Chapter NR 102
WATER QUALITY STANDARDS FOR WISCONSIN SURFACE WATERS

NR 102.01 Purpose.
NR 102.02 Applicability.
NR 102.03 Definitions.
NR 102.04 Categories of standards.
NR 102.05 Application of standards.
NR 102.06 Phosphorus.
NR 102.07 Lake Michigan and Lake Superior thermal standards.
NR 102.08 Mississippi river thermal standards.
NR 102.09 Review of thermal standards.
NR 102.10 Outstanding resource waters.
NR 102.11 Exceptional resource waters.
NR 102.12 Great Lakes system.
NR 102.13 Fish and aquatic life waters.
NR 102.14 Taste and odor criteria.

History: Chapter NR 102 as it existed on September 30, 1973 was repealed and a new chapter NR 102 was created, effective October 1, 1973. Corrections made under s. 13.93 (2m) (b) 7., Stats., Register, August, 1997, No. 500.

NR 102.01 Purpose. (1) The purpose of this chapter is to establish, in conjunction with chs. NR 103 to 105, water quality standards for surface waters of the state pursuant to s. 281.15 (2) (b), Stats. This chapter describes the designated use categories for such waters and the water quality criteria necessary to support these uses. This chapter and chs. NR 103 to 105 constitute the water quality standards for the surface waters of Wisconsin.

(2) Water quality standards shall protect the public interest, which includes the protection of public health and welfare and the present and prospective uses of all waters of the state for public and private water supplies, propagation of fish and other aquatic life and wild and domestic animals, domestic and recreational purposes, and agricultural, commercial, industrial, and other legitimate uses. In all cases where the potential uses are in conflict, water quality standards shall protect the general public interest.

(3) Water quality standards serve as a basis for developing and implementing control strategies to achieve legislative policies and goals. Water quality standards are the basis for deriving water quality based effluent limitations. Water quality standards also serve as a basis for decisions in other regulatory, permitting or funding activities that impact water quality.

History: Cr. Register, September, 1973, No. 213, eff. 10−1−73; r. (1), reman. from NR 102.01, Register, February, 1989, No. 398, eff. 3−1−89; cr. (10), Register, May, 1993, No. 449, eff. 6−1−93.

NR 102.02 Applicability. The provisions of this chapter are applicable to surface waters of Wisconsin.

History: Cr. Register, February, 1989, No. 398, eff. 3−1−89.

NR 102.03 Definitions. (1) “Mixing zone” means a region in which a discharge of different characteristics than the receiving water is in transit and progressively diluted from the source to the receiving system.

(2) “Natural conditions” means the normal daily and seasonal variations in climatic and atmospheric conditions, and the existing physical and chemical characteristics of a water or the course in which it flows.

(3) “Natural temperature” means the normal existing temperature of a surface water including daily and seasonal changes outside the zone of influence of any artificial inputs.

(4) “Resource management” means the application of control techniques to enhance or preserve a surface water in accordance with statutory provisions and in the general public interest.

(5) “Sanitary survey” means a thorough investigation and evaluation of a surface water including bacteriological sampling to determine the extent and cause of any bacterial contamination.

(6) “Surface waters” means all natural and artificial named and unnamed lakes and all naturally flowing streams within the boundaries of the state, but not including cooling lakes, farm ponds and facilities constructed for the treatment of wastewaters (the term waters as used in this chapter means surface waters).

(7) “Unauthorized concentrations of substances” means pollutants or other chemicals introduced into surface waters without prior permit or knowledge of the department, but not including accidental or unintentional spills.

(8) “Best practicable control technology” means that level of treatment established by the department under s. 283.13 (2) (a),Stats., for categories and classes of point sources to be achieved by not later than July 1, 1977.

(9) “Best available control technology” means that level of treatment established by the department under s. 283.13 (2) (b) 1., Stats., for categories and classes of point sources to be achieved by not later than July 1, 1983.

(10) Class I and Class II trout waters are as defined in s. NR 1.02 (7).

History: Cr. Register, September, 1973, No. 213, eff. 10−1−73; r. (1), reman. from NR 102.03, Register, February, 1989, No. 398, eff. 3−1−89; cr. (10), Register, May, 1993, No. 449, eff. 6−1−93.

NR 102.04 Categories of standards. (1) General. To preserve and enhance the quality of waters, standards are established to govern water management decisions. Practices attributable to municipal, industrial, commercial, domestic, agricultural, land development or other activities shall be controlled so that all waters including the mixing zone and the effluent channel meet the following conditions at all times and under all flow conditions:

(a) Substances that will cause objectionable deposits on the shore or in the bed of a body of water, shall not be present in such amounts as to interfere with public rights in waters of the state.

(b) Floating or submerged debris, oil, scum or other material shall not be present in such amounts as to interfere with public rights in waters of the state.

(c) Materials producing color, odor, taste or unsightliness shall not be present in such amounts as to interfere with public rights in waters of the state.

(d) Substances in concentrations or combinations which are toxic or harmful to humans shall not be present in amounts found to be of public health significance, nor shall substances be present in amounts which are acutely harmful to animal, plant or aquatic life.

(2) Revised standards. It should be recognized that these standards will be revised as new information or advancing technology indicate that revisions are in the public interest. Water used for hydropower and commercial shipping depends mainly on quantity, depth and elevation; consequently, no specific quality standards for these uses have been prepared.

(3) Fish and other aquatic life uses. The department shall classify all surface waters into one of the fish and other aquatic life subcategories described in this subsection. Only those use subcategories identified in pars. (a) to (c) shall be considered suitable for the protection and propagation of a balanced fish and other aquatic life community as provided in the federal water pollution control act amendments of 1972, P.L. 92−500; 33 USÇ 1251 et seq.
Unofficial Text (See Printed Volume). Current through date and Register shown on Title Page.

(a) **Cold water communities.** This subcategory includes surface waters capable of supporting a community of cold water fish and other aquatic life, or serving as a spawning area for cold water fish species. This subcategory includes, but is not restricted to, surface waters identified as trout water by the department of natural resources (Wisconsin Trout Streams, publication 6–3600 (80)).

(b) **Warm water sport fish communities.** This subcategory includes surface waters capable of supporting a community of warm water sport fish or serving as a spawning area for warm water sport fish.

(c) **Warm water forage fish communities.** This subcategory includes surface waters capable of supporting an abundant diverse community of forage fish and other aquatic life.

(d) **Limited forage fish communities.** (Intermediate surface waters). This subcategory includes surface waters of limited capacity and naturally poor water quality or habitat. These surface waters are capable of supporting only a limited community of forage fish and other aquatic life.

(e) **Limited aquatic life.** (Marginal surface waters). This subcategory includes surface waters of severely limited capacity and naturally poor water quality or habitat. These surface waters are capable of supporting only a limited community of aquatic life.

(4) **STANDARDS FOR FISH AND AQUATIC LIFE.** Except for natural conditions, all waters classified for fish and aquatic life shall meet the following criteria:

(a) **Dissolved oxygen.** Except as provided in par. (e) and s. NR 104.02 (3), the dissolved oxygen content in surface waters may not be lowered to less than 5 mg/L at any time.

(b) **Temperature.** 1. There shall be no temperature changes that may adversely affect aquatic life.

3. The maximum temperature rise at the edge of the mixing zone above the existing natural temperature shall not exceed 5º F for streams and 3º F for lakes.

4. The temperature shall not exceed 89º F for warm water fish.

(c) **pH.** The pH shall be within the range of 6.0 to 9.0, with no change greater than 0.5 units outside the estimated natural seasonal maximum and minimum.

(d) **Other substances.** Unauthorized concentrations of substances are not permitted that alone or in combination with other materials present are toxic to fish or other aquatic life. Surface waters shall meet the acute and chronic criteria as set forth in or developed pursuant to ss. NR 105.05 and 105.06. Surface waters shall meet the criteria which correspond to the appropriate fish and aquatic life subcategory for the surface water, except as provided in s. NR 104.02 (3).

(e) **Temperature and dissolved oxygen for cold waters.** Streams classified as trout waters by the department of natural resources (Wisconsin Trout Streams, publication 6–3600 (80)) or as great lakes or cold water communities may not be altered from natural background temperature and dissolved oxygen levels to such an extent that trout populations are adversely affected.

1. There shall be no significant artificial increases in temperature where natural trout reproduction is to be protected.

2. Dissolved oxygen in classified trout streams shall not be artificially lowered to less than 6.0 mg/L at any time, nor shall the dissolved oxygen be lowered to less 7.0 mg/L during the spawning season.

3. The dissolved oxygen in great lakes tributaries used by stocked salmonids for spawning runs shall not be lowered below natural background during the period of habitat.

(5) **STANDARDS FOR RECREATIONAL USE.** A sanitary survey and/or evaluation to assure protection from fecal contamination is the chief criterion in determining the suitability of a surface water for recreational use.

(a) **Bacteriological guidelines.** The membrane filter fecal coliform count may not exceed 200 per 100 ml as a geometric mean based on not less than 5 samples per month, nor exceed 400 per 100 ml in more than 10% of all samples during any month.

(b) **Exceptions.** Whenever the department determines, in accordance with the procedures specified in s. NR 210.06, that wastewater disinfection is not required to protect recreational uses, the recreational use criteria and classifications as established in this subsection and in chs. NR 103 and 104 do not apply.

(6) **STANDARDS FOR PUBLIC HEALTH AND WELFARE.** All surface waters shall meet the human threshold and human cancer criteria specified in or developed pursuant to ss. NR 105.08 and 105.09, respectively. The applicable criteria vary depending on whether the surface water is used for public drinking water supplies and vary with the type of fish and other aquatic life subcategory. All surface waters providing public drinking water supplies or classified as cold water or warm water sport fish communities as described in sub. (3) shall meet the taste and odor criteria specified in or developed pursuant to s. NR 102.14.

(7) **STANDARDS FOR WILDLIFE.** All surface waters shall be classified for wildlife uses and meet the wildlife criteria specified in or developed pursuant to s. NR 105.07.

History: Cr. Register, September, 1973, No. 213, eff. 10−1−73; am. (3), Register, December, 1977, No. 264, eff. 1−1−78; rem. from NR 102.02, r. (3) (d) 1. to 3., and (5), r. (3) (d) 4. to 5., Register, December, 1977, No. 264, eff. 1−1−78; am. (3) (intro.), r. (3) (d) 1. to 3., and (5), r. (3) (d) 4. to 5., cr. (4) (a), (d), (e) (intro.) and (5), cr. (6) and (7), Register, February, 1989, No. 398, eff. 3−1−89; am. (3) (intro.), r. (6), t. (3) (a), r. (3) (b) to (f) to be (3) (a) to (e) and am. (3) (a), Register, August, 1997, No. 500, eff. 9−1−97.

NR 102.05 **Application of standards.** (1) **Antidegradation.** (a) No waters of the state shall be lowered in quality unless it has been affirmatively demonstrated to the department that such a change is justified as a result of necessary economic and social development, provided that no new or increased effluent interferes with or becomes injurious to any assigned uses made of or presently possible in such waters.

(b) **Classification system.** For the purposes of this subsection, all surface waters of the state, or portions thereof, shall be classified as one of the following:

1. Outstanding resource waters as listed in s. NR 102.10.

2. Exceptional resource waters as listed in s. NR 102.11.

3. Great Lakes system waters as listed in s. NR 102.12 (1).

4. Fish and aquatic life waters as described in s. NR 102.13, or

5. Waters listed in tables 3 through 8 in ss. NR 104.05 to 104.10.

(2) **Streamflow.** Water quality standards will not be maintained under all natural occurrences of flow, temperature, or other water quality characteristics. The determination of water quality based on effluent limitations or other management practices shall be based upon the following conditions except as provided in ch. NR 106 for toxic and organoleptic substances and whole effluent toxicity:

(a) The average minimum 7−day low streamflow which occurs once in 10 years (7−day Q10); or.

(b) In the case of dissolved oxygen and wherever sufficient data on streamflow and temperature are available, by application of a 0.274% level of nonattainment. This is equivalent to an expected nonattainment of the dissolved oxygen criterion of one day per year.

(3) **Mixing zones.** Water quality standards shall be met at every point outside of a mixing zone. The size of the mixing zone cannot be uniformly prescribed, but shall be based on such factors as effluent quality and quantity, available dilution, temperature, current, type of outfall, channel configuration and restrictions to fish movement. For toxic and organoleptic substances with water quality criteria or secondary values specified in or developed pursuant to chs. NR 102 and 105, allowable dilution shall be determined as specified in ch. NR 106 in addition to the requirements.
specified in this subsection. As a guide to the delineation of a mixing zone, the following shall be taken into consideration:

(a) Limiting mixing zones to as small an area as practicable, and conforming to the time exposure responses of aquatic life.

(b) Providing passageways in rivers for fish and other mobile aquatic organisms.

(c) Where possible, mixing zones being no larger than 25% of the cross-sectional area or volume of flow of the stream and not extending more than 50% of the width.

(d) Final acute criteria and secondary values specified in or developed pursuant to s. NR 105.05 for the fish and aquatic life subcategory for which the receiving water is classified not being exceeded at any point in the mixing zone.

(e) Mixing zones not exceeding 10% of a lake’s total surface area.

(f) Mixing zones not interfering with spawning or nursery areas, migratory routes, nor mouths of tributary streams.

(g) Mixing zones not overlapping, but where they do, taking measures to prevent adverse synergistic effects.

(h) Restricting the pH to values greater than 4.0 s.u. and to values less than 11.0 s.u. at any point in the mixing zone for the protection of indigenous fish and fish food organisms.

(4) EXEMPTIONS. The thermal mixing zone provisions of this chapter are not applicable to municipal waste and water treatment plants, to vessels, or to discharges to enclosed harbors.

(5) RESOURCE MANAGEMENT EXEMPTIONS. Application of chemicals for water resource management purposes in accordance with statutory provisions is not subject to the requirements of the standards except in case of water used for public water supply.

(6) ANALYTICAL PROCEDURES. (a) The criteria in the Radiation Protection Code, s. HFS 157.44, shall apply to the disposal and permissible concentrations of radioactive substances.

(b) Methods used for analysis of samples shall be as set forth in ch. NR 219 unless alternative methods are specified by the department.

History: Cr. Register, September, 1973, No. 213, eff. 10–1–73; renum. (5) and (6) to be (6) and (7), cr. (5), Register, July, 1975, No. 235, eff. 8–1–75; r. and recr. (3), Register, August, 1981, No. 308, eff. 9–1–81; correction in (7) made under s. 13.93 (2m) (b) 7., Stats., cr. (4) (b), Register, September, 1984, No. 345, eff. 10–1–84; renum. from NR 102.03, r. (1), cr. (1) (b), renum. (2) to (7) to be (1) (a) to (6) and am. (2), (3) (intro.) and (4) and (6), Register, February, 1989, No. 398, eff. 3–1–89; am. (1) (b) 3., (3) (intro.) and (d), Register, August, 1997, No. 500, eff. 9–1–97; correction in (6) (a) made under s. 13.93 (2m) (b) 7., Stats. Register July 2006 No. 607, eff. 8–1–06.

NR 102.06 Phosphorus. In addition to the requirements established in ch. NR 217, any wastewater discharger, regardless of population, volume or type of waste discharge, or geographic location, may be required to remove excess amounts of phosphorus. Effluent limitations for total phosphorus based on surface water quality may be established where, in the best professional judgment of the department, such limitations will result in an improvement in water quality, or preserve the quality of surface waters where long-term discharges may result in impairment of water quality. Such limitations for phosphorus shall include an evaluation of the discharges from point sources, nonpoint sources, background sources, tributaries, and a consideration of a margin of safety.

History: Cr. Register, July, 1975, No. 235, eff. 8–1–75; am. Register, October, 1986, No. 370, eff. 11–1–86; renum. from NR 102.04, Register, February, 1989, No. 398, eff. 3–1–89; am. Register, November, 1992, No. 443, eff. 12–1–92.

NR 102.07 Lake Michigan and Lake Superior thermal standards. For Lake Michigan and Lake Superior the following thermal standards are established so as to minimize effects on the aquatic biota in the receiving waters.

(1) (a) Thermal discharges shall not raise the receiving water temperature more than 3°F above the existing natural temperature at the boundary of mixing zones established in par. (b) and (c).

(b) 1. The mixing zone for a shoreline thermal discharge shall be the area included within the perimeter of a rectangular figure extending 1,250 feet in both directions along the shoreline from the outfall and 1,250 feet into the lake.

2. The mixing zone for an offshore thermal discharge shall be the area within a 1,000-foot radius circle with its center at the point of discharge.

(c) The department may, upon request from the owner of a source of thermal discharge, adjust the boundaries of the mixing zone established in par. (b) for that source. In no case may any mixing zone so established include an area greater than 72 acres nor may it include more than 2,800 feet of shoreline.

(2) In addition to the limitation set forth in sub. (1), but excepting the Milwaukee Harbor, Port Washington Harbor and the mouth of the Fox River, thermal discharges to Lake Michigan shall not raise the temperature of the receiving waters at the boundary of the established mixing zone above the following limits:

<table>
<thead>
<tr>
<th>Month</th>
<th>Limit</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>45°F</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>45°F</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>45°F</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>55°F</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>60°F</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>70°F</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>80°F</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>80°F</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>80°F</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>65°F</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>60°F</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>50°F</td>
<td></td>
</tr>
</tbody>
</table>

History: Cr. Register, September, 1973, No. 213, eff. 10–1–73; r. and recr. Register, July, 1975, No. 235, eff. 8–1–75; renum. from NR 102.05, Register, February, 1989, No. 398, eff. 3–1–89.

NR 102.08 Mississippi river thermal standards. In addition to the standards for fish and aquatic life, the monthly average of the maximum daily temperature in the Mississippi river outside the mixing zone shall not exceed the following limits:

<table>
<thead>
<tr>
<th>Month</th>
<th>Limit</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>40°F</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>40°F</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>54°F</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>65°F</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>75°F</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>84°F</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>84°F</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>84°F</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>82°F</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>73°F</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>58°F</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>48°F</td>
<td></td>
</tr>
</tbody>
</table>

History: Cr. Register, July, 1975, No. 235, eff. 8–1–75; renum. from NR 102.06, Register, February, 1989, No. 398, eff. 3–1–89.

NR 102.09 Review of thermal standards. (1) Whenever the owner of any source of thermal discharges that existed on or before July 31, 1975, in compliance with department guidelines and after opportunity for public hearing, can demonstrate to the satisfaction of the department that the mixing zone established pursuant to this chapter is more stringent than necessary to assure the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the receiving water, the department may:
NR 102.09 Outstanding resource waters. (1) The following surface waters are designated as outstanding resource waters:

(a) National wild and scenic rivers. All rivers designated under the national wild and scenic rivers act, as amended, 16 USC 1271 to 1287, except those portions flowing through Indian reservations, including:

1. St. Croix river between the northern boundary of the Hudson city limits and the St. Croix flowage dam in Douglas county except that the portion of the St. Croix river from the northern boundary of the St. Croix Falls city limits to a distance one mile below the STH 243 bridge at Osceola shall be classified exceptional resource waters under s. NR 102.11.

2. Namekagon river between its confluence with the St. Croix river and the outlet of Lake Namekagon in Bayfield county.

(b) State wild and scenic rivers. All state wild and scenic rivers designated under s. 30.26, Stats., including:

1. Pike river in Marinette county.

2. Pine river and its tributary Popple river in Florence and Forest counties.

(c) Wolf river upstream of the northern Menominee county line.

(d) The following Class I trout waters:

1. Adams county — Big Roche–a–Cri creek
2. Barron county — Yellow river
3. Bayfield county — Flag river, Sioux river
4. Burnett county — North Fork Clam river, South Fork Clam river

5. Chippewa county — Duncan creek, Elk creek, McCann creek
6. Dane county — Black Earth creek above the easternmost CTY KP crossing
7. Door county — Logan creek
8. Douglas county — Bois Brule river and its tributaries including the waters of Lake Superior within a ½ mile semi–circular arc centered at the middle of the river mouth
9. Dunn county — Elk creek
10. Florence county — Brule river including Montagne creek and Riley creek tributaries; tributaries to the Pine–Popple rivers including Chipmunk, Cody, Haley, Haymarsh, LaMontagne, Lepage, Lunds, Martin, Olson, Patten, Pine, Riley, Rock, Simpson, Seven Mile, Wakefield and Woods creeks; Little Popple river
11. Forest county — Brule river
12. Kewaunee county — Little Scabaroo creek
13. Langlade county — Clearwater creek, Drew creek, Evergreen river, South Branch Oconto river
14. Lincoln county — Center fork New Wood creek, Little Pine creek, Prairie river
15. Marathon county — Holt creek, Spranger creek, Plover river
16. Marinette county — Cedarville creek, Otter creek, Holmes creek, East Thunder creek, North fork Thunder river, Eagle creek, Little Eagle creek, Plumadore creek, Meadow brook, Upper Middle Inlet creek, Middle Inlet creek, Wausaukee river, Little Wausaukee creek, Coldwater brook, Medicine brook, South Branch Miscauno river, Miscauno river, Swede John creek, South Branch Pemanbonwon river, Spikehorn creek, Silver creek, Little Silver creek, Sullivan creek; tributaries to the Pike river including Little South Branch Pike river, Camp D creek, Camp F creek, Camp 9 creek, Cole creek, Glen creek, Harvey creek, North Branch Harvey creek, South Branch Harvey creek, Hemlock creek, Holloway creek, K.C. creek, Little Harvey creek, Lost creek, MacIntire creek, Phillips creek, Jacks creek, Shinn creek, Sidney creek, Smeesters creek, Springdale brook, Whiskey creek
18. Marquette county — Chaffee creek, Lawrence creek, Tagatz creek
19. Monroe county — Rullands Coulee creek
20. Oconto county — First South Branch Oconto river, Second South Branch Oconto river, South Branch Oconto river, Hills Pond creek
21. Polk county — Clam river, McKenzie creek
22. Portage county — Emmens creek, Radley creek, Sannes creek, Tomorrow river, Trout creek
23. Richland county — Camp creek
24. Sheboygan county — Nichols creek
25. St. Croix county — Kinnickinnic river above STH “35”
26. Vernon county — Rullands Coulee creek, Spring Coulee creek, Timber Coulee creek
27. Vilas county — Deerskin river, Plum creek
28. Walworth county — Bluff creek, Potawatomi creek, Van Slyke creek
29. Waupaca county — Emmens creek, Griffin creek, Jackson creek, Leers creek, Peterson creek, Radley creek, Sannes creek, Spaulding creek, Trout creek, Whitcomb creek, North Branch Little Wolf river
30. Waushara county — Willow creek north of Redgranite, Mecan river north of Richford, Little Pine creek, West Branch White river

(e) The following Class II trout waters:

1. Barron county — Yellow river
2. Burnett county — North Fork Clam river
3. Forest county — Brule river, Peshtigo river

Register, March, 2008, No. 627
4. Grant county — Big Green river, Castle Rock creek
5. Marinette county — Peshtigo river
6. Polk county — McKenzie creek
7. Vilas county — Plum creek

(f) The following cold or warm water streams and rivers or portions thereof:

1d. Ashland Bad River
 Brunsweiler River
 SEG 1: Origin to Outfall in Mellen at NW\SW/\S6
 T44N R2W
 SEG 1: Origin to Inlet of Spider Lake
 SEG 2: Outlet of Moquah Lake to Inlet of Mineral Lake
 SEG 3: Outlet of Mineral Lake to Inlet of Beaverdam Lake
 SEG 4: Outlet of Beaverdam Lake
 (at the dam) to the Bad River Indian Reservation Boundary
2. Bayfield Bark River
 Big Brook
 Cranberry River & Tribs.
 All—Class I Portions including the waters of Lake Superior within a
 1/4 mile semi-circular arc centered at the middle of the river mouth

1h. Ashland & Bayfield Marengo River
 SEG 1: Origin to Inlet of Marengo Lake
 SEG 2: Outlet of Marengo Lake to Bad River Indian Reservation Boundary
1p. Ashland & Sawyer E. Fork Chippewa River
 SEG 1: T42N R1E
 S17/18 Line to Ashland County Highway "N" in Glidden
 SEG 6: Outlet of Barker Lake to Confluence with Chippewa Flowage
 SEG 3: Outlet of Pelican Lake to Inlet of Blaisdell Lake
 SEG 4: Outlet of Blaisdell Lake to Inlet of Hunter Lake
 SEG 5: Outlet of Hunter Lake to Inlet of Barker Lake
1t. Barron Engle Creek
 Hickey Creek
 Class I & II Portions
 Class I & II Portions
 Red Cedar River
 SEG 1: Outlet of Red Cedar Lake to Inlet of Rice Lake
 Rock Creek
 SEG 2: All within Barron County
 Upper Pine Creek
 Above Dallas Flowage

2. Bayfield Bark River
 All—Class I Portions including the waters of Lake Superior within a
 1/4 mile semi-circular arc centered at the middle of the river mouth

1h. Ashland & Bayfield Marengo River
 SEG 1: Origin to Inlet of Marengo Lake
 SEG 2: Outlet of Marengo Lake to Bad River Indian Reservation Boundary
1p. Ashland & Sawyer E. Fork Chippewa River
 SEG 1: T42N R1E
 S17/18 Line to Ashland County Highway "N" in Glidden
 SEG 6: Outlet of Barker Lake to Confluence with Chippewa Flowage
 SEG 3: Outlet of Pelican Lake to Inlet of Blaisdell Lake
 SEG 4: Outlet of Blaisdell Lake to Inlet of Hunter Lake
 SEG 5: Outlet of Hunter Lake to Inlet of Barker Lake
1t. Barron Engle Creek
 Hickey Creek
 Class I & II Portions
 Class I & II Portions
 Red Cedar River
 SEG 1: Outlet of Red Cedar Lake to Inlet of Rice Lake
 Rock Creek
 SEG 2: All within Barron County
 Upper Pine Creek
 Above Dallas Flowage
Unofficial Text (See Printed Volume). Current through date and Register shown on Title Page.

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sioux River & Tribs. All–Class I & II Portions including the waters of Lake Superior within a ¼ mile semi-circular arc centered at the middle of the river mouth.</td>
</tr>
<tr>
<td>2.</td>
<td>So, Fork White River: All–Class I Portion</td>
</tr>
<tr>
<td>3.</td>
<td>Thompson Creek: All–Class I Portion</td>
</tr>
<tr>
<td>4.</td>
<td>Twenty Mile Creek: All–Class I & II Portions</td>
</tr>
<tr>
<td>5.</td>
<td>White River: All–Class I Portion</td>
</tr>
<tr>
<td>6.</td>
<td>Whittlesey Creek & Tribs. All–Class I Portions including the waters of Lake Superior within a ¼ mile semi-circular arc centered at the middle of the river mouth.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d.</td>
<td>Bayfield & Ashland: Beartrap Creek SEG 1: Origin to Bad River Indian Reservation Boundary</td>
</tr>
<tr>
<td>2h.</td>
<td>Bayfield, Ashland & Sawyer: West Fork Chippewa River SEG 1: Origin (Outlet of Chippewa Lake) to Inlet of Day Lake</td>
</tr>
<tr>
<td>3.</td>
<td>Burnett: North Fork Clam River Tributaries to the N. & S. Forks of the Clam River County Highway “H” to Confluence with Clam River All–Class I & II Portions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Dane: Mt. Vernon Creek All–Class I Portion</td>
</tr>
<tr>
<td>5.</td>
<td>Door: Mink River All</td>
</tr>
<tr>
<td>5m.</td>
<td>Douglas: Amnicon River SEG 1: Origin (Outlet of Amnicon Lake) to Inlet of Lyman Lake SEG 2: Outlet of Lyman Lake to mouth at Lake Superior, including the waters of Lake Superior within a ¼ mile semi-circular arc centered at the middle of the river mouth.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Forest: Allen Creek All</td>
</tr>
<tr>
<td></td>
<td>Brule Creek All</td>
</tr>
<tr>
<td></td>
<td>Elvoy Creek All</td>
</tr>
<tr>
<td></td>
<td>Jones Creek Class I & II portions</td>
</tr>
<tr>
<td></td>
<td>North Otter Creek All</td>
</tr>
</tbody>
</table>
Unofficial Text (See Printed Volume). Current through date and Register shown on Title Page.

6m. Forest & Langlade Swamp Creek
SEG 1: Outlet of Lake Lucerne to Mole Lake Indian Reservation Boundary
SEG 3: All below Mole Lake Indian Reservation Boundary to Confluence of Wolf River

6m. Forest & Langlade Swamp Creek
SEG 1: Outlet of Lake Lucerne to Mole Lake Indian Reservation Boundary
SEG 3: All below Mole Lake Indian Reservation Boundary to Confluence of Wolf River

14. Pierce Squirrel River
SEG 2: Outlet of Squirrel Lake to Confluence with Tomahawk River

14. Pierce Squirrel River
SEG 2: Outlet of Squirrel Lake to Confluence with Tomahawk River

15. Polk Tomahawk River
SEG 2: Outlet of Willow Flowage Dam to Inlet of Lake Nokomis

15. Polk Tomahawk River
SEG 2: Outlet of Willow Flowage Dam to Inlet of Lake Nokomis

7. Grant Little Green River
7m. Iron & Ashland Tyler Forks
SEG 1: Origin in Iron County to Bad River Indian Reservation Eastern Boundary in Ashland County
SEG 3: From Bad River Indian Reservation Southern Boundary to Confluence with Bad River

Potato River
SEG 1: Origin to Bad River Indian Reservation Boundary
Price & Lincoln Spirit River
SEG 1: Headwaters to Inlet of Musser Lake

15m. Price Elk River
SEG 1: Headwaters to Inlet of Spirit River Flowage

15m. Price Elk River
SEG 1: Headwaters to Inlet of Spirit River Flowage

15m. Price Elk River
SEG 1: Headwaters to Inlet of Spirit River Flowage

15e. Polk & Burnett Clam River
SEG 1: Outlet of Clam Falls Flowage to Inlet of Clam Lake
SEG 2: Outlet of Lower Clam Lake to Section Line @ T39N R16W S21/22

15e. Polk & Burnett Clam River
SEG 1: Outlet of Clam Falls Flowage to Inlet of Clam Lake
SEG 2: Outlet of Lower Clam Lake to Section Line @ T39N R16W S21/22

15m. Price Elk River
SEG 1: Headwaters to Inlet of Musser Lake

8. Iron, Ashland & Price Flambeau River
SEG 1: Turtle–Flambeau Flowage (Outlet @ Turtle–Flambeau Dam) to Inlet of Upper Park Falls Flowage
SEG 2: Outlet of Clam Falls Flowage to Inlet of Clam Lake
SEG 2: Outlet of Lower Clam Lake to Section Line @ T39N R16W S21/22

SEG 1: Turtle–Flambeau Flowage (Outlet @ Turtle–Flambeau Dam) to Inlet of Upper Park Falls Flowage
SEG 2: Outlet of Clam Falls Flowage to Inlet of Clam Lake
SEG 2: Outlet of Lower Clam Lake to Section Line @ T39N R16W S21/22

No. Fork Flambeau River
From Turtle–Flambeau Flowage Dam downstream to Park Falls

16. Price So. Fork Flambeau River
Price & Lincoln Spirit River
SEG 1: Headwaters to Inlet of Spirit River Flowage

16. Price So. Fork Flambeau River
Price & Lincoln Spirit River
SEG 1: Headwaters to Inlet of Spirit River Flowage

17. Richland Elk Creek
All–Class I & II Portions

17. Richland Elk Creek
All–Class I & II Portions

18. Rusk Devils Creek
All–Class I & II Portions

19. Sauk Otter Creek
Soft Maple Creek
SEG 1: Origin to Rusk County Highway “F”

9. LaCrosse Berge Coulee Creek
All

9. LaCrosse Berge Coulee Creek
All

10. Langlade Elton Creek
Little Evergreen Creek
Mayking Creek
Michelson Creek
Mid Branch Embarrass River

Class I Portion
All
All
All
Class I Portion

10. Langlade Elton Creek
Little Evergreen Creek
Mayking Creek
Michelson Creek
Mid Branch Embarrass River

Class I Portion
All
All
All
Class I Portion

19. Sauk Otter Creek
Soft Maple Creek
SEG 1: Origin to Rusk County Highway “F”

10m. Lincoln New Wood River
Origin (T33N R4E S14) to Confluence with Wisconsin River

11. Marathon Falstad Creek
So, Branch Embarrass River
Class II Portion
Class I Portion

Marathon Falstad Creek
So, Branch Embarrass River
Class II Portion
Class I Portion

10m. Lincoln New Wood River
Origin (T33N R4E S14) to Confluence with Wisconsin River

11. Marathon Falstad Creek
So, Branch Embarrass River
Class II Portion
Class I Portion

10m. Lincoln New Wood River
Origin (T33N R4E S14) to Confluence with Wisconsin River

12. Marinette No. Branch Beaver Creek
Entire River & tributaries

11. Marathon Falstad Creek
So, Branch Embarrass River
Class II Portion
Class I Portion

10m. Lincoln New Wood River
Origin (T33N R4E S14) to Confluence with Wisconsin River

12. Marinette No. Branch Beaver Creek
Entire River & tributaries

13. Oneida Noisy Creek
Class II Portion

13. Oneida Noisy Creek
Class II Portion

20. Sawyer Benson Creek
All–Class I Portion

20. Sawyer Benson Creek
All–Class I Portion

Register, March, 2008, No. 627
Wisconsin Administrative Code

Unofficial Text (See Printed Volume). Current through date and Register shown on Title Page.

<table>
<thead>
<tr>
<th>River/Stream</th>
<th>SEG 1: Description</th>
<th>SEG 2: Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couderay River</td>
<td>Origin at Outlet of Billy Boy Flowage to Inlet of Grimh Flowage (Including Waters within Lac Courte Oreilles Indian Reservation)</td>
<td></td>
</tr>
<tr>
<td>Eddy Creek</td>
<td>All–Class I Portion</td>
<td></td>
</tr>
<tr>
<td>Grindstone Creek</td>
<td>All–Class I Portion</td>
<td></td>
</tr>
<tr>
<td>Knuteson Creek</td>
<td>SEG 1: Outlet of Wise Lake to Inlet of Knuteson Lake</td>
<td>SEG 2: Outlet of Knuteson Lake to Inlet of Lake Chepek</td>
</tr>
<tr>
<td>Little Weirgor Creek</td>
<td>All–Class I & II Portions</td>
<td></td>
</tr>
<tr>
<td>Little Weirgor Creek & Tribs</td>
<td>All–Class I & II Portions</td>
<td></td>
</tr>
<tr>
<td>Mosquito Brook</td>
<td>All–Class I Portion</td>
<td></td>
</tr>
<tr>
<td>Teal River</td>
<td>Outlet of Teal Lake to Confluence with West Fork Chippewa River</td>
<td></td>
</tr>
<tr>
<td>Thornapple River</td>
<td>SEG 1: Origin to Rusk County Highway “J”</td>
<td></td>
</tr>
<tr>
<td>Chippewa River</td>
<td>SEG 1: Dam at Chippewa Flowage to Inlet of Radisson Flowage (T38N R7W S13)</td>
<td></td>
</tr>
<tr>
<td>Shawano</td>
<td>Origin to but not including Homme Pond</td>
<td></td>
</tr>
<tr>
<td>So. Br. Embarrass R.</td>
<td>Origin to but not including Tigerton Pond</td>
<td></td>
</tr>
<tr>
<td>Yellow River</td>
<td>SEG 1: Confluence with South Fork Yellow River to Inlet of Chequamegon Waters Flowage</td>
<td>SEG 2: Outlet of Chequamegon Waters Flowage (at Miller Dam) to State Highway 64/73</td>
</tr>
<tr>
<td>Taylor & Chippewa</td>
<td>(1m) The following lakes are designated as outstanding resource waters:</td>
<td></td>
</tr>
</tbody>
</table>
 - 1. Ashland Bad River Slough
Lake Superior within ¼ mile of the shoreline of the islands within the Apostle Island National Lakeshore
 - 2. Barron Bear Lake (T36N R12W S2)
Red Cedar Lake
Sand Lake
Silver Lake
 - 3. Bayfield Bark Bay Slough
Diamond Lake
Lake Superior within ¼ mile of the shoreline of the islands within the Apostle Island National Lakeshore
Middle Eau Claire Lake
Unofficial Text (See Printed Volume). Current through date and Register shown on Title Page.

Namekagon Lake
Owen Lake
Pike Chain of Lakes (Pike, Millicent, Buskey Bay, Hart, Twin Bear, Eagle, Flynn and Hildur Lakes)
Star Lake
Upper Eau Claire Lake

4. Burnett
Big Mckenzie Lake
Big Sand Lake
Sand Lake (T40N R15W S25)

5. Columbia
Crystal Lake

6. Douglas
Bond Lake
Lower Eau Claire Lake
Nebagamon Lake
St. Croix (Gordon) Flowage
Upper St. Croix Lake
Whitefish Lake (Bardon)

7. Florence
Edith Lake
Keyes Lake
Lost Lake
Perch Lake
Riley Lake, South

8. Forest
Butternut Lake
Franklin Lake
Lucerne Lake (Stone)
Metonga Lake

9. Iron
Catherine Lake
Cedar Lake
Gile Flowage
Hewitt Lake
Owl Lake
Trude Lake
Turtle–Flambeau Flowage

9m. Marinette
Caldron Falls Flowage

10. Oconto
Archibald Lake
Bass Lake (T32N R15E S9)
Bear Paw Lake
Boot Lake
Chain Lake

11. Oneida
Big Carr Lake
Clear Lake (T39N R7E S16)
Little Tomahawk Lake
Tomahawk Lake
Two Sisters Lake
Willow Flowage

12. Polk
Pipe Lake

13. Price
Cochram Lake
Tucker Lake

14. Rusk
Bass Lake (T34N R9W S16)
Fish Lake
Island Chains of Lakes (Chain, Clear, McMann, and Island Lakes)
Three Lakes No. 1 (T36N R9W S25)

15. St. Croix
Bass Lake (T30N R19W S23)

16. Sauk
Perch Lake

17. Sawyer
Devils Lake
Barker Lake
Blaisdale Lake
Camp Smith Lake
Evergreen Lake
Grindstone Lake
Lac Court Oreilles
Lake Chippewa (Chippewa Flowage)
Nelson Lake
Osgood Lake
Perch Lake (T42N R6W S25)
Round Lake (Big Round)
Sand Lake
Spider Lake
Teal Lake
Whitefish Lake

18. Vilas
Black Oak Lake
Crab Lake
Crystal Lake (T41N R7E S27)
Lac Vieux Desert
North Twin Lake
Pallette Lake (Clear)
Partridge Lake
Plum Lake
South Twin Lake
Star Lake
Stormy Lake
Trout Lake
White Sand Lake (T24N R7E S26)

19. Walworth
Lulu Lake

20. Washburn
Bass Lake (T40N R10W S17)
Long Lake
Middle McKenzie Lake
Shell Lake
Stone Lake (T39N R10W S24)

21. Waukesha
Spring Lake (T5N R18E S9)

22. Waupaca
Graham Lake (Nelson)
North Lake

23. Waushara
Gilbert Lake
Lucerne Lake (Egans)
Norwegian Lake
Pine Lake (Springwater)

(2) The waters in sub. (1) and (1m) may not be lowered in quality.

(3) Surface waters, or portions thereof, may be added to, or deleted from, the outstanding resource waters designation through the rule making process under the provisions of ch. 227, Stats., and s. NR 2.03.

History: Cr. Register, February, 1989, No. 398, eff. 3–1–89; am. (1) (d), cr. (1) (e), Register, July, 1989, No. 403, eff. 8–1–89; cr. (1) (f) and (1m), am. (2), Register, May, 1993, No. 449, eff. 6–1–93; am. (1m) 6., 9. and 11., cr. (1m) 9m., Register, February, 1998, No. 506, eff. 3–1–98; CR 05–089: am. (1) (d) 8., (f) 2., (1m) 1. and 3. Register July 2006 No. 607, eff. 7–1–06; CR 05–105: renum. (1) (f) 1. to be 1t. and am., cr. (1) (f) 1d., 1h., 1p., 2d., 2h., 2p., 5m., 6m., 7m., 9m., 15m., 15s., 18m., 20m., 21g., 21r., 22m., and 23m., am. (1) (f) 3., 8., 13., 18., 20., 22., and 23., Register November 2006 No. 611, eff. 12–1–06; reprinted to correct error in (1) (d) 6. Register March 2008 No. 627.
NR 102.11 Exceptional resource waters. (1) Surface waters which provide valuable fisheries, hydrologically or geologically unique features, outstanding recreational opportunities, unique environmental settings, and which are not significantly impacted by human activities may be classified as exceptional resource waters. All the following surface waters are designated as exceptional resource waters:

(a) Class I trout waters listed in Wisconsin Trout Streams publication 6–1990 (80) that are not listed in s. NR 102.10.

(b) Other Class I trout waters:

1. Abraham Coulee creek in section 29, township 20 north, range 8 west from its headwaters to the Abraham Coulee road bridge in Trempealeau county.
2. Bear creek originating in section 3, township 20 north, range 7 west in Trempealeau county.
3. Biser creek originating in section 19, township 12 north, range 3 west in Sauk county.
4. Bostwick creek from CTH M upstream 6.2 miles to the headwaters in La Crosse county.
5. Bufton Hollow creek originating in section 23, township 12 north, range 2 west in Richland county.
6. Columbus creek originating in section 29, township 20 north, range 6 west in Jackson county.
7. Dutch creek originating in section 12, township 19 north, range 8 west in Trempealeau county.
8. Joe Coulee creek originating in section 1, township 20 north, range 7 west in Trempealeau county.
9. Little creek originating in section 21, township 20 north, range 6 west in Jackson county.
10. Marble creek originating in section 30, township 10 north, range 3 east in Sauk county.
11. Marshall creek originating in section 4, township 11 north, range 1 west in Richland county.
12. Martin creek originating in section 22, township 6 north, range 2 east in Iowa county.
13. South Bear creek originating in section 2, township 12 north, range 2 west in Richland county.
14. Spring brook downstream from CTH Y south of Antigo to its confluence with the Eau Claire river in Marathon county.
15. Spring Coulee creek from the headwaters to SE 1/4, SE 1/4, section 33, township 16 north, range 1 east in Monroe county.
16. Unnamed creek 2–12 originating in section 36, township 20 north, range 7 west of Trempealeau county.
17. Unnamed creek 4–9 originating in section 4, township 11 north, range 1 west in Richland county.
18. Unnamed creek 5–6 originating in section 6, township 19 north, range 8 west in Trempealeau county.
19. Unnamed creek 7–4 originating in section 6, township 20 north, range 7 west in Trempealeau county.
20. Unnamed creek 8–9 originating in section 5, township 20 north, range 7 west in Trempealeau county.
21. Unnamed creek 8–14 originating in section 1, township 20 north, range 8 west in Trempealeau county.
22. Unnamed creek 9–13 originating in section 4, township 20 north, range 6 west in Jackson county.
23. Unnamed creek 10–8 originating in section 10, township 11 north, range 1 west in Richland county.
24. Unnamed creek 10–10 originating in section 14, township 20 north, range 6 west in Jackson county.
25. Unnamed creek 11–4 originating in section 1, township 20 north, range 7 west in Trempealeau county.
26. Unnamed creek 11–7 originating in section 2, township 20 north, range 7 west in Trempealeau county.
27. Unnamed creek 13–3a originating in section 19, township 20 north, range 6 west in Trempealeau county.
28. Unnamed creek 13–3b originating in section 6, township 20 north, range 6 west in Trempealeau county.
29. Unnamed creek 15–13 originating in section 1, township 20 north, range 8 west in Trempealeau county.
30. Unnamed creek 15–4 originating in section 3, township 20 north, range 6 west in Trempealeau county.
31. Unnamed creek 16–2 originating in section 22, township 20 north, range 6 west in Jackson county.
32. Unnamed creek 17–5 originating in SE 1/4, section 5, township 20 north, range 6 west in Jackson county.
33. Unnamed creek 24–3a originating in section 24, township 11 north, range 1 west in Richland county.
34. Unnamed creek 26–7 originating in section 2, township 20 north, range 6 west in Jackson county.
35. Unnamed creek 34–2 originating in section 17, township 20 north, range 8 west in Trempealeau county.
36. Unnamed creek 34–15 originating in section 27, township 20 north, range 7 west in Trempealeau county.
37. Unnamed stream originating in section 29, township 10 north, range 3 east in Sauk county.
38. Washington Coulee creek originating in section 29, township 20 north, range 6 west in Jackson county.

(c) The following Class II trout waters:

1. Ashland county — White river above the Bad River Indian reservation
2. Bayfield county — White river
3. Dane county — Mt. Vernon creek
4. Forest county — North Branch Oconto river
5. Grant county — Blue river
6. Iowa county — Blue river
7. Langlade county — Prairie river, South Branch Oconto river
8. Lincoln county — Prairie river
9. Marquette county — Mecan river
10. Oconto county — North Branch Oconto river, South Branch Oconto river
11. Pierce county — Rush river
12. Portage county — Tomorrow river
13. Richland county — Willow creek
14. St. Croix county — Willow river, Race Branch
15. Waushara county — Mecan river

(d) The following cold or warm water streams and rivers or portions thereof:

1g. Ashland Bad River SEG 2: Outfall in Mellen at NE3SW3/4 S6 T44N R2W to Bad River Indian Reservation Boundary
1r. Ashland & Sawyer East Fork Chippewa River SEG 2: Ashland County Highway "N" to Confluence of Rocky Run Creek (Includes Glidden POTW)
1t. Barron Brill River All—Class II Portion
2. Crawford Copper Creek Plum Creek All All
<p>| Sugar Creek | From headwaters to T10N R6W S10 | 12. Green | Burgy Creek | All |
| Tainter Creek | From Vernon County Line to CTH B | Gill Creek | All | | |
| | | Hefty Creek, North Branch | All |
| | | Hefty Cr., Center Branch | All |
| | | Liberty Creek | All |
| | | Norwegian Creek | All |
| | | Richland Creek | All |
| | | Ross Crossing | All |
| | | Sylvester Creek | All |
| | | Spring Valley Creek | All |
| | | | |
| 3. Dane | Blue Mounds Branch | All |
| | Deer Creek | All |
| | Dunlap Creek | All |
| | Elvers Creek (Bohn Cr.) | All |
| | Flynn Creek | All |
| | Fryes Feeder Creek | All |
| | Garfoot Creek | All |
| | Milum Creek | All |
| | Rutland Branch | All |
| | Ryan Creek | All |
| | Schalpbach Creek | All |
| | Sixmile Creek | All |
| | Spring Creek (Lodi) | All |
| 4. Dane, Sauk, Iowa, Grant, Richland, Crawford | Wisconsin River | From below Prairie du Sac to Prairie du Chien | 13. Green & Rock | Ward Creek | All |
| | | Allen Creek | Below Evansville |
| | | | |
| 5. Dane & Green | Little Sugar River | Above New Glarus | 14. Iowa | Harkers-Lee-Martin System | From headwaters to T6N R2ES10 |
| | Story Creek (Tipperary) | All, originating in T5N R8E S36 | | | |
| | Sugar Creek | All |
| | Sand Creek | From Chippewa County Line to mouth |
| 6. Dunn | | | 15. Iron | Vaughn Creek | |
| | | | | | |
| | | | 15m. Iron & Ashland | Vaughn Creek | |
| | | | | | |
| 7. Eau Claire | Lowes Creek | From Hwy 37 & 85 upstream to headwaters | 16. Jackson | Trempealeau River | From STH 95 at Hixon to CTHP at Taylor |
| | | | Allen Creek | All |
| | | | Kewaunee Casco Creek | From T24N R24E S19 downstream of Rock Ledge to Kewaunee River |
| 8. Fond du Lac | Feldner’s Creek | From headquarters to Mischo’s Millpond | 17. Jefferson | Allen Creek | |
| | Lake Fifteen Creek | Entire Creek above & below Lake Fifteen | 18. Kewaunee | Casco Creek | |
| | | | | | |
| | | | 19. La Crosse | Bostwick Creek | From headwaters to County Hwy ‘O’ |
| | | | | | |
| | | | 20. Lafayette | Galena River | From headwaters to Buncome Road |
| | | | | | |
| | | | 21. Langlade | East Br. Eau Claire R. | From STH 64 upstream to fire-lane crossing in T33N R11E S35 SW1/4 |
| | | | | | |
| 9. Forest | Armstrong Creek | All | Hunting River | From Fitzgerald Dam Road downstream to T33N R11E S1 |
| | Middle Br. Peshtigo R. | All | | |
| | North Br. Peshtigo R. | All | | |
| | North Br. Popple R. | All | | |
| | West Br. Armstrong Creek | Class II Portion | | |
| | | | | |
| | | | 22. Lincoln | North Br. Prairie River | From headwaters to CTHJ to T33N R8E |
| | | | | | |
| 10. Grant | Doc Smith Branch | All | Silver Creek | All |
| | Little Platte River | From Arthur downstream to Platte River | Branch River | All |
| | | | Monroe | From headwaters to Acorn Rd (S7) |
| | | | Big Creek | From headwaters to I–90 (S19) |
| 11. Grant & Iowa | Big Spring Branch | From Springhead to Blue River | Farmers Valley Creek & Tribs | |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Town</th>
<th>River</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.</td>
<td>Oneida</td>
<td>Soper Creek</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bearskin Creek</td>
<td>From Tomahawk River to Little Bearskin Lake</td>
</tr>
<tr>
<td>25m.</td>
<td>Oneida &</td>
<td>Wisconsin River</td>
<td>SEG 2: Hat Rapids Dam to Lincoln County A crossing</td>
</tr>
<tr>
<td></td>
<td>Lincoln</td>
<td></td>
<td>SEG 4: Grandfather Dam to Inlet of Alexander Lake</td>
</tr>
<tr>
<td>26.</td>
<td>Pierce</td>
<td>Big River</td>
<td>Class I Portion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cady Creek</td>
<td>From CTH P upstream</td>
</tr>
<tr>
<td>26c.</td>
<td>Polk &</td>
<td>Trimbelle River</td>
<td>SEG 3: Section Line @ T39N R16W S21/22 to Inlet of Clam River Flowage</td>
</tr>
<tr>
<td></td>
<td>Burnett</td>
<td>Clam River</td>
<td>SEG 4: Outlet of Clam River Flowage to Confluence with St. Croix River</td>
</tr>
<tr>
<td>26g.</td>
<td>Price</td>
<td>North Fork Jump</td>
<td>SEG 1: Origin (outlet of Cranberry Lake) to Inlet of Spring Creek Flowage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>River</td>
<td>SEG 2: Outlet of Spring Creek Flowage to Confluence with South Fork Jump River</td>
</tr>
<tr>
<td>26n.</td>
<td>Price, Rusk</td>
<td>Jump River</td>
<td>SEG 1: Confluence of the North Fork Jump River and South Fork Jump River to</td>
</tr>
<tr>
<td></td>
<td>& Taylor</td>
<td></td>
<td>the Village of Jump River</td>
</tr>
<tr>
<td>26r.</td>
<td>Price,</td>
<td>Flambeau River</td>
<td>SEG 2: Crowley Dam to Inlet of Big Falls Flowage</td>
</tr>
<tr>
<td></td>
<td>Sawyer,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rusk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26w.</td>
<td>Price &</td>
<td>South Fork Jump</td>
<td>Origin to Confluence with North Fork Jump River</td>
</tr>
<tr>
<td></td>
<td>Taylor</td>
<td>River</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Richland</td>
<td>Babb Hollow</td>
<td>All–Trib to Mill Creek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hanzel Creek</td>
<td>All–Trib to Mill Creek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Hansell)</td>
<td>All–Trib to Melanchton Cr. Class II Section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melanchton Creek</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Couler Hollow</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creek</td>
<td>All</td>
</tr>
<tr>
<td>31m.</td>
<td>Sawyer</td>
<td>Couderay River</td>
<td>SEG 2: Dam at Grimh Flowage to Confluence with Chippewa River</td>
</tr>
<tr>
<td>31m.</td>
<td>Sawyer</td>
<td>Couderay River</td>
<td>SEG 2: Dam at Grimh Flowage to Confluence with Chippewa River</td>
</tr>
<tr>
<td>32.</td>
<td>Shawano</td>
<td>Kroenke Creek</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red River</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West Br. Red</td>
<td>Class II Portion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>River</td>
<td></td>
</tr>
<tr>
<td>Segment</td>
<td>Watershed</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Sheboygan</td>
<td>Ben Nutt Creek Class II Portion to Junction with Mill Creek</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>St. Croix</td>
<td>Apple River From NSP plant below CTH I to Mouth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cady Creek All</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willow River Extend Class II Portion into Delta in Lake Mallilieu</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>St. Croix & Pierce</td>
<td>St. Croix River From No. Boundary of Hudson City limits to the river mouth in Pierce Co.</td>
<td></td>
</tr>
<tr>
<td>35m.</td>
<td>Taylor & Price</td>
<td>Silver Creek SEG 2: Westboro Sanitary District Outfall to Confluence with South Fork Jump River</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trempeleau Buffalo River From Hwy 53 to Strum Pond</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>Vernon</td>
<td>Bishop Branch All</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cheyenne Valley Creek All</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coon Creek From La Crosse county line to Chaseburg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frohock Valley Creek All</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hornby Creek All</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reads Creek All</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tainter Creek All</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>Vilas</td>
<td>Manitowish River From Rest Lake Dam downstream to Iron County line</td>
<td></td>
</tr>
<tr>
<td>38m.</td>
<td>Vilas & Oneida</td>
<td>Wisconsin River SEG 2: State Highway 70 to Inlet at Rainbow Flowage (Oneida County Line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEG 3: Outlet of Rainbow Flowage (Oneida County Highwy “D”) to Inlet of Rhinelander Flowage (T37N R8E S8 SE4/NE4)</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>Washington</td>
<td>E. Branch Milwaukee R. From Long Lake outlet to STH 28</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>Waukesha</td>
<td>Genesee Creek Above STH 59 From Eagle Springs Lake to Upper Phantom Lake</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mukwonago River</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oconomowoc River From below North Lake to Okauchee Lake</td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>Waupaca</td>
<td>Blake Brook & Branches Little Wolf River From junction with Wolf River upstream to Manawa Dam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waupaca River Class II portion to Waupaca River Embarrass River From Wolf River upstream to dam at Pella</td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>Waushara</td>
<td>Lower Pine River From below Wild Rose Mill pond to dam at Poy Sippi</td>
<td></td>
</tr>
</tbody>
</table>

NR 102.12 Great Lakes system. (1) The Great Lakes system includes all the surface waters within the drainage basin of the Great Lakes.

(2) For the purpose of administering ch. NR 207 and consistent with chs. NR 105 and 106, the waters identified in sub. (1) are to be protected from the impacts of persistent, bioaccumulating toxic substances by avoiding or limiting to the maximum extent practicable increases in these substances.

(3) The waters of the Lake Superior basin shall be managed to prevent any new or increased discharges of the following pollutants: DDT, DDE and metabolites, chlorodane, toxaphene, hexachlorobenzene, 2,3,7,8 TCDD, octachlorostyrene, mercury and PCB's. For purposes of administering ch. NR 207, new or increased discharges of these pollutants shall be prohibited unless the applicant certifies at time of application, that the new or increased discharge is necessary after utilization of best technology in process or control using waste minimization, pollution prevention, municipal pretreatment programs, material substitution or other means of commercially available technologies which have demonstrated capability for similar applications.

History: Cr. Register, February, 1989, No. 398, eff. 3–1–89; cr. (1) (c), Register, July, 1989, No. 403, eff. 8–1–89; cr. (1) (d), Register, May, 1993, No. 449, eff. 6–1–93; CR 05–105: cr. (3) Register July 2006 No. 611, eff. 12–1–06.

NR 102.13 Fish and aquatic life waters. All surface waters not included in s. NR 102.05 (1) (b) 1., 2., 3. or 5. are fish and aquatic life waters.

History: Cr. Register, February, 1989, No. 398, eff. 3–1–89.

NR 102.14 Taste and odor criteria. (1) At certain concentrations, substances may not be toxic to humans, but may impart undesirable taste or odor to water or aquatic organisms ingested by humans. The taste and odor criterion is derived to prevent substances from concentrating in surface waters or accumulating in aquatic organisms to a level which results in undesirable tastes or odors to human consumers.

(2) The taste and odor criterion is derived as follows:

(a) For substances which impart tastes and odors to waters, the taste and odor criterion shall equal that threshold concentration (TCw) below which objectionable tastes or odors to human con-
sumers do not occur. Threshold concentrations for substances imparting tastes and odors to water are listed in Table 1.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Threshold Concentration (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>20</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>20</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>0.1</td>
</tr>
<tr>
<td>3-Chlorophenol</td>
<td>0.1</td>
</tr>
<tr>
<td>4-Chlorophenol</td>
<td>0.1</td>
</tr>
<tr>
<td>Copper</td>
<td>100</td>
</tr>
<tr>
<td>2,3-Dichlorophenol</td>
<td>0.04</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>0.3</td>
</tr>
<tr>
<td>2,5-Dichlorophenol</td>
<td>0.5</td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td>0.2</td>
</tr>
<tr>
<td>3,4-Dichlorophenol</td>
<td>0.3</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>400</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>1</td>
</tr>
<tr>
<td>2-Methyl-4-Chlorophenol</td>
<td>1800</td>
</tr>
<tr>
<td>3-Methyl-4-Chlorophenol</td>
<td>3000</td>
</tr>
<tr>
<td>3-Methyl-6-Chlorophenol</td>
<td>20</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>30</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>30</td>
</tr>
<tr>
<td>Phenol</td>
<td>300</td>
</tr>
<tr>
<td>2,3,4,6-Tetrachlorophenol</td>
<td>1</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>1</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>2</td>
</tr>
<tr>
<td>Zinc</td>
<td>5000</td>
</tr>
</tbody>
</table>

1 A threshold concentration expressed in micrograms per liter (ug/L) can be converted to milligrams per liter (mg/L) by dividing the threshold concentration by 1000.

(b) For substances which impart tastes or odors to aquatic organisms, the taste and odor criterion shall be calculated as follows:

\[
TOC = TC \frac{1}{BAF}
\]

Where:

- \(TOC \) = Taste and odor criterion in milligrams per liter (mg/L).
- \(TC \) = Threshold concentration in milligrams of substance per kilogram of wet tissue weight (mg/kg) of the aquatic organism being consumed below which undesirable taste and odor is not detectable to human consumers as derived in par. (d).
- \(BAF \) = Aquatic life bioaccumulation factor with units of liter per kilogram (L/kg) as derived in s. NR 105.10.

(c) The lower of the taste and odor criteria derived as specified in pars. (a) and (b) is applicable to surface waters classified as public water supplies. The taste and odor criteria derived as specified in par. (b) are applicable to cold water and warm water sport fish communities.

(d) Threshold concentrations for substances imparting tastes or odors to water (\(TC_w \)) other than those listed in Table 1 and threshold concentrations for substances imparting tastes or odors to aquatic organisms (\(TC_f \)) shall be selected by the department using its best professional judgment.

History: Cr. Register, February, 1989, No. 398, eff. 3–1–89; am. (2) (b) and (c), Register, August, 1997, No. 500, eff. 9–1–97.