Appendix E

Northeast Lakeshore TMDL

Total Maximum Daily Loads for Total Phosphorus and Total Suspended Solids

Agricultural Surveys sent to County Land Conservation Departments

Brown County

Calumet County

Door County

Fond du Lac County

Kewaunee County

Manitowoc County

Ozaukee County

Sheboygan County

Northeast Lakeshore TMDL: Agricultural Land Management Questionnaire for Brown County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Northeast Lakeshore (NEL) TMDL. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the NEL SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up Wisconsin's NE lakeshore.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	-
2	May	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	May	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	-
2	October	30	Till	Chisel Plow	-

Table 1. Example SWAT agricultural land management table.

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards. Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC12s). HUC12 boundaries correspond to the subwatersheds defined in the NEL SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). <u>Additionally, please contact kimberly.oldenborg@wisconsin.gov or call 608-266-7037</u> if you have questions about this survey or would like to set up a meeting to discuss this survey.

Please prepare responses directly in this file and deliver by **June 28th, 2019** in electronic format (Word or PDF) via email to:

Kim Oldenborg, WDNR <u>kimberly.oldenborg@wisconsin.gov</u> 608-266-7037

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's northeast lakeshore basins!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Organization: Email: Phone:

AGRICULTURAL LAND USE (QUESTIONS 1 – 5)

Six general crop rotations have been identified in the NE Lakeshore TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.

- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans.
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation.
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Typically, a cover crop between corn and alfalfa years. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn.
- 4. Potato/Vegetable Potato and vegetable plantings alternate each year. In some cases, a vegetable is grown for two years followed by potatoes. Vegetables commonly planted are sweet corn, beans, peas, carrots, peppers, onions, and cucumbers.
- 5. Continuous Hay Lands covered by planted perennial herbaceous vegetation (legumes and grasses) and harvested for use as livestock forage. May include mowed areas.
- 6. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present.

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

Question 1. In your county, are potatoes and vegetables usually grown in rotation with other cash grains or on their own?

Potatoes are not grown in Brown County on a commercial/field scale. Snap beans and beets are occasionally grown in rotation with cash grains (corn, soybeans, wheat).

<u>Question 2. Based on your knowledge of crop rotations in your county, would you add any rotations to the six</u> <u>listed above? If yes, please describe below.</u> None

<u>Question 3. Attachment A and the web-based map display the six general crop rotations in your county. Do any</u> <u>areas stand out as being misclassified?</u> When looking for misclassified areas, please focus on the "bigger picture" and avoid verifying rotations on the field level.

Continuous pasture- the majority of "pastures" in the NEL are earthen lots with 50% or less vegetation. The vegetation provides little or no feed to the animals. Rotational grazing is getting more popular so there are a few areas of gazed land, but the majority are earthen cattle lots.

<u>Question 4. The table below displays the area of each rotation as a percentage of total county area and</u> <u>agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?</u> The pasture seems a bit high. Most of the areas delineated as "pasture" on the maps are cropped field or grass/woodland. Actual area where cattle are kept is probably closer to 1-2%.

Rotation	% of county area	% of agricultural area	rotation area (acres)
Cash Grain	15%	18%	13,059
Continuous Corn	3%	4%	2,978
Dairy Rotation	45%	56%	40,477
Potato/Vegetable	0.1%	0.2%	130
Нау	5%	6%	4,674
Pasture	12%	15%	10,823

*Note: Areas outside the NE Lakeshore TMDL were excluded from percent area calculations.

Question 5. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004 transect data from the Conservation Technology Information Center (CTIC). Has your county conducted crop and tillage transect surveys since 2004? If yes, can you share recently collected transect data for this project? We do not have any transect data for Brown County.

DAIRY CROP SEQUENCES (QUESTION 6 - 7)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

<u>Question 6. In the table below, please describe the sequence(s) of corn grain (Cq), corn silage (Cs), alfalfa (A),</u> <u>Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation.</u> This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined. **Please focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).**

Typical Dairy		Year									
Sequence(s)	1	2	3	4	5	6	7	8	9		
						(if needed)	(if needed)	(if needed)	(if needed)		
EXAMPLE	Cs	Cs	Cs	Cs	Α	A					
Sequence 1	Cs	Cs	Cs	Cs	As	А	А	А			
Sequence 2 (if needed)	Cs	Cg	S	WW	Cs	As	А	А	А		
Sequence 3 (if needed)											
Sequence 4 (if needed)											
Sequence 5 (if needed)											

Question 7. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.

HUC12	% Dairy Sequence 1	% Dairy Sequence 2	% Dairy Sequence 3	% Dairy Sequence 4	% Dairy Sequence 5
EXAMPLE	90 %	10 %	0 %	0 %	0 %
Headwaters Kewaunee River (40301020301)	50%	50%			
Upper Branch River (40301010501)	90%	10%			
Devils River (40301010202)	60%	40%			
Neshota River (40301010203)	40%	60%			
Middle Branch River (40301010502)	60%	40%			
School Creek (40301020302)	50%	50%			

PLANTINGS AND HARVESTS (QUESTION 8)

SWAT management tables ask for planting and harvest dates for each crop planted. For the NEL SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the NEL and to determine an appropriate number of cuttings per year for the Continuous Hay rotation.

Question 8. In the table below, please estimate average planting dates (50% of crop planted) in your county in cool/wet, average, and warm/dry years. Also, please estimate the typical number of hay cuttings.

Temperature/Moisture	Average	Average	Number of
Condition	Planting Date	Harvest Date	Hay Cullings
Cool/Mot Voor	May 20	Cs- Oct 1, S- Oct	2
	May 30 20, Cg-Nov 1		0
Average		Cs-Sept 20, S-	
Average	May 15	Oct 5, Cg-Oct	4
remperature/Moisture rear		25	
Marm (Dry Voar		Cs-Sept 15, S-	4
waini, Diy tedi	ividy 5	Oct 1, Cg-Oct 15	4

TILLAGE AND CROP RESIDUE (QUESTIONS 9 – 12)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

Question 9. In your county, are fields typically tilled in the spring, fall, or both?

Field are typically tilled in both the spring and fall. Fields are typically chisel plowed in the fall, usually to a depth of 6-10 inches. There is still some moldboard plowing in the Neshota River watershed. Spring tillage is typically at least two passes in spring with a field cultivator.

<u>Question 10. Sometimes landowners identify fields as no-till, when they in fact do receive some tillage. Please</u> <u>describe the frequency of tillage on no-till fields.</u>

Crop Rotation	# of years tilled in a rotation
Example	Tilled 1 out of every 6 years
Cash Grain	Wheat is no-tilled after soybeans
Continuous Corn	No no-till
Dairy	Only no-till is maybe 40% of wheat after soybeans or corn silage
Potato/Vegetable	If wheat is included in the rotation maybe no-till wheat after snap beans or soybeans

<u>Question 11. Please estimate the % of each rotation area that uses the tillage strategies listed below.</u> This table will be used to determine tillage timing and depth.

	% of rotation area using tillage strategy							
Tillage Strategy	Example	Continuous Corn	Cash Grain	Dairy*	Potato/Vegetable			
Fall Chisel plow,								
Spring field cultivate x2	0%	90%	85%	70%	85%			
Fall Vertical till,								
Spring field cultivate	25%	5%	5%		5%			
Spring Vertical till	0%				5%			
Fall moldboard plow,								
Spring field cultivate x2	0%	5%	5%	15%				
Fall field cultivate	50%							
Fall disk & chisel plow,								
Spring field cultivate x2	0%			15%				
No-till	25%		5%		5%			
Other (please specify)	0%							
Other (please specify)	0%							
Other (please specify)	0%							

*Please note that dairy farms often have ~40% of their land in alfalfa which is a perennial crop. Only tillage in preparation for annual crops or alfalfa seeding were considered.

Question 12. In the table below, please estimate the percentage of your county's Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable acreage with after-harvest crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed.

This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

Crop Rotation	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Headwaters Kewaunee River (40301020301	Upper Branch River (40301010501)	Devils River (40301010202)	Neshota River (40301010203)	Middle Branch River (40301010502)	School Creek (40301020302)
	0%-15%	85%	55%	55%	55%	55%	55%	55%
Cach Crain	16%-30%	0%	10%	10%	10%	10%	10%	10%
Cash Grain	>30%	10%	30%	30%	30%	30%	30%	30%
	No-Till/Zone-Till	5%	5%	5%	5%	5%	5%	5%
	0%-15%	0%	10%	10%	10%	30%	10%	10%
Continuous	16%-30%	0%	40%	40%	40%	40%	40%	40%
Corn	>30%	100%	50%	50%	50%	30%	50%	50%
	No-Till/Zone-Till	0%						
	0%-15%	75%	85%	85%	85%	85%	85%	85%
Doin *	16%-30%	25%	5%	5%	5%	5%	5%	5%
Dairy≉	>30%	0%	10%	10%	10%	10%	10%	10%
	No-Till/Zone-Till	0%						
	0%-15%	100%	85%	85%	85%	85%	85%	85%
Potato/	16%-30%	0%	5%	5%	5%	5%	5%	5%
Vegetable	>30%	0%	5%	5%	5%	5%	5%	5%
	No-Till/Zone-Till	0%	5%	5%	5%	5%	5%	5%

*Please note that dairy farms often have ~40% of their land in alfalfa which is a perennial crop. Only field conditions between annual crops or before or after alfalfa seeding were considered.

CHEMICAL FERTILIZER APPLICATIONS (QUESTIONS 13 - 15)

Chemical fertilizer applications will be modeled for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations. Important settings for chemical fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations.

<u>Question 13. Using the table below, please describe the characteristics of a typical chemical fertilizer</u> <u>application for each crop.</u>

Charact	eristic	Example	Cash Grain	Corn Grain	Corn Silage	Нау	Potato/ Vegetable
Application timing	Pre-panting	X	Р	N/P	N/P	Р	Р
(check all that	At-planting	X		N/P	N/P		
<u>apply)</u>	During growing		Ν	Ν	Ν	Р	
Placement	Surface	X	Ν	Ν	Ν	Р	Р
rotation)	Injection			Ν	Ν		
Incorporation after application? (check one per rotation)	Yes		Ρ	Р	Р		Ρ
	No	x	Ν	Ν	Ν	Р	

Question 14. Using the table below, please estimate typical annual chemical fertilizer application rates for Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations in your county by HUC12 subwatershed. You can choose to report fertilizer rates in pounds of **nutrient** per acre (option 1) or pounds of **fertilize**r per acre (option 2). Please provide more information about the option you choose below.

<u>Reporting option 1: Pounds of **nutrient** per acre</u> Phosphorus type (phosphorus P or phosphate P₂O₅): Nitrogen type (ammonium NH₄, Urea CH₄N₂O, ect.):

<u>Reporting option 2: Pounds of fertilizer per acre</u> Typical N:P:K Ratio =

	Chemical Fertilizer Application Rate (lb/acre/yr)									
HUC12	Cash Grain		Continuous Corn		Dairy		Potato/ Vegetable			
	Р	Ν	Р	Ν	Р	N	Р	Ν		
EXAMPLE	60	130	70	120	30	60	20	50		
Headwaters Kewaunee River (40301020301)	40	150	60	190	60	150	20	20		
Upper Branch River (40301010501)	50	150	50	190	10	50	20	20		
Devils River (40301010202)	40	150	50	190	50	100	20	20		
Neshota River (40301010203)	40	120	50	150	20	100	20	20		
Middle Branch River (40301010502)	40	150	50	190	20	100	20	20		
School Creek (40301020302)	40	150	60	190	60	150	20	20		

Reported in pounds of nutrient per acre. Upper Branch River watershed has several CAFOs which fertilize their crops with manure this means they use very little purchased fertilizer, hence low rate in the table above.

Question 15. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?

		Crop Yield Targets (yield/acre/yr)							
HUC12	Cash grain (soybeans)	Corn grain	Corn silage	Нау	Potato/ Vegetable				
Example	170 bu	150 bu	10 tons/ac	3 tons/ac	400 cwt				
Headwaters Kewaunee River (40301020301)	55 bu/ac	170 bu/ac	20 tons/ac	4 tons/ac	-				
Upper Branch River (40301010501)	60 bu/ac	185 bu/ac	22 tons/ac	4.5 tons/ac	-				
Devils River (40301010202)	55 bu/ac	170 bu/ac	20 tons/ac	4 tons/ac	-				
Neshota River (40301010203)	55 bu/ac	175 bu/ac	20 tons/ac	4 tons/ac	-				
Middle Branch River (40301010502)	60 bu/ac	185 bu/ac	22 tons/ac	4 tons/ac	-				
School Creek (40301020302)	55 bu/ac	170 bu/ac	20 tons/ac	4 tons/ac	-				

MANURE APPLICATIONS (QUESTIONS 16 – 21)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

<u>Question 16. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily</u> <u>haul of manure versus manure storage by HUC12 subwatershed.</u>

HUC12	% Daily Haul	% Storage
Headwaters Kewaunee River (40301020301)	20%	80%
Upper Branch River (40301010501)	10%	90%
Devils River (40301010202)	20%	80%
Neshota River (40301010203)	30%	70%
Middle Branch River (40301010502)	15%	85%
School Creek (40301020302)	10%	90%

<u>Question 17. Using the table below, please describe typical manure application practices for a daily haul farm</u> <u>and a manure storage farm in your county.</u>

Characteristic	Typical Practice for Daily Haul Farm	Typical Practice for Storage Farm
Application Frequency	DAILY	Some Spring, Summer between alfalfa cuttings and after wheat harvest, most applied in fall after harvest
Application Timing	Daily	Some Spring, Summer between alfalfa cuttings and after wheat harvest, most applied in fall after harvest
Followed by Incorporation? (Yes or No)	No, eventually it gets incorporated, usually weeks or months later	Yes, only exception is summer applications between alfalfa cuttings

<u>Question 18. In the table below, please estimate typical manure application rates and form (liquid or solid) for</u> <u>a daily haul farm and a manure storage farm in your county by HUC12.</u>

*tip 1: Application Rate refers to the average rate per an application (i.e. not a yearly or rotational average) *tip 2: % Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection).

	DAIL	DAILY HAUL			STORAGE		
HUC12	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	
Headwaters Kewaunee River (40301020301)	20 tons/ac	10%	Solid	17,000 gal/ac	85%	liquid	
Upper Branch River (40301010501)	20 tons/ac	10%	Solid	17,000 gal/ac	85%	liquid	
Devils River (40301010202)	20 tons/ac	10%	Solid	15,000 gal/ac	85%	liquid	
Neshota River (40301010203)	20 tons/ac	10%	Solid	12,000 gal/ac	75%	liquid	
Middle Branch River (40301010502)	20 tons/ac	10%	Solid	17,000 gal/ac	85%	liquid	
School Creek (40301020302)	20 tons/ac	10%	Solid	17,000 gal/ac	85%	liquid	

*Incorporation, daily haul = incorporated within 72 hours

<u>Question 19. Are you able to provide an estimate of the range or average concentration of N and P in manure</u> in your county? If so, please express as lb per ton or lb per 1000 gal.

P concentration (please specify- *P* or *P*₂*O*₅): Solid: 3 lbs P₂O₅/ton; Liquid 6 lbs P₂O₅/1000 gal (1st year available) *N* concentration: Solid: 3 lbs/ton; Liquid 12 lbs/1000 gal

<u>Question 20. What percent of Dairy Rotation acres under no-till receive injected manure?</u> Manure injection can have similar effects on soil residue as tillage practices. 0%

<u>Question 21: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of</u> <u>Dairy acres use the injection methods below</u>. This table will be used to determine the depth of soil disturbance and soil residue disturbance. *tip: values in table should sum to 100%.

Injection method	% of Dairy acres receiving manure by injection
Narrow knife	0%
Sweep	15%
Knife	15%
Other (please specify)	Terra disk: 70%

SOIL PHOSPHORUS (QUESTION 22)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-summary-2010-to-2014-1.xlsx</u>) Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

<u>Question 22. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived</u> <u>from a review of representative Nutrient Management Plans for each HUC12.</u>

HUC12	Average Soil P (parts per million)
Headwaters Kewaunee River (40301020301)	30 ppm
Upper Branch River (40301010501)	35 ppm
Devils River (40301010202)	25 ppm
Neshota River (40301010203)	20 ppm
Middle Branch River (40301010502)	25 ppm
School Creek (40301020302)	30 ppm

GRAZING (QUESTIONS 23 – 24)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

Question 23. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web-based map) is grazed?

<10%, only one rotational grazing operation in NEL (Upper Branch Watershed). Animals on "pasture" are not getting much if any of the feed from grazing. "Pastures" are lots where animals are kept; feed is brought to them.

Question 24. What are the typical practices of a grazing operation?

Characteristic	Typical Practice
Animal Type	Beef, horse
Number of Animals per Acre	5
Grazing Timing & Duration	Entire year, some shelter provided in most
(Entire Growing Season,	entire year, some shelter provided in most
Year-Round, Spring Only, etc.)	Cases

OPTIONAL SECTION: IRRIGATION AND AGRICULTURAL DRAIN TILE

HUC12	Percent of fields with ag tile	Percent of fields with irrigation
Headwaters Kewaunee River (40301020301)	20%	0
Upper Branch River (40301010501)	20%	0
Devils River (40301010202)	20%	0
Neshota River (40301010203)	20%	0
Middle Branch River (40301010502)	20%	0
School Creek (40301020302)	20%	0

ADDITONAL INPUT

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data. Thank you!

For example, if you know of barnyards with significant runoff, we would need the location and size of each barnyard.

Northeast Lakeshore TMDL: Agricultural Land Management Questionnaire for Calumet County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Northeast Lakeshore (NEL) TMDL. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the NEL SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up Wisconsin's NE lakeshore.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	-
2	May	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	May	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	-
2	October	30	Till	Chisel Plow	-

 Table 2. Example SWAT agricultural land management table.

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards. Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC12s). HUC12 boundaries correspond to the subwatersheds defined in the NEL SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). <u>Additionally, please contact kimberly.oldenborg@wisconsin.gov or call 608-266-7037</u> if you have questions about this survey or would like to set up a meeting to discuss this survey.

Please prepare responses directly in this file and deliver by **June 28th, 2019** in electronic format (Word or PDF) via email to:

Kim Oldenborg, WDNR <u>kimberly.oldenborg@wisconsin.gov</u> 608-266-7037

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's northeast lakeshore basins!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Amanda Kleiber Organization: Calumet County Land & Water Conservation Dept Email: Amanda.kleiber@calumetcounty.org Phone: (920) 849-1442

AGRICULTURAL LAND USE (QUESTIONS 1 – 5)

Six general crop rotations have been identified in the NE Lakeshore TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.

- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans.
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation.
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Typically, a cover crop between corn and alfalfa years. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn.
- 4. Potato/Vegetable Potato and vegetable plantings alternate each year. In some cases, a vegetable is grown for two years followed by potatoes. Vegetables commonly planted are sweet corn, beans, peas, carrots, peppers, onions, and cucumbers.
- 5. Continuous Hay Lands covered by planted perennial herbaceous vegetation (legumes and grasses) and harvested for use as livestock forage. May include mowed areas.
- 6. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present.

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

<u>Question 1. In your county, are potatoes and vegetables usually grown in rotation with other cash grains or on</u> <u>their own?</u> We do not have any potatoes grown in Calumet County. However, we have some canning crops (vegetables – peas, green beans, sweet corn) which are usually grown in a rotation with other cash grain crops.

<u>Question 2. Based on your knowledge of crop rotations in your county, would you add any rotations to the six</u> <u>listed above? If yes, please describe below.</u> No additional crop rotations in the county.

<u>Question 3. Attachment A and the web-based map display the six general crop rotations in your county. Do any</u> <u>areas stand out as being misclassified?</u> When looking for misclassified areas, please focus on the "bigger picture" and avoid verifying rotations on the field level.

Some areas on the map are colored green for continuous pasture; however, they are permanent grass, not necessarily pasture. For example, a golf course and the airport are marked as pastures on the map. Overall, there should be less green(pastures) on the map.

<u>Question 4. The table below displays the area of each rotation as a percentage of total county area and</u> <u>agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?</u>

Rotation	% of county area	% of agricultural area	rotation area (acres)
Cash Grain	22%	31%	32,611
Continuous Corn	2%	2%	2,197
Dairy Rotation	34%	47%	49,434
Potato/Vegetable	4%	5%	5,137
Нау	5%	7%	7,772
Pasture	6%	8%	8,037

*Note: Areas outside the NE Lakeshore TMDL were excluded from percent area calculations.

Pasture numbers seem high. I would adjust the % of county area to the following: 24% cash grain and 36% dairy rotation and 2% pasture

<u>Question 5. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004</u> <u>transect data from the Conservation Technology Information Center (CTIC). Has your county conducted crop</u> <u>and tillage transect surveys since 2004? If yes, can you share recently collected transect data for this project?</u> No transect survey data in Calumet County since 2004.

DAIRY CROP SEQUENCES (QUESTION 6 - 7)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

<u>Question 6. In the table below, please describe the sequence(s) of corn grain (Cg), corn silage (Cs), alfalfa (A),</u> <u>Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation.</u> This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined. **Please focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).**

Typical Dairy	Year								
Sequence(s)	1	2	3	4	5	6	7	8	9
Sequence(s)						(if needed)	(if needed)	(if needed)	(if needed)
EXAMPLE	Cs	Cs	Cs	Cs	А	A			
Sequence 1	Cs	Cs	Cs	А	А	А	А		
Sequence 2 (if needed)	Cs	Cs	Cg	А	А	А	А		
Sequence 3 (if needed)	Cs	Cs	S	А	А	А	А		
Sequence 4 (if needed)	Cs	Cs	W	А	А	А	А		
Sequence 5 (if needed)									

Question 7. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.

HUC12	% Dairy Sequence 1	% Dairy Sequence 2	% Dairy Sequence 3	% Dairy Sequence 4	% Dairy Sequence 5
EXAMPLE	90 %	10 %	0 %	0%	0 %
Cedar Creek (40301010405)	80	10	5	5	
City of Chilton-South Branch Manitowoc River (40301010404)	80	10	5	5	
Headwaters Killsnake River (40301010406)	80	10	5	5	
Headwaters North Branch Manitowoc River (40301010301)	80	10	5	5	
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	80	10	5	5	
Killsnake River (40301010407)	80	10	5	5	
North Branch Manitowoc River (40301010303)	80	10	5	5	
Pine Creek (40301010403)	80	10	5	5	
Sheboygan Lake-Sheboygan River (40301011104)	80	10	5	5	
South Branch Manitowoc River (40301010408)	80	10	5	5	
Spring Creek (40301010302)	80	10	5	5	
Stony Brook-South Branch Manitowoc River (40301010402)	80	10	5	5	

PLANTINGS AND HARVESTS (QUESTION 8)

SWAT management tables ask for planting and harvest dates for each crop planted. For the NEL SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the NEL and to determine an appropriate number of cuttings per year for the Continuous Hay rotation.

Question 8. In the table below, please estimate average planting dates (50% of crop planted) in your county in cool/wet, average, and warm/dry years. Also, please estimate the typical number of hay cuttings.

Temperature/Moisture Condition	Average Planting Date	Average Harvest Date	Number of Hay Cuttings	
Cool/Wet Year	luno 1	Nov 15 (grain)	Л	
	June 1	Oct 1 (silage)	4	
Average		Oct 22 (grain)	F	
Temperature/Moisture Year	IVIAY 15	Sept 6 (silage)	5	
	May 1	Oct 15 (grain)	4	
warm/Dry rear	IVIAY 1	Sept 1 (silage)	4	

TILLAGE AND CROP RESIDUE (QUESTIONS 9 – 12)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

<u>Question 9. In your county, are fields typically tilled in the spring, fall, or both?</u> Primarily Fall. Some tillage occurs in the spring depending upon crop and fall harvest weather conditions.

Question 10. Sometimes landowners identify fields as no-till, when they in fact do receive some tillage. Please describe the frequency of tillage on no-till fields.

Crop Rotation	# of years tilled in a rotation
Example	Tilled 1 out of every 6 years
Cash Grain	Tilled 3 out of 6 years
Continuous Corn	Tilled 6 out of 6 years
Dairy	Tilled 3 out of 6 years
Potato/Vegetable	Always tilled (processors require tillage)

<u>Question 11. Please estimate the % of each rotation area that uses the tillage strategies listed below.</u> This table will be used to determine tillage timing and depth.

	% of rotation area using tillage strategy						
Tillage Strategy	Example	Continuous Corn	Cash Grain	Dairy	Potato/Vegetable		
Fall Chisel plow,							
Spring field cultivate x2	0%	75	55	70	65		
Fall Vertical till,							
Spring field cultivate	25%	10	10	15	15		
Spring Vertical till	0%		15	10	5		
Fall moldboard plow,							
Spring field cultivate x2	0%	5	5				
Fall field cultivate	50%			5			
Fall disk & chisel plow,							
Spring field cultivate x2	0%	10	5		15		
No-till	25%		10				
Other (please specify)	0%						
Other (please specify)	0%						
Other (please specify)	0%						

Question 12. In the table below, please estimate the percentage of your county's Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable acreage with after-harvest crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed.

*** % crop residue levels estimated in spring after planting (This is when we conservationists think/measure crop residue) This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

Crop Rotation	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Cedar Creek (40301010405)	City of Chilton-South Branch Manitowoc River (40301010404)	Headwaters Killsnake River (40301010406)	Headwaters North Branch Manitowoc River (40301010301)	Kiel Marsh State Wildlife Area- Sheboygan River (40301011106)	Killsnake River (40301010407)	North Branch Manitowoc River (40301010303)	Pine Creek (40301010403)	Sheboygan Lake-Sheboygan River (40301011104)	South Branch Manitowoc River (40301010408)	Spring Creek (40301010302)	Stony Brook-South Branch Manitowoc River (40301010402)
	0%-15%	85%	30	30	25	25	30	25	25	30	30	30	25	30
Cach Grain	16%-30%	0%	40	40	35	35	40	35	35	40	40	40	35	40
	>30%	10%	20	20	25	25	20	25	25	20	20	20	25	20
	No-Till/Zone-Till	5%	10	10	15	15	10	15	15	10	10	10	15	10
	0%-15%	0%	20	20	20	20	20	20	20	20	20	20	20	20
Continuous	16%-30%	0%	40	40	40	40	40	40	40	40	40	40	40	40
Corn	>30%	100%	30	30	30	30	30	30	30	30	30	30	30	30
	No-Till/Zone-Till	0%	10	10	10	10	10	10	10	10	10	10	10	10
	0%-15%	75%	70	70	65	65	70	65	65	70	70	70	65	70
Dairy	16%-30%	25%	25	25	25	25	25	25	25	25	25	25	25	25
Dally	>30%	0%	5	5	10	10	5	10	10	5	5	5	10	5
	No-Till/Zone-Till	0%	0	0	0	0	0	0	0	0	0	0	0	0
	0%-15%	100%	90	90	90	90	90	90	90	90	90	90	90	90
Potato/	16%-30%	0%	10	10	10	10	10	10	10	10	10	10	10	10
Vegetable	>30%	0%	0	0	0	0	0	0	0	0	0	0	0	0
	No-Till/Zone-Till	0%	0	0	0	0	0	0	0	0	0	0	0	0

CHEMICAL FERTILIZER APPLICATIONS (QUESTIONS 13 - 15)

Chemical fertilizer applications will be modeled for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations. Important settings for chemical fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations.

<u>Question 13. Using the table below, please describe the characteristics of a typical chemical fertilizer</u> <u>application for each crop.</u>

Charact	teristic	Example	Cash Grain	Corn Grain	Corn Silage	Нау	Potato/ Vegetable
Application timing	Pre-panting	X	х	х	х	х	х
(check all that	At-planting	X	х	х	х		
<u>apply)</u>	During growing		х	х	х	х	
Placement <u>(check one per</u> <u>rotation)</u>	Surface	X	х	х	х	x	х
	Injection						
Incorporation after application? (check one per rotation)	Yes		х	x	х		х
	No	x				x	

Question 14. Using the table below, please estimate typical annual chemical fertilizer application rates for Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations in your county by HUC12 subwatershed. You can choose to report fertilizer rates in pounds of **nutrient** per acre (option 1) or pounds of **fertilize**r per acre (option 2). Please provide more information about the option you choose below.

<u>Reporting option 1: Pounds of **nutrient** per acre</u> Phosphorus type (phosphorus P or phosphate P₂O₅): Nitrogen type (ammonium NH₄, Urea CH₄N₂O, ect.):

Reporting option 1: pounds of nutrient per acre used

	Chemical Fertilizer Application Rate (lb/acre/yr)							
HUC12	Cash Grain		Continuous Corn		Dairy		Potato/ Vegetable	
	Р	N	Р	Ν	Р	N	Р	Ν
EXAMPLE	60	130	70	120	30	60	20	50
Cedar Creek (40301010405)	40	165	40	165	35	175	45	20
City of Chilton-South Branch Manitowoc River (40301010404)	40	165	40	165	35	175	45	20
Headwaters Killsnake River (40301010406)	40	165	40	165	35	175	45	20
Headwaters North Branch Manitowoc River (40301010301)	40	165	40	165	35	175	45	20
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	40	165	40	165	35	175	45	20
Killsnake River (40301010407)	40	165	40	165	35	175	45	20
North Branch Manitowoc River (40301010303)	40	165	40	165	35	175	45	20
Pine Creek (40301010403)	40	165	40	165	35	175	45	20
Sheboygan Lake-Sheboygan River (40301011104)	40	165	40	165	35	175	45	20
South Branch Manitowoc River (40301010408)	40	165	40	165	35	175	45	20
Spring Creek (40301010302)	40	165	40	165	35	175	45	20
Stony Brook-South Branch Manitowoc River (40301010402)	40	165	40	165	35	175	45	20

Question 15. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?

	Crop Yield Targets (yield/acre/yr)							
HUC12	Cash grain	Corn grain	Corn silage	Нау	Potato/ Vegetable			
Example	170 bu	150 bu	10 tons/ac	3 tons/ac	400 cwt			
Cedar Creek (40301010405)	185	185	22	5				
City of Chilton-South Branch Manitowoc River (40301010404)	185	185	22	5				
Headwaters Killsnake River (40301010406)	165	165	20	6				
Headwaters North Branch Manitowoc River (40301010301)	165	165	20	6				
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	185	185	22	5				
Killsnake River (40301010407)	165	165	20	6				
North Branch Manitowoc River (40301010303)	165	165	20	6				
Pine Creek (40301010403)	185	185	22	5				
Sheboygan Lake-Sheboygan River (40301011104)	185	185	22	5				
South Branch Manitowoc River (40301010408)	165	165	20	6				
Spring Creek (40301010302)	165	165	20	6				
Stony Brook-South Branch Manitowoc River (40301010402)	185	185	22	5				

MANURE APPLICATIONS (QUESTIONS 16 - 21)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

<u>Question 16. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily</u> <u>haul of manure versus manure storage by HUC12 subwatershed.</u>

HUC12	% Daily Haul	% Storage
Cedar Creek (40301010405)	5	95
City of Chilton-South Branch Manitowoc River (40301010404)	15	85
Headwaters Killsnake River (40301010406)	20	80
Headwaters North Branch Manitowoc River (40301010301)	4	96
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	5	95
Killsnake River (40301010407)	15	85
North Branch Manitowoc River (40301010303)	5	95
Pine Creek (40301010403)	5	95
Sheboygan Lake-Sheboygan River (40301011104)	15	85
South Branch Manitowoc River (40301010408)	5	95
Spring Creek (40301010302)	5	95
Stony Brook-South Branch Manitowoc River (40301010402)	6	94

Question 17. Using the table below, please describe typical manure application practices for a daily haul farm and a manure storage farm in your county.

Characteristic	Typical Practice for Daily Haul Farm	Typical Practice for Storage Farm
Application Frequency	DAILY	2 times per year majority
Application Timing	Spring & Fall majority little in summer	Spring & fall majority. Some in summer on hay & after winter wheat
Followed by Incorporation? (Yes or No)	Not right away, but eventaully	yes

<u>Question 18. In the table below, please estimate typical manure application rates and form (liquid or solid) for</u> <u>a daily haul farm and a manure storage farm in your county by HUC12.</u>

*tip 1: Application Rate refers to the average rate per an application (i.e. not a yearly or rotational average) *tip 2: % Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection).

	DAII	Y HAUL		STO		
HUC12	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form
Cedar Creek (40301010405)	20	40	Solid	15000	100	Liquid
City of Chilton-South Branch Manitowoc River (40301010404)	20	40	Solid	15000	100	Liquid
Headwaters Killsnake River (40301010406)	20	40	Solid	15000	100	Liquid
Headwaters North Branch Manitowoc River (40301010301)	20	40	Solid	15000	100	Liquid
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	20	40	Solid	15000	100	Liquid
Killsnake River (40301010407)	20	40	Solid	15000	100	Liquid
North Branch Manitowoc River (40301010303)	20	40	Solid	15000	100	Liquid
Pine Creek (40301010403)	20	40	Solid	15000	100	Liquid
Sheboygan Lake-Sheboygan River (40301011104)	20	40	Solid	15000	100	Liquid
South Branch Manitowoc River (40301010408)	20	40	Solid	15000	100	Liquid
Spring Creek (40301010302)	20	40	Solid	15000	100	Liquid
Stony Brook-South Branch Manitowoc River (40301010402)	20	40	Solid	15000	100	Liquid

<u>Question 19. Are you able to provide an estimate of the range or average concentration of N and P in manure</u> in your county? If so, please express as lb per ton or lb per 1000 gal.

P concentration (please specify- P or P_2O_5): N concentration:

Cannot provide an estimate. Farms vary so much with what they feed the animals, type of storage(s), what's collected in the storage (feed leachate, milkhouse waste, etc), digesters, etc to have an estimate on behalf of the county.

<u>Question 20. What percent of Dairy Rotation acres under no-till receive injected manure?</u> Manure injection can have similar effects on soil residue as tillage practices.

Very few if any no-till dairies in the county. 0%

<u>Question 21: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of</u> <u>Dairy acres use the injection methods below</u>. This table will be used to determine the depth of soil disturbance and soil residue disturbance. *tip: values in table should sum to 100%.

Injection method	% of Dairy acres receiving manure by injection
Narrow knife	5
Sweep	5
Knife	
Other (please specify) Disc	
Incorporate	90

SOIL PHOSPHORUS (QUESTION 22)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-summary-2010-to-2014-1.xlsx</u>) Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

<u>Question 22. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived</u> <u>from a review of representative Nutrient Management Plans for each HUC12.</u>

HUC12	Average Soil P (parts per million)
Cedar Creek (40301010405)	46
City of Chilton-South Branch Manitowoc River (40301010404)	37
Headwaters Killsnake River (40301010406)	30
Headwaters North Branch Manitowoc River (40301010301)	30
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	75
Killsnake River (40301010407)	30
North Branch Manitowoc River (40301010303)	30
Pine Creek (40301010403)	36
Sheboygan Lake-Sheboygan River (40301011104)	46
South Branch Manitowoc River (40301010408)	29
Spring Creek (40301010302)	30
Stony Brook-South Branch Manitowoc River (40301010402)	34

GRAZING (QUESTIONS 23 – 24)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

<u>Question 23. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web map) is grazed?</u>

Very little acreage in the county is truly grazed. Less than 5% of the pasture acres identified on the map are grazed.

<u>Question 24. If managed grazing is a significant enough practice to affect water quality, what are the typical practices of a grazing operation?</u>

Managed grazing is not significant enough in the county to affect water quality

Characteristic	Typical Practice
Animal Type	
Number of Animals per Acre	
Grazing Timing & Duration	
(Entire Growing Season,	
Year-Round, Spring Only, etc.)	

OPTIONAL SECTION: IRRIGATION AND AGRICULTURAL DRAIN TILE

HUC12	Percent of fields with ag tile	Percent of fields with irrigation
Cedar Creek (40301010405)		
City of Chilton-South Branch Manitowoc River (40301010404)		
Headwaters Killsnake River (40301010406)		
Headwaters North Branch Manitowoc River (40301010301)		30
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)		
Killsnake River (40301010407)		
North Branch Manitowoc River (40301010303)		30
Pine Creek (40301010403)		
Sheboygan Lake-Sheboygan River (40301011104)		
South Branch Manitowoc River (40301010408)		
Spring Creek (40301010302)		30
Stony Brook-South Branch Manitowoc River (40301010402)		

The only irrigation in the Calumet County is from 2 CAFO's who irrigate some of their wastewater on a couple of fields.

Recently, fields with tile drainage were inventoried by using aerial photos in 3 subwatersheds as seen on the chart above. However it is likely that there is more tile drainage in these watersheds that what was identified by air photo interpretation.

Overall, several fields in the county have drain tile installed throughout the county.

ADDITONAL INPUT

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data. Thank you!

For example, if you know of barnyards with significant runoff, we would need the location and size of each barnyard.

Northeast Lakeshore TMDL: Agricultural Land Management Questionnaire for Door County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Northeast Lakeshore (NEL) TMDL. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the NEL SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up Wisconsin's NE lakeshore.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	-
2	May	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	May	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	-
2	October	30	Till	Chisel Plow	-

Table 3. Example SWAT agricultural land management table.

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards. Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC12s). HUC12 boundaries correspond to the subwatersheds defined in the NEL SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). <u>Additionally, please contact kimberly.oldenborg@wisconsin.gov or call 608-266-7037</u> if you have questions about this survey or would like to set up a meeting to discuss this survey.

Please prepare responses directly in this file and deliver by **June 28th, 2019** in electronic format (Word or PDF) via email to:

Kim Oldenborg, WDNR <u>kimberly.oldenborg@wisconsin.gov</u> 608-266-7037

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's northeast lakeshore basins!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Brian Forest Organization: Door County Soil and Water Conservation Department Email: bforest@co.door.wi.us Phone: 920-746-2366

AGRICULTURAL LAND USE (QUESTIONS 1 – 5)

Six general crop rotations have been identified in the NE Lakeshore TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.

- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans.
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation.
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Typically, a cover crop between corn and alfalfa years. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn.
- 4. Potato/Vegetable Potato and vegetable plantings alternate each year. In some cases, a vegetable is grown for two years followed by potatoes. Vegetables commonly planted are sweet corn, beans, peas, carrots, peppers, onions, and cucumbers.
- 5. Continuous Hay Lands covered by planted perennial herbaceous vegetation (legumes and grasses) and harvested for use as livestock forage. May include mowed areas.
- 6. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present.

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

Question 1. In your county, are potatoes and vegetables usually grown in rotation with other cash grains or on their own?

They are usually grown in a rotation with other cash grains.

Question 2. Based on your knowledge of crop rotations in your county, would you add any rotations to the six listed above? If yes, please describe below.

Yes. There is a rotation that is commonly used that is a hybrid between number 1 and number 4. This, with the dairy rotation, is the most common utilized:

<u>Grain-Vegetable-Occasional Hav</u> – Vegetable crops such as snap beans or beets are rotated with grain crops such as winter wheat or oats. Hay is occasionally introduced into the rotation, as needed for forage or field chemical requirements.

<u>Question 3. Attachment A and the web-based map display the six general crop rotations in your county. Do any</u> <u>areas stand out as being misclassified?</u> When looking for misclassified areas, please focus on the "bigger picture" and avoid verifying rotations on the field level.

Upon reviewing the data provided, there is a significant discrepancy between displayed rotations and their percent of the total cropland and the values that are tracked by the SWCD. Total cropland acres tracked by the SWCD are 33,819. The total cropland acres presented by this survey is 41,476.

Much of this discrepancy appears to be in the polygons classified as "Pasture". Reviewing the web-based map, many of the delineated areas overly wooded areas, wetlands and other non-agricultural areas. True "pasture" areas are generally not separated by the SWCD, as they are part of many dairy rotations and incorporated into grass/hay portions of the rotation. There are no true grazing operations in this part of the county and traditional pastures are instead feedlots with feed stations that have some grass/alfalfa portions for supplemental feeding.

Regarding the other categories, it is more realistic to break down the rotations as "Dairy Rotation" and "Grain/Vegetable/Occasional Hay". The rotations identified as "Cash Grain" and Potato/Vegetable" should be combined into the "Grain/Vegetable/Occasional Hay" rotation. The others, with the exception of the misrepresented "Pasture" areas, should be combined into the "Dairy Rotation" category.

<u>Question 4. The table below displays the area of each rotation as a percentage of total county area and</u> <u>agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?</u>

This table has been adjusted to reflect the rotations identified for cropland in the three HUC 12s that reside in Door County. The other rotations identified have been removed, as the following is a more accurate depiction of typical cropping practices by the majority of the cropland operators.

Rotation	% of county area	% of agricultural area	rotation area (acres)	
Dairy Rotation	32%	60%	20286	
Grain/Vegetable/Hay	22%	40%	13533	

*Note: Areas outside the NE Lakeshore TMDL were excluded from percent area calculations.

Further breakdown by HUC 12:

HUC 12	% of county area Dairy Rotation	% of county area Grain/Vegetable/Hay	% of agricultural area Dairy Rotation	% of agricultural area Grain/Vegetable/Hay	rotation area (acres) Dairy Rotation	rotation area (acres) Grain/Vegetable/Hay
Silver (40301020203)	73%	10%	73%	10%	2237	319
Stony (40301020201)	22%	26%	22%	26%	6501	7665
Ahnapee (40301020204)	39%	19%	39%	19%	11548	5549

Question 5. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004 transect data from the Conservation Technology Information Center (CTIC). Has your county conducted crop and tillage transect surveys since 2004? If yes, can you share recently collected transect data for this project? No. The last Cropland Transect Survey done in Door County was 2002.
DAIRY CROP SEQUENCES (QUESTION 6 - 7)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

<u>Question 6. In the table below, please describe the sequence(s) of corn grain (Cq), corn silage (Cs), alfalfa (A),</u> <u>Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation.</u> This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined. **Please focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).**

Several rotations that cover the majority of the cropland operated in dairy rotations were identified. Most were a combination of corn (silage), small grain and alfalfa in varying durations. Rotations were derived from discussion with several operators and CCAs that operate and plan the majority of cropland acres in the TMDL area.

Typical Dairy	Year									
Socionco(s)	1	2	3	4	5	6	7	8	9	
Jequence(3)						(if needed)	(if needed)	(if needed)	(if needed)	
EXAMPLE	Cs	Cs	Cs	Cs	Α	A				
Sequence 1	Cs	WW/O	А	А	А	А				
Sequence 2 (if needed)	Cs	Cs	А	А	А	А				
Sequence 3 (if needed)	Cs	Cs	WW/O	А	А	А	А			
Sequence 4 (if needed)	Cs	Cs	Cs	Cs	А	А	А			
Sequence 5 (if needed)										

Question 7. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.

Percentage of cropland operated under each sequence was determined through an analysis of major cropland operators and their predominant rotations.

	% Dairy				
HUC12	Sequence	Sequence	Sequence	Sequence	Sequence
	1	2	3	4	5
EXAMPLE	90 %	10 %	0 %	0%	0 %
Ahnapee River (40301020204)	80%	10%	10%	0%	0%
Stony Creek-Frontal Lake Michigan (40301020201)	80%	0%	20%	0%	0%
Silver Creek (40301020203)	30%	30%	40%	0%	0%

PLANTINGS AND HARVESTS (QUESTION 8)

SWAT management tables ask for planting and harvest dates for each crop planted. For the NEL SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize

that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the NEL and to determine an appropriate number of cuttings per year for the Continuous Hay rotation.

<u>Question 8. In the table below, please estimate average planting dates (50% of crop planted) in your county in</u> <u>cool/wet, average, and warm/dry years. Also, please estimate the typical number of hay cuttings.</u>

Answers to this question were generated through discussion with CCAs and the Door County UW-Extension Agriculture Agent.

Temperature/Moisture Condition	Average Planting Date	Average Harvest Date	Number of Hay Cuttings
Cool/Wet Year	June 4	September 27	2
Average Temperature/Moisture Year	May 24	September 13	4
Warm/Dry Year	May 10	September 6	3

TILLAGE AND CROP RESIDUE (QUESTIONS 9 – 12)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

<u>Question 9. In your county, are fields typically tilled in the spring, fall, or both?</u> Tillage occurs during both spring and fall.

<u>Question 10. Sometimes landowners identify fields as no-till, when they in fact do receive some tillage. Please</u> <u>describe the frequency of tillage on no-till fields.</u>

Designation of tillage for each rotation was developed from review of nutrient management plans, as well as observation by SWCD staff throughout many growing seasons.

Crop Rotation	# of years tilled in a rotation
Example	Tilled 1 out of every 6 years
Dairy	4 out of every 6 years
Grain/Vegetable/Hay	4 out of every 6 years

<u>Question 11. Please estimate the % of each rotation area that uses the tillage strategies listed below.</u> This table will be used to determine tillage timing and depth.

Designation of tillage strategies in both rotations were developed through review of submitted nutrient management plans from major cropland operators throughout each of the HUC 12s. Trends were established based on a tally of preferred tillage by each operation and applied across all operated acreage. Dominant tillage practices prevailed and were applied across the cropland for each area.

Tille on Churche and	% of rotation area using tillage strategy					
Thiage Strategy	Example	Dairy	Grain/Vegetable/Hay			
Fall Chisel plow,						
Spring field cultivate x2	0%	10%				
Fall Vertical till,						
Spring field cultivate	25%	10%	5%			
Spring Vertical till	0%		5%			
Fall moldboard plow,						
Spring field cultivate x2	0%					
Fall field cultivate	50%	15%	15%			
Fall disk & chisel plow,						
Spring field cultivate x2	0%		10%			
No-till	25%	10%	10%			
Fall Chisel Plow, No Disk	0%	15%	10%			
Alfalfa to Alfalfa, No Tillage	0%	25%	20%			
Spring Field Cultivate	0%	15%	25%			

Question 12. In the table below, please estimate the percentage of your county's Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable acreage with after-harvest crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed.

This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

Tillage was reviewed in the fall of 2018, as part of the modeling for the Upper Ahnapee River Watershed 9 Element Plan, and revisited for this survey. Results were comparable across all of the HUC 12s, as the same operators are consistent through each. Staff observations confirmed this.

Crop Rotation	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Ahnapee River (40301020204)	Stony Creek-Frontal Lake Michigan (40301020201)	Silver Creek (40301020203)
	0%-15%	75%	70%	70%	70%
Dainy	16%-30%	15%	10%	10%	10%
Dali y	>30%	10%	15%	15%	15%
	No-Till/Zone-Till	0%	0%	0%	0%
Croin	0%-15%	100%	80%	80%	80%
Grain/ Vegetable/	16%-30%	0%	10%	10%	10%
	>30%	0%	10%	10%	10%
пау	No-Till/Zone-Till	0%	0%	0%	0%

CHEMICAL FERTILIZER APPLICATIONS (QUESTIONS 13 – 15)

Chemical fertilizer applications will be modeled for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations. Important settings for chemical fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations.

<u>Question 13. Using the table below, please describe the characteristics of a typical chemical fertilizer</u> <u>application for each crop.</u>

Information for this question was generated from review of submitted nutrient management plans, as well as discussion with CCAs.

Charact	teristic	Example	Cash Grain	Corn Grain	Corn Silage	Нау	Potato/ Vegetable
Application timing	Pre-panting	X		Some	Some		
(check all that	At-planting	X	Х	Х	Х	Х	Х
<u>apply)</u>	During growing		Х	Х	Х	Х	Х
Placement	Surface	X	х	х	х	х	Х
<u>(check one per</u> <u>rotation)</u>	Injection			Some	Some		
Incorporation after application?	Yes		At Planting	Some	Some	At Planting	At Planting
(check one per rotation)	No	x	х	х	х	х	х

Question 14. Using the table below, please estimate typical annual chemical fertilizer application rates for Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations in your county by HUC12 subwatershed. You can choose to report fertilizer rates in pounds of **nutrient** per acre (option 1) or pounds of **fertilize**r per acre (option 2). Please provide more information about the option you choose below.

Information for this question was generated from review of submitted nutrient management plans, as well as discussion with CCAs.

	Chemical Fertilizer Application Rate (lb/acre/yr)								
HUC12	Cash Grain		Continuous Corn		Dairy		Potato/ Vegetable		
	Р	N	Р	N	Р	N	Р	N	
EXAMPLE	60	130	70	120	30	60	20	50	
Ahnapee River (40301020204)	23	65	44	122	30	90	23	42	
Stony Creek-Frontal Lake Michigan (40301020201)	23	65	44	122	30	90	23	42	
Silver Creek (40301020203)	23	65	44	122	30	90	23	42	

Reporting option 1: Pounds of nutrient per acre

Phosphorus type (phosphorus P or phosphate P₂O₅): Nitrogen type (ammonium NH₄, Urea CH₄N₂O, ect.):

<u>Reporting option 2: Pounds of fertilizer per acre</u> Typical N:P:K Ratio =

Question 15. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?

Information for this question was generated from review of submitted nutrient management plans, as well as discussion with CCAs.

	Crop Yield Targets (yield/acre/yr)							
HUC12	Cash	Corn	Corn		Potato/			
	grain	grain	silage	Нау	Vegetable			
EXAMPLE	170 bu	150 bu	10 tons/ac	3 tons/ac	400 cwt			
Ahnapee River (40301020204)	175 bu	175 bu	26 tons	5 tons	5 tons			
Stony Creek-Frontal Lake Michigan (40301020201)	160 bu	160 bu	22 tons	4 tons	5 tons			
Silver Creek (40301020203)	170 bu	170 bu	24 tons	4.5 tons	5 tons			

MANURE APPLICATIONS (QUESTIONS 16 – 21)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

Question 16. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily haul of manure versus manure storage by HUC12 subwatershed.

Information provided in this question is based on SWCD experience, and the many years of work previous to address daily hauling and implement storage to efficiently and appropriately deal with field applications.

HUC12	% Daily Haul	% Storage
Ahnapee River (40301020204)	0%	100%
Stony Creek-Frontal Lake Michigan (40301020201)	0%	100%
Silver Creek (40301020203)	0%	100%

Question 17. Using the table below, please describe typical manure application practices for a daily haul farm and a manure storage farm in your county.

Information provided in this question is based on SWCD experience, and the many years of work previous to address daily hauling and implement storage to efficiently and appropriately deal with field applications.

Characteristic	Typical Practice for Daily Haul Farm	Typical Practice for Storage Farm
Application Frequency		Spring and Fall
Application Timing		Pre Planting and Post Harvest
Followed by Incorporation? (Yes or No)		Yes

<u>Question 18. In the table below, please estimate typical manure application rates and form (liquid or solid) for</u> <u>a daily haul farm and a manure storage farm in your county by HUC12.</u>

*tip 1: Application Rate refers to the average rate per an application (i.e. not a yearly or rotational average) *tip 2: % Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection).

Upon review of cropping within the three HUC 12s, it became clear that manure applications were not equal across the landscape, based on the scale of operation. Throughout the entire NEL TMDL area, 30% of the cropland is operated by CAFOs. The manure applications made on this cropland is generally at higher rates

than non-CAFO operations. The calculations are reflected in the flowing table, with each split made for each HUC 12.

	DAI	LY HAUL		STORAGE		
HUC12	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form
Ahnapee River (40301020204)				35% - 15000 gal 65% - 8000 gal	70%	Liquid
Stony Creek-Frontal Lake Michigan (40301020201)				20% - 15000 gal 80% - 8000 gal	70%	Liquid
Silver Creek (40301020203)				55% - 15000 gal 45% - 8000 gal	70%	Liquid

<u>Question 19. Are you able to provide an estimate of the range or average concentration of N and P in manure</u> <u>in your county? If so, please express as lb per ton or lb per 1000 gal.</u>

P concentration (please specify- *P* or P_2O_5): Range 4 – 12 lbs/1000 gal *N* concentration: Range 13 – 28 lbs/1000 gal

<u>Question 20. What percent of Dairy Rotation acres under no-till receive injected manure?</u> Manure injection can have similar effects on soil residue as tillage practices.

0% - There are no truly no-till operations occurring.

<u>Question 21: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of</u> <u>Dairy acres use the injection methods below</u>. This table will be used to determine the depth of soil disturbance and soil residue disturbance. *tip: values in table should sum to 100%.

Injection method	% of Dairy acres receiving manure by injection
Narrow knife	
Sweep	
Knife	100%
Other (please specify)	

SOIL PHOSPHORUS (QUESTION 22)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-summary-2010-to-2014-1.xlsx</u>) Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

Question 22. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived from a review of representative Nutrient Management Plans for each HUC12.

The SWCD receives annual nutrient management plans from the majority of operators within the project area. 95% of the cropland is covered in a NMP. The SWCD tracks soil P levels as they are recorded, and maps them with other field attributes.

HUC12	Average Soil P (parts per million)
Ahnapee River (40301020204)	30
Stony Creek-Frontal Lake Michigan (40301020201)	18
Silver Creek (40301020203)	29

GRAZING (QUESTIONS 23 – 24)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

Question 23. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web-based map) is grazed?

0% - There are no true grazing operations in this part of the county, areas identified as pasture or grazing areas are essentially supplemental feeding for dedicated feed stations.

Question 24. What are the typical practices of a grazing operation?

There are no true grazing operations in this part of the county, areas identified as pasture or grazing areas are essentially supplemental feeding for dedicated feed stations.

Characteristic	Typical Practice
Animal Type	
Number of Animals per Acre	
Grazing Timing & Duration	
(Entire Growing Season,	
Year-Round, Spring Only, etc.)	

OPTIONAL SECTION: IRRIGATION AND AGRICULTURAL DRAIN TILE

HUC12	Percent of fields with ag tile	Percent of fields with irrigation
Ahnapee River (40301020204)		
Stony Creek-Frontal Lake Michigan (40301020201)		
Silver Creek (40301020203)		

ADDITONAL INPUT

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data. Thank you!

For example, if you know of barnyards with significant runoff, we would need the location and size of each barnyard.

There is a CAFO operation (Permit No. WI-0062863-03-0) located at 44°44.2367618'N, 87°30.0024110'W, which currently discharges process wastewater to an unnamed tributary within the Ahnapee River Watershed and groundwaters of the state. The WPDES permit for this operation has identified a compliance schedule to correct this, with corrective measures required by 11/1/18.

Northeast Lakeshore TMDL: Agricultural Land Management Questionnaire for Fond du Lac County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Northeast Lakeshore (NEL) TMDL. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the NEL SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up Wisconsin's NE lakeshore.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	-
2	Мау	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	Мау	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	-
2	October	30	Till	Chisel Plow	-

Table 4. Example SWAT agricultural land management table.

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards. Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC12s). HUC12 boundaries correspond to the subwatersheds defined in the NEL SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). Additionally, please contact kimberly.oldenborg@wisconsin.gov or call 608-266-7037 if you have guestions about this survey or would like to set up a meeting to discuss this survey.

Please prepare responses directly in this file and deliver by **June 28th, 2019** in electronic format (Word or PDF) via email to:

Kim Oldenborg, WDNR

kimberly.oldenborg@wisconsin.gov

608-266-7037

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's northeast lakeshore basins!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Becky Wagner Organization: Fond du Lac County LWCD Email: becky.wagner@fdlco.wi.gov Phone: (920) 906-4681

AGRICULTURAL LAND USE (QUESTIONS 1 – 5)

Six general crop rotations have been identified in the NE Lakeshore TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.

- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans.
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation.
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Typically, a cover crop between corn and alfalfa years. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn.
- 4. Potato/Vegetable Potato and vegetable plantings alternate each year. In some cases, a vegetable is grown for two years followed by potatoes. Vegetables commonly planted are sweet corn, beans, peas, carrots, peppers, onions, and cucumbers.
- 5. Continuous Hay Lands covered by planted perennial herbaceous vegetation (legumes and grasses) and harvested for use as livestock forage. May include mowed areas.
- 6. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present.

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

Question 1. In your county, are potatoes and vegetables usually grown in rotation with other cash grains or on their own?

No potatoes are grown in our county other than a few CSA farms in this watershed, and a few canning vegetable crops specifically lima beans, some canning peas and sweet corn are grown but in conjunction with a rotation with other cash grains and forages. Vegetable crops planted during any given season are very dependent on the market and canning company contracts, so I am not factoring these crops into our rotations for this watershed.

Question 2. Based on your knowledge of crop rotations in your county, would you add any rotations to the six listed above? If yes, please describe below.

I would change your 'cash grain' rotation to 'row crop' rotation, and include corn silage.

<u>Question 3. Attachment A and the web-based map display the six general crop rotations in your county. Do any areas</u> <u>stand out as being misclassified?</u> When looking for misclassified areas, please focus on the "bigger picture" and avoid verifying rotations on the field level.

The large all cash grain (orange) area north of ST. Peter and Wh should be dairy rotation. There is a misconception that just because there are 'cash' grain fields, does not mean that they are void of a dairy presence, with the exporting of manure to these fields, and the selling of corn silage to the dairies. Therefore, that area north of St. Peter that is all orange fits the dairy rotation and should be brown unless you add another rotation that says row crop with dairy affiliation.

I would also need to look at our NMP map to see why all those areas are white. These areas would be a dairy rotation as well.

We do not have that much continuous hay (yellow), vegetable (red) or continuous corn (purple) rotations as is shown on the map. This is a very strong dairy, row crop watershed in Fond du Lac County.

Question 4. The table below displays the area of each rotation as a percentage of total county area and agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?

The percentage of dairy is low. The percentage of continuous hay and vegetables are high.

Rotation	% of county area	% of agricultural area	rotation area (acres)
Cash Grain	15%	22%	12,387
Continuous Corn	3%	4%	2,073

Dairy Rotation	37%	54%	30,181
Potato/Vegetable	2%	3%	1,821
Нау	9%	13%	7,158
Pasture	2%	3%	1,913

*Note: Areas outside the NE Lakeshore TMDL were excluded from percent area calculations.

<u>Question 5. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004 transect</u> <u>data from the Conservation Technology Information Center (CTIC). Has your county conducted crop and tillage transect</u> <u>surveys since 2004? If yes, can you share recently collected transect data for this project?</u>

No we have not conducted a Cropland Transect Survey since 2004. If you want specific crop system information I can refer to my NMP's via SNAP Plus to get farm/field detail.

DAIRY CROP SEQUENCES (QUESTION 6 - 7)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

<u>Question 6. In the table below, please describe the sequence(s) of corn grain (Cg), corn silage (Cs), alfalfa (A), Soybean</u> (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation. This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined. **Please focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).**

CScv = Corn silage with cover crop seeded after silage harvest

- **OPfAs = Oats peas forage with alfalfa seeding**
- **OfAs = Oats forage with alfalfa seeding**
- WWg+s = Winter wheat grain plus straw
- As = Alfalfa spring seeding (direct)
- Cgbs = Corn grain baled straw

	Year								
Sequence(s)	1	2	3	4	5	6 (if needed)	7 (if needed)	8 (if needed)	9 (if needed)
EXAMPLE	Cs	Cs	Cs	Cs	A	A			
Sequence 1	Cs	Cs	Cs	OPfAs	Α	Α	Α		
Sequence 2 (if needed)	Cscv	Cscv	OfAs	Α	Α	Α			
Sequence 3 (if needed)	Cs	S	Cs	WWg +s	As	Α	Α	Α	
Sequence 4 (if needed)	Cs	S	Cs	As	Α	Α	Α		
Sequence 5 (if needed)	Cgbs	Cs	Cg	Cs	OfAs	Α	Α	Α	Α

<u>Question 7. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.</u>

HUC12	% Dairy Sequence 1	% Dairy Sequence 2	% Dairy Sequence 3	% Dairy Sequence 4	% Dairy Sequence 5
EXAMPLE	60 %	5 %	10 %	10 %	15 %
Community of Mt. Calvary (40301011101)	20%	5%	20%	30%	25%
Feldner's Creek-Sheboygan River (40301011103)	30%	5%	10%	30%	25%
Headwaters Sheboygan River (40301011102)	40%	20%	20%	5%	15%
Headwaters South Branch Manitowoc River (40301010401)	35%	5%	20%	10%	30%
Sheboygan Lake-Sheboygan River (40301011104)	50%	5%	10%	15%	20%
Stony Brook-South Branch Manitowoc River (40301010402)	60%	10%	20%	5%	5%
Upper Mullet River (40301010901)	40%	5%	5%	20%	30%

PLANTINGS AND HARVESTS (QUESTION 8)

SWAT management tables ask for planting and harvest dates for each crop planted. For the NEL SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the NEL and to determine an appropriate number of cuttings per year for the Continuous Hay rotation.

Question 8. In the table below, please estimate average planting dates (50% of crop planted) in your county in cool/wet, average, and warm/dry years. Also, please estimate the typical number of hay cuttings.

Temperature/Moisture Condition	Average Planting Date	Average Harvest Date	Number of Hay Cuttings
		Corn silage = Sept 24	
		Corn grain = Nov 5	
Cool/Wet Year	May 25	Soybeans = Oct 26	3
		Winter wheat Aug 2	

Average Temperature/Moisture Year	May 15	Corn silage = Sept 14 Corn Grain = Oct 22 Soybeans = Oct 17 Winter Wheat = Jul 30	4
Warm/Dry Year	May 5	Corn Silage = Sept 10 Corn Grain = Oct 15 Soybeans = Oct 10 Winter Wheat July 17	4 potentially 5

TILLAGE AND CROP RESIDUE (QUESTIONS 9 – 12)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

Question 9. In your county, are fields typically tilled in the spring, fall, or both?

Both

Question 10. Sometimes landowners identify fields as no-till, when they in fact do receive some tillage. Please describe the frequency of tillage on no-till fields.

Crop Rotation	# of years tilled in a rotation
Example	Tilled 1 out of every 6 years
Cash Grain	Tilled 6 out of 8 years
Continuous Corn	Tilled all 8 years
Dairy	Tilled 4 out of 8 years

<u>Question 11. Please estimate the % of each rotation area that uses the tillage strategies listed below.</u> This table will be used to determine tillage timing and depth.

	% of rotation area using tillage strategy				
Tillage Strategy	Example	Continuous Corn	Cash Grain	Dairy	Potato/Vegetable
Fall Chisel plow,					
Spring field cultivate x2	0%	10%	10%	80%	NA
Fall Vertical till,					
Spring field cultivate	25%	30%	30%	40%	NA
Spring Vertical till	0%	20%	50%	30%	NA
Fall moldboard plow,					
Spring field cultivate x2	0%	1%	1%	1%	NA
Fall field cultivate	50%	5%	20%	30%	NA
Fall disk & chisel plow,					
Spring field cultivate x2	0%	1%	1 0%	10%	NA
No-till	25%	10%	10%	5%	NA
Other (please specify)	0%				
Other (please specify)	0%				
Other (please specify)	0%				

Question 12. In the table below, please estimate the percentage of your county's Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable acreage with after-harvest crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-<u>Till/Zone-Till by HUC12 subwatershed.</u>

This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

Crop Rotation	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Community of Mt. Calvary (40301011101)	Feldner's Creek-Sheboygan River (40301011103)	Headwaters Sheboygan River (40301011102)	Headwaters South Branch Manitowoc River (40301010401)	Sheboygan Lake-Sheboygan River (40301011104)	Stony Brook-South Branch Manitowoc River (40301010402)	Upper Mullet River (40301010901)	
	0%-15%	85%	30%	30%	30%	20%	20%	30%		20%
Cash Grain	16%-30%	0%	50%	50%	50%	50%	60%	50%		70%
Cash Grain	>30%	10%	10%	15%	15%	25%	15%	15%		5%
	No-Till/Zone-Till	5%	10%	5%	5%	5%	5%	5%		5%
	0%-15%	0%	20%	30%	20%	20%	30%	40%		40%
Continuous	16%-30%	0%	60%	50%	60%	50%	60%	40%		50%
Corn	>30%	100%	15%	15%	15%	20%	5%	15%		5%
	No-Till/Zone-Till	0%	5%	5%	5%	10%	5%	5%		5%
	0%-15%	75%	40%	<mark>60</mark> %	40%	70%	60%	70%		70%
Dairy	16%-30%	25%	50%	30%	50%	30%	40%	30%		20%
Duny	>30%	0%	10%	10%	10%	0%	0%	0%		10%
	No-Till/Zone-Till	0%	0%	0%	0%	0%	0%	0%		0%
	0%-15%	100%	NA	NA	NA	NA	NA	NA		NA
Potato/	16%-30%	0%	NA	NA	NA	NA	NA	NA		NA
Vegetable	>30%	0%	NA	NA	NA	NA	NA	NA		NA
	No-Till/Zone-Till	0%	NA	NA	NA	NA	NA	NA		NA

CHEMICAL FERTILIZER APPLICATIONS (QUESTIONS 13 – 15)

Chemical fertilizer applications will be modeled for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations. Important settings for chemical fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations.

Question 13. Using the table below, please describe the characteristics of a typical chemical fertilizer application for each crop.

Charact	eristic	Example	Cash Grain	Corn Grain	Corn Silage	Нау	Potato/ Vegetable
Application timing	Pre-panting	X	x	X	X	X	NA
(check all that	At-planting	X	x	X	x	X	NA
appiyy	During growing		X	X	x	X	NA
Placement	Surface	X	x			X	NA
rotation)	Injection			X	X		NA
Incorporation after application?	Yes		x	X	X		NA
(check one per rotation)	No	X				X	NA

Question 14. Using the table below, please estimate typical annual chemical fertilizer application rates for Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations in your county by HUC12 subwatershed. You can choose to report fertilizer rates in pounds of **nutrient** per acre (option 1) or pounds of **fertilize**r per acre (option 2). Please provide more information about the option you choose below.

<u>Reporting option 1: Pounds of nutrient per acre</u> Phosphorus type (phosphorus P <mark>or phosphate P₂O₅):</mark> Nitrogen type (ammonium NH₄, <mark>Urea CH₄N₂O, ect.):</mark>

	Chemical Fertilizer Application Rate (lb/acre/yr)							
HUC12	Cash	Grain	Conti Co	nuous orn	Da	iiry	Potato/ \	/egetable
	Р	N	Р	N	Р	N	Р	N
EXAMPLE	60	130	70	120	30	60	20	50
Community of Mt. Calvary (40301011101)	20	140	20	190	10	60	NA	NA
Feldner's Creek-Sheboygan River (40301011103)	20	120	20	140	5	60	NA	NA
Headwaters Sheboygan River (40301011102)	20	140	20	190	5	60	NA	NA
Headwaters South Branch Manitowoc River (40301010401)	20	160	20	190	10	70	NA	NA
Sheboygan Lake-Sheboygan River (40301011104)	20	140	20	160	10	70	NA	NA
Stony Brook-South Branch Manitowoc River (40301010402)	20	130	20	170	5	50	NA	NA
Upper Mullet River (40301010901)	20	140	20	140	5	50	NA	NA

Reporting option 2: Pounds of fertilizer per acre

Typical N:P:K Ratio =

<u>Question 15. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example,</u> <u>areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop</u> <u>yields by HUC12 subwatershed?</u>

The average yields throughout all the sub-watersheds are as follows:

Corn grain = 170bu Corn Silage = 15-20T/ac Soybeans = 60 bu Winter Wheat = 75 bu

Established Alfalfa = 4-6T/ac

	Crop Yield Targets (yield/acre/yr)							
HUC12	Cash grain	Corn grain	Corn silage	Нау	Potato/ Vegetable			
Example	170 bu	150 bu	10 tons/ac	3 tons/ac	400 cwt			
Community of Mt. Calvary (40301011101)	See above	170 bu	18 tons	5 tons	NA			
Feldner's Creek-Sheboygan River (40301011103)	See above	150 bu	12 tons	4 tons	NA			
Headwaters Sheboygan River (40301011102)	See above	190 bu	20 tons	5 tons	NA			
Headwaters South Branch Manitowoc River (40301010401)	See above	190 bu	20 tons	5 tons	NA			
Sheboygan Lake-Sheboygan River (40301011104)	See above	150 bu	15 tons	4 tons	NA			

Stony Brook-South Branch Manitowoc River (40301010402)	See above	180 bu	20 tons	5 tons	NA
Upper Mullet River (40301010901)	See above	150 bu	12 tons	4 tons	NA

MANURE APPLICATIONS (QUESTIONS 16 - 21)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

Question 16. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily haul of manure versus manure storage by HUC12 subwatershed.

HUC12	% Daily Haul	% Storage
Community of Mt. Calvary (40301011101)	50	50
Feldner's Creek-Sheboygan River (40301011103)	25	75
Headwaters Sheboygan River (40301011102)	15	85
Headwaters South Branch Manitowoc River (40301010401)	10	90
Sheboygan Lake-Sheboygan River (40301011104)	25	75
Stony Brook-South Branch Manitowoc River (40301010402)	20	80
Upper Mullet River (40301010901)	60	40

Question 17. Using the table below, please describe typical manure application practices for a daily haul farm and a manure storage farm in your county.

Characteristic	Typical Practice for Daily Haul Farm	Typical Practice for Storage Farm
Application Frequency	DAILY	SPRING AND FALL
Application Timing	DAILY	SPRING AND FALL
Followed by Incorporation? (Yes or No)	50% incorporated	80% injected or incorporated

Question 18. In the table below, please estimate typical manure application rates and form (liquid or solid) for a daily haul farm and a manure storage farm in your county by HUC12.

**tip 1: Application Rate refers to the average rate per an application (i.e. not a yearly or rotational average)*

*tip 2: % Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection).

	DAILY HAUL			STORAGE		
HUC12	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form
Community of Mt. Calvary (40301011101)	15T	50%	solid	10,000	80%	liquid
Feldner's Creek-Sheboygan River (40301011103)	20T	50%	solid	12,000	80%	liquid
Headwaters Sheboygan River (40301011102)	20T	50%	solid	15,000	80%	liquid
Headwaters South Branch Manitowoc River (40301010401)	25T	50%	solid	10,000	80%	liquid
Sheboygan Lake-Sheboygan River (40301011104)	20T	50%	solid	12,000	80%	liquid
Stony Brook-South Branch Manitowoc River (40301010402)	20T	50%	solid	16,000	80%	liquid
Upper Mullet River (40301010901)	20T	50%	solid	10,000	80%	liquid

<u>Question 19. Are you able to provide an estimate of the range or average concentration of N and P in manure in your</u> <u>county? If so, please express as lb per ton or lb per 1000 gal.</u>

P concentration (please specify- *P* or P_2O_5):

N concentration:

N surface applied liquid and slurry with average 3-5% DM = 5lbs/1000gallons liquid manure N incorporated within 72 hours, liquid and slurry average = 7lbs/1000gallons liquid manure N injected, liquid and slurry manure = 9lbs/1000gallons liquid manure P205 = 4lbs P205/1000 gallons of liquid and slurry manure

N surface for solid manure = 4lbs/ton N incorporated within 72 hours = 5lbs/ton N immediately incorporated = 6lbs/ton P2O5 = 5lbs/ton

<u>Question 20. What percent of Dairy Rotation acres under no-till receive injected manure?</u> Manure injection can have similar effects on soil residue as tillage practices.

Very little of this watershed practices no till so 5% would be injected in no till fields.

<u>Question 21: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of Dairy acres</u> <u>use the injection methods below</u>. This table will be used to determine the depth of soil disturbance and soil residue disturbance. *tip: values in table should sum to 100%.

Injection method	% of Dairy acres receiving manure by injection
Narrow knife	10
Sweep	30
Knife	60
Other (please specify)	

SOIL PHOSPHORUS (QUESTION 22)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-summary-2010-to-2014-</u> <u>1.xlsx</u>) Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

Question 22. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived from a review of representative Nutrient Management Plans for each HUC12.

HUC12	Average Soil P (parts per million)
Community of Mt. Calvary (40301011101)	30
Feldner's Creek-Sheboygan River (40301011103)	38
Headwaters Sheboygan River (40301011102)	48
Headwaters South Branch Manitowoc River (40301010401)	50
Sheboygan Lake-Sheboygan River (40301011104)	36
Stony Brook-South Branch Manitowoc River (40301010402)	42
Upper Mullet River (40301010901)	42

GRAZING (QUESTIONS 23 – 24)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

Question 23. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web-based map) is grazed?

Question 24. What are the typical practices of a grazing operation?

Characteristic	Typical Practice
Animal Type	Dairy
Number of Animals per Acre	2
Grazing Timing & Duration (Entire	
Growing Season,	Spring, Summer, Fall
Year-Round, Spring Only, etc.)	

OPTIONAL SECTION: IRRIGATION AND AGRICULTURAL DRAIN TILE

The majority of the cropped acreage in this watershed (all the sub-watersheds in the above tables, not the table below...not in our county) are tiled. I can provide specific tiled information as needed and requested.

HUC12	Percent of fields with ag tile	Percent of fields with irrigation
Headwaters Kewaunee River (040301020304)		
Upper Branch River (040301010502)		
Devils River (040301010203)		
Neshota River (040301010204)		
Village of Reedsville-Mud Creek (040301010603)		
Middle Branch River (040301010503)		
School Creek (040301020304)		

ADDITONAL INPUT

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data. Thank you!

For example, if you know of barnyards with significant runoff, we would need the location and size of each barnyard.

I have multiple years of field and farm specific phosphorus (PTP and PI) and soil loss information, along with detailed maps showing the restricted areas, hydrologic, karst and topographical information. If there is a particular area of concern in which you need more accurate information, I will be happy to share the data I have for that area.

Northeast Lakeshore TMDL: Agricultural Land Management Questionnaire for Kewaunee County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Northeast Lakeshore (NEL) TMDL. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the NEL SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up Wisconsin's NE lakeshore.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	-
2	May	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	May	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	-
2	October	30	Till	Chisel Plow	-

Table 5. Example SWAT agricultural land management table.

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards. Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC12s). HUC12 boundaries correspond to the subwatersheds defined in the NEL SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). Additionally, please contact kimberly.oldenborg@wisconsin.gov or call 608-266-7037 if you have questions about this survey or would like to set up a meeting to discuss this survey.

Please prepare responses directly in this file and deliver by **June 28th, 2019** in electronic format (Word or PDF) via email to:

Kim Oldenborg, WDNR <u>kimberly.oldenborg@wisconsin.gov</u> 608-266-7037

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's northeast lakeshore basins!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Davina Bonness Organization: Kewaunee County Land & Water Conservation Department Email: <u>bonness.davina@kewauneeco.org</u> Phone: 920-845-8743

AGRICULTURAL LAND USE (QUESTIONS 1 – 5)

Six general crop rotations have been identified in the NE Lakeshore TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.

- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans.
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation.
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Typically, a cover crop between corn and alfalfa years. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn.
- 4. Potato/Vegetable Potato and vegetable plantings alternate each year. In some cases, a vegetable is grown for two years followed by potatoes. Vegetables commonly planted are sweet corn, beans, peas, carrots, peppers, onions, and cucumbers.
- 5. Continuous Hay Lands covered by planted perennial herbaceous vegetation (legumes and grasses) and harvested for use as livestock forage. May include mowed areas.
- 6. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present.

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

Question 1. In your county, are potatoes and vegetables usually grown in rotation with other cash grains or on their own?

No potatoes are grown in Kewaunee County (that I am aware of). All vegetables are grown in rotation with cash grain cropping.

Question 2. Based on your knowledge of crop rotations in your county, would you add any rotations to the six listed above? If yes, please describe below.

No

<u>Question 3. Attachment A and the web-based map display the six general crop rotations in your county. Do any</u> <u>areas stand out as being misclassified?</u> When looking for misclassified areas, please focus on the "bigger picture" and avoid verifying rotations on the field level. No <u>Question 4. The table below displays the area of each rotation as a percentage of total county area and</u> <u>agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?</u>

Yes

Rotation	% of county area	% of agricultural area	rotation area (acres)		
Cash Grain	12%	16%	23,609		
Continuous Corn	4%	5%	8,096		
Dairy Rotation	40%	54%	82,976		
Potato/Vegetable	2%	2%	3,163		
Нау	6%	8%	12,723		
Pasture	11%	15%	22,147		

*Note: Areas outside the NE Lakeshore TMDL were excluded from percent area calculations.

<u>Question 5. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004</u> <u>transect data from the Conservation Technology Information Center (CTIC). Has your county conducted crop</u> <u>and tillage transect surveys since 2004? If yes, can you share recently collected transect data for this project?</u>

DAIRY CROP SEQUENCES (QUESTION 6 - 7)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

<u>Question 6. In the table below, please describe the sequence(s) of corn grain (Cq), corn silage (Cs), alfalfa (A),</u> <u>Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation.</u> This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined. **Please focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).**

Typical Dairy	Year								
Soguence(s)	1	2	3	4	5	6	7	8	9
Sequence(s)						(if needed)	(if needed)	(if needed)	(if needed)
EXAMPLE	Cs	Cs	Cs	Cs	Α	A			
Sequence 1	Cs	Cs	Cs	Oat/A	А	А	А		
Sequence 2 (if needed)									
Sequence 3 (if needed)									
Sequence 4 (if needed)									
Sequence 5 (if needed)									
Question 7. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.

HUC12	% Dairy Sequence 1	% Dairy Sequence 2	% Dairy Sequence 3	% Dairy Sequence 4	% Dairy Sequence 5
EXAMPLE	90 %	10 %	0 %	0 %	0 %
Ahnapee River (40301020204)	100				
Black Creek (40301010201)	100				
Casco Creek-Kewaunee River (40301020304)	100				
Headwaters Kewaunee River (40301020301)	100				
Jambo Creek (40301010103)	100				
Kewaunee River (40301020305)	100				
Krok Creek-East Twin River (40301010102)	100				
Mashek Creek-Frontal Lake Michigan (40301020205)	100				
Molash Creek-Frontal Lake Michigan (40301010101)	100				
Rio Creek (40301020202)	100				
Scarboro Creek (40301020303)	100				
School Creek (40301020302)	100				
Silver Creek (40301020203)	100				
Stony Creek-Frontal Lake Michigan (40301020201)	100				
Tisch Mills Creek-East Twin River (40301010104)	100				

PLANTINGS AND HARVESTS (QUESTION 8)

SWAT management tables ask for planting and harvest dates for each crop planted. For the NEL SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the NEL and to determine an appropriate number of cuttings per year for the Continuous Hay rotation.

Question 8. In the table below, please estimate average planting dates (50% of crop planted) in your county in cool/wet, average, and warm/dry years. Also, please estimate the typical number of hay cuttings.

Temperature/Moisture Condition	Average Planting Date	Average Harvest Date	Number of Hay Cuttings
Cool/Wet Year	5/21-6/7	5/31-6/7	4
Average Temperature/Moisture Year	5/7-5/31	5/25-5/31	4-5
Warm/Dry Year	5/1-5/7	5/15-5/30	4

TILLAGE AND CROP RESIDUE (QUESTIONS 9 – 12)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

Question 9. In your county, are fields typically tilled in the spring, fall, or both?

Both

Question 10. Sometimes landowners identify fields as no-till, when they in fact do receive some tillage. Please describe the frequency of tillage on no-till fields.

Crop Rotation	# of years tilled in a rotation
Example	Tilled 1 out of every 6 years
Cash Grain	Tilled 1 out of 2 years
Continuous Corn	Tilled every year
Dairy	Every Year
Potato/Vegetable	N/A

<u>Question 11. Please estimate the % of each rotation area that uses the tillage strategies listed below.</u> This table will be used to determine tillage timing and depth.

		% of rotation	n area using	tillage stra	tegy
Tillage Strategy	Example	Continuous Corn	Cash Grain	Dairy	Potato/Vegetable
Fall Chisel plow,					
Spring field cultivate x2	0%	60	60	60	
Fall Vertical till,					
Spring field cultivate	25%	10	10	10	
Spring Vertical till	0%	10	10	10	
Fall moldboard plow,					
Spring field cultivate x2	0%	5	5	5	
Fall field cultivate	50%	5	5	5	
Fall disk & chisel plow,					
Spring field cultivate x2	0%	0	0	0	
No-till	25%	10	10	10	
Other (please specify)	0%				
Other (please specify)	0%				
Other (please specify)	0%				

Question 12. In the table below, please estimate the percentage of your county's Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable acreage with after-harvest crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed.

This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Ahnapee River (40301020204)	Black Creek (40301010201)	Casco Creek-Kewaunee River (40301020304)	Headwaters Kewaunee River (40301020301)	Jambo Creek (40301010103)	Kewaunee River (40301020305)	Krok Creek-East Twin River (403010102)	Mashek Creek-Frontal Lake Michigan (40301020205)	Molash Creek-Frontal Lake Michigan (40301010101)	Rio Creek (40301020202)	Scarboro Creek (40301020303)	School Creek (40301020302)	Silver Creek (40301020203)	Stony Creek-Frontal Lake Michigan (40301020201)	Tisch Mills Creek-East Twin River (40301010104)
	0%-15%	85%	20	20	20	20	20	20	20	20	20	20	20	20	20	0	20
Cach Grain	16%-30%	0%	50	50	30	50	10	50	50	50	50	50	50	50	50	50	50
Cash Grain	>30%	10%	10	10	50	10	20	10	10	10	10	10	10	10	10	50	10
	No-Till/Zone-Till	5%	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	0%-15%	0%	20	20	20	20	N/A	20	20	20	20	20	20	20	20	N/A	20
Continuous	16%-30%	0%	50	50	50	50	N/A	50	50	50	50	50	50	50	50	N/A	50
Corn	>30%	100%	10	10	10	10	N/A	10	10	10	10	10	10	10	10	N/A	10
	No-Till/Zone-Till	0%	10	10	10	10	N/A	10	10	10	10	10	10	10	10	N/A	10
	0%-15%	75%	20	20	20	20	32	20	20	20	20	20	20	20	20	0	20
Dairy	16%-30%	25%	50	50	50	50	30	50	50	50	50	50	50	50	50	50	50
Dali y	>30%	0%	10	10	10	10	30	10	10	10	10	10	10	10	10	40	10
	No-Till/Zone-Till	0%	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	0%-15%	100%															
Potato/	16%-30%	0%															
Vegetable	>30%	0%															
	No-Till/Zone-Till	0%															

CHEMICAL FERTILIZER APPLICATIONS (QUESTIONS 13 - 15)

Chemical fertilizer applications will be modeled for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations. Important settings for chemical fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations.

<u>Question 13. Using the table below, please describe the characteristics of a typical chemical fertilizer</u> <u>application for each crop.</u>

Charact	teristic	Example	Cash Grain	Corn Grain	Corn Silage	Нау	Potato/ Vegetable
Application timing	Pre-panting	X	х	х	x	n/a	
(check all that	At-planting	X	х	х	х	n/a	
<u>apply)</u>	During growing					n/a	
Placement	Surface	x				n/a	
<u>(check one per</u> rotation)	Injection		х	x	x	n/a	
Incorporation after application?	Yes					n/a	
(check one per rotation)	No	X	х	x	x	n/a	

Question 14. Using the table below, please estimate typical annual chemical fertilizer application rates for Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations in your county by HUC12 subwatershed. You can choose to report fertilizer rates in pounds of **nutrient** per acre (option 1) or pounds of **fertilize**r per acre (option 2). Please provide more information about the option you choose below.

<u>Reporting option 1: Pounds of **nutrient** per acre ----- <u>SEE SPREADSHEET!</u> Phosphorus type (phosphorus P or phosphate P₂O₅): Nitrogen type (ammonium NH₄, Urea CH₄N₂O, ect.):</u>

<u>Reporting option 2: Pounds of fertilizer per acre</u> Typical N:P:K Ratio =

HUC12		Chemical Fertilizer Application Rate (lb/acre/yr)										
		Cash Grain		Continuous Corn		iry	Potato/ Vegetable					
	Р	Ν	Р	Ν	Р	N	Р	Ν				
EXAMPLE	60	130	70	120	30	60	20	50				
Ahnapee River (40301020204)												
Black Creek (40301010201)												
Casco Creek-Kewaunee River (40301020304)												
Headwaters Kewaunee River (40301020301)												
Jambo Creek (40301010103)												
Kewaunee River (40301020305)												
Krok Creek-East Twin River (40301010102)												
Mashek Creek-Frontal Lake Michigan												
(40301020205)												
Molash Creek-Frontal Lake Michigan												
(40301010101)												
RIO Creek (40301020202)												
Scarboro Creek (40301020303)												
School Creek (40301020302)												
Silver Creek (40301020203)												
Stony Creek-Frontal Lake Michigan												
(40301020201)												
Tisch Mills Creek-East Twin River												
(40301010104)												

Question 15. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?

	Crop Yield Targets (yield/acre/yr)									
HUC12	Cash grain	Corn grain	Corn silage	Нау	Potato/ Vegetable					
Example	170 bu	150 bu	10 tons/ac	3 tons/ac	400 cwt					
Ahnapee River (40301020204)	170	170	20	3						
Black Creek (40301010201)	170	170	20	3						
Casco Creek-Kewaunee River (40301020304)	170	170	20	3						
Headwaters Kewaunee River (40301020301)	170	170	20	3						
Jambo Creek (40301010103)	170	170	20	3						
Kewaunee River (40301020305)	170	170	20	3						
Krok Creek-East Twin River (40301010102)	170	170	20	3						
Mashek Creek-Frontal Lake Michigan (40301020205)	170	170	20	3						
Molash Creek-Frontal Lake Michigan (40301010101)	170	170	20	3						
Rio Creek (40301020202)	170	170	20	3						
Scarboro Creek (40301020303)	170	170	20	3						
School Creek (40301020302)	170	170	20	3						
Silver Creek (40301020203)	170	170	20	3						
Stony Creek-Frontal Lake Michigan (40301020201)	170	170	20	3						
Tisch Mills Creek-East Twin River (40301010104)	170	170	20	3						

MANURE APPLICATIONS (QUESTIONS 16 - 21)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

Question 16. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily haul of manure versus manure storage by HUC12 subwatershed.

HUC12	% Daily Haul	% Storage
Ahnapee River (40301020204)	36	64
Black Creek (40301010201)	27	73
Casco Creek-Kewaunee River (40301020304)	2	98
Headwaters Kewaunee River (40301020301)	0	100
Jambo Creek (40301010103)	20	80
Kewaunee River (40301020305)	5	95
Krok Creek-East Twin River (40301010102)	0	100
Mashek Creek-Frontal Lake Michigan (40301020205)	0	100
Molash Creek-Frontal Lake Michigan (40301010101)	23	77
Rio Creek (40301020202)	0	100
Scarboro Creek (40301020303)	32	68
School Creek (40301020302)	9	91
Silver Creek (40301020203)	18	82
Stony Creek-Frontal Lake Michigan (40301020201)	100	0
Tisch Mills Creek-East Twin River (40301010104)	25	75

<u>Question 17. Using the table below, please describe typical manure application practices for a daily haul farm</u> <u>and a manure storage farm in your county.</u>

Characteristic	Typical Practice for Daily Haul Farm	Typical Practice for Storage Farm
Application Frequency	DAILY	7 months (1-2x per field)
Application Timing	Year round	Spring / Fall (with summer applications following alfalfa.
Followed by Incorporation? (Yes or No)	80% of time, no	Yes, except for summer months following alfalfa

<u>Question 18. In the table below, please estimate typical manure application rates and form (liquid or solid) for</u> <u>a daily haul farm and a manure storage farm in your county by HUC12.</u>

*tip 1: Application Rate refers to the average rate per an application (i.e. not a yearly or rotational average) *tip 2: % Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection).

		DAILY HAUL		STORAGE			
HUC12	Applicati on Rate (tons or 1000 gals per acre)	% incorporate d	Manure Form	Application Rate (tons or 1000 gals per acre)	% incorporate d	Manu re Form	
Ahnapee River (40301020204)	10-17 T	20	Solid	11,000 g	50	Liquid	
Black Creek (40301010201)	10-17 T	20	Solid	5-6,000 g 10-12,000 g	Sum* Sp/Fall*	Solid Liquid	
Casco Creek-Kewaunee River (40301020304)	10-17 T	20	Solid	5-6,000 g 10-18,000 g	un	Liquid	
Headwaters Kewaunee River (40301020301)	10-17 T	20	Solid	5-6,000 g 10-18,000 g	un	Liquid	
Jambo Creek (40301010103)	10-17 T	20	Solid	5-6,000 g 10-18,000 g	un	Liquid	
Kewaunee River (40301020305)	10-17 T	20	Solid	5-6,000 g 10-18,000 g	un	Liquid	
Krok Creek-East Twin River (40301010102)	10-17 T	20	Solid	5-6,000 g 10-18,000 g	un	Liquid	
Mashek Creek-Frontal Lake Michigan (40301020205)	10-17 T	20	Solid	7500 g 10-18,000 g	un	Liquid	
Molash Creek-Frontal Lake Michigan (40301010101)	10-17 T	20	Solid	5-6,000 g 10-15,000 g	un	Liquid	
Rio Creek (40301020202)	10-17 T	20	Solid	5-6,000 g 10-12,000 g	un	Liquid	
Scarboro Creek (40301020303)	10-17 T	20	Solid	5-6,000 g 10,000 g	un	Liquid	
School Creek (40301020302)	10-17 T	20	Solid	5-6,000 g 12-20,000 g	un	Liquid	
Silver Creek (40301020203)	10-17 T	20	Solid	5-6,000 g 10-18,000 g	un	Liquid	
Stony Creek-Frontal Lake Michigan (40301020201)	10-17 T	20	Solid	No Storages			
Tisch Mills Creek-East Twin River (40301010104)	10-17 T	20	Solid	5-7,000 g 6-12,000 g	un	Liquid	

*SUMMER APPLICATIONS ARE <u>almost always</u> UNINCORPORATED ONTO ALFALFA *SPRING/FALL APPLICATIONS ARE 50-75% (ISH) INCORPORATED <u>Question 19. Are you able to provide an estimate of the range or average concentration of N and P in manure</u> in your county? If so, please express as lb per ton or lb per 1000 gal. **(See Spreadsheet – Tab 2)**

P concentration (please specify- P or P_2O_5): N concentration:

<u>Question 20. What percent of Dairy Rotation acres under no-till receive injected manure?</u> Manure injection can have similar effects on soil residue as tillage practices.

<u>Question 21: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of</u> <u>Dairy acres use the injection methods below</u>. This table will be used to determine the depth of soil disturbance and soil residue disturbance. *tip: values in table should sum to 100%.

Injection method	% of Dairy acres receiving manure by injection
Narrow knife	50
Sweep	0
Knife	50
Other (please specify)	

SOIL PHOSPHORUS (QUESTION 22)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-summary-2010-to-2014-1.xlsx</u>) Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

<u>Question 22. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived</u> <u>from a review of representative Nutrient Management Plans for each HUC12.</u>

HUC12	Average Soil P (parts per million)
Ahnapee River (40301020204)	25.4
Black Creek (40301010201)	30.8
Casco Creek-Kewaunee River (40301020304)	38.0
Headwaters Kewaunee River (40301020301)	30.5
Jambo Creek (40301010103)	33.8
Kewaunee River (40301020305)	37.0
Krok Creek-East Twin River (40301010102)	38.0
Mashek Creek-Frontal Lake Michigan (40301020205)	30.2
Molash Creek-Frontal Lake Michigan (40301010101)	30.4
Rio Creek (40301020202)	30.8
Scarboro Creek (40301020303)	36.5
School Creek (40301020302)	42.2
Silver Creek (40301020203)	26.4
Stony Creek-Frontal Lake Michigan (40301020201)	24.4
Tisch Mills Creek-East Twin River (40301010104)	33.6

GRAZING (QUESTIONS 23 – 24)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

<u>Question 23. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A</u> <u>or the web-based map) is grazed?</u>

Question 24. What are the typical practices of a grazing operation?

Characteristic	Typical Practice
Animal Type	Beef
Number of Animals per Acre	2-3
Grazing Timing & Duration	0 Months (usually in harn in the winter
(Entire Growing Season,	9 Wonth's (usually in barn in the winter
Year-Round, Spring Only, etc.)	months)

HUC12	Percent of fields with ag tile	Percent of fields with irrigation – water only
Ahnapee River (40301020204)	10	0
Black Creek (40301010201)	10	0
Casco Creek-Kewaunee River (40301020304)	20	0
Headwaters Kewaunee River (40301020301)	30	0
Jambo Creek (40301010103)	2	0
Kewaunee River (40301020305)	30	0
Krok Creek-East Twin River (40301010102)	30	1%
Mashek Creek-Frontal Lake Michigan (40301020205)	30	1%
Molash Creek-Frontal Lake Michigan (40301010101)	50	0
Rio Creek (40301020202)	30	0
Scarboro Creek (40301020303)	30	0
School Creek (40301020302)	30	0
Silver Creek (40301020203)	5	0
Stony Creek-Frontal Lake Michigan (40301020201)	5	0
Tisch Mills Creek-East Twin River (40301010104)	30	0

OPTIONAL SECTION: IRRIGATION AND AGRICULTURAL DRAIN TILE

ADDITONAL INPUT

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data. Thank you!

For example, if you know of barnyards with significant runoff, we would need the location and size of each barnyard.

Northeast Lakeshore TMDL: Agricultural Land Management Questionnaire for Manitowoc County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Northeast Lakeshore (NEL) TMDL. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the NEL SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up Wisconsin's NE lakeshore.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	-
2	May	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	May	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	-
2	October	30	Till	Chisel Plow	-

 Table 6. Example SWAT agricultural land management table.

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards. Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC12s). HUC12 boundaries correspond to the subwatersheds defined in the NEL SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). <u>Additionally, please contact kimberly.oldenborg@wisconsin.gov or call 608-266-7037</u> if you have questions about this survey or would like to set up a meeting to discuss this survey.

Please prepare responses directly in this file and deliver by **June 28th, 2019** in electronic format (Word or PDF) via email to:

Kim Oldenborg, WDNR <u>kimberly.oldenborg@wisconsin.gov</u> 608-266-7037

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's northeast lakeshore basins!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Tony Smith, Bruce Riesterer, Jerry Halverson Organization: Manitowoc County Soil & Water Conservation Dept. Email: tonysmith@co.manitowoc.wi.us Phone: 920-683-4183

AGRICULTURAL LAND USE (QUESTIONS 1 – 5)

Six general crop rotations have been identified in the NE Lakeshore TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.

- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans.
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation.
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Typically, a cover crop between corn and alfalfa years. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn.
- 4. Potato/Vegetable Potato and vegetable plantings alternate each year. In some cases, a vegetable is grown for two years followed by potatoes. Vegetables commonly planted are sweet corn, beans, peas, carrots, peppers, onions, and cucumbers.
- 5. Continuous Hay Lands covered by planted perennial herbaceous vegetation (legumes and grasses) and harvested for use as livestock forage. May include mowed areas.
- 6. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present.

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

<u>Question 1. In your county, are potatoes and vegetables usually grown in rotation with other cash grains or on</u> <u>their own?</u>

Yes, mainly grown in rotation. Snapbeans, red beets and carrots are the primary vegetables grown in Manitowoc County - no potatoes.

Question 2. Based on your knowledge of crop rotations in your county, would you add any rotations to the six listed above? If yes, please describe below.

Remove potatoes from the potato/vegetable rotation.

<u>Question 3. Attachment A and the web-based map display the six general crop rotations in your county. Do any</u> <u>areas stand out as being misclassified?</u> When looking for misclassified areas, please focus on the "bigger picture" and avoid verifying rotations on the field level.

Some of the hay and pasture acres are alfalfa in the dairy rotation or idle non-harvested grass areas.

Rotation	% of county area	% of agricultural area	rotation area (acres)			
Cash Grain	14%	20%	51,818			
Continuous Corn	2%	4%	9,366			
Dairy Rotation	32% 35%	47% 5 2%	121,656 134,656			
Potato/Vegetable	1%	2%	5,633			
Нау	7% 3%	10% - 5%	25,984 12,975			
Pasture	12% 4%	17% 6%	4 5,033 15,569			
Non-harvested						
CRP & other idle						
grassland	8%	11%	28,544			

*Note: Areas outside the NE Lakeshore TMDL were excluded from percent area calculations.

<u>Question 5. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004</u> <u>transect data from the Conservation Technology Information Center (CTIC). Has your county conducted crop</u> <u>and tillage transect surveys since 2004? If yes, can you share recently collected transect data for this project?</u> No

DAIRY CROP SEQUENCES (QUESTION 6 - 7)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

<u>Question 6. In the table below, please describe the sequence(s) of corn grain (Cg), corn silage (Cs), alfalfa (A),</u> <u>Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation.</u> This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined. **Please focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).**

Typical Dairy		Year													
Sequence(s)	1	2	3	4	5	6	7	8	9						
Jequence(5)						(if needed)	(if needed)	(if needed)	(if needed)						
EXAMPLE	Cs	Cs	Cs	Cs	A	A									
Sequence 1	Cs	Cs	Cg	Cs	Α	А	А								
Sequence 2 (if needed)															
Sequence 3 (if needed)															
Sequence 4 (if needed)															
Sequence 5 (if needed)															

Question 7. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.

HUC12	% Dairy				
	1	2	3	4	5
EXAMPLE	90 %	10 %	0 %	0 %	0 %
Cato Falls-Manitowoc River (40301010603)	100%				
Cedar Creek (40301010405)	100%				
Cedar Lake (40301011105)	100%				
Centerville Creek-Frontal Lake Michigan (40301010704)	100%				
Devils River (40301010202)	100%				
East Twin River (40301010105)	100%				
Francis Creek-West Twin River (40301010204)	100%				
Jambo Creek (40301010103)	100%				
Little Manitowoc River-Frontal Lake Michigan (40301010604)	100%				
Lower Branch River (40301010503)	100%				
Manitowoc River (40301010605)	100%				
Meeme River (40301010801)	100%				
Middle Branch River (40301010502)	100%				
Molash Creek-Frontal Lake Michigan (40301010101)	100%				
Pine Creek-Frontal Lake Michigan (40301010702)	100%				
Point Creek (40301010703)	100%				
Silver Creek (40301010701)	100%				
Tisch Mills Creek-East Twin River (40301010104)	100%				
Upper Pigeon Creek (40301010802)	100%				
Village of Reedsville-Mud Creek (40301010601)	100%				
Village of St. Nazianz-Mud Creek (40301010602)	100%				
West Twin River (40301010205)	100%				

PLANTINGS AND HARVESTS (QUESTION 8)

SWAT management tables ask for planting and harvest dates for each crop planted. For the NEL SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the NEL and to determine an appropriate number of cuttings per year for the Continuous Hay rotation.

Question 8. In the table below, please estimate average planting dates (50% of crop planted) in your county in cool/wet, average, and warm/dry years. Also, please estimate the typical number of hay cuttings.

Temperature/Moisture Condition	Average Planting Date	Average Harvest Date	Number of Hay Cuttings
Cool/Wet Year	May 25	October 20	4
Average Temperature/Moisture Year	May 15	October 1	5
Warm/Dry Year	May 5	September 20	5

TILLAGE AND CROP RESIDUE (QUESTIONS 9 – 12)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

<u>Question 9. In your county, are fields typically tilled in the spring, fall, or both?</u> Primary tillage is fall.

<u>Question 10. Sometimes landowners identify fields as no-till, when they in fact do receive some tillage. Please</u> <u>describe the frequency of tillage on no-till fields.</u>

Crop Rotation	# of years tilled in a rotation
Example	Tilled 1 out of every 6 years
Cash Grain	2 of 4
Continuous Corn	2 of 4
Dairy	3 of 7
Vegetable	5 of 5

<u>Question 11. Please estimate the % of each rotation area that uses the tillage strategies listed below.</u> This table will be used to determine tillage timing and depth.

		% of rotation area using tillage strategy									
Tillage Strategy	Example	Continuous Corn	Cash Grain	Dairy	Potato/Vegetable						
Fall Chisel plow,											
Spring field cultivate x2	0%	30	30	50	5						
Fall Vertical till,											
Spring field cultivate	25%	0	0	5	5						
Spring Vertical till	0%	10	10	5	0						
Fall moldboard plow,											
Spring field cultivate x2	0%	40	30	30	90						
Fall field cultivate	50%	0	5		0						
Fall disk & chisel plow,											
Spring field cultivate x2	0%	0	0	0	0						
No-till	25%	10	20	5	0						
Other (please specify)											
Spring moldboard, field cultivate x2	0%	10	5	5	0						
Other (please specify)	0%										
Other (please specify)	0%										

Question 12. In the **two** tables below, please estimate the percentage of your county's Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable acreage with after-harvest crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed.

This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

Crop Rotation	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Cato Falls-Manitowoc River (40301010603)	Cedar Creek (40301010405)	Cedar Lake (40301011105)	Centerville Creek-Frontal Lk MI (40301010704)	Devils River (40301010202)	East Twin River (40301010105)	Francis Creek-West Twin River (40301010204)	Jambo Creek (40301010103)	Little Manitowoc River-Frontal Lk MI (40301010604)	Lower Branch River (40301010503)
	0%-15%	85%	35	35	35	35	35	35	35	35	35	35
Cach Crain	16%-30%	0%	25	25	25	25	25	25	25	25	25	25
Cash Grain	>30%	10%	30	30	30	30	30	30	30	30	30	30
	No-Till/Zone-Till	5%	10	10	10	10	10	10	10	10	10	10
	0%-15%	0%	30	30	30	30	30	30	30	30	30	30
Continuous	16%-30%	0%	45	45	45	45	45	45	45	45	45	45
Corn	>30%	100%	20	20	20	20	20	20	20	20	20	20
	No-Till/Zone-Till	0%	5	5	5	5	5	5	5	5	5	5
	0%-15%	75%	60	60	60	60	60	60	60	60	60	60
Dairy	16%-30%	25%	20	20	20	20	20	20	20	20	20	20
Dali y	>30%	0%	15	15	15	15	15	15	15	15	15	15
	No-Till/Zone-Till	0%	5	5	5	5	5	5	5	5	5	5
	0%-15%	100%	100	100	100	100	100	100	100	100	100	100
Vegetable	16%-30%	0%										
vegetable	>30%	0%										
	No-Till/Zone-Till	0%										

Crop Rotation	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Lower Branch River (40301010503)	Manitowoc River (40301010605)	Meeme River (40301010801)	Middle Branch River (40301010502)	Molash Creek-Frontal Lk MI (40301010101)	Pine Creek-Frontal Lk Ml (40301010702)	Point Creek (40301010703)	Silver Creek (40301010701)	Tisch Mills Creek-East Twin River (40301010104)	Upper Pigeon Creek (40301010802)	Village of Reedsville-Mud Creek (40301010601)	Village of St. Nazianz-Mud Creek (40301010602)	West Twin River (40301010205)
	0%-15%	85%	35	35	35	35	35	35	35	35	35	35	35	35	35
	16%-30%	0%	25	25	25	25	25	25	25	25	25	25	25	25	25
Cash Grain	>30%	10%	30	30	30	30	30	30	30	30	30	30	30	30	30
	No-Till/ Zone-Till	5%	10	10	10	10	10	10	10	10	10	10	10	10	10
	0%-15%	0%	30	30	30	30	30	30	30	30	30	30	30	30	30
	16%-30%	0%	45	45	45	45	45	45	45	45	45	45	45	45	45
Continuous Corn	>30%	100%	20	20	20	20	20	20	20	20	20	20	20	20	20
	No-Till/ Zone-Till	0%	5	5	5	5	5	5	5	5	5	5	5	5	5
	0%-15%	75%	60	60	60	60	60	60	60	60	60	60	60	60	60
	16%-30%	25%	20	20	20	20	20	20	20	20	20	20	20	20	20
Dairy	>30%	0%	15	15	15	15	15	15	15	15	15	15	15	15	15
	No-Till/ Zone-Till	0%	5	5	5	5	5	5	5	5	5	5	5	5	5
	0%-15%	100%	100	100	100	100	100	100	100	100	100	100	100	100	100
Dotato/	16%-30%	0%													
Vegetable	>30%	0%													
VEGELADIE	No-Till/ Zone-Till	0%													

CHEMICAL FERTILIZER APPLICATIONS (QUESTIONS 13 – 15)

Chemical fertilizer applications will be modeled for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations. Important settings for chemical fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations.

<u>Question 13. Using the table below, please describe the characteristics of a typical chemical fertilizer</u> <u>application for each crop.</u>

Characteristic		Example	Cash Grain	Corn Grain	Corn Silage	Нау	Vegetable
Application timing	Pre-panting	X	Х	Х	х	Х	Х
(check all that	At-planting	X	Х	Х	Х		х
<u>apply)</u>	During growing		Х	Х	Х	Х	х
Placement	Surface	X	х			х	х
<u>(check one per</u> <u>rotation)</u>	Injection			х	х		
Incorporation after application? <u>(check one per</u> <u>rotation)</u>	Yes		х	х	х		х
	No	X				Х	

Question 14. Using the table below, please estimate typical annual chemical fertilizer application rates for Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations in your county by HUC12 subwatershed. You can choose to report fertilizer rates in pounds of **nutrient** per acre (option 1) or pounds of **fertilize**r per acre (option 2). Please provide more information about the option you choose below.

<u>Reporting option 1: Pounds of **nutrient** per acre</u> Phosphorus type (phosphorus P or phosphate P₂O₅): Nitrogen type (ammonium NH₄, Urea CH₄N₂O, ect.):

Reporting option 2: Pounds of fertilizer per acre

Typical N:P:K Ratio =

	Chemical Fertilizer Application Rate (lb/acre/yr)							
	Cash	Grain	Conti	nuous	Dai	iry	Veget Snan	able – Beans
	Р	N	P	N	Р	N	P	N
EXAMPLE	60	130	70	12	30	60	20	50
Cato Falls-Manitowoc River (40301010603)	70	170	70	170	40	75	50	43
Cedar Creek (40301010405)	70	170	70	170	40	75	50	43
Cedar Lake (40301011105)	70	170	70	170	40	75	50	43
Centerville Creek-Frontal Lake Michigan (40301010704)	70	170	70	170	40	75	50	43
Devils River (40301010202)	70	170	70	170	40	75	50	43
East Twin River (40301010105)	70	170	70	170	40	75	50	43
Francis Creek-West Twin River (40301010204)	70	170	70	170	40	75	50	43
Jambo Creek (40301010103)	70	170	70	170	40	75	50	43
Little Manitowoc River-Frontal Lake Michigan (40301010604)	70	170	70	170	40	75	50	43
Lower Branch River (40301010503)	70	170	70	170	40	75	50	43
Manitowoc River (40301010605)	70	170	70	170	40	75	50	43
Meeme River (40301010801)	70	170	70	170	40	75	50	43
Middle Branch River (40301010502)	70	170	70	170	40	75	50	43
Molash Creek-Frontal Lake Michigan (40301010101)	70	170	70	170	40	75	50	43
Pine Creek-Frontal Lake Michigan (40301010702)	70	170	70	170	40	75	50	43
Point Creek (40301010703)	70	170	70	170	40	75	50	43
Silver Creek (40301010701)	70	170	70	170	40	75	50	43
Tisch Mills Creek-East Twin River (40301010104)	70	170	70	170	40	75	50	43
Upper Pigeon Creek (40301010802)	70	170	70	170	40	75	50	43
Village of Reedsville-Mud Creek (40301010601)	70	170	70	170	40	75	50	43
Village of St. Nazianz-Mud Creek (40301010602)	70	170	70	170	40	75	50	43
West Twin River (40301010205)	70	170	70	170	40	75	50	43

Question 15. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?

	Crop Yield Targets (yield/acre/yr)						
HUC12		. .	.		Vegetable – Snap		
	Cash grain	Corn grain	Corn silage	Нау	Beans		
Example	170 bu	150 bu	10 tons/ac	3 tons/ac	400 cwt		
	400 1	4001	25 tons @	5 tons @	6 tons		
	180 bu	180 bu	65%	15%			
Cato Falls-Manitowoc River (40301010603)			moisture	moisture			
Cedar Creek (40301010405)	180 bu	180 bu	25 tons	5 tons	6 tons		
Cedar Lake (40301011105)	180 bu	180 bu	25 tons	5 tons	6 tons		
Centerville Creek-Frontal Lake Michigan (40301010704)	180 bu	180 bu	25 tons	5 tons	6 tons		
Devils River (40301010202)	180 bu	180 bu	25 tons	5 tons	6 tons		
East Twin River (40301010105)	180 bu	180 bu	25 tons	5 tons	6 tons		
Francis Creek-West Twin River (40301010204)	180 bu	180 bu	25 tons	5 tons	6 tons		
Jambo Creek (40301010103)	180 bu	180 bu	25 tons	5 tons	6 tons		
Little Manitowoc River-Frontal Lake Michigan (40301010604)	180 bu	180 bu	25 tons	5 tons	6 tons		
Lower Branch River (40301010503)	180 bu	180 bu	25 tons	5 tons	6 tons		
Manitowoc River (40301010605)	180 bu	180 bu	25 tons	5 tons	6 tons		
Meeme River (40301010801)	180 bu	180 bu	25 tons	5 tons	6 tons		
Middle Branch River (40301010502)	180 bu	180 bu	25 tons	5 tons	6 tons		
Molash Creek-Frontal Lake Michigan (40301010101)	160 bu	160 bu	20 tons	4 tons	6 tons		
Pine Creek-Frontal Lake Michigan (40301010702)	180 bu	180 bu	25 tons	5 tons	6 tons		
Point Creek (40301010703)	180 bu	180 bu	25 tons	5 tons	6 tons		
Silver Creek (40301010701)	180 bu	180 bu	25 tons	5 tons	6 tons		
Tisch Mills Creek-East Twin River (40301010104)	180 bu	180 bu	25 tons	5 tons	6 tons		
Upper Pigeon Creek (40301010802)	180 bu	180 bu	25 tons	5 tons	6 tons		
Village of Reedsville-Mud Creek (40301010601)	180 bu	180 bu	25 tons	5 tons	6 tons		
Village of St. Nazianz-Mud Creek (40301010602)	180 bu	180 bu	25 tons	5 tons	6 tons		
West Twin River (40301010205)	180 bu	180 bu	25 tons	5 tons	6 tons		

MANURE APPLICATIONS (QUESTIONS 16 - 21)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

<u>Question 16. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily</u> <u>haul of manure versus manure storage by HUC12 subwatershed.</u>

HUC12	% Daily Haul	% Storage
Cato Falls-Manitowoc River (40301010603)	10	90
Cedar Creek (40301010405)	10	90
Cedar Lake (40301011105)	5	95
Centerville Creek-Frontal Lake Michigan (40301010704)	5	95
Devils River (40301010202)	10	90
East Twin River (40301010105)	5	95
Francis Creek-West Twin River (40301010204)	5	95
Jambo Creek (40301010103)	15	85
Little Manitowoc River-Frontal Lake Michigan (40301010604)	10	90
Lower Branch River (40301010503)	5	95
Manitowoc River (40301010605)	10	90
Meeme River (40301010801)	5	95
Middle Branch River (40301010502)	5	95
Molash Creek-Frontal Lake Michigan (40301010101)	5	95
Pine Creek-Frontal Lake Michigan (40301010702)	5	95
Point Creek (40301010703)	5	95
Silver Creek (40301010701)	5	95
Tisch Mills Creek-East Twin River (40301010104)	5	95
Upper Pigeon Creek (40301010802)	0	100
Village of Reedsville-Mud Creek (40301010601)	5	95
Village of St. Nazianz-Mud Creek (40301010602)	5	95
West Twin River (40301010205)	10	90

Question 17. Using the table below, please describe typical manure application practices for a daily haul farm and a manure storage farm in your county.

Characteristic	Typical Practice for Daily Haul Farm	Typical Practice for Storage Farm		
Application Frequency	DAILY	After Winter Wheat	After Corn & Soybeans	After 2 nd & 3 rd Crop Alfalfa
Application Timing	Daily	Early August	Mid-September thru December	June - August
Followed by Incorporation? (Yes or No)	No	Yes	Yes	No

<u>Question 18. In the table below, please estimate typical manure application rates and form (liquid or solid) for</u> <u>a daily haul farm and a manure storage farm in your county by HUC12.</u>

*tip 1: Application Rate refers to the average rate per an application (i.e. not a yearly or rotational average) *tip 2: % Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection).

	DAIL	DAILY HAUL			STORAGE – After Corn, Soybeans & Wheat		
HUC12	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	
Cato Falls-Manitowoc River (40301010603)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Cedar Creek (40301010405)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Cedar Lake (40301011105)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Centerville Creek-Frontal Lk MI (40301010704)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Devils River (40301010202)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
East Twin River (40301010105)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Francis Creek-West Twin River (40301010204)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Jambo Creek (40301010103)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Little Manitowoc River-Frontal Lk MI (40301010604)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Lower Branch River (40301010503)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Manitowoc River (40301010605)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Meeme River (40301010801)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Middle Branch River (40301010502)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Molash Creek-Frontal Lk MI (40301010101)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Pine Creek-Frontal Lk MI (40301010702)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Point Creek (40301010703)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Silver Creek (40301010701)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Tisch Mills Creek-East Twin River (40301010104)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Upper Pigeon Creek (40301010802)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Village of Reedsville-Mud Creek (40301010601)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
Village of St. Nazianz-Mud Creek (40301010602)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	
West Twin River (40301010205)	10 tons	4	Semi-Solid	15,000 gals	85	Liquid	

Note: Stored manure applied after 2nd & 3rd crop alfalfa = 8,000 liquid gallons/acre.

<u>Question 19. Are you able to provide an estimate of the range or average concentration of N and P in manure</u> <u>in your county? If so, please express as lb per ton or lb per 1000 gal.</u>

P concentration (please specify- *P* or *P*₂*O*₅): 3 ppm P2O5/1000 gallons *N* concentration: 7 ppm/1000 gallons

<u>Question 20. What percent of Dairy Rotation acres under no-till receive injected manure?</u> Manure injection can have similar effects on soil residue as tillage practices. 50% of no-till acres

<u>Question 21: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of</u> <u>Dairy acres use the injection methods below</u>. This table will be used to determine the depth of soil disturbance and soil residue disturbance. *tip: values in table should sum to 100%.

Injection method	% of Dairy acres receiving manure by injection
Narrow knife	5
Agressive Sweep	80
Aerway	5
Ripple Coulter	10

SOIL PHOSPHORUS (QUESTION 22)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-summary-2010-to-2014-1.xlsx</u>) Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

<u>Question 22. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived</u> <u>from a review of representative Nutrient Management Plans for each HUC12.</u>

HUC12	Average Soil P (parts per million)
Cato Falls-Manitowoc River (40301010603)	34
Cedar Creek (40301010405)	34
Cedar Lake (40301011105)	34
Centerville Creek-Frontal Lake Michigan (40301010704)	34
Devils River (40301010202)	34
East Twin River (40301010105)	34
Francis Creek-West Twin River (40301010204)	34
Jambo Creek (40301010103)	34
Little Manitowoc River-Frontal Lake Michigan (40301010604)	34
Lower Branch River (40301010503)	34
Manitowoc River (40301010605)	34
Meeme River (40301010801)	34
Middle Branch River (40301010502)	34
Molash Creek-Frontal Lake Michigan (40301010101)	34
Pine Creek-Frontal Lake Michigan (40301010702)	34
Point Creek (40301010703)	34
Silver Creek (40301010701)	34
Tisch Mills Creek-East Twin River (40301010104)	34
Upper Pigeon Creek (40301010802)	34
Village of Reedsville-Mud Creek (40301010601)	34
Village of St. Nazianz-Mud Creek (40301010602)	34
West Twin River (40301010205)	34

GRAZING (QUESTIONS 23 – 24)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

Question 23. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web-based map) is grazed? 32%

Question 24. What are the typical practices of a grazing operation?

Characteristic	Typical Practice			
Animal Type	Dairy	Beef		
Number of Animals per Acre	1 Animal Unit/Acre	2 Animal Units/Acre		
Grazing Timing & Duration				
(Entire Growing Season,	May-November	May-November		
Year-Round, Spring Only, etc.)				

OPTIONAL SECTION: IRRIGATION AND AGRICULTURAL DRAIN TILE

HUC12	Percent of fields with ag tile	Percent of fields with irrigation
Cato Falls-Manitowoc River (40301010603)	33	0
Cedar Creek (40301010405)	33	0
Cedar Lake (40301011105)	33	1
Centerville Creek-Frontal Lake Michigan (40301010704)	33	0
Devils River (40301010202)	33	0
East Twin River (40301010105)	33	0
Francis Creek-West Twin River (40301010204)	33	0
Jambo Creek (40301010103)	33	0
Little Manitowoc River-Frontal Lake Michigan (40301010604)	33	0
Lower Branch River (40301010503)	33	0
Manitowoc River (40301010605)	33	0
Meeme River (40301010801)	33	0
Middle Branch River (40301010502)	33	0
Molash Creek-Frontal Lake Michigan (40301010101)	33	0
Pine Creek-Frontal Lake Michigan (40301010702)	33	0
Point Creek (40301010703)	33	0
Silver Creek (40301010701)	33	0
Tisch Mills Creek-East Twin River (40301010104)	33	0
Upper Pigeon Creek (40301010802)	33	2
Village of Reedsville-Mud Creek (40301010601)	33	0
Village of St. Nazianz-Mud Creek (40301010602)	33	0
West Twin River (40301010205)	33	0

ADDITONAL INPUT

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data. Thank you!

For example, if you know of barnyards with significant runoff, we would need the location and size of each barnyard.

N/A

Northeast Lakeshore TMDL:

Agricultural Land Management Questionnaire for Ozaukee County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Northeast Lakeshore (NEL) TMDL. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the NEL SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up Wisconsin's NE lakeshore.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	-
2	May	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	May	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	-
2	October	30	Till	Chisel Plow	-

Table 7. Example SWAT agricultural land management table.

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards. Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC12s). HUC12 boundaries correspond to the subwatersheds defined in the NEL SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). Additionally, please contact kimberly.oldenborg@wisconsin.gov or call 608-266-7037 if you have questions about this survey or would like to set up a meeting to discuss this survey.

Please prepare responses directly in this file and deliver by **June 28th, 2019** in electronic format (Word or PDF) via email to:

Kim Oldenborg, WDNR <u>kimberly.oldenborg@wisconsin.gov</u> 608-266-7037

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's northeast lakeshore basins!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Jeffrey P Bell Organization: Ozaukee County Land & Water Management Department Email: jbell@co.ozaukee.wi.us Phone: 262-284-8274

AGRICULTURAL LAND USE (QUESTIONS 1 – 5)

Six general crop rotations have been identified in the NE Lakeshore TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.
- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans. Jeff Bell, Cg-B or 1Cg-SB
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation. Jeff Bell, C
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Typically, a cover crop between corn and alfalfa years. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn. Jeff Bell, Cg-Cs-4Alf or Cg Cs P/o's 4Alf
- 4. Potato/Vegetable Potato and vegetable plantings alternate each year. In some cases, a vegetable is grown for two years followed by potatoes. Vegetables commonly planted are sweet corn, beans, peas, carrots, peppers, onions, and cucumbers. Jeff Bell, even though we have one cannery in the watershed and one just outside in our county. The only vegetable crops grown in significant acres are Snap-Beans & Pea's.
- 5. Continuous Hay Lands covered by planted perennial herbaceous vegetation (legumes and grasses) and harvested for use as livestock forage. May include mowed areas. Jeff Bell, H or Alf
- 6. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present. Jeff Bell, Past

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

Question 1. In your county, are potatoes and vegetables usually grown in rotation with other cash grains or on their own? Potatoes are not grown in Ozaukee County. Or at least not in these watersheds. Snap Beans and some peas are the only significant vegetable crops grown. By state rules they can only be planted in a rotation that has a space of three or more years before being planted in the same field. This is especially true if agricultural waste and/or human sludge is applied.

Question 2. Based on your knowledge of crop rotations in your county, would you add any rotations to the six listed above? If yes, please describe below. You could add a bunch, it all depends on how picky you want to be. One factor that is coming into play in the last couple of years is "Cover Crops".

<u>Question 3. Attachment A and the web-based map display the six general crop rotations in your county. Do any</u> <u>areas stand out as being misclassified?</u> When looking for misclassified areas, please focus on the "bigger picture" and avoid verifying rotations on the field level. No <u>Question 4. The table below displays the area of each rotation as a percentage of total county area and</u> <u>agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?</u>

Rotation	% of county area	% of agricultural area	rotation area (acres)
Cash Grain	30%	39%	11,791
Continuous Corn	2%	2%	605
Dairy Rotation	28%	45%	13,605
Bean & Pea/			
Vegetable	2%	2%	605
Нау	2%	2%	605
Pasture	10%	10%	3,024

*Note: Areas outside the NE Lakeshore TMDL were excluded from percent area calculations.

<u>Question 5. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004</u> <u>transect data from the Conservation Technology Information Center (CTIC). Has your county conducted crop</u> <u>and tillage transect surveys since 2004? If yes, can you share recently collected transect data for this project?</u>

We have done the transect survey consistently every year. The problem is that we don't have the time to break out the three HUC 12 watersheds, nor can we say the info would work in the equations as we never ran any reports off the transect survey to date.

DAIRY CROP SEQUENCES (QUESTION 6 - 7)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

<u>Question 6. In the table below, please describe the sequence(s) of corn grain (Cq), corn silage (Cs), alfalfa (A),</u> <u>Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation.</u> This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined. **Please focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).**

Typical Dairy	Year								
Soguence(s)	1	2	3	4	5	6	7	8	9
Sequence(s)						(if needed)	(if needed)	(if needed)	(if needed)
EXAMPLE	Cs	Cs	Cs	Cs	Α	A			
Sequence 1	Cs	Cs	Cs/Alf	Alf	Alf	Alf	Alf	Cg	
Sequence 2 (if needed)	Cs	Cs	SB	WW	P/O	Alf	Alf	Alf	
Sequence 3 (if needed)	Cs cc	Cs cc	SB	WW	P/O	Alf	Alf	Alf	
Sequence 4 (if needed)	Cs cc	Cs cc	WW	SB	Alf	Alf	Alf	Cg	
Sequence 5 (if needed)									

Cc = cover crop (usually Cereal Rye) SB = Soybeans P/O = pea's/Oats

<u>Question 7. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.</u>

HUC12	% Dairy Sequence 1	% Dairy Sequence 2	% Dairy Sequence 3	% Dairy Sequence 4	% Dairy Sequence 5
EXAMPLE	90 %	10 %	0%	0%	0%
Sauk Creek (40301011204)	25	50	15	10	
Sucker Creek-Frontal Lake Michigan (40301011203)	25	50	15	10	
City of Belgium (40301011002)	10	50	25	15	

PLANTINGS AND HARVESTS (QUESTION 8)

SWAT management tables ask for planting and harvest dates for each crop planted. For the NEL SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the NEL and to determine an appropriate number of cuttings per year for the Continuous Hay rotation.

<u>Question 8. In the table below, please estimate average planting dates (50% of crop planted) in your county in</u> <u>cool/wet, average, and warm/dry years. Also, please estimate the typical number of hay cuttings.</u>

Temperature/Moisture Condition	Average Planting Date	Average Harvest Date	Number of Hay Cuttings
Cool/Wet Year	7/1	6/14	1 first year, 3-4 cuttings following hay years
Average Temperature/Moisture Year	6/1	6/7	2 first year, 3-4 cuttings following hay years
Warm/Dry Year	6/1	6/1	2 first year, 3-4 cuttings following hay years

TILLAGE AND CROP RESIDUE (QUESTIONS 9 – 12)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

Question 9. In your county, are fields typically tilled in the spring, fall, or both?

Mainly Fall, but more no-till is showing up with cover crops lately

<u>Question 10. Sometimes landowners identify fields as no-till, when they in fact do receive some tillage. Please</u> <u>describe the frequency of tillage on no-till fields.</u>

Crop Rotation	# of years tilled in a rotation
Example	Tilled 1 out of every 6 years
Cash Grain	1 out of 4 years, mainly with soybeans
Continuous Corn	Never
Dairy	1 out of 6 years, associated with ww or SB
Snap beans & Sweet Peas/Vegetable	Never

<u>Question 11. Please estimate the % of each rotation area that uses the tillage strategies listed below.</u> This table will be used to determine tillage timing and depth.

	% of rotation area using tillage strategy							
Tillage Strategy	Example	Continuous Corn	Cash Grain	Dairy	Potato/Vegetable			
Fall Chisel plow,								
Spring field cultivate x2	0%	50	40	40	70			
Fall Vertical till,								
Spring field cultivate	25%	50	40	40	15			
Spring Vertical till	0%	0	0	0	0			
Fall moldboard plow,								
Spring field cultivate x2	0%	0	0	0	0			
Fall field cultivate	50%	0	0	0	0			
Fall disk & chisel plow,								
Spring field cultivate x2	0%	0	0	0	15			
No-till	25%	0	20	20	0			
Other (please specify)	0%							
Other (please specify)	0%							
Other (please specify)	0%							

Question 12. In the table below, please estimate the percentage of your county's Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable acreage with after-harvest crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed.

This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

Residue After Planting

Crop Rotation	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Sauk Creek (40301011204)	Sucker Creek-Frontal Lake Michigan (40301011203)	City of Belgium (40301011002)
	0%-15%	85%	25	25	30
Cash Grain	16%-30%	0%	30	30	35
Cash Grain	>30%	10%	50	40	30
	No-Till/Zone-Till	5%	5	5	5
	0%-15%	0%	25	25	25
Continuous	16%-30%	0%	50	50	50
Corn	>30%	100%	20	20	20
	No-Till/Zone-Till	0%	5	5	5
	0%-15%	75%	40	40	40
Daira	16%-30%	25%	15	15	15
Dali y	>30%	0%	40	40	40
	No-Till/Zone-Till	0%	5	5	5
	0%-15%	100%	100	100	100
Potato/	16%-30%	0%	0	0	0
Vegetable	>30%	0%	0	0	0
	No-Till/Zone-Till	0%	0	0	0

CHEMICAL FERTILIZER APPLICATIONS (QUESTIONS 13 – 15)

Chemical fertilizer applications will be modeled for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations. Important settings for chemical fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations.

<u>Question 13. Using the table below, please describe the characteristics of a typical chemical fertilizer</u> <u>application for each crop.</u>

Charact	teristic	Example	Cash Grain	Corn Grain	Corn Silage	Нау	Vegetable
Application timing	Pre-panting	X	Х	х	Х		Х
(check all that	At-planting	X	X	Х	Х	x	Х
<u>apply)</u>	During growing		X	Х	Х		Х
Placement	Surface	X				X	
<u>(check one per</u> <u>rotation)</u>	Injection		X	X	X		X
Incorporation after application?	Yes		х	X	х		
<u>(check one per</u> <u>rotation)</u>	No	X				Х	X

Question 14. Using the table below, please estimate typical annual chemical fertilizer application rates for Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations in your county by HUC12 subwatershed. You can choose to report fertilizer rates in pounds of **nutrient** per acre (option 1) or pounds of **fertilize**r per acre (option 2). Please provide more information about the option you choose below.

Reporting option 1: Pounds of nutrient per acre

Phosphorus type (phosphorus P or phosphate P₂O₅): Reporting on liquid *Nitrogen type (ammonium NH₄, Urea CH₄N₂O, ect.):* Reporting on liquid

Reporting option 2: Pounds of fertilizer per acre

Typical N:P:K Ratio = Not reporting on Solid Fertilizer

*** Making assumptions on a whole rotation is just wrong. Each crop is very different. This is simply bad info

	Chemical Fertilizer Application Rate (lb/acre/yr)								
HUC12		Cash Grain		Continuous Corn		Dairy		Potato/ Vegetable	
	Р	N	Р	N	Р	N	Р	Ν	
EXAMPLE	60	130	70	120	30	60	20	50	
Sauk Creek (40301011204)	60	160	60	160	30	100	30	60	
Sucker Creek-Frontal Lake Michigan (40301011203)	60	160	60	160	30	100	30	60	
City of Belgium (40301011002)	60	160	60	160	30	100	30	60	

to put in a model.

Question 15. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?

	Crop Yield Targets (yield/acre/yr)						
HUC12					Potato/		
	Cash grain	Corn grain	Corn silage	Нау	Vegetable		
EXAMPLE	170 bu	150 bu	10 tons/ac	3 tons/ac	400 cwt		
Sauk Creek (40301011204)	160	160	15	5-6	No clue		
Sucker Creek-Frontal Lake Michigan (40301011203)	160	160	15	5-6	No Clue		
City of Belgium (40301011002)	160	160	15	5-6	No Clue		

*** Making assumptions on a whole rotation yields is just wrong. Each crop is very different. This is simply bad info to put in a model.

MANURE APPLICATIONS (QUESTIONS 16 - 21)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

Question 16. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily haul of manure versus manure storage by HUC12 subwatershed.

HUC12	% Daily Haul	% Storage
Sauk Creek (40301011204)	20	80
Sucker Creek-Frontal Lake Michigan (40301011203)	20	80
City of Belgium (40301011002)	0	100

Question 17. Using the table below, please describe typical manure application practices for a daily haul farm and a manure storage farm in your county.

Characteristic	Typical Practice for Daily Haul Farm	Typical Practice for Storage Farm
Application Frequency	DAILY	Twice per year
Application Timing	Daily	Spring & Fall
Followed by Incorporation? (Yes or No)	No	Yes

<u>Question 18. In the table below, please estimate typical manure application rates and form (liquid or solid) for</u> <u>a daily haul farm and a manure storage farm in your county by HUC12.</u>

*tip 1: Application Rate refers to the average rate per an application (i.e. not a yearly or rotational average) *tip 2: % Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection).

	DAIL	DAILY HAUL			STORAGE		
HUC12	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	
Sauk Creek (40301011204)	10 ton	0	Solid	15,000 gal	90	Liquid	
Sucker Creek-Frontal Lake Michigan (40301011203)	10 ton	0	Solid	15,000 gal	90	Liquid	
City of Belgium (40301011002)	5 ton	0	solid	10,000 gal	90	Liquid	

<u>Question 19. Are you able to provide an estimate of the range or average concentration of N and P in manure</u> in your county? If so, please express as lb per ton or lb per 1000 gal. <u>No</u>

P concentration (please specify- P or P_2O_5): No N concentration: No

<u>Question 20. What percent of Dairy Rotation acres under no-till receive injected manure?</u> Manure injection can have similar effects on soil residue as tillage practices. 0%

<u>Question 21: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of</u> <u>Dairy acres use the injection methods below</u>. This table will be used to determine the depth of soil disturbance and soil residue disturbance. *tip: values in table should sum to 100%.

Injection method	% of Dairy acres receiving manure by injection
Narrow knife	30
Sweep	30
Knife	40
Other (please specify)	

SOIL PHOSPHORUS (QUESTION 22)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-</u>

<u>summary-2010-to-2014-1.xlsx</u>) Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

<u>Question 22. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived</u> <u>from a review of representative Nutrient Management Plans for each HUC12.</u>

HUC12	Average Soil P (parts per million)
Sauk Creek (40301011204)	30
Sucker Creek-Frontal Lake Michigan (40301011203)	30
City of Belgium (40301011002)	30

GRAZING (QUESTIONS 23 – 24)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

Question 23. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web-based map) is grazed? 70%

Question 24. What are the typical practices of a grazing operation?

Characteristic	Typical Practice
Animal Type	Cattle, horses, goats
Number of Animals per Acre	2
Grazing Timing & Duration	
(Entire Growing Season,	Year-Round
Year-Round, Spring Only, etc.)	

OPTIONAL SECTION: IRRIGATION AND AGRICULTURAL DRAIN TILE

HUC12	Percent of fields with ag tile	Percent of fields with irrigation
Sauk Creek (40301011204)	95 - 100	0
Sucker Creek-Frontal Lake Michigan (40301011203)	95 - 100	0
City of Belgium (40301011002)	95 - 100	0

ADDITONAL INPUT

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data. Thank you!

For example, if you know of barnyards with significant runoff, we would need the location and size of each barnyard.

Northeast Lakeshore TMDL:

Agricultural Land Management Questionnaire for Sheboygan County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Northeast Lakeshore (NEL) TMDL. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the NEL SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up Wisconsin's NE lakeshore.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	-
2	May	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	May	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	-
2	October	30	Till	Chisel Plow	-

Table 8. Example SWAT agricultural land management table.

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards. Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC12s). HUC12 boundaries correspond to the subwatersheds defined in the NEL SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). <u>Additionally, please contact kimberly.oldenborg@wisconsin.gov or call 608-266-7037</u> <u>if you have questions about this survey or would like to set up a meeting to discuss this survey.</u>

Please prepare responses directly in this file and deliver by **June 28th, 2019** in electronic format (Word or PDF) via email to:

Kim Oldenborg, WDNR <u>kimberly.oldenborg@wisconsin.gov</u> 608-266-7037

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's northeast lakeshore basins!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Christopher Ertman Organization: Sheboygan County Planning and Conservation Email: chris.ertman@sheboygancounty.com Phone: (920) 459-1375

AGRICULTURAL LAND USE (QUESTIONS 1 – 5)

Six general crop rotations have been identified in the NE Lakeshore TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.

- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans.
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation.
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Typically, a cover crop between corn and alfalfa years. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn.
- 4. Cash grain/Vegetable Corn grain, soybeans, winter wheat and vegetable plantings alternate each year. Vegetables commonly planted are sweet corn, beans, and peas.
- 5. Continuous Hay Lands covered by planted perennial herbaceous vegetation (legumes and grasses) and harvested for use as livestock forage. May include mowed areas.
- 6. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present.

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

<u>Question 1. In your county, are potatoes and vegetables usually grown in rotation with other cash grains or on</u> <u>their own?</u> No potatoes are grown. Sweet corn, canning peas, and snap beans in rotation with other cash grains.

<u>Question 2. Based on your knowledge of crop rotations in your county, would you add any rotations to the six</u> <u>listed above? If yes, please describe below.</u> No. Just modify the Potato/Vegetable to Cash Grain/Vegetable

<u>Question 3. Attachment A and the web-based map display the six general crop rotations in your county. Do any</u> <u>areas stand out as being misclassified?</u> When looking for misclassified areas, please focus on the "bigger picture" and avoid verifying rotations on the field level. <u>Question 4. The table below displays the area of each rotation as a percentage of total county area and</u> <u>agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?</u>

No. I have adjusted the percentages.

Rotation	% of county area	% of agricultural area	rotation area (acres)
Cash Grain	18%	25%	36,638
Continuous Corn	1%	2%	3,647
Dairy Rotation	27%	57%	83,605
Cash			
grain/Vegetable	3%	5%	7,750
Нау	4%	6%	9,447
Pasture	6%	5%	7,179

*Note: Areas outside the NE Lakeshore TMDL were excluded from percent area calculations.

<u>Question 5. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004</u> <u>transect data from the Conservation Technology Information Center (CTIC). Has your county conducted crop</u> <u>and tillage transect surveys since 2004? If yes, can you share recently collected transect data for this project?</u> No.

DAIRY CROP SEQUENCES (QUESTION 6 - 7)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

<u>Question 6. In the table below, please describe the sequence(s) of corn grain (Cq), corn silage (Cs), alfalfa (A),</u> <u>Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation.</u> This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined. **Please focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).**

Typical Dairy Sequence(s)	Year									
	1	2	3	4	5	6	7	8	9	
						(if needed)	(if needed)	(if needed)	(if needed)	
EXAMPLE	Cs	Cs	Cs	Cs	A	A				
Sequence 1	Cs	S	Cg	S	Cs	А	А	А		
Sequence 2 (if needed)	Cs	Ww	А	А	А					
Sequence 3 (if needed)	Cs	А	А	А						
Sequence 4 (if needed)										
Sequence 5 (if needed)										

HUC12	% Dairy Sequence 1	% Dairy Sequence 2	% Dairy Sequence 3	% Dairy Sequence 4	% Dairy Sequence 5
EXAMPLE	90 %	10 %	0 %	0 %	0 %
Barr Creek-Frontal Lake Michigan (40301011202)	80%	10%	10%		
Black River (40301011201)	80%	10%	10%		
City of Belgium (40301011002)	80%	10%	10%		
City of Sheboygan Falls-Sheboygan River (40301011108)	80%	10%	10%		
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	80%	10%	10%		
Lower Mullet River (40301010903)	80%	10%	10%		
Lower Onion River (40301011004)	80%	10%	10%		
Lower Pigeon Creek (40301010804)	80%	10%	10%		
Mid Onion River (40301011003)	80%	10%	10%		
Middle Mullet River (40301010902)	80%	10%	10%		
Middle Pigeon Creek (40301010803)	80%	10%	10%		
Otter Creek-Sheb. R. (40301011107)	80%	10%	10%		
Sevenmile Creek-Frontal Lake Michigan (40301010705)	80%	10%	10%		
Sheboygan Lake-Sheboygan River (40301011104)	80%	10%	10%		
Sheboygan River-Frontal Lake Michigan (40301011109)	80%	10%	10%		
Upper Onion River (40301011001)	80%	10%	10%		
Upper Pigeon Creek (40301010802)	80%	10%	10%		

<u>Question 7. If more than one rotation is typical in your county, please use the table below to estimate the</u> <u>percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.</u>

PLANTINGS AND HARVESTS (QUESTION 8)

SWAT management tables ask for planting and harvest dates for each crop planted. For the NEL SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the NEL and to determine an appropriate number of cuttings per year for the Continuous Hay rotation.

Question 8. In the table below, please estimate average planting dates (50% of crop planted) in your county in cool/wet, average, and warm/dry years. Also, please estimate the typical number of hay cuttings.

Temperature/Moisture Condition	Average Planting Date	Average Harvest Date	Number of Hay Cuttings	
Cool/Wet Year	Jun 6	Nov 15	3	
Average Temperature/Moisture Year	May 20	Oct 21	5	
Warm/Dry Year	May 10	Oct 1	4	

TILLAGE AND CROP RESIDUE (QUESTIONS 9 – 12)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

Question 9. In your county, are fields typically tilled in the spring, fall, or both?

Both.

Question 10. Sometimes landowners identify fields as no-till, when they in fact do receive some tillage. Please describe the frequency of tillage on no-till fields.

Crop Rotation	# of years tilled in a rotation
Example	Tilled 1 out of every 6 years
Cash Grain	Tilled 3 out of 4 years;3/4
Continuous Corn	Tilled every year
Dairy	Tilled 3 out of 7 years
Cash Grain/Vegetable	Tilled every year

<u>Question 11. Please estimate the % of each rotation area that uses the tillage strategies listed below.</u> This table will be used to determine tillage timing and depth.

	% of rotation area using tillage strategy					
Tillage Strategy	Example	Continuous Corn	Cash Grain	Dairy	Cash Grain/Vegetable	
Fall Chisel plow,						
Spring field cultivate x2	0%	55%	20%	35%	50%	
Fall Vertical till,						
Spring field cultivate	25%	0%	0%	0%	0%	
Spring Vertical till	0%	0%	5%	2%	0%	
Fall moldboard plow,						
Spring field cultivate x2	0%	10%	3%	15%	10%	
Fall field cultivate	50%	0%	0%	0%	0%	
Fall disk & chisel plow,						
Spring field cultivate x2	0%	0%	0%	0%	0%	
No-till	25%	0%	25%	10%	10%	
Fall Vertical till,						
Spring Vertical till	0%	10%	7%	3%	10%	
Fall Chisel plow,						
Spring field cultivate x1	0%	25%	40%	35%	20%	
Other (please specify)	0%					

Question 12. In the table below, please estimate the percentage of your county's Cash Grain, Continuous Corn, Dairy, and Cash grain/Vegetable acreage with after-planting crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed. This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

Crop Rotation	Crop Residue Class (% of crop residue)	EXAMPLE (% of area within each crop residue class)	Barr Creek-Frontal Lake Michigan (40301011202)	Black River (40301011201)	City of Belgium (40301011002)	City of Sheboygan Falls-Sheboygan River (40301011108)	Kiel Marsh State Wildlife Area- Sheboygan River (40301011106)	Lower Mullet River (40301010903)	Lower Onion River (40301011004)	Lower Pigeon Creek (40301010804)	Mid Onion River (40301011003)	Middle Mullet River (40301010902)	Middle Pigeon Creek (40301010803)	Otter Creek-Sheb. R. (40301011107)	Sevenmile Creek-Frontal Lake Michigan (40301010705)	Sheboygan Lake-Sheboygan River (40301011104)	Sheboygan River-Frontal Lake Michigan (40301011109)	Upper Onion River (40301011001)	Upper Pigeon Creek (40301010802)
	0%-15%	85%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%
Cash Grain	16%-30%	0%	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%
Cash Grain	>30%	10%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%
	No-Till/Zone-Till	5%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%
	0%-15%	0%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%
Continuous	16%-30%	0%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%
Corn	>30%	100%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
	No-Till/Zone-Till	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	0%-15%	75%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%
Dainy	16%-30%	25%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%	30%
Dairy	>30%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	No-Till/Zone-Till	0%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
	0%-15%	100%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%
Cash grain/	16%-30%	0%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%
Vegetable	>30%	0%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%
	No-Till/Zone-Till	0%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%

CHEMICAL FERTILIZER APPLICATIONS (QUESTIONS 13 – 15)

Chemical fertilizer applications will be modeled for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations. Important settings for chemical fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, Dairy, and Potato/Vegetable rotations.

<u>Question 13. Using the table below, please describe the characteristics of a typical chemical fertilizer</u> <u>application for each crop.</u>

Charact	Example	Cash Grain	Corn Grain	Corn Silage	Нау	Cash grain/ Vegetable	
Application timing	Pre-panting	X	Х	Х	Х		Х
(check all that	At-planting	X	Х	Х	Х	Х	х
<u>apply)</u>	During growing		Х	Х	Х		
Placement	Surface	X	х	х	х		
<u>(check one per</u> <u>rotation)</u>	Injection						х
Incorporation after application?	Yes						х
(check one per rotation)	No	X	Х	Х			

Question 14. Using the table below, please estimate typical annual chemical fertilizer application rates for Cash Grain, Continuous Corn, Dairy, and Cash Grain/Vegetable rotations in your county by HUC12 subwatershed. You can choose to report fertilizer rates in pounds of **nutrient** per acre (option 1) or pounds of **fertilizer** per acre (option 2). Please provide more information about the option you choose below. Used a rotation average not one crop except the Continuous Corn rotation. The P is what a farmer with an excessively high P test is applying.

<u>Reporting option 1: Pounds of **nutrient** per acre</u> Phosphorus type (phosphorus P or phosphate P₂O₅): Nitrogen type (ammonium NH₄, Urea CH₄N₂O, ect.):

<u>Reporting option 2: Pounds of **fertilizer** per acre</u> Typical N:P:K Ratio =

HUC12		Chemical Fertilizer Application Rate (lb/acre/yr)									
		Cash Grain		Continuous Corn		Dairy		Cash grain/ Vegetable			
	Р	N	Р	Ν	Р	Ν	Р	Ν			
EXAMPLE	60	130	70	12	30	60	20	50			
Barr Creek-Frontal Lake Michigan (40301011202)	32	70	30	150	10	47	28	75			
Black River (40301011201)	32	70	30	150	10	47	28	75			
City of Belgium (40301011002)	32	70	30	150	10	47	28	75			
City of Sheboygan Falls-Sheboygan River (40301011108)	32	70	30	150	10	47	28	75			
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	32	75	30	160	10	50	28	80			
Lower Mullet River (40301010903)	32	70	30	150	10	47	28	75			
Lower Onion River (40301011004)	32	70	30	150	10	47	28	75			
Lower Pigeon Creek (40301010804)	32	70	30	150	10	47	28	75			
Mid Onion River (40301011003)	32	70	30	150	10	47	28	75			
Middle Mullet River (40301010902)	32	75	30	160	10	50	28	80			
Middle Pigeon Creek (40301010803)	32	70	30	150	10	47	28	75			
Otter Creek-Sheb. R. (40301011107)	32	70	30	150	10	47	28	75			
Sevenmile Creek-Frontal Lake Michigan (40301010705)	32	70	30	150	10	47	28	75			
Sheboygan Lake-Sheboygan River (40301011104)	32	75	30	160	10	50	28	80			
Sheboygan River-Frontal Lake Michigan (40301011109)	32	70	30	150	10	47	28	75			
Upper Onion River (40301011001)	32	75	30	160	10	50	28	80			
Upper Pigeon Creek (40301010802)	32	75	30	160	10	50	28	80			

Question 15. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?

	Crop Yield Targets (yield/acre/yr)							
HUC12	Cash grain	Corn grain	Corn silage	Нау	Cash grain/ Vegetable			
Example	170 bu	150 bu	10 tons/ac	3 tons/ac	400 cwt			
Barr Creek-Frontal Lake Michigan (40301011202)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Black River (40301011201)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
City of Belgium (40301011002)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
City of Sheboygan Falls-Sheboygan River (40301011108)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Kiel Marsh State Wildlife Area-Sheboygan River	170 bu	170 bu	25 tons/ac	5.5 tons/ac	10 tons/ac			
Lower Mullet River (40301010903)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Lower Onion River (40301011004)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Lower Pigeon Creek (40301010804)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Mid Onion River (40301011003)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Middle Mullet River (40301010902)	170 bu	170 bu	25	5.5 tons/ac	10 tons/ac			
Middle Pigeon Creek (40301010803)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Otter Creek-Sheb. R. (40301011107)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Sevenmile Creek-Frontal Lake Michigan (40301010705)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Sheboygan Lake-Sheboygan River (40301011104)	170 bu	170 bu	25 tons/ac	5.5 tons/ac	10 tons/ac			
Sheboygan River-Frontal Lake Michigan (40301011109)	150 bu	150 bu	20 tons/ac	4.5 tons/ac	9 tons/ac			
Upper Onion River (40301011001)	170 bu	170 bu	25 tons/ac	5.5 tons/ac	10 tons/ac			
Upper Pigeon Creek (40301010802)	170 bu	170 bu	25 tons/ac	5.5 tons/ac	10 tons/ac			

MANURE APPLICATIONS (QUESTIONS 16 – 21)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

<u>Question 16. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily</u> <u>haul of manure versus manure storage by HUC12 subwatershed.</u>

HUC12	% Daily Haul	% Storage
Barr Creek-Frontal Lake Michigan (40301011202)	40	60
Black River (40301011201)	40	60
City of Belgium (40301011002)	40	60
City of Sheboygan Falls-Sheboygan River (40301011108)	20	80
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	30	70
Lower Mullet River (40301010903)	40	60
Lower Onion River (40301011004)	30	70
Lower Pigeon Creek (40301010804)	40	60
Mid Onion River (40301011003)	40	60
Middle Mullet River (40301010902)	40	60
Middle Pigeon Creek (40301010803)	40	60
Otter Creek-Sheb. R. (40301011107)	20	80
Sevenmile Creek-Frontal Lake Michigan (40301010705)	30	70
Sheboygan Lake-Sheboygan River (40301011104)	10	90
Sheboygan River-Frontal Lake Michigan (40301011109)	30	70
Upper Onion River (40301011001)	40	60
Upper Pigeon Creek (40301010802)	20	80

<u>Question 17. Using the table below, please describe typical manure application practices for a daily haul farm</u> <u>and a manure storage farm in your county.</u>

Characteristic	Typical Practice for Daily Haul Farm	Typical Practice for Storage Farm		
Application Frequency	Every two weeks		2X per year	
Application Timing	Year round	April-May	Sept-November	
Followed by Incorporation? (Yes or No)	No	Yes	Yes	

<u>Question 18. In the table below, please estimate typical manure application rates and form (liquid or solid) for</u> <u>a daily haul farm and a manure storage farm in your county by HUC12.</u>

*tip 1: Application Rate refers to the average rate per an application (i.e. not a yearly or rotational average) *tip 2: % Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection). Daily haul may take weeks months to complete a field and may include covering the same area of the field more than once. Storage incorporation includes surface spread and worked in within 3 days.

	DAIL	Y HAUL		STORAGE			
HUC12	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	Application Rate (tons or 1000 gals per acre)	% incorporated	Manure Form	
Barr Creek-Frontal Lake Michigan (40301011202)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Black River (40301011201)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
City of Belgium (40301011002)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
City of Sheboygan Falls-Sheboygan River (40301011108)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Lower Mullet River (40301010903)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Lower Onion River (40301011004)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Lower Pigeon Creek (40301010804)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Mid Onion River (40301011003)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Middle Mullet River (40301010902)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Middle Pigeon Creek (40301010803)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Otter Creek-Sheb. R. (40301011107)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Sevenmile Creek-Frontal Lake Michigan (40301010705)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Sheboygan Lake-Sheboygan River (40301011104)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Sheboygan River-Frontal Lake Michigan (40301011109)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Upper Onion River (40301011001)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	
Upper Pigeon Creek (40301010802)	1.5 tons/ac	30	Pack or freestall	10,000 gal/ac	80	Liquid	

<u>Question 19. Are you able to provide an estimate of the range or average concentration of N and P in manure</u> <u>in your county? If so, please express as lb per ton or lb per 1000 gal.</u>

P concentration (please specify- *P* or P_2O_5): Solid- 3 lbs/ton P2O5 book value; Liquid 3 lbs P2O5 /1,000 gal book value *N* concentration: 2 lbs/ ton

<u>Question 20. What percent of Dairy Rotation acres under no-till receive injected manure?</u> Manure injection can have similar effects on soil residue as tillage practices. None.

<u>Question 21: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of</u> <u>Dairy acres use the injection methods below</u>. This table will be used to determine the depth of soil disturbance and soil residue disturbance. *tip: values in table should sum to 100%. Used Manitowoc Co. numbers

Injection method	% of Dairy acres receiving manure by injection
Narrow knife	5
Sweep	80
Ripple coulter	10
Aerway	5

SOIL PHOSPHORUS (QUESTION 22)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-summary-2010-to-2014-1.xlsx</u>) Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

<u>Question 22. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived</u> <u>from a review of representative Nutrient Management Plans for each HUC12.</u>

HUC12	Average Soil P (parts per million)
Barr Creek-Frontal Lake Michigan (40301011202)	40
Black River (40301011201)	40
City of Belgium (40301011002)	40
City of Sheboygan Falls-Sheboygan River (40301011108)	40
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	40
Lower Mullet River (40301010903)	40
Lower Onion River (40301011004)	40
Lower Pigeon Creek (40301010804)	40
Mid Onion River (40301011003)	40
Middle Mullet River (40301010902)	40
Middle Pigeon Creek (40301010803)	40
Otter Creek-Sheb. R. (40301011107)	40
Sevenmile Creek-Frontal Lake Michigan (40301010705)	40
Sheboygan Lake-Sheboygan River (40301011104)	40
Sheboygan River-Frontal Lake Michigan (40301011109)	40
Upper Onion River (40301011001)	40
Upper Pigeon Creek (40301010802)	40

GRAZING (QUESTIONS 23 – 24)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

Question 23. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web-based map) is grazed?

Question 24. What are the typical practices of a grazing operation?

Characteristic	Typical Practice
Animal Type	Beef steer
Number of Animals per Acre	1
Grazing Timing & Duration	
(Entire Growing Season,	May-November
Year-Round, Spring Only, etc.)	

OPTIONAL SECTION: IRRIGATION AND AGRICULTURAL DRAIN TILE

HUC12	Percent of fields with ag tile	Percent of fields with irrigation
Barr Creek-Frontal Lake Michigan (40301011202)	60	0%
Black River (40301011201)	60	0%
City of Belgium (40301011002)	60	0%
City of Sheboygan Falls-Sheboygan River (40301011108)	60	0%
Kiel Marsh State Wildlife Area-Sheboygan River (40301011106)	30	0%
Lower Mullet River (40301010903)	60	0%
Lower Onion River (40301011004)	60	0%
Lower Pigeon Creek (40301010804)	60	0%
Mid Onion River (40301011003)	60	0%
Middle Mullet River (40301010902)	60	0%
Middle Pigeon Creek (40301010803)	60	0%
Otter Creek-Sheb. R. (40301011107)	50	0%
Sevenmile Creek-Frontal Lake Michigan (40301010705)	60	0%
Sheboygan Lake-Sheboygan River (40301011104)	30	0%
Sheboygan River-Frontal Lake Michigan (40301011109)	60	0%
Upper Onion River (40301011001)	30	0%
Upper Pigeon Creek (40301010802)	60	0%

ADDITONAL INPUT

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data. Thank you!

For example, if you know of barnyards with significant runoff, we would need the location and size of each barnyard.