Remediation and Redevelopment Program

Issues & Trends 2016

June 1, 2016
12:00 p.m. – 1:00 p.m.

Dial: 1-855-947-8255
Passcode: 6612 745#
LNAPL Transmissivity
Testing/Analysis

(Assessing LNAPL Recoverability)

David Swimm, PG
David.Swimm@wisconsin.gov
608-264-8766
NAPL Data

- Well gauging and dissolved GW contaminant results
- Soil boring contaminant results
- Laboratory LANPL fluid analyses
- **LNAPL Transmissivity (well testing or remedial production evaluation)**
- NAPL saturation concepts/core evaluation
- Computer modeling (e.g., LDRM)
- Laser Induced Fluorescence (LIF) Surveys
- Natural Source Zone Depletion (NSZD)
Resources and References:

ASTM Standard Guide— E2856 (May 2013):
Estimation of LNAPL Transmissivity

API User Guide (September 2012) for the:
LNAPL Transmissivity Workbook: A Tool for Baildown Test Analysis

ITRC Guidance (December 2009):
Evaluating LNAPL Remedial Technologies for Achieving Project Goals

Note: ITRC guidance is currently in the process of being updated (yours truly on team) to reflect changes in industry practices/emphasis since 2009.
Other References:

Simply stated, \textbf{transmissivity} \((T_n)\) is a hydraulic measure (ft\(^2\)/d) of how quickly LNAPL moves from the aquifer to wells:

- Controlled by dual phase flow (i.e., relative perm. to LNAPL), so directly explains why so much GW is typically produced
- Reflects horizontal flow to a well (radial flow assumed)
- Related to the mobile LNAPL partition saturation, soil type, porosity architecture, and fluid properties
- Changes over time, so is not an \textit{intrinsic} property of the aquifer (ASTM 2013)
- Increasingly cited as a remedial metric that is far better than the well-based thickness, which have been used for decades.
Regarding remedial endpoints......

LNAPL T_n is only one of several factors used to judge “maximum extent practicable” (MEP); other factors include:

- Risk factors (e.g., PVI, surface discharge, potable wells),
- Dissolved plume dynamics,
- Natural source zone depletion (usually contextual),
- Remedial technology evaluated/employed,
- Green sustainability, etc.
LNAPL Hydraulic Terminology:

- LNAPL Mobility/Migration
- LNAPL Recoverability
- LNAPL Transmissivity

defined for this presentation only
LNAPL Mobility or Migration Potential:

- Relative ability to migrate into water saturated porous media not previously occupied by LNAPL under the natural range of hydraulic gradients present
- Typically associated with the margin of the LNAPL plume
- Usually conceptualized as potential for lateral migration
- Is limited (stabilizes) over short-term due to cessation of release (i.e., diminishing LNAPL head conditions)
- After lateral “stabilization”, mobile LNAPL partition saturations typically still are present within the LNAPL plume

T_n can be a metric for LNAPL mobility, but it is usually not framed in that manner
LNAPL Recoverability:

• Relative ability to migrate into a well within the LNAPL plume under artificially induced hydraulic gradients

• Typical measured to assess future hydraulic remedial potential (prospective) or historical remedial efficiency (retrospective)

• Progressively diminishes over time by virtue of remedial removal

• Mobile LNAPL partition saturations can be reduced to MEP within the zone of influence

\(T_n \) is a metric for recoverability that could be used as on measure of MEP.
Declines in modeled hydraulic recovery (and associated T_n) as one reduces initial formation/LNAPL conditions from ideal.

LDRM model results - see Appendix E, Assessment Guidance For Sites With Residual Weathered Product (RR-787)
Model Result - Skimmer Production Well

T_n reduces as Ideal Sand1 is produced

1Ideal Sand reflects parameters listed at “origin” of graph on previous slide
Basis was range whereby some states were closing sites retrospectively (i.e., lagging metric) with the following characteristics:

• Consensus on comprehensive LCSM
• Active hydraulic recovery performed and showed diminishing returns (i.e., becomes asymptotic)
• Reportedly did not rely on well-based thicknesses

ITRC 2009 Guidance: provided “acceptable” range of T_n values (0.1 to 0.8 ft2/d) below which hydraulic recovery is not practical

(Kirkman, 2014)
ITRC Guidance Update:

Will further qualify the meaning of the LNAPL T_n range:

- Assess/refine range using updated API database
- Expand discussion and move from *Concepts* Section of document to *LCSM* Section

Considerations:

- T_n is both a leading and lagging metric (Kirkman 2014), so current range may be problematic as a prospective (leading) recoverability metric
- Adoptions of single “bright-line” values may be problematic
Questions?

Next: Test Methods and Analyses
Field Test Methods

Baildown Testing
- Induced LNAPL head differential & gauged recovery
- ≥ 6-inch thickness

Manual Skimming Testing
- Removal at a sustained rate - maintain drawdown

Existing Recovery System Analysis (Retrospective)
- Assumes steady state conditions
- Needs frequent operational parameters/measures

Tracer Testing
- Uses hydrophobic fluorescence tracers
- Relatively new method

(ASTM, 2013)
Baildown Method:

Pre-test:
- LNAPL removal <2 years ago
- Confirm equilibrium fluid levels
- Estimate filter pack specific yield
- Essential to know details of well construction

Test:
- "Instantaneous" LNAPL removal while minimizing GW removal
- 10-15 minute removal OK, if test to be measured over a day
- Not all LNAPL needs to be removed from the well
- Essential to accurately measure removed volumes
- Essential to accurately measure interfaces over time

Note: ASTM Standard does not specify removal method (ASTM 2013)
Baildown Suggestions:

1. Start early/plan on long recoveries – may have to return next day, or for high viscosity (>2 cp) may be several days. [so, plan other work]

2. Assess data in the field and be willing to truncate problematic tests – poor results are obvious/easy to criticize

3. Consider using a transducer to measure LNAPL/GW interface

4. Use consistent changes in LNAPL thickness to assess frequency of measurements
 • lesser of 5-10% of equilibrium or 0.05 ft.
 • plot semi-log

(ASM 2013)
Manual Skimming Method:

Test:
- Removal of LNAPL on a repeated basis – allowing no more than 25% recovery
- Remove to the extent possible; minimizing GW removal
- Continue test until 3 consecutive removals show discharge rates within 25% of each other (i.e., consistent responses)
- Essential to record start/stop times
- Essential to accurately measure removed volume
- Essential to know details of well construction
- Essential to accurately measure interfaces over time

(ASTM 2013)
Retrospective LNAPL Remedial Production Analysis:

Skimmer System Data Needed:
- Skimmer drawdown & estimated radius of influence
- Quantity of LNAPL produced (must exclude any GW produced) over a period of consistent operation

Total Fluids System Data Needed:
- LNAPL density & aquifer transmissivity
- Quantity of LNAPL & GW produced (separately) over period of consistent operation (or use skimmer/GW drawdown ratio, if operational consistency a problem)

Other system analyses possible:
- Vacuum enhanced skimmer
- Dual phase extraction

(ASTM 2013)
Well Construction and LNAPL Parameters

Initial Casing LNAPL Vol. (gal.): 0.26
Initial Filter LNAPL Vol. (gal.): 0.70

LNAPL Q_n

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>DTP (ft btoc)</th>
<th>DTW (ft btoc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>33.76</td>
<td>35.39</td>
</tr>
</tbody>
</table>

Enter Test Data:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>DTP (ft btoc)</th>
<th>DTW (ft btoc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>34.22</td>
<td>35.02</td>
</tr>
<tr>
<td>1.0</td>
<td>34.11</td>
<td>35.01</td>
</tr>
<tr>
<td>2.0</td>
<td>34.03</td>
<td>34.99</td>
</tr>
<tr>
<td>3.7</td>
<td>33.96</td>
<td>34.99</td>
</tr>
<tr>
<td>4.1</td>
<td>33.92</td>
<td>35.01</td>
</tr>
<tr>
<td>5.3</td>
<td>33.87</td>
<td>35.01</td>
</tr>
<tr>
<td>6.2</td>
<td>33.86</td>
<td>35.03</td>
</tr>
<tr>
<td>7.0</td>
<td>33.84</td>
<td>35.04</td>
</tr>
</tbody>
</table>

Recoveries

Ground Surface Elev (ft msl): 0.0
Top of Casing Elev (ft msl): 0.0
Well Casing Radius, r_c (ft): 0.083
Well Radius, r_w (ft): 0.333
LNAPL Specific Yield, S_y: 0.175
LNAPL Density Ratio, ρ_r: 0.780
Top of Screen (ft bgs): 0.0
Bottom of Screen (ft bgs): 0.0
LNAPL Baildown Vol. (gal.): 0.39

Effective Radius, re3 (ft): 0.158
Effective Radius, re2 (ft): 0.148

Initial Fluid Levels:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>DTP (ft btoc)</th>
<th>DTW (ft btoc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>33.76</td>
<td>35.39</td>
</tr>
</tbody>
</table>

Enter These Data

API (2012)
API Workbook – Figures Worksheet:
Iterative value selection (yellow cells) for Figures 3, 4, and 10

1. Time/Depth Plots
2. LNAPL Discharge/Depth Measure Plots
3. LNAPL Thickness/Time and Discharge/Time Plots
4. Total LNAPL Well Inflow/Time Plot
Problematic raw data - “jittery” measurements
API Workbook/Figures Worksheet - Figure 3 (API example)

Unconfined LNAPL – Drawdown/Discharge Relationship – Data Before Adjustment

Diagnostic: assessing drawdown for non-equilibrium concerns

<table>
<thead>
<tr>
<th>(Q_n (\text{ft}^3/\text{d}))</th>
<th>(s_n (\text{ft}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Drawdown Adjust.

<table>
<thead>
<tr>
<th>(\Delta s_n (\text{ft}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

late adjustment (0.08 ft)

early sand pack drainage effect

(API 2012)
API Workbook/Figures Worksheet - Figure 3 (API example)

Unconfined LNAPL – Drawdown/Discharge Relationship – Data After Adjustment

<table>
<thead>
<tr>
<th>Q_n (ft^3/d)</th>
<th>s_n (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Data now extrapolates to origin

(API 2012)
Unconfined LNAPL – Drawdown/LNAPL Thickness Relationship

<table>
<thead>
<tr>
<th>b_n</th>
<th>s_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.71</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.52</td>
</tr>
</tbody>
</table>

J-ratio -0.192

Essential calculated parameter that is directly used in later worksheets that estimate T_n (API 2012)
Unconfined LNAPL – Drawdown/LNAPL Thickness Relationship

<table>
<thead>
<tr>
<th>(b_n)</th>
<th>(s_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

J-ratio \(-0.250\)

<table>
<thead>
<tr>
<th>(b_n)</th>
<th>(s_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

J-ratio \(-1.381\)
Unconfined LNAPL - Time Cut-off Estimate

Cut-off time (20 min.)

Figure 10

Data to be analyzed further > 20 min.

(API 2012)
API Workbook – Bouwer and Rice (B&R) Worksheet (API example)
Unconfined LNAPL - Transmissivity Solution

Enter early time cut-off for least-squares model fit

| Timecut | 20 | <- Enter or change value here |

Model Results: T_n (ft2/d) = 2.81 +/- 0.07 ft2/d

$$T_n = \frac{r_e^2 \ln(\frac{R}{r_e}) \ln(\frac{s_n(t_1)}{s_n(t)})}{2(-J)(t-t_1)}$$
API Workbook – B&R Worksheet (API example)

Unconfined LNAPL - type curves using normalized drawdown/time relationship

B&R Type Curves: Casing Rad. (ft) = 0.17 ; Borehole Rad. (ft) = 0.5

Normalized Drawdown ($s/s_{initial}$) (ft/ft) vs Time (min)

(API 2012)
API Workbook – Cooper and Jacob (C&J) Worksheet (API example)
Unconfined LNAPL – Transmissivity Solution

Enter early time cut-off for least-squares model fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{cut} (min)</td>
<td>20</td>
</tr>
<tr>
<td>Time Adjustment (min)</td>
<td>13</td>
</tr>
<tr>
<td>Trial S_n</td>
<td>d</td>
</tr>
<tr>
<td>Root-Mean-Square Error</td>
<td>0.117</td>
</tr>
<tr>
<td>Trial T_n (ft2/d)</td>
<td>3.660</td>
</tr>
<tr>
<td>Model Result: T_n (ft2/d)</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Add constraint $T_n > 0.00001$
API Workbook – Site Example
Unconfined LNAPL – Transmissivity Solution

T_n results (B&R only):
Consultant = 1.75 ft²/d
Revised (just for well measures) = 0.64 ft²/d
Revised to a 20 min cutoff = 0.54 ft²/d
API Workbook – Confined Worksheet (API example)
Confined LNAPL – Transmissivity Solution

\[T_n = \frac{Q_n \ln\left(\frac{R}{r_w}\right)}{2\pi(1-\rho_r)(b_{nR} - b_{nW})} \]

Depth to base of confining bed (ft bgs) [from boring log]: 7
Constant LNAPL discharge to well (ft³/d): 40
Depth to top of screen (ft bgs): 7.0
Corrected water table elevation (ft bgs): 17.7
Limiting effective LNAPL thickness in well, \(b_{nW}\) (ft): -12.2
Limiting effective LNAPL drawdown, \(s_{nW}\) (ft): 2.46
Initial LNAPL thickness, \(b_{nR}\) (ft): 7.9
Radius of influence ratio (from Bouwer and Rice), \(R/r_w\): 13.4

LNAPL Transmissivity, \(T_n\) (ft²/d): 6.72

Note drawdown is many feet

(API 2012)
API Workbook – Confined Worksheet (another API example)
Confined LNAPL – Discharge Profile (“Figure 4”)

Figure from Appendix F

Confining Bed (dark grey)

Seepage Face Discharge

LNAPL Drawdown - Discharge Relation

(API 2012)
API Workbook – Confined (site example)
NAPL; note drawdown is many feet

Consultant only considered data over first 60 min

Tn results:
Consultant = 1.42 – 4.26 ft²/d
Revised = 0.05 - 0.14 ft²/d

Note drawdown is many feet
Questions?

David.Swimm@wisconsin.gov

608-264-8766
Issues & Trends 2016

August 3, 2016
12:00 p.m.

Calculating Background Levels for Common Soil Contaminants

Audio and information from today’s presentation and future Issues & Trends Series events can be found on the RR Program Training Webpage at:
Http://dnr.wi.gov/topic/Brownfields/Training.html

Questions/Comments/Suggestions regarding the Issues & Trends Series can be submitted to:
DNRRRComments@wisconsin.gov