Worcester Lake is a 100-acre drainage lake with an average depth of 12 feet, a maximum depth of 37 feet, and 10% of its surface area less than 3 feet deep. Lakebed materials near shore were 57% gravel, 40% muck-silt, 2% rock-rubble, and 1% sand. Samples from September 1968 characterized Worcester Lake as a slightly acidic (pH 6.2), soft water lake (methyl purple alkalinity 17 milligrams/liter as CaCO₃). Water clarity was moderately high (Secchi depth = 7 feet), indirectly indicating mid-range nutrient concentrations and biomass production rates. Aquatic vegetation grows at moderately high stand density around nearly the entire perimeter. An unnamed stream discharges about 1 cubic foot per second to Hay Creek and then to the South Fork Jump River. Hackett Township maintains a boat landing with a concrete ramp, boarding dock, and ample parking on the southeast shore. Public road access to the boat landing should follow County Highway K and Worcester Lake Road from the east because the road from south is a private drive with no public thoroughfare. Several days after the ice thawed in 2019 our early spring electrofishing survey sought to document any natural walleye recruitment that might have gone undetected in annual fall electrofishing assessments 2014–2019. In fall 2016–2019 and spring 2019 we sampled all gamefish along the entire shoreline (2.08–2.34 miles) in 0.93–1.20 hours. Netting and electrofishing surveys in 2014 and 2015 were reported separately.

Walleye
Walleye catch rates in netting and electrofishing surveys in 1992, 2001, and 2015 indicated low population abundance, and a Schnabel estimate of walleye density from 3 successive fyke net lifts was 1.0 adults per acre in early spring 2015. The walleye population had sustained itself at low density by natural recruitment since fry were stocked in 1937–1941. Worcester Lake’s walleye recruitment history had 8 records, including seven zero values in 2006 and 2014–2019. After six consecutive years with no documented in-lake walleye production, serious concerns arose that without intervention the population will not be able to continue to sustain itself and provide the predatory control needed to improve bluegill and black crappie fishing. In early 2019 we received conditional approval to drop Worcester Lake as an unstocked “reference lake” in the evaluation of Wisconsin Walleye Initiative and to begin stocking walleyes at 10 large fingerlings per acre in odd-numbered years in an attempt to rescue the fishery. Approval was contingent upon finding no walleye ages 1–5 in an early spring electrofishing circuit and no walleye ages 0–2 in fall electrofishing surveys before scheduled stocking in 2019 and afterward. Spring 2019 electrofishing captured 6 adult walleye 18.5 – 22.9" long whose age ranged 8–14 years, as estimated from ring counts on cross-sectioned dorsal spines. Fall electrofishing captured two adult walleye 22.8 and 25.1" in 2016, one 19.8-inch walleye in 2017, and none at all in 2018 or 2019. WDNR delivered a shipment of 1,009 walleye fingerlings averaging 6.3" to Worcester Lake on October 21, 2019—the first authorized walleye stocking in 78 years. Fall electrofishing surveys should continue prior to stocking in alternate years, rather than annually.

Black Crappies
We did not collect panfish in our recent electrofishing surveys. However, sectioned ear bones extracted from 10 black crappies 7.9–9.6" captured by angling in February 2018 showed that crappies needed 6 years to reach 8" and 7–9 years to grow to 9" long. Their length at ages 6–9 was 1.9–2.6 inches below the regional average lengths at those ages. A few crappies may live long enough to reach preferred size ≥ 10", but most will likely die of natural causes before they grow to the sizes that anglers like to keep. Additional predation from stocked walleye should help to control panfish numbers and improve panfish growth rates and size structure.
Largemouth Bass

Though they were not the targeted species, we captured largemouth bass in all of our spring and fall electrofishing surveys. We typically use late spring electrofishing to assess adult bass population status. Nonetheless, incidental capture rates of 3.6–10.1 bass ≥ 8" per mile and 6.7–29.6 bass per hour suggest low to moderate bass population abundance, and their length distribution points toward decent bass fishing opportunity.

Our electrofishing samples included five northern pike as the only other gamefish species encountered. In each survey except fall 2016, we caught one or two pike 23–29 inches long.

For questions or additional information contact:

Jeff Scheirer, Fisheries Biologist
Wisconsin Department of Natural Resources
875 4th Ave. S.
Park Falls, WI 54552
715-762-1354
Jeffrey.Scheirer@wisconsin.gov