Home Sweet Home

OBJECTIVES: Students will be able to:

- describe at least three different aquatic habitat types (lake, wetland, river) found in Wisconsin and four different habitat zones in a lake (littoral, limnetic, benthic, wetland)
- detail the different phases in a fish’s life cycle
- explain one species’ spawning habitat in detail
- present their independent research

METHOD: Students will create a “travel brochure” for a particular species’ spawning habitat. The travel brochure will include a detailed description of the environment, a description of the amenities that the fish species requires for spawning, and graphics from the Internet or another source. The students will present their brochures to the class.

MATERIALS:
1) A variety of travel brochures
2) Research materials (books and/or Internet access)
3) Computers

SETTING: Indoors

DURATION: Three to four 45-minute periods

VOCABULARY: Spawn, littoral, limnetic, benthic, terrestrial, tributary, dynamic, headwaters, mouth, wetlands, marsh, substrate, redd, fry, fingerling, profundal

STANDARDS:
Science: F 8.7, 8.8, 12.7, 12.11.
Environmental Education: B 8.6, 8.8, 12.2, 12.4.

BACKGROUND: Each species of fish is adapted to the environment in which it lives. As a result, fish life cycles and habitat requirements are highly variable between species. However, most fish progress through the following generalized life cycle: egg, sac fry (larval fish), fry, fingerling (juvenile), adult, and spawning.

Fish eggs are easily destroyed by sedimentation or flooding, predators, or changes in water temperature or dissolved oxygen content. Spawning fish have developed a variety of strategies to protect their eggs from the most predictable harm: predators. To fool predators, fish may disguise eggs as substrate or attach them under the leaves of submerged plants. Some fish, like male largemouth bass, actively guard eggs.

Once they hatch, sac fry live off of their yolk sacs for the first stage of their lives. These yolk sacs are eventually absorbed by the fish, at which point the fish become fry. Fry develop through several more stages over the first few months of their lives. During the fry stages, young fish are tempting food items for many adult fish. Some adult fish, like the male smallmouth bass, remain near larval fish to protect them from hungry predators. Young fish use vegetation, submerged structures, and undercut banks as protection from underwater and surface predators. As fish mature into fingerlings (juvenile stage), they are still challenged by predators, but also face competition for habitat. Shelter is critically important to fish at this stage in their lives. Most fish do not survive their youth.

Fish are considered adults once they are able to reproduce. In some species, this happens within a year (goby); for others it can take decades (lake sturgeon). Fish often select different habitats in their adulthood than they had as youth. As adults, fish are less susceptible to predators and can move more freely through various habitats. They are still, however, constrained by food, temperature, shelter, and dissolved oxygen parameters.

When it is time for fish to spawn, they often relocate to the appropriate spawning environment. Some fish spawn every year, others every few years, and still others only once in a lifetime. To spawn, females release their eggs into the water and males release milt (sperm). After spawning, some fish, like salmon, die. Others return to their adult habitats, or stay near the eggs to protect them from predators.
OPENING: Have students read *Home Sweet Home*. When they are finished, open a discussion about the life cycle of a fish. Have students make some predictions: Where are fish likely to lay their eggs? What challenges might a young fish face? How might the fish overcome those challenges? What sort of differences might exist between a young fish’s habitat and an adult fish of that same species?

Tell students that the rest of the activity will be focused on only one habitat selection for fish: the spawning habitat.

MAIN ACTIVITY: Have students look over the travel brochures and make points about how the brochure is organized. What sorts of information are on a brochure? How does the company or location market itself? Have the students notice features of the brochure that are appealing to them or parts that do not make them want to travel to the advertised destination. Tell students that they will be making travel brochures to entice the species of fish they are profiling to a Spa(wning) Resort. The travel brochure will have all the components that fish need for spawning, presented in an attractive manner.

Students will conduct research on their species’ needs using books, the Internet, fish *Wildcards*, or other sources, and then will create the brochures on computers using graphics or drawing their own by hand. Allow at least one full class period for creating the travel brochures.

CLOSING: Once students have completed their brochures, have them take turns presenting their Spa(wning) Resort to the rest of the class. Encourage students to ask each other questions. When all students have presented, discuss similarities and differences in habitat choices between species. Encourage students to think about how adaptation and natural selection have figured into spawning habitat choices.

ASSESSMENT QUESTION: Name the five zones of a lake, one characteristic of each, and a species of fish that resides in each.

ANSWERS:

- Littoral: shallow, warmer, spawning area, light; northern pike, young fish, sunfish
- Limnetic: darker, colder, deeper; coldwater fish (salmon, trout, whitefish)
- Profundal: deep, dark lake zone below the limnetic zone
- Benthic: low oxygen, murky; scavengers (catfish, bullhead)
- Wetland: dynamic, shallow, fertile, spawning area, weedy protection, acts as a filter and a sponge; northern pike, young fish

EXTENSIONS:

- **Art:** Have students work in groups to construct a spawning habitat for a species of fish using natural materials collected near the classroom.
- **Field:** Investigate a local waterbody for spawning habitat. Record the substrate, types of vegetation, and water temperature. What species could spawn in this waterbody? See Appendix F for the Field Trip Record Sheet options.
- **Service Learning:** Team up with a local fishing or conservation club to help with spawning habitat restoration projects.

If you have downloaded this booklet, please see the appendix that follows for additional materials.
Home Sweet Home

Why do certain fish live deep in lakes, while others can be found in shallow streams, and still others dart in and out of a reedy marsh? Think back to the past two lessons in this section. Fish need to live in waterbodies that can supply enough energy (a small pond cannot support 10-pound walleye) and that will meet their temperature and dissolved oxygen requirements. But fish have more needs than just food and water; they also need places to hide—either to surprise prey or take cover from predators—and places to **spawn** (lay their eggs). A great diversity of aquatic habitats makes for a great diversity of fish species. Woody cover (like fallen logs), aquatic vegetation, rock piles, and overhanging riverbanks are all components of different ideal fish habitats.

Go with the Flow: Rivers and Streams

Rivers and streams provide fish with dynamic habitat. Streams dramatically change in depth and flow with the weather, the seasons, and the climate. A flood, for example, can quickly destroy spawning habitat by washing out bottom material. Floods can also make new spawning habitat instantly by felling a log, creating a shady deep pool. Streams are also different from one section to the next—the temperature and current that you find at the **headwaters** of a stream will be different from the temperature and current at the **mouth** of that same stream, and will vary considerably along the stream’s entire length from rapids to riffles to pools. Fish travel into, out of, and within stream systems to find the conditions perfect for their food, protection, or spawning needs. As with other habitat types, rivers and streams will warm as our climate changes, which may make them uninhabitable to temperature-sensitive species like trout.

Wanted

Large, oligotrophic lake with plenty of minnows and other small fish. Cold depths required. Silty bottom preferred. Access to littoral zone a must. Call or email. - A. Sauger
Math Quiz

Wisconsin once had 10 million acres of wetlands and now has only 5.3 million acres. What percent of Wisconsin’s wetlands have been lost? Wisconsin was once 28% wetland. What is it today?

It’s a Marsh, it’s a Bog, it’s a Wetland

Marsh, bog, swamp, fen, floodplain, slough...we have many words to describe our various watery lands, depending on their composition and location. However, they all have one thing in common: as wetlands they are transition zones between terrestrial (land) and aquatic ecosystems. The plants and soils of a wetland are generally saturated with water for at least one season during the year. Like streams, wetlands are very dynamic and change with the weather. During dry spells water might not even soak a wetland’s soil. However, during rainy periods wetlands are quick to fill and the water may be over your head. Some fish spend their entire lives in wetlands, while others come only to feed or spawn. Marshes, which are usually wet year-round and filled with shelter-providing grasses, tend to be the most hospitable wetlands for fish. Bogs are typically too acidic for fish.

Wetlands provide important functions available nowhere else on earth. Beyond providing habitat for fish, they are also wildlife nurseries for birds, amphibians, reptiles, and insects. Wetlands also act as great sponges, sopping up floodwaters and filtering out contaminants before they reach groundwater and surface waters. Wetlands keep the effects of erosion in check by holding back silt and preventing it from clogging spawning beds in rivers and streams. Wetlands used to cover 10 million acres or 28% of Wisconsin. Today roughly 5.3 million acres remain. Long after the damage was done, many people came to realize the value of these wetlands and now work to protect and restore them.

In the Zone: Inland Lakes

Lakes have distinct habitat zones that vary in nutrients, oxygen content, temperature and cover. Fish inhabit lake zones when and where the conditions match their needs. The most commonly recognized habitat zones in a lake are the littoral (shallow), limnetic (open water), profundal (deep water), benthic (bottom), and wetland. The littoral zone extends from the shoreline out as far as emergent, floating, and submerged rooted plants can grow, which is generally about 15 feet, depending on water clarity and lake depth. It is an important zone for females to spawn and for young fish to hide because of the protection underwater plants and fallen trees offer. The limnetic zone (sometimes called the pelagic zone, particularly in ocean environments) begins where water is too deep for rooted plants to get established, but an abundance of sunshine photosynthesizes phytoplankton (microscopic floating plants).

Large, cold-loving fish can be found in the limnetic zone, feeding on free-swimming...
Watery Wisconsin

Trace the history of our abundant aquatic resources and you’ll be led back about 15,000 years to the ice age. Mountains of glacial ice channeled out many of Wisconsin’s 44,000 miles of rivers and streams. Footprints of the glaciers became the Great Lakes as well as most of the 15,081 inland lakes that are splashed across the state.

Many of Wisconsin’s wetlands were created where chunks of ice left depressions. The southwest part of Wisconsin, known as the “driftless area,” was not glaciated during the last glacial period. Streams in this region have been at work for thousands of years, cutting deep valleys into the soft layers of limestone and sandstone deposited by ancient inland seas. There are few natural lakes and wetlands in this area.

zooplankton like crustaceans and rotifers. The deep, dark profundal zone lies below the limnetic zone and oxygen levels start to drop. The benthic zone is a very low-oxygen environment where decomposers and scavengers roam.

Wetland habitats associated with lakes are marshy transition areas from the water to upland areas. It is common for the littoral zone to also be called a “wetland” in lakes.

Superior Habitat: Great Lakes

Wisconsin’s eastern and northern borders are nestled against two of the largest freshwater lakes in the world, Lake Michigan and Lake Superior. The extreme depths and cold temperatures of the Great Lakes provide habitat for many of Wisconsin’s big game fish. Near-shore rocky reefs attract chinook salmon, coho salmon, and brown trout, while rainbow trout (or “steelhead”) live near the surface in open water, often many miles from shore. Lake trout require the coldest waters and generally live in 50 to 200 feet of water, depending on the season. Extensive wetlands and tributaries along Lake Superior provide spawning habitat for brown trout, steelhead, chinook and coho, while northern pike head to Chequamegon Bay at spawning time.

Nursery Needs

Wetlands and littoral zones are host to many aquatic plants that serve as protection for fish eggs, fry (newly hatched fish), and fingerlings (young fish). This makes them a popular site for spawning—but plenty of fish go elsewhere to raise their young. Protection is one consideration for parent fish, but substrate (bottom material) is another. Many fish create redds (nests) out of a certain bottom material. If that material is not available, the fish will go elsewhere. Other fish deposit their eggs directly on the bottom of a lake or river, while still other fish have eggs that float or that attach to vegetation. Some fish, like salmon, return to the site where they were spawned when it is time to lay their own eggs. Temperature, dissolved oxygen, and food availability are also important indicators of where a fish will spawn.

Follow Your Nose

When salmon are very young, they “imprint” on the stream in which they are stocked or hatched. In spring, the young salmon migrate to the Great Lakes. At spawning time, the salmon are drawn by their strong sense of smell back to their “home” stream.
Spa(wning) Resort

Research the spawning habitat requirements for a fish in order to determine the ideal habitat for the fish's needs. Then design a travel brochure using images and text to lure the fish to your Spa (wning) Resort. As you develop your travel brochure, keep the following questions in mind:

1) What temperature and dissolved oxygen content do the eggs and fingerlings of the species require?

2) What types of protection do the eggs need? Do they need to be camouflaged or placed under a structure? Do the parent fish create a redd?

3) Who will prey on the eggs or fry? What can the fish parent do to prevent this? What other threats might the eggs and fry encounter?

4) What will the fingerlings eat when they hatch? Is it available nearby?

5) How far will the fingerlings have to travel to reach the area where they live in maturity?
FISH KNOWLEDGE

Section A
Vocabulary Review

Fill in the blank using the words below.

1. Because a fish’s body temperature nearly matches that of its environment, it is called a ___.

2. The lowest level on a __________________________ pyramid is composed of those who make their own food, or the ____________________________.

3. Layers of warm and cool water are __ in water-bodies just like the layers of vinegar and olive oil in salad dressing.

4. The weight of all living plants and animals in an ecosystem is its ________________________.

5. The __ marks an area of rapid temperature change in a lake.

6. A fish nest is called a __.

7. The __ layer of a lake is where most of the heating occurs.

8. Each fish’s adaptations help suit the fish to its particular ______________________________ in an ecosystem.

9. Scientists use morphology to classify organisms into ____________________________ groups to build family trees and trace evolutionary history.

10. __ are wetlands that are usually wet year-round and are hospitable to fish.

Word Choices

- stratified
- taxonomic
- marshes
- biomass
- redd
- consumers
- dorsal
- niche
- bayous
- primary producers
- ventral
- poikilotherm
- trophic
- epilimnion
- thermocline
FISH KNOWLEDGE

Section A
Assessment

Return to the scenario given at the beginning of FISH KNOWLEDGE to apply the concepts covered in this section in a discussion: “A local fishing group wants the Wisconsin Department of Natural Resources to put walleye and yellow perch in Linnie Lake, near Muskego. As a fish biologist, you are responsible for deciding whether or not to stock walleye and/or yellow perch in the lake. What sort of data do you need to collect in order to determine whether or not to stock the fish?”

Students should realize that a fish biologist would need to know the following:

- what the trophic structure of the lake is
- whether there would be enough biomass to support the introduced fish at all stages of its life cycle
- what the average temperatures and dissolved oxygen content of the lake are
- whether the dissolved oxygen and temperatures match the needs of the fish at all stages of its life cycle
- whether the substrate, plants, and shelter found in the lake would be adequate to provide the protection the fish needs both to hide from predators or prey and to camouflage eggs.

Beyond this there would be economic considerations that are discussed briefly in the next section under Taking Stock.

Section Assessment Activity

Divide students into groups of two and have each pair design an aquarium or display for a selected species of fish. Please note that a permit from the local DNR fisheries biologist is required to keep game fish in the classroom. Instruct students to consider all of the factors the fish will need to survive and what types of information aquarium visitors should learn about the fish. Displays should include:

- images and descriptions of the fish’s native habitat
- how to identify the fish and any unique adaptations the fish has to its environment
- the trophic level, sources, and biomass of food the fish will need
- the appropriate temperature and dissolved oxygen levels for the fish
- the shelter and substrate this species of fish prefers.

Students should note whether they are including spawning habitat in the design or not.

FISH KNOWLEDGE
Vocabulary Review

Answer Key

1. poikilotherm
2. trophic/primary producers
3. stratified
4. biomass
5. thermocline
6. redd
7. epilimnion
8. niche
9. taxonomic
10. marshes