be met to insure that this procedure generates accurate and reliable data. A general outline of requirements has been summarized below. Further specifications may be found in the Laboratory Quality Manual and specific Standard Operating Procedures.

13.1.1 The analyst must read and understand this procedure with written documentation maintained in his/her training file.

13.1.2 An initial demonstration of capability (IDC) must be performed per S-ALL-Q-020, *Orientation and Training Procedures*. A record of the IDC will be maintained in his/her QA file with written authorization from the Laboratory Manager and Quality Manager.

13.1.3 An annual method detection limit (MDL) study will be completed per S-ALL-Q-004, *Method Detection Limit Studies*, for this method and whenever there is a major change in personnel or equipment. The results of these studies are retained in the quality assurance office.

13.1.4 Periodic performance evaluation (PE) samples are analyzed per S-ALL-Q-010, *PE/PT Program*, to demonstrate continuing competence. All results are stored in the QA office.
14. POLLUTION PREVENTION AND WASTE MANAGEMENT

14.1 Pollution prevention encompasses any technique or procedure that reduces or eliminates the quantity or toxicity of waste at the point of generation.

14.2 The quantity of chemicals purchased is based on expected usage during its shelf life and disposal cost of unused material. Actual reagent preparation volumes reflect anticipated usage and reagent stability.

14.3 Excess reagents, samples and method process wastes are characterized and disposed of in an acceptable manner. For further information on waste management consult the current version of ALL-S-002, *Waste Handling*.

14.4 The laboratory Chemical Hygiene Plan/Health and Safety Plan contains additional information on pollution prevention.

15. REFERENCES

15.1 Modified DRO, Method for Determining Diesel Range Organics Wisconsin DNR, WI-PUB-SW-141, September 1995

16. TABLES, DIAGRAMS, FLOWCHARTS, APPENDICES, ADDENDA ETC.

TABLE I

DIESEL COMPONENT STANDARD AND CONCENTRATIONS FOR BOTH RESTEK AND ACCUSTANDARD STOCK STANDARDS

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration, ug/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decane</td>
<td>2000</td>
</tr>
<tr>
<td>Dodecane</td>
<td>2000</td>
</tr>
<tr>
<td>Tetradecane</td>
<td>2000</td>
</tr>
<tr>
<td>Hexadecane</td>
<td>2000</td>
</tr>
<tr>
<td>Octadecane</td>
<td>2000</td>
</tr>
<tr>
<td>Eicosane</td>
<td>2000</td>
</tr>
<tr>
<td>Decosane</td>
<td>2000</td>
</tr>
<tr>
<td>Tetracosane</td>
<td>2000</td>
</tr>
<tr>
<td>Hexacosane</td>
<td>2000</td>
</tr>
<tr>
<td>Octacosane</td>
<td>2000</td>
</tr>
<tr>
<td>Total</td>
<td>20000 ug/ml</td>
</tr>
</tbody>
</table>
17. **REVISIONS**

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Reason for Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB-O-019-Rev.00</td>
<td>Reformatted SOP body to Pace Analytical Format</td>
<td>13Apr2005</td>
</tr>
<tr>
<td>S-GB-O-019-Rev.01</td>
<td>Updated Sections 5, 6, 14 and 15 with current standard information</td>
<td>21Sept2007</td>
</tr>
<tr>
<td></td>
<td>Changed all references of EnChem to Pace throughout SOP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updated Section 12.4.2 with sample filtration procedure</td>
<td></td>
</tr>
<tr>
<td>S-GB-O-019-REV.02</td>
<td>Updated signature page. Section 2.2 changes PQL to 2.0 and 50 from 5.0 and 100.</td>
<td>01Oct2008</td>
</tr>
<tr>
<td></td>
<td>Deleted Section 7.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renumbered document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 9.5.3 – Added ICV Standard source.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 10.1 – Update ICAL Standard concentrations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 10.3 – Added ICV criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 11.4.1.9 – changed final volume to 1 mL from 2 mL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 11.4.2.1 – Added what to do if weight is not available.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 11.4.3 – Changed injection volume from 2 uL to 1 uL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 11.5.2 – Changed Conifer references to Epic Pro.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 11.5.4 – Changed Water final volume to 1 mL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 12.1 – Updated IDOC spike concentrations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 12.2 – Updated LCS Spike concentrations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 12.6 – Changed concentration from 2.5 to 2.0 mg/kg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 10.4 and 12.11 – added PRLS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 13 – Updated SOP references.</td>
<td></td>
</tr>
<tr>
<td>S-GB-O-019-Rev.03</td>
<td>Updated Signature Page Section</td>
<td>18Mar2010</td>
</tr>
<tr>
<td></td>
<td>Section 11.4.2.1: Changed to see SOP: S-GB-O-018 DRO Weight Determination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 11.4.2.4: Changed to Stir sample instead of shaking for 2 minutes.</td>
<td></td>
</tr>
</tbody>
</table>
State of Wisconsin
Department of Natural Resources

recognizes
Wisconsin Certification under NR 149
of
Pace Analytical Services, Inc. Green Bay

Laboratory Id: 405132750

as a laboratory licensed to perform environmental sample analysis in support of covered environmental programs (ch. NR149.02 Note) for the parameter(s) specified in the attached Scope of Accreditation.

August 31, 2011
Expiration Date

August 18, 2010
Issued on

David Webb, Chief
Environmental Science Services

Matthew J. Frank, Secretary
Department of Natural Resources

This certificate does not guarantee validity of data generated, but indicates the methodology, equipment, quality control practices, records, and proficiency of the laboratory have been reviewed and found to satisfy the requirements of ch. NR 149, Wis. Adm. Code.
Scope of Accreditation

<table>
<thead>
<tr>
<th>Class: General Chemistry</th>
<th>Class: Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity as CaCO3 by Titration</td>
<td>Cobalt by ICP</td>
</tr>
<tr>
<td>Alkalinity by Titration</td>
<td>Cobalt by ICP-MS</td>
</tr>
<tr>
<td>Ammonia as N by Colorimetric</td>
<td>Copper by ICP</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (BOD) by Assay</td>
<td>Copper by ICP-MS</td>
</tr>
<tr>
<td>Bromide by IC</td>
<td>Iron by ICP</td>
</tr>
<tr>
<td>Carbonaceous Oxygen Demand (eBOD) by Assay</td>
<td>Iron by ICP-MS</td>
</tr>
<tr>
<td>Chemical Oxygen Demand (COD) by Colorimetric</td>
<td>Lead by ICP</td>
</tr>
<tr>
<td>Chloride by IC</td>
<td>Lead by ICP-MS</td>
</tr>
<tr>
<td>Cyanide, Total by Colorimetric</td>
<td>Magnesium by ICP</td>
</tr>
<tr>
<td>Fluoride by IC</td>
<td>Magnesium by ICP-MS</td>
</tr>
<tr>
<td>Hardness, Total as CaCO3 by ICP</td>
<td>Manganese by ICP</td>
</tr>
<tr>
<td>Kjeldahl Nitrogen, Total by Colorimetric</td>
<td>Manganese by ICP-MS</td>
</tr>
<tr>
<td>Nitrate by IC</td>
<td>Mercury by Hyd-CVAA</td>
</tr>
<tr>
<td>Nitrate + Nitrite by Colorimetric</td>
<td>Mercury by ICP-MS</td>
</tr>
<tr>
<td>Nitrate + Nitrite by IC</td>
<td>Mercury by UltraLow</td>
</tr>
<tr>
<td>Nitrite by IC</td>
<td>Molybdenum by ICP</td>
</tr>
<tr>
<td>Organic Carbon, Total (TOC) by Comb-Ox</td>
<td>Molybdenum by ICP-MS</td>
</tr>
<tr>
<td>Phosphorus, Total by Colorimetric</td>
<td>Nickel by ICP</td>
</tr>
<tr>
<td>Residue, Filterable (TDS) by Grav</td>
<td>Nickel by ICP-MS</td>
</tr>
<tr>
<td>Residue, Nonfilterable (TSS) by Grav</td>
<td>Potassium by ICP</td>
</tr>
<tr>
<td>Residue, Total by Grav</td>
<td>Potassium by ICP-MS</td>
</tr>
<tr>
<td>Residue, Volatile (TVS) by Grav</td>
<td>Selenium by ICP</td>
</tr>
<tr>
<td>Residue, Volatile, Nonfilterable (TVSS) by Grav</td>
<td>Selenium by ICP-MS</td>
</tr>
<tr>
<td>Sulfate by IC</td>
<td>Silver by ICP</td>
</tr>
<tr>
<td>Sulfide by Titration</td>
<td>Silver by ICP-MS</td>
</tr>
<tr>
<td>Sulfides, Acid-Soluble and Acid-Insoluble by Titration</td>
<td>Sodium by ICP</td>
</tr>
<tr>
<td>Sodium by ICP-MS</td>
<td></td>
</tr>
<tr>
<td>Strontium by ICP</td>
<td></td>
</tr>
<tr>
<td>Thallium by ICP</td>
<td></td>
</tr>
<tr>
<td>Thallium by ICP-MS</td>
<td></td>
</tr>
<tr>
<td>Tin by ICP</td>
<td></td>
</tr>
<tr>
<td>Titanium by ICP</td>
<td></td>
</tr>
<tr>
<td>Vanadium by ICP</td>
<td></td>
</tr>
<tr>
<td>Vanadium by ICP-MS</td>
<td></td>
</tr>
<tr>
<td>Zinc by ICP</td>
<td></td>
</tr>
<tr>
<td>Zinc by ICP-MS</td>
<td></td>
</tr>
</tbody>
</table>

Wisconsin Certification under NR 149

Matrix: Aquous (Non-potable Water)

<table>
<thead>
<tr>
<th>Class: Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum by ICP</td>
</tr>
<tr>
<td>Aluminum by ICP-MS</td>
</tr>
<tr>
<td>Antimony by ICP</td>
</tr>
<tr>
<td>Antimony by ICP-MS</td>
</tr>
<tr>
<td>Arsenic by ICP</td>
</tr>
<tr>
<td>Arsenic by ICP-MS</td>
</tr>
<tr>
<td>Barium by ICP</td>
</tr>
<tr>
<td>Barium by ICP-MS</td>
</tr>
<tr>
<td>Beryllium by ICP</td>
</tr>
<tr>
<td>Beryllium by ICP-MS</td>
</tr>
<tr>
<td>Boron by ICP</td>
</tr>
<tr>
<td>Cadmium by ICP</td>
</tr>
<tr>
<td>Cadmium by ICP-MS</td>
</tr>
<tr>
<td>Calcium by ICP</td>
</tr>
<tr>
<td>Calcium by ICP-MS</td>
</tr>
<tr>
<td>Chromium (Hexavalent) by Colorimetric</td>
</tr>
<tr>
<td>Chromium (Total) by ICP</td>
</tr>
<tr>
<td>Chromium (Total) by ICP-MS</td>
</tr>
</tbody>
</table>

Class: BNA Semivolatiles

* SEMIVOLATILES [BNA] (group) by GC/MS

Class: Pesticides, Organochlorine

* PESTICIDES, ORGANOCHLORINE (group) by GC

Class: Petroleum Hydrocarbons

- Diesel Range Organics (DRO) by GC
- Gasoline Range Organics (GRO) by GC

The laboratory named above is hereby licensed under ch. NR 149, Wis. Adm. Code for the parameters listed in this attachment.

Scope of Accreditation

Pace Analytical Services, Inc. Green Bay
1241 Bellevue Street
Green Bay, WI 54302

Laboratory Id: 405132750
Expiration Date: 08/31/11
Issued Date: 08/18/10

Wisconsin Certification under NR 149
Matrix: Aqueous (Non-potable Water)

<table>
<thead>
<tr>
<th>Class: Petroleum Hydrocarbons</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Volatile Organic Compounds (PVOC) by GC</td>
<td></td>
</tr>
<tr>
<td>Petroleum Volatile Organic Compounds (PVOC) by GC/MS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class: PCBs as Aroclors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* PCB as AROCLORS (group) by GC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class: Volatile Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>* VOLATILE ORGANICS [VOC] (group) by GC/MS</td>
</tr>
</tbody>
</table>

The laboratory named above is hereby licensed under ch. NR 149, Wis. Adm. Code for the parameters listed in this attachment.
* Analyte groups are defined and listed on the WI DNR Lab Certification website. See http://dnr.wi.gov/org/es/science/lc/ for details.
Scope of Accreditation

Pace Analytical Services, Inc. Green Bay
1241 Bellevue Street
Green Bay, WI 54302

Laboratory Id: 405132750
Expiration Date: 08/31/11
Issued Date: 08/18/10

Wisconsin Certification under NR 149
Matrix: Potable Water (Drinking Water)

Class: SDWA - Primary Non-metals
Nitrates + Nitrites - EPA 300.0
Nitrates - EPA 300.0
Nitrites - EPA 300.0

The laboratory named above is hereby licensed under ch. NR 149, Wis. Adm. Code for the parameters listed in this attachment.
* Analyte groups are defined and listed on the WI DNR Lab Certification website. See http://dnr.wi.gov/es/science/lc/ for details.
Scope of Accreditation

Wisconsin Certification under NR 149
Matrix: Solid (Waste, Soil & Tissue)

Class: General Chemistry
- Ammonia as N by Colorimetric
- Bromide by IC
- Chloride by IC
- Cyanide, Total by Colorimetric
- Fluoride by IC
- Kjeldahl Nitrogen, Total by Colorimetric
- Nitrate by IC
- Nitrate + Nitrite by Colorimetric
- Nitrate + Nitrite by IC
- Nitrite by IC
- Organic Carbon, Total (TOC) by Comb-Ox
- Phosphorus, Total by Colorimetric
- Residue, Total by Grav
- Sulfate by IC
- Sulfide by Titration
- Sulfides, Acid-Soluble and Acid-Insoluble by Titration

Class: Metals
- Aluminum by ICP
- Aluminum by ICP-MS
- Antimony by ICP
- Antimony by ICP-MS
- Arsenic by ICP
- Arsenic by ICP-MS
- Barium by ICP
- Barium by ICP-MS
- Beryllium by ICP
- Beryllium by ICP-MS
- Boron by ICP
- Cadmium by ICP
- Cadmium by ICP-MS
- Calcium by ICP
- Calcium by ICP-MS
- Chromium (Total) by ICP
- Chromium (Total) by ICP-MS
- Cobalt by ICP
- Cobalt by ICP-MS
- Copper by ICP
- Copper by ICP-MS
- Iron by ICP
- Iron by ICP-MS
- Lead by ICP
- Lead by ICP-MS
- Magnesium by ICP
- Magnesium by ICP-MS
- Manganese by ICP

Class: BNA Semivolatiles
* SEMIVOLATILES [BNA] (group) by GC/MS

Class: Pesticides, Organochlorine
* PESTICIDES, ORGANOCHLORINE (group) by GC

Class: Petroleum Hydrocarbons
- Diesel Range Organics (DRO) by GC
- Gasoline Range Organics (GRO) by GC
- Petroleum Volatile Organic Compounds (PVOC) by GC
- Petroleum Volatile Organic Compounds (PVOC) by GC/MS

Class: PCBs as Aroclors
* PCB as AROCLORS (group) by GC

Class: Volatile Organics
* VOLATILE ORGANICS [VOC] (group) by GC/MS

Class: Waste Characterization Extractions
- Reagent Water Shake Extraction (ASTM Leach Test) by Waste Extractions

The laboratory named above is hereby licensed under ch. NR 149, Wis. Adm. Code for the parameters listed in this attachment.

* Analyte groups are defined and listed on the WI DNR Lab Certification website. See http://dnr.wi.gov/org/es/science/lc/ for details.
Scope of Accreditation

Pace Analytical Services, Inc., Green Bay
1241 Bellevue Street
Green Bay, WI 54302

Laboratory Id: 405132750
Expiration Date: 08/31/11
Issued Date: 08/18/10

Wisconsin Certification under NR 149
Matrix: Solid (Waste, Soil & Tissue)

<table>
<thead>
<tr>
<th>Class: Waste Characterization Extractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLP Extraction by Waste Extractions</td>
</tr>
<tr>
<td>TCLP Extraction by Waste Extractions</td>
</tr>
</tbody>
</table>

| Class: Waste Characterization Assays |
| Ignitability, Pensky-Martens Closed Cup by Waste Assays |

The laboratory named above is hereby licensed under ch. NR 149, Wis. Adm. Code for the parameters listed in this attachment.
* Analyte groups are defined and listed on the WI DNR Lab Certification website. See http://dnr.wi.gov/org/es/science/lc/ for details.
August 18, 2010

MS. KATE GRAMS
PACE ANALYTICAL SERVICES, INC. GREEN BAY
1241 BELLEVUE STREET
GREEN BAY, WI 54302

Dear Ms. Kate Grams:

Enclosed is your new Laboratory Certification or Registration certificate. This certificate supersedes all previous certificates.

YOUR CERTIFICATE IS AN IMPORTANT DOCUMENT. PLEASE REVIEW IT CAREFULLY FOR ERRORS AND COMPARE IT TO YOUR PREVIOUS YEAR’S CERTIFICATE. MAKE SURE THAT THIS CERTIFICATE REFLECTS THE TESTS FOR WHICH YOU APPLIED TO BE CERTIFIED. If you believe your certificate contains errors, contact the Laboratory Certification and Registration Program immediately at (608) 267-7633 or by e-mail at LabCert@dnr.state.wi.us.

Sincerely,

David Webb
David Webb, Chief
Environmental Science Services
Bureau of Integrated Science Services