Waterbody Name

Sampling Location

Lat: 44°29'59"N
Long: -89°15'39"W

SWIMS Station ID

10049350

Latitude

44.29605

Long/Long Determination Method (circle)

SWIMS SWDV GPS

Datum Used if using GPS

WGS84 or NAD83

Basin (WMU)

WOLF RIVER

Watershed Name

WAUPACA RIVER

County

PORTAGE

Sample Collector (Last Name, First)

DAVID A BOLHA, MICHAEL P SHUPRYT

SWIMS Station Name

EMMONS CREEK - CONTROL REACH NEAR STRATTON LAKE RD

Sample and Site Descriptors

Sample Collector (Last Name, First)

DAVID A BOLHA, MICHAEL P SHUPRYT

Project Name

EMMONS CREEK DISCHARGE REDUCTION MI FY18

Sampling Device

- [] D-Frame Kick Net
- [] Surber Sampler
- [] Artificial Substrate
- [] Eckman
- [] Hess Sampler
- [] Other: Core

Habitat Sampled

- [] Run
- [] Shoreline Composite
- [] Proportionally-Sampled Habitat
- [] Pool
- [] Wetland

Total Sampling Time (min)

Estimated Area Sampled (m²)

Number of Samples in Composite

Replicate No. of

Reason For Sampling

- [] Least Impacted Reference
- [] Baseline
- [] Control Site
- [] Trend
- [] Impact / Treatment Site
- [] Special Project

Water Temp. (°C)

D.O. (mg/l)

D.O. (% sat.)

pH (su)

Conductivity (umhos/cm)

Transparency (cm)

Water Color

- [] Clear
- [] Turbid
- [] Stained

Estimated Stream Velocity (m/s)

- [] Slow (< 0.15 m/s)
- [] Moderate (0.15 m/s - 0.5 m/s)
- [] Fast (> 0.5 m/s)

Measured Velocity circle units

m/s or f/s

Average Stream Depth of reach (m)

Average Stream Width of reach (m)

Composition of Substrate Sampled (Percent):

- [] Bedrock:
- [] Boulders (basketball or larger):
- [] Rubble (tennisball to basketball):
- [] Gravel (ladybug to tennisball):
- [] Sand:
- [] Clay:
- [] Silt/Muck:
- [] Overhanging Vegetation:
- [] Aquatic Macrophytes:
- [] Leaf Snags:
- [] Coarse Woody Debris:
- [] Other (_____):

Embeddedness of Substrate at Sample Site (%) Canopy Cover at Sample Site (%)
Stream and Watershed Descriptors

<table>
<thead>
<tr>
<th>Biological</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = Not a problem</td>
<td>PL = Present, Low Impact</td>
</tr>
<tr>
<td>U = Uncertain</td>
<td>PH = Present, High Impact</td>
</tr>
<tr>
<td>Factors that may be influencing Water Resource Integrity</td>
<td>Factors that may be influencing Water Resource Integrity</td>
</tr>
<tr>
<td>Local</td>
<td>Watershed</td>
</tr>
<tr>
<td>Local</td>
<td>Watershed</td>
</tr>
</tbody>
</table>

Biological Factors
- **Algae:**
 - Diatoms / Periphyton
 - Filamentous Algae
 - Planktonic Algae
- **Iron Bacteria**
- **Macrophytes**
- **Slimes**
- **Other - Specify:**

Chemical Sources of Stream Impacts
- **Chlorine**
- **Dissolved Oxygen**
- **Nutrients (P, N...)**
- **Toxics:**
 - Inorganic (Metals)
 - Organic (PCBs, pesticides...)
- **Other - Specify:**

Sources of Stream Impacts
- **Bank Erosion**
- **Point Source - Specify:**
- **Pasturing of Livestock**
- **Runoff:**
 - Barnyard
 - Construction
 - Cropland
 - Urban
- **Hydraulic Scour / Channel Incision**
- **Impoundment:**
 - Upstream
 - Downstream
- **Low Flow**
- **Sedimentation**
- **Sludge**
- **Thermal**
- **Turbidity**
- **Other - Specify:**

Special Instructions for Laboratory
- **Comments**

For Lab Use Only

<table>
<thead>
<tr>
<th>Sample Sorter</th>
<th>Taxonomist</th>
<th>Estimated Percent of Sample Sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimick, Jeffrey</td>
<td></td>
</tr>
</tbody>
</table>

Date Processed
- Specimens Saved
- Sample archived in ASL until Sept 2022
<table>
<thead>
<tr>
<th>Taxa</th>
<th>Life Stage</th>
<th>Bench Tally</th>
<th>Count</th>
<th>Taxonomic Reference</th>
<th>Condition</th>
<th>Unique Taxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachycentrus occidentalis</td>
<td>L</td>
<td>1</td>
<td>1</td>
<td>Oth 1985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossosoma intermedium</td>
<td>L</td>
<td>2</td>
<td>2</td>
<td>Wym Mee 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulium</td>
<td>L</td>
<td>3</td>
<td>3</td>
<td>Dim et al 2001</td>
<td>Hym 1/1mm</td>
<td>N</td>
</tr>
<tr>
<td>S. tuberosum species complex</td>
<td>L</td>
<td>1</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulium species complex 0102013</td>
<td>L</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulium species Shiner</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Chlororiodae 025000</td>
<td>L</td>
<td>3</td>
<td></td>
<td>Gut Mee 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geomana pseudostumigera</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>Heis 1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megadrylii = Metacyrrophora</td>
<td>A</td>
<td>2</td>
<td></td>
<td>Thi20 F3 2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>