EVAAL Training

Theresa M. Possley Nelson, PE Michelle Hu Wisconsin Department of Natural Resources

July 21, 2016

Acknowledgements

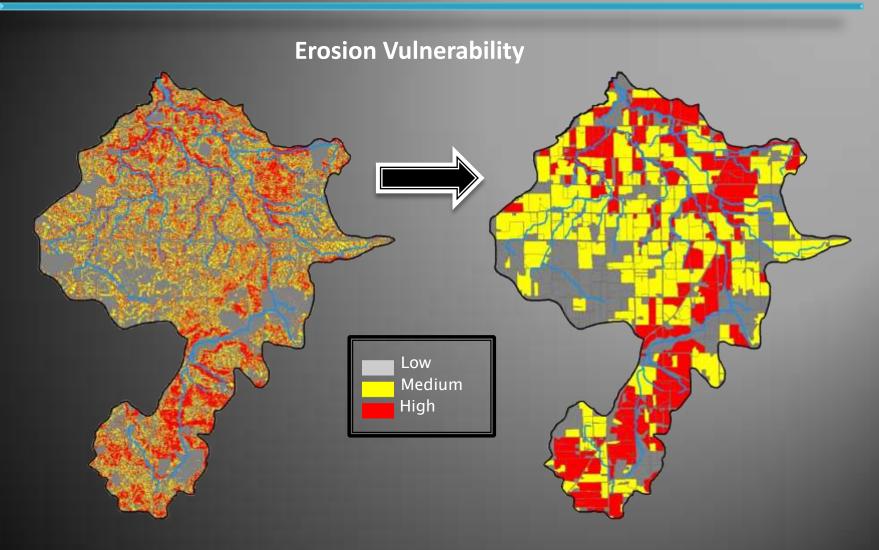
- Aaron Ruesch
- Dave Evans
- Michelle Hu

Overview

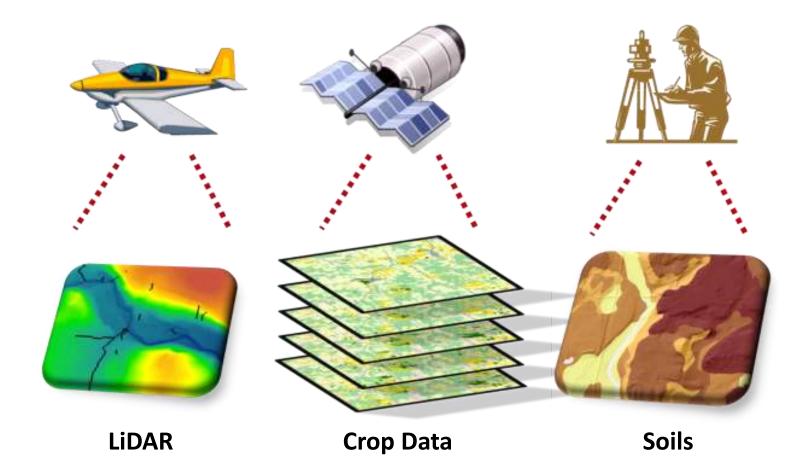
- Introductions
- EVAAL Overview
- EVAAL How To
- Exercises

EVAAL

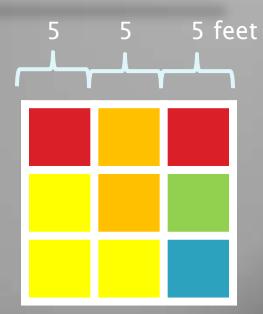
- Erosion Vulnerability Assessment for Agricultural Lands
- Developed by WDNR
- GIS-based model
- Vulnerability to erosion and nutrient export
- Deprioritizes internally draining areas



Erosion Vulnerability Assessment for Agricultural Lands

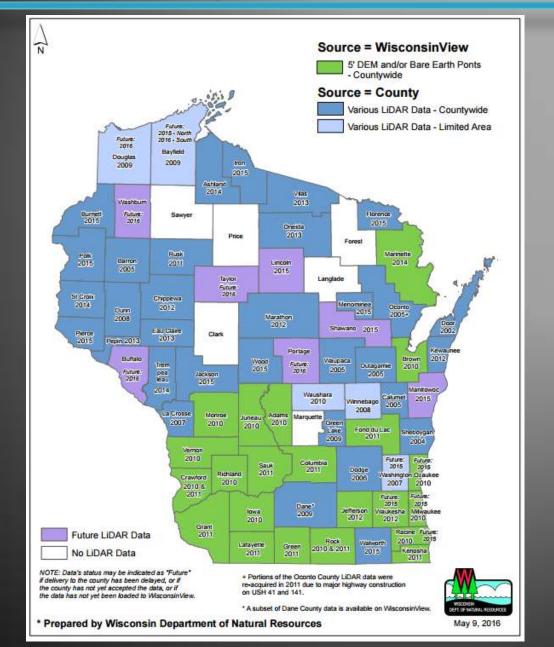

http://dnr.wi.gov/topic/nonpoint/evaal.htm

EVAAL

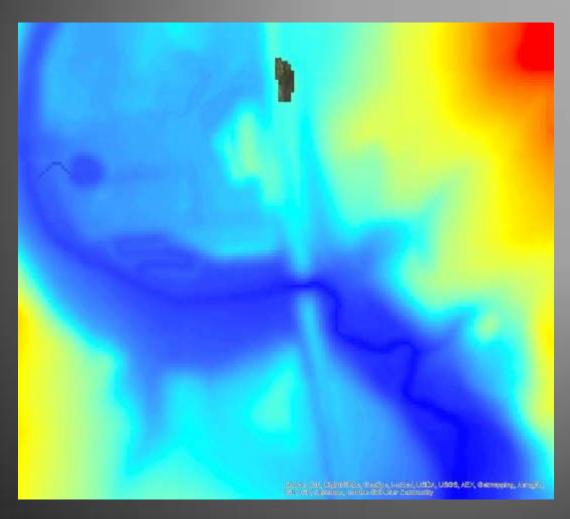


Available Datasets

LiDAR Data

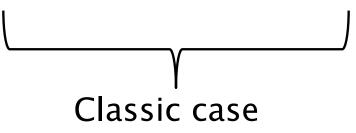

Elevation (feet)

1000


650

LIDAR Availability

Digital Dams



Locate Depressions

 Differentiate between real and "fake" depressions

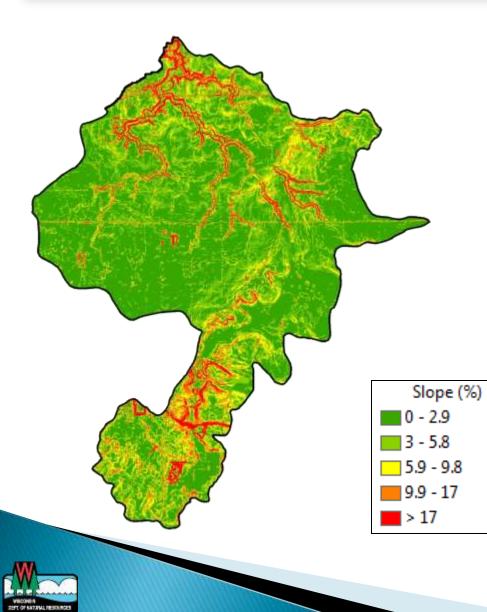
- Completely round...
- Don't bother trying to cut these

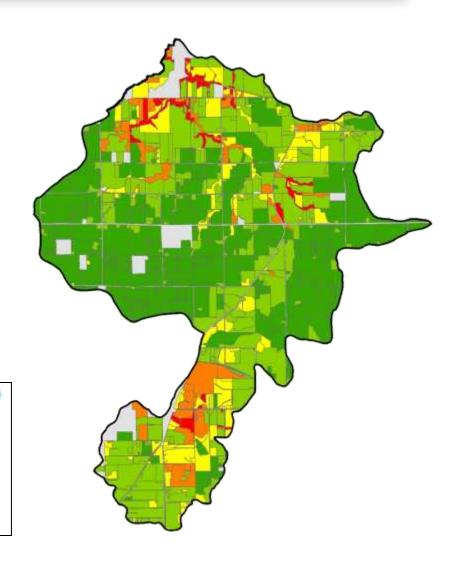


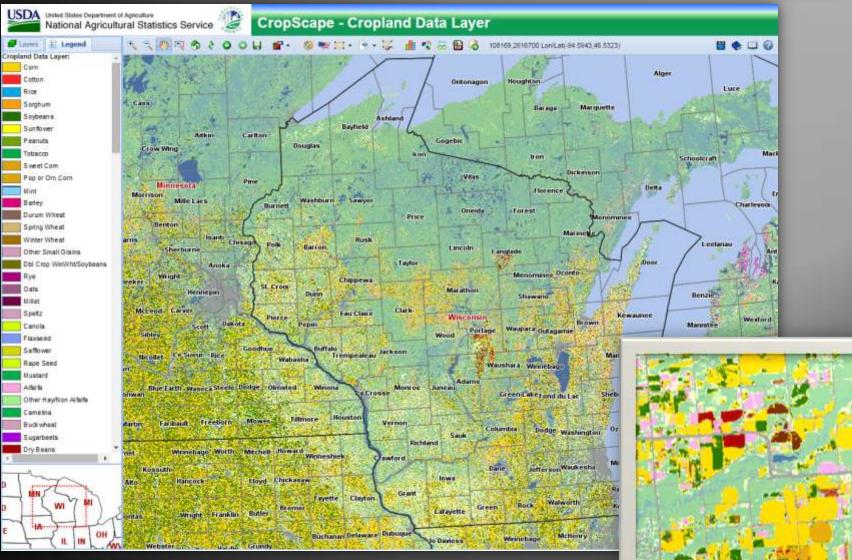
Create Culverts

- Different approaches:
 - Geolocate culverts in your area of interest in the field, prior to digitizing
 - View aerial photos and base maps while creating the culvert layer
 - After creating a culverts layer, field verify questionable areas

Google Street View



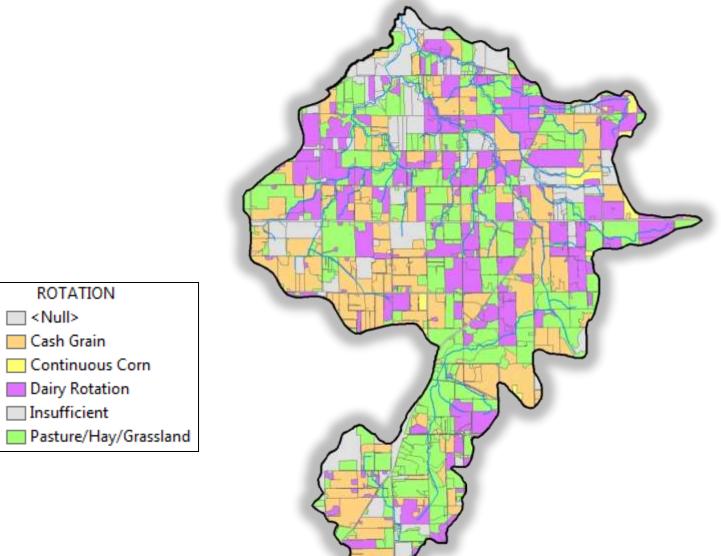

Create culvert cut line with two points, the first being higher elevation than the second

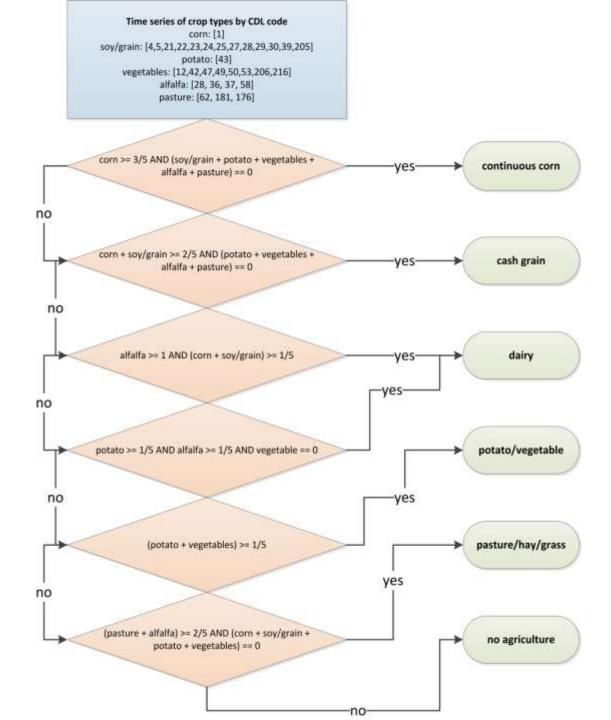


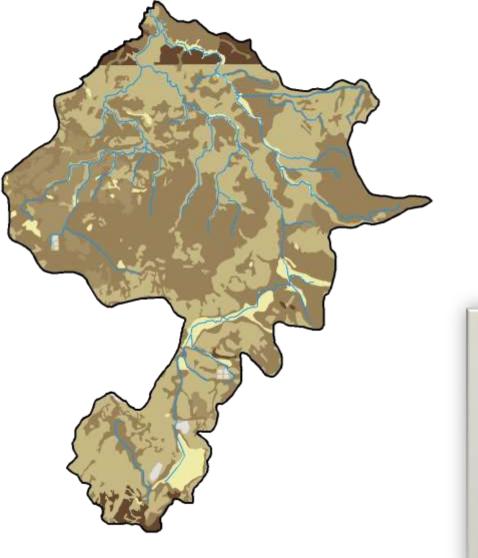
Slope

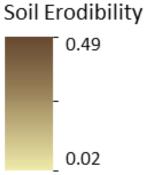
Crop Data

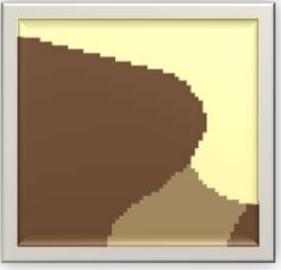
http://nassgeodata.gmu.edu/CropScape/


Crop Rotations


C-C-S-C-C, C-S-C-S-C, S-C-C-S-C, C-C-C-S, S-S-S-C = Cash Grain Rotation


Generalized Crop Rotations





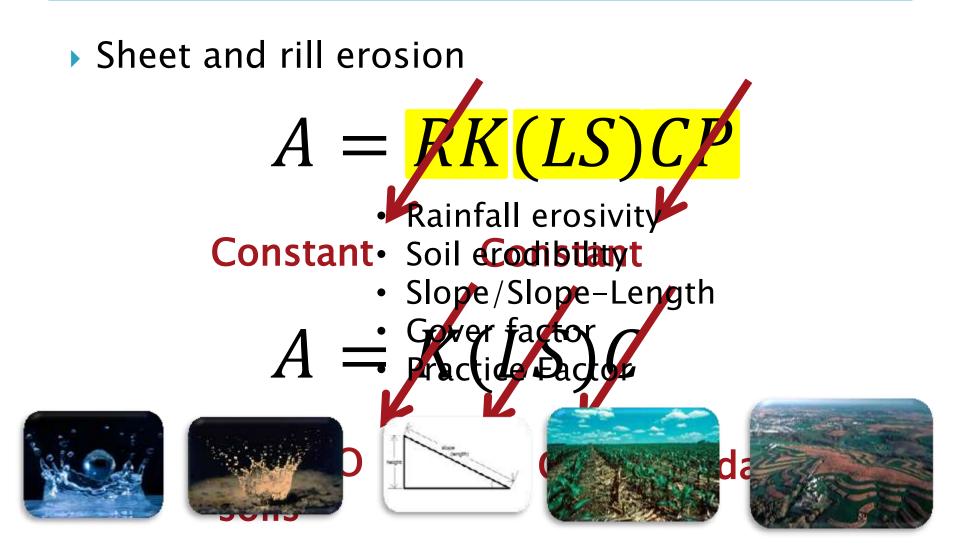
Soils – gSSURGO

10 meter resolution

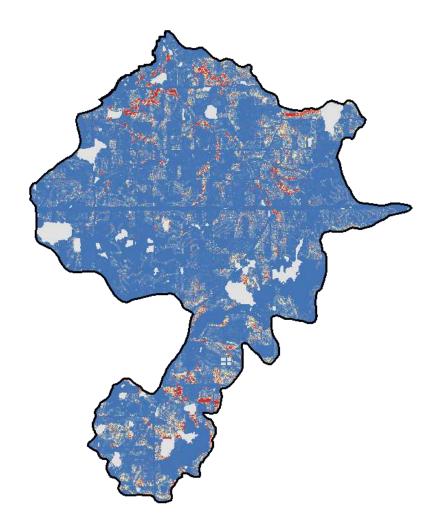
http://datagateway.nrcs.usda.gov/

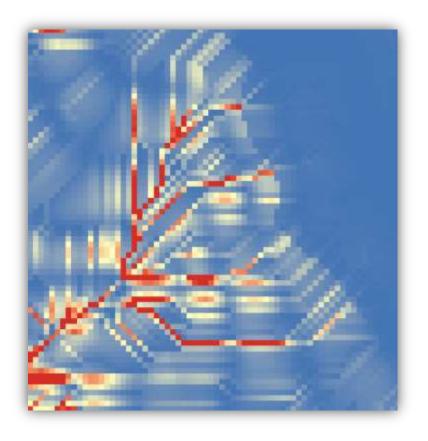
Erosion Vulnerability Analysis

USLE + SPI - IDA

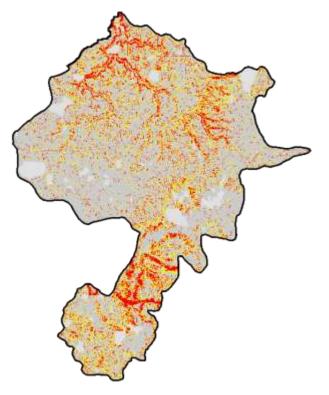


Erosion Vulnerability Assessment for Agricultural Lands




Universal Soil Loss Equation

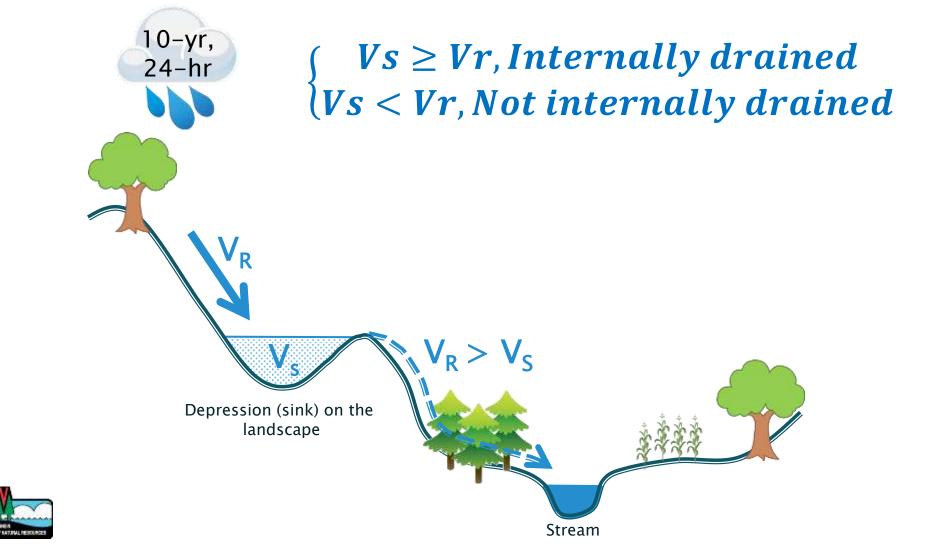
Universal Soil Loss Equation

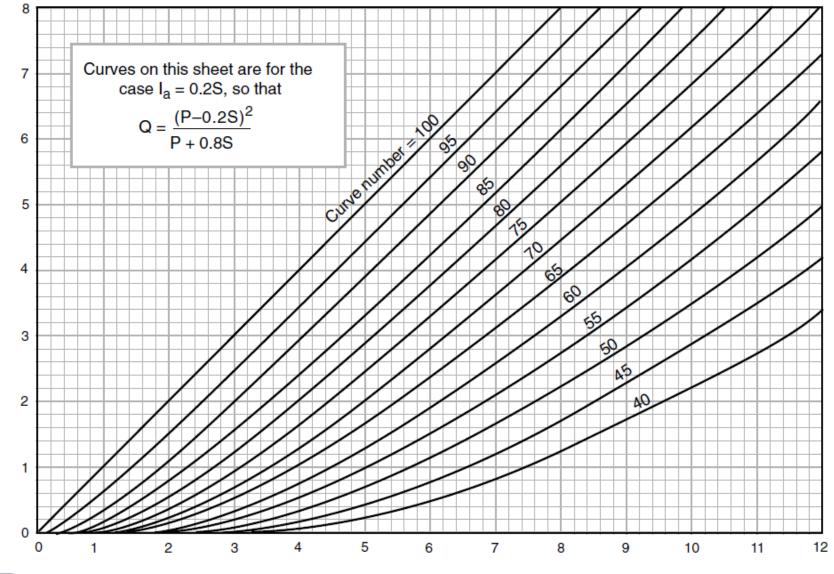


Stream Power Index

Potential for gully erosion

SPI = f(slope, catchment area)





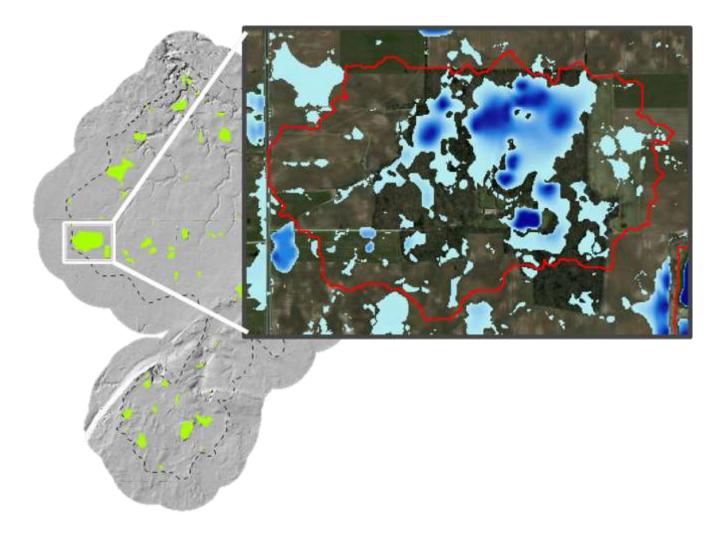
Internally Draining Areas

Areas that do not contribute to surface waters

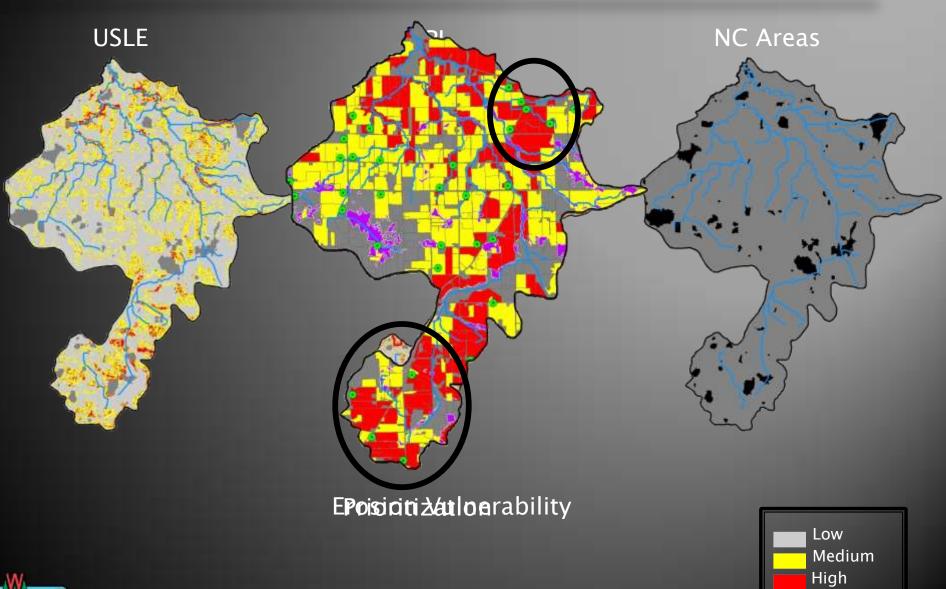
Runoff Calculation

Rainfall (P), inches

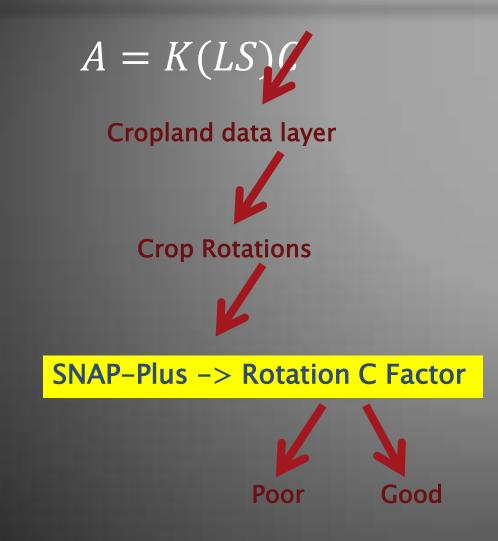
Direct runoff (Q), inches


Curve Numbers

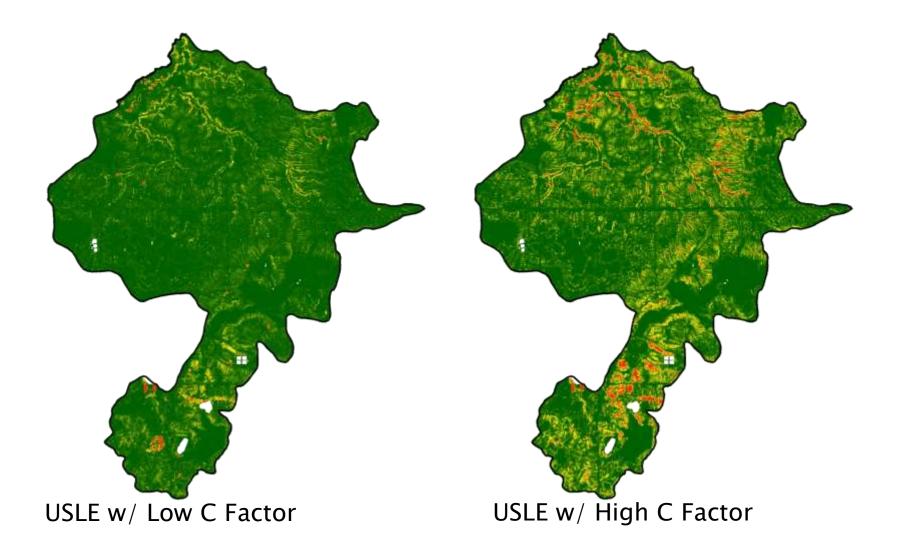
			Curve numbers for ————————————————————————————————————			
<u> </u>	Cover description					
		Hydrologic	8.C	1000	2	1000
Cover type	Treatment $2'$	condition 3/	Α	В	С	D
Fallow	Bare soil		77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
	100 million 100 million 100	Good	67	78	85	89
	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	C + CR	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured & terraced (C&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C&T+ CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	C	Poor	63	74	82	85
		Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast		Good	58	72	81	85
legumes or	C	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C&T	Poor	63	73	80	83
		Good	51	67	76	80


Internally Draining Areas

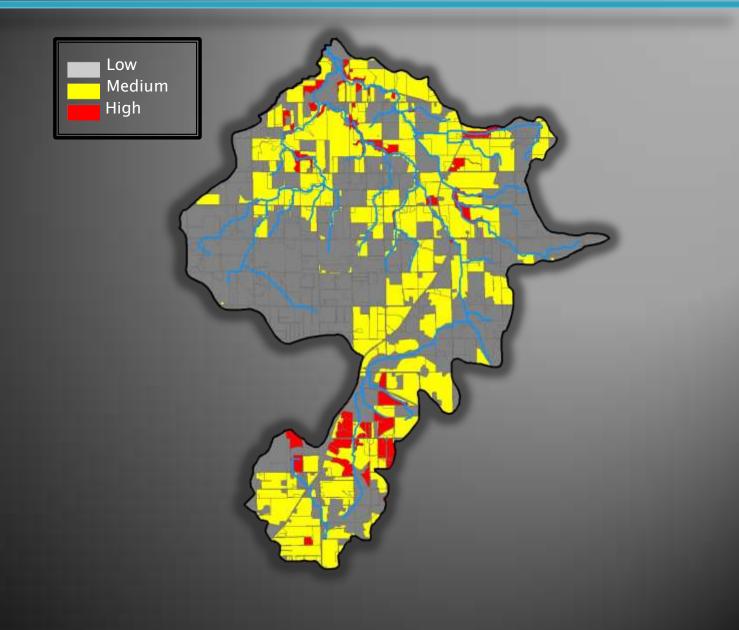
Areas that do not contribute to surface waters



Results



Mitigation Opportunity



C Factor Adjustments

Mitigation Opportunity

EVAAL Outputs

- Relative erosion vulnerability across watershed
 - Normalizes USLE & SPI prior to calculating vulnerability index
- What does this mean?
 - Cannot compare values from different watersheds
 - Look at relative values for one run
- How to compare across watersheds?
 - Merge USLE and SPI layers prior to running erosion vulnerability

EVAAL System Requirements

- Windows operating system
- ArcGIS Desktop 10.x
- ArcGIS Spatial Analyst 10.x

- 1.5 GB RAM minimum
- Does not require any installation, but does need write access to file folder

Limitations

• We can't model what we don't know

- Tillage
- Manure application
- BMPs
- Erosion must be driving factor
- Does not account for delivery factors or tile drainage
- Cannot "target", rather "prioritize"

EVAAL Website

Documents
Tutorial Data
ArcToolbox

ArcToolbox 4 ×
🛐 ArcToolbox
🖃 🌍 _EVAAL_
💐 1. Condition the LiDAR DEM
💐 2a. Download precipitation data
💐 2b. Create curve number raster
💐 2c. Identify internally draining areas
💐 3. Recondition DEM for internally draining areas
💐 4. Calculate Stream Power Index
🛐 5a. Rasterize K-factor for USLE
💐 5b. Rasterize C-factor for USLE
💐 5c. Calculate soil loss index using USLE
💐 6. Calculate erosion vulnerability index

😬 Business Licenses & Regulations Recreation Education Topics Contact Join DNR Search or Keywords 🍳 🧧

Agricultural NPS pollution Erosion Vulnerability Assessment for Agricultural Lands (EVAAL)

for Agricultural Lands

The Wisconsin Department of Natural Resources (WDNR) Bureau of Water Quality has developed the Erosion Vulnerability Assessment for Agricultural Lands (EVAAL) toolset to assist watershed managers in prioritizing areas within a watershed which may be vulnerable to water erosion (and thus increased nutrient export) and thus may contribute to downstream surface water quality problems. It evaluates locations of relative vulnerability to sheet, rill and gully erosion using information about topography, soils, rainfall and land cover. This tool enables watershed managers to prioritize and focus field-scale data collection efforts, thus saving time and money while increasing the probability of locating fields with high sediment and nutrient export for implementation of best management practices (BMPs).

USL

Erosion Vulnerability Index

EVAAL was designed to guickly identify areas vulnerable to erosion, and thus more likely to export nutrients like phosphorus, using readily available data and a userfriendly interface. This tool estimates vulnerability by separately assessing the risk for sheet and rill erosion (using the Universal Soil Loss Equation, USLE), and gully erosion (using the Stream Power index, SPI), while deprioritizing those areas that are not hydrologically connected to surface waters (also known as internally drained areas, IDA). These three pieces are combined to produce an erosion vulnerability index value that can be assessed at the grid scale or aggregated to areas, such as field boundaries,

EVAAL, Version 1.0 (August 2014)

- Fact Sheet (PDF)
- Tutorial (PDF)
- (Includes installation instructions to be read prior to downloading EVAAL model files)
- Methods Documentation (PUF)
- EVAAL Model Files (exit DNR)
- EVAAL Tutorial Data (FTH str. ZIP file format)

Contact information

For questions or information about this model, please contact:

Theresa M. Possley Nelson, P.E. TMDL modeling engineer Project manager

Last revised: Friday September 26 2014

EROSION VULNERABILITY INDEX

Nonpoint source pollution

Agricultural nonpoint source pollution

Learn more about agricultural nonpoint source pollution

Urban nonpoint source pollution

source pollution

What you can do

Learn more about controlling nonpoint source pollution in your area

TMDL implementation

Learn more about what the DNR is doing to control nonpoint source pollution

Related links

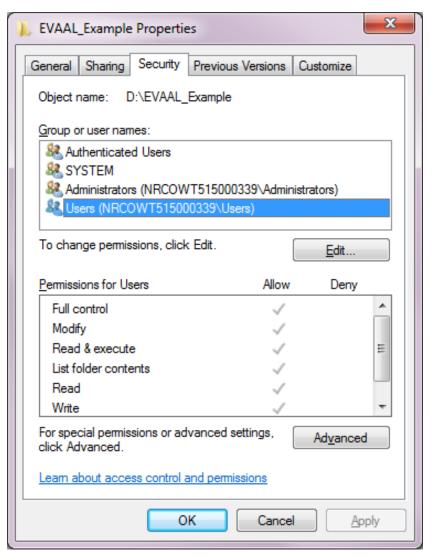
- Environmental impacts
- Wisconsin Runoff Rules: What Farmers Need to Know (PDF)
- NR 151 implemention strategy
- Agricultural technical standards & assistance
- Financial assistance
- Discharges, complaints & assistance
- Notices of discharge
- Nonpoint program contacts

http://dnr.wi.gov/topic/nonpoint/evaal.html

EVAAL Applications

EVAAL

>>> How to use the model


Model Setup

- Check folder permissions
- Check ArcMap versions
- Where to download EVAAL
- Load EVAAL toolbox and Spatial Analyst Extension in ArcMap

Check Folder Permissions

Need permission to Read & Write

Check ArcMap Version

Q Unt	titled -	ArcMap		-						second states in the little
File	Edit	View	Bookmarks	Insert	Selection	Geoprocessing				E.
3	3 🖬	81	. 🖻 🖻 🗙	100	• +		× 🖌	🗐 🇊 🗔	0	ArcGIS Desktop Help
		00222		须卜	_ Terrain	Preprocessing •	Terrain Morph	ology • Wa		ArcGIS Resource Center
				-		10	本良る	E 6 5		About ArcMap

About ArcM	Лар		×
L C T T S P V V	Esri® ArcMap [™] 10.1 ArcGIS 10.1 SP1 for Desktop License Type: Advanced Copyright ©1999-2012 Esri Inc. All Right This work is protected by copyright law a reproduction or distribution of this progra severe civil and criminal penalties, and w possible under the law. <u>View the ArcGIS 10.1 Copyright and Trac</u> <u>View the ArcGIS 10.1 Acknowledgements</u> <u>Visit our Web site: http://www.esri.com</u>	and international treaties, am, or any portion of it, r ill be prosecuted to the m <u>demarks</u>	may result in

Download EVAAL

WISCONS DN Department of Natural Resor	Real May is Clean Air	
Business	icenses & Regulations Recreation Education Contact Jo	
EVAAL	Search HELP Fishing Season 2015 is now	
Quick tasks Reserve a campsite Online license center Popular links	Burn permits Emergency & enforcem	የ=EVAAL&btnG=Search&site=default_collection&client
	X Convert - Select	
	Wisconsin Department of Na	itural Resources
	Home News Topics About EVAAL Se	arch Advanced Search Find what you need? Search Tips Please provide your Feedback
	Erosion Vulnerability Assessment for Agricultur EVAAL was designed to quickly identify are more likely to export nutrients like phosphore dnr.wi.gov/topic/nonpoint/evaal.html - 34k	as vulnerable to erosion, and thus

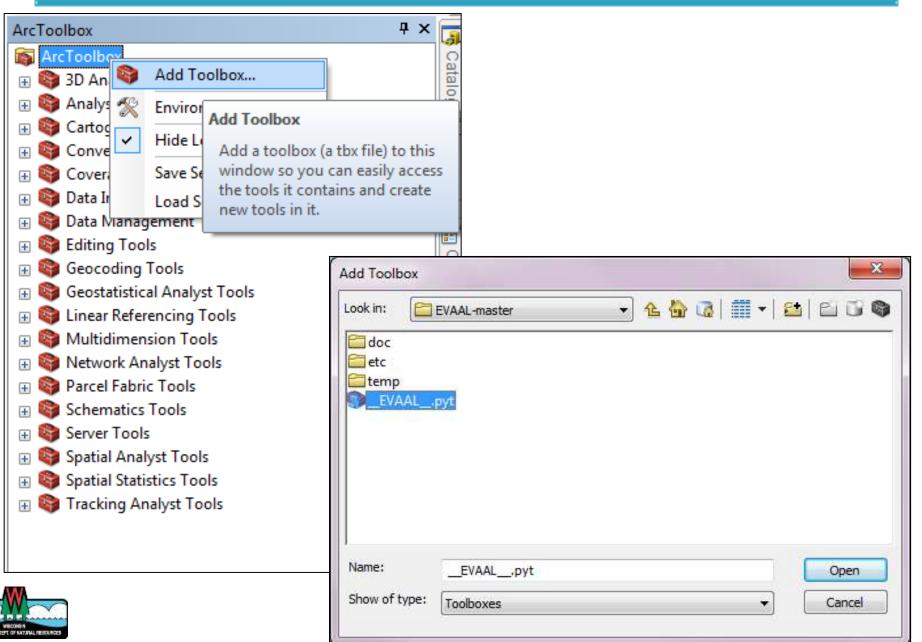
Download EVAAL

EVAAL, Version 1.0.1 (December 2015)

(Although updates to the model files were made in December, documentation remains the same.)

- Fact Sheet [PDF]
- Tutorial [PDF]

(Includes installation instructions to be read prior to downloading EVAAL model files)


- Methods Documentation [PDF]
- EVAAL Model Files [exit DNR]
- EVAAL Tutorial Data [FTP site, ZIP file format] (includes 2014 gSSURGO geodatabase)

Download EVAAL

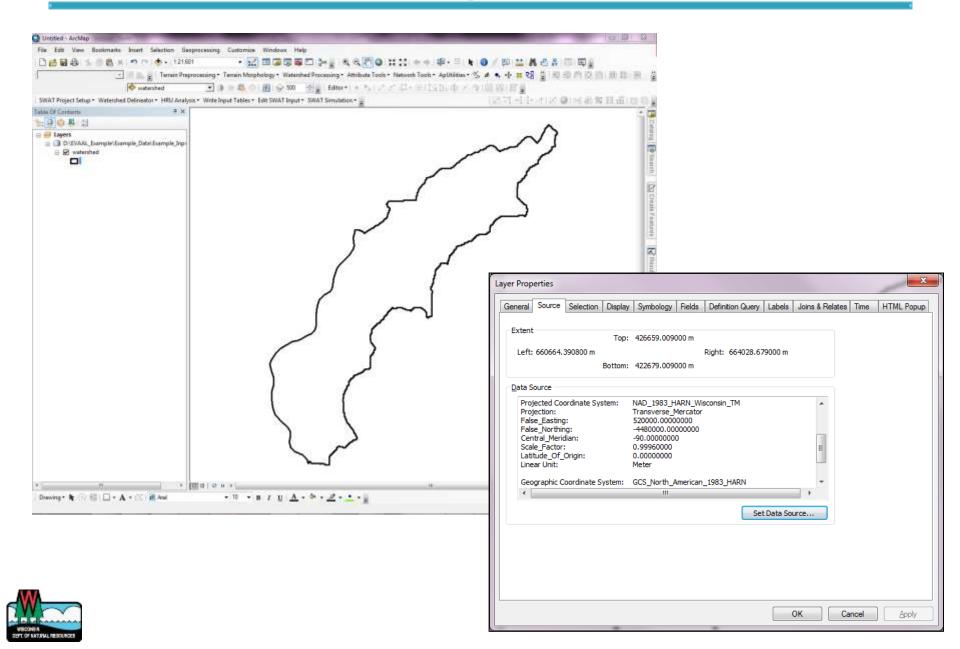
Https://github.com/dnrwaterqu	alitymodeling/EVAAL	🔎 👻 🔒 Identified by DigiCert 🖒	O GitHub - dnrw	aterqualitym ×		1 1 1	
Personal	Open source Busine	ess Explore Pricing	Blog Support	This repository	Search	Sign in	Sign up
📮 dnrwaterqu	alitymodeling / EVAAL	Le'			• Watch 4	★ Star 2	¥ Fork
<> Code ①	Issues 5 🍴 Pull reques	sts 0 🥠 Pulse 📊 Graph	าร				
	Erosion Vulnerability Assessment for Agricultural Lands - Python scripts for identifying areas vulnerable to soil erosion using LiDAR elevation data						
erereren outu							
	commits	រ្រ 5 branches	0	1 release		11 3 contributors	5
	commits New pull request	រ្រ 5 branches	\diamond	1 release	Find		s Iownload •
© 62 Branch: master ▼	New pull request			1 release	Find		lownload -
© 62 Branch: master ▼	New pull request	. MUSKINGA (MASA)		1 release	Find	I file Clone or on the clone of	lownload *
© 62 Branch: master ▼	New pull request ulated cell size the same way a added new docur	as step 2c to overcome negative cell			Find	I file Clone or o mit cce23cd on M 2	<mark>lownload →</mark> ay 29 2015
© 62 Branch: master ▼ Saruesch calcu Control doc	New pull request ulated cell size the same way a added new docur changed column	as step 2c to overcome negative cell mentation for rollout of v1.0	 LEVEL to SCENA		Find	I file Clone or o mit cce23cd on M 2 2	lownload ▼ ay 29 2015 years ago
© 62 Branch: master ▼ Saruesch calcu en doc en etc	New pull request ulated cell size the same way a added new docur changed column	as step 2c to overcome negative cell mentation for rollout of v1.0 name and references for COVER_ atch workspace assignment for ea	 LEVEL to SCENA		Find	I file Clone or o mit cce23cd on M 2 2 2	lownload ▼ ay 29 2015 years ago years ago

Load Toolbox

Load Spatial Analyst Extension

Q Untitled - ArcMap File Edit View Bookmarks Insert Selection Geoprocessing	Customize Windows Hel
: 🗅 🖆 🖬 🕼 🐘 🗿 🛍 🗙 । भ ला 🔶 -	Toolbars >
SWAT Project Setup × Watershed Delineator × HRU Analysis × Write In Table Of Contents ***	Toolbars Image: Construction of the extension of the extensin of the extension of the extension of the extension
	Provides spatial analysis tools for use with raster and feature data.

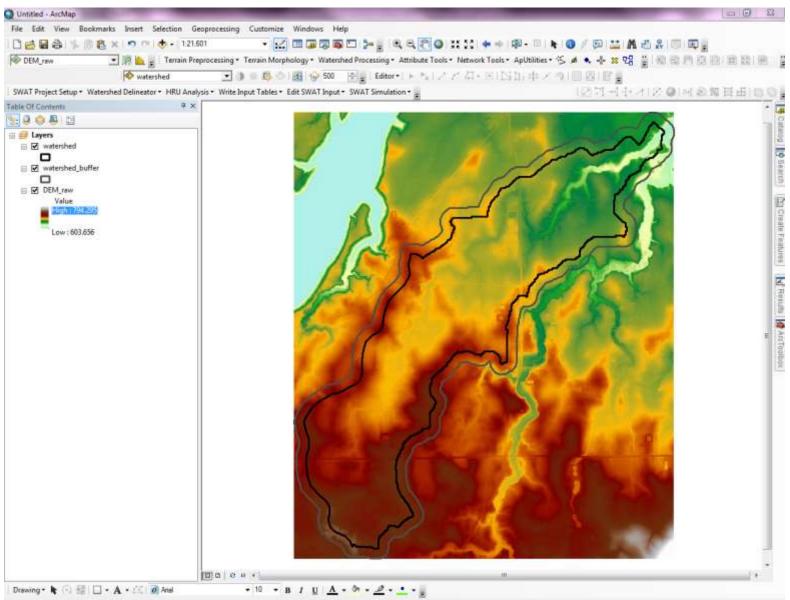
- Coordinate projection
- Watershed & buffered watershedDEM
- gSSURGO
- Culverts


Coordinate Projection

- EVAAL requires all datasets to be in Wisconsin Transverse Mercator projection (meters)
 - EPSG: 3071
 - NAD_1983_HARN_Wisconsin_TM
 - NAD_1983_HARN_Transverse_Mercator
 - <u>ftp://dnrftp01.wi.gov/geodata/projection_file/</u>

Watershed boundary

Where to get watershed boundaries?


- HUCs: <u>ftp://dnrftp01.wi.gov/geodata/WI_WBD_HUCs/</u>
- WHD-plus: <u>ftp://dnrftp01.wi.gov/geodata/hydro_va_24k/</u>
- USGS: <u>http://viewer.nationalmap.gov/viewer/</u>
- USDA: <u>https://gdg.sc.egov.usda.gov/</u>

Buffered Watershed

🔨 Buffer	
Input Features	^
watershed 🗾 🖻	
Output Feature Class	
D:\EVAAL_Example\Example_Data\Example_Inputs.gdb\watershed_buffer_	
Distance [value or field] O Linear unit	
300 Feet 🔻	
© Field	
· · · · · · · · · · · · · · · · · · ·	
Side Type (optional)	
FULL	H2107 #646
End Type (optional)	(Cancella Webber 198) ◆ 記 西田市市口 3+2 天天(○01111 + + 第+□ ★ 0 / ※ 二 高市市 田)
ROUND The Tree Agenties	- Teren Maghiley - Naterial Pacency - Ability Teres - Server Tools - ApiXiles - ≲ 🖌 🔥 🕂 😫 🔅 🖄 🖄 🖉 🖉 👘 👘
	a = a = a = a = 200 Big taxes + 51777 C + 2121 B + 2 + 318 B + 2 hystates + 64 500 Beg + 300 Beg and 2
Tele Of Denset # x	
Dissolve Field(s) (optional)	
TOCATCHID	
SHAPE_Length	
SHAPE_Area	
	5 1
Select All Unselect All	
OK Cancel	
	**
Drawny & Collection Article And	-1 - R / U A - 3 - 2 - 1 - 1

DEM

Combine multiple rasters

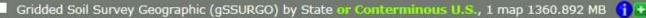
- Mosaic to New Raster Tool
 - Specify Pixel Type the same as input rasters

Input Rasters	
	🗾 🔁
	×
	+
Output Location	
	2
Raster Dataset Name with Extension	
Spatial Reference for Raster (optional)	
Pixel Type (optional)	
8_BIT_UNSIGNED	•
Cellsize (optional)	
Number of Bands	
Mosaic Operator (optional)	
LAST	+
Mosaic Colormap Mode (optional)	
FIRST	•

gSSURGO

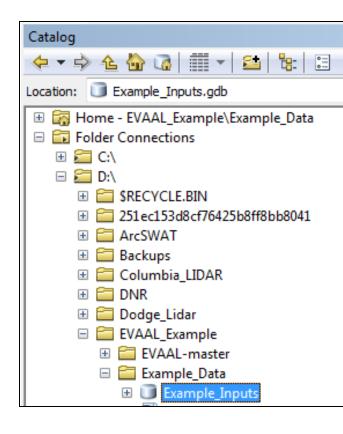
https://gdg.sc.egov.usda.gov/

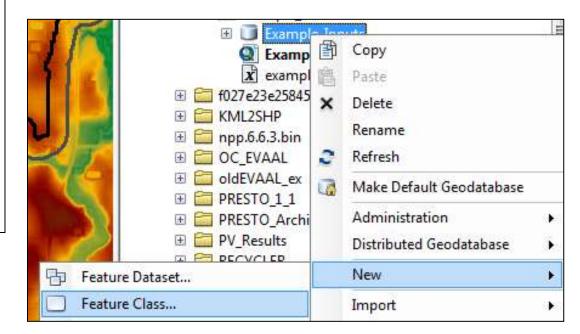
gSSURGO



gSSURGO

Order by State						
Select entire state for order: New York Ohio Oklahoma Oregon Pennsylvania Puerto Rico Palau Rhode Island South Carolina South Dakota Tennessee Texas Baker Island Howland Island Jarvis Island Johnston Atoll Kingman Reef Midway Islands Navassa Island Palmyra Atoll Wake Island Utah Virginia Virgin Islands of the U.S. Vermont Washington						


- Common Resource Areas by State, 1 map 2.500 MB 🕕
- 📃 Soil Survey Spatial and Tabular Data (SSURGO 2.2), 69 maps 2177.970 MB 🌗 🛨
- 📕 U.S. General Soil Map (STATSGO2) by State, 1 map 5.363 MB 📋 💽



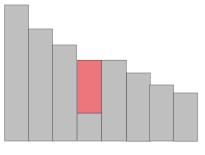
Culverts

Create empty feature class

Culverts

pe	New Feature Class
ype of features <u>s</u> tored in this feature class:	
ine Features 🔹	Choose the coordinate system that will be used for XY coordinates in this data.
	Geographic coordinate systems use latitude and longitude coordinates on a spherical mode of the earth's surface. Projected coordinate systems use a mathematical conversion to
	transform latitude and longitude coordinate systems use a mathematical conversion to
	🏹 🔹 Type here to search 🔹 🍳 🔊 🕼 🔫 🛬
eometry Properties	🔘 NAD 1983 HARN Texas Centric Mapping System Albers (Me 🔺
Coordinates include <u>M</u> values. Used to store route data.	💮 NAD 1983 HARN Texas Centric Mapping System Lambert ()
] Coordinates include <u>Z</u> values. Used to store 3D data.	NAD 1983 HARN Virginia Lambert (Meters)
	NAD 1983 HARN Wisconsin TM (Meters)
	💮 NAD 1983 HARN Wisconsin TM (US Feet)
	💮 NAD 1983 Idaho TM (Meters)
	MAD 1983 Michigan GeoRef (Meters)
	🚇 NAD 1983 Michigan GeoRef (US Feet)
	MAD 1092 Mirricrimini TM (Motorr)
	Current coordinate system:
	NAD_1983_HARN_Wisconsin_TM
	WKID: 3071 Authority: EPSG
	Projection: Transverse_Mercator False Easting: 520000.0
	False_Northing: -4480000.0
	Central Meridian: -90.0
Rack Nexts C	
< <u>B</u> ack Next > C	ancel Scale Factor: 0.9996 Latitude Of Origin: 0.0

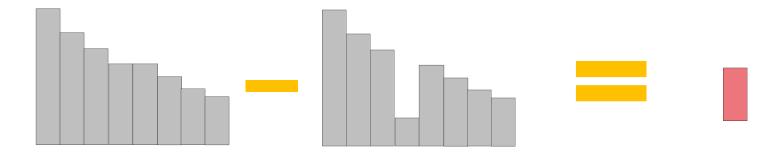
Where to place culvert cut lines


- Create depression raster
- Add additional layers
- Draw culverts
- Run steps 1 thru 2c
 - Review internally draining areas
 - Add more culverts if necessary
 - Repeat steps 1 & 2c

Create Depression Raster

Fill DEM

				11.03	
Output surface rast	er				_
D:\EVAAL_Example	e\Example_Data	a\Example_Out	puts.gdb\DEM_	fill	6
Z limit (optional)					



Create Depression Raster

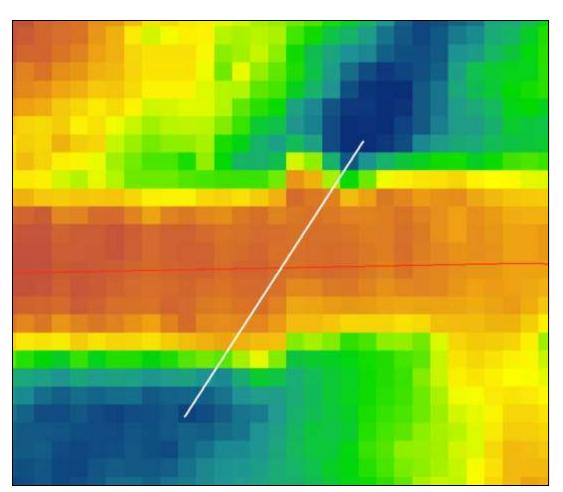
Subtract filled DEM from raw DEM

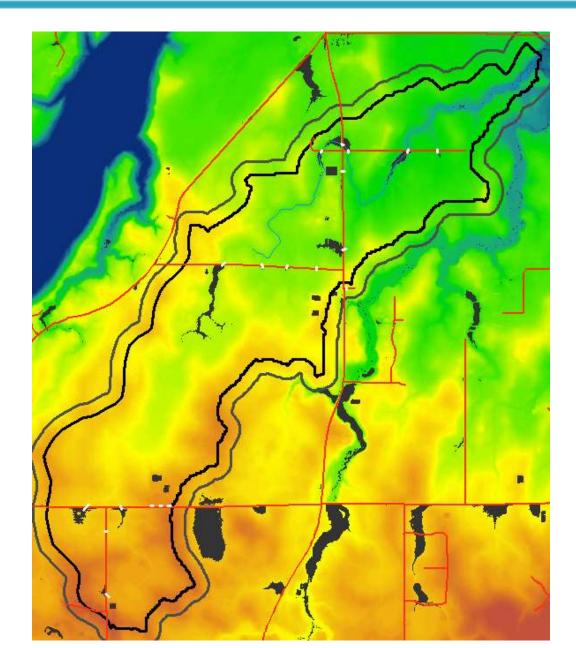
DEM_fill				•	
Input raster or c	onstant value 2				
DEM_raw				_	
Output raster					_
D:\EVAAL_Exar	nple\Example_Da	ta\Example_Out	tputs.gdb\Depre	ssions	6
					_

Add additional layers

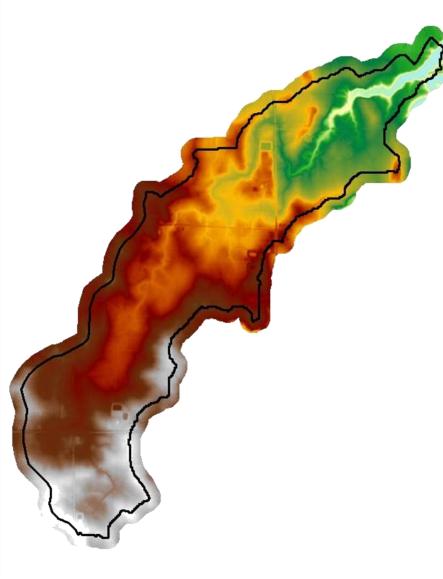
- Aerial photo basemap
- Streams
- Roads
- Others
 - Wetlands
 - Lakes

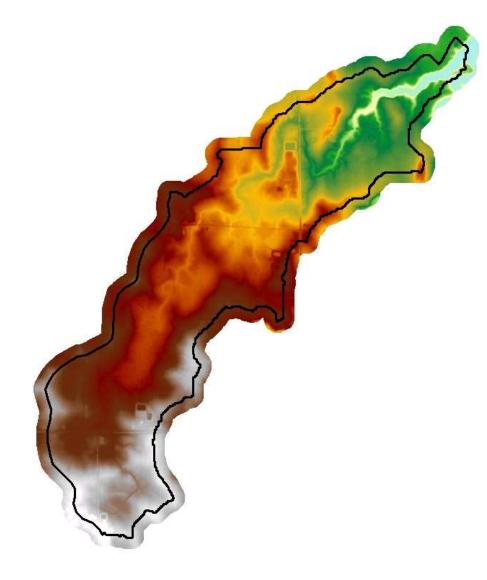
- Main idea: input culverts to areas that are drained by culverts, bridges, etc.
 - Find sinks that are likely drained by culverts
 - Create a line that represents a culvert
 - Repeat
 - NOTE: this can be a difficult and iterative process. It will take some time to get right and will involve a number of judgment calls.


Zoom in to depression area Look for evidence of channel/culvert



- Turn on raw DEM
- Draw culvert line
 - Upstream to downstream
 - First point of line must be higher elevation than second point

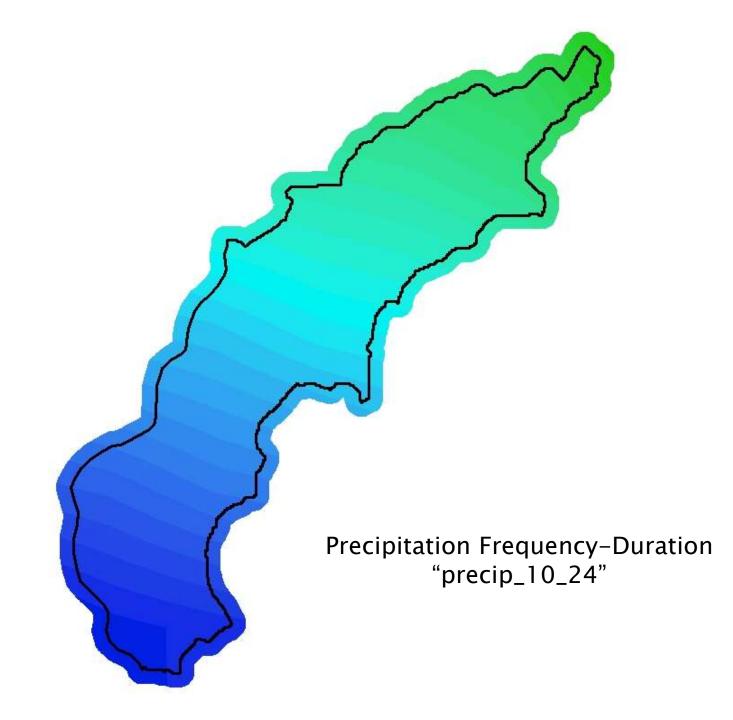




Step 1: Condition DEM

Culverts		•	0
Watershed area (unbuffe	red)		
watershed		<u> </u>	6
Raw LiDAR DEM			
DEM_raw		<u> </u>	0
Output conditioned DEM,	select output folder		_
D:\EVAAL_Example\Exar	mple_Data\Example_Outputs.gdb\DEM_cond		6
Output optimized fill, sele	ct output folder		
D:\EVAAL_Example\Example	mple_Data\Example_Outputs.gdb\DEM_opfill		6

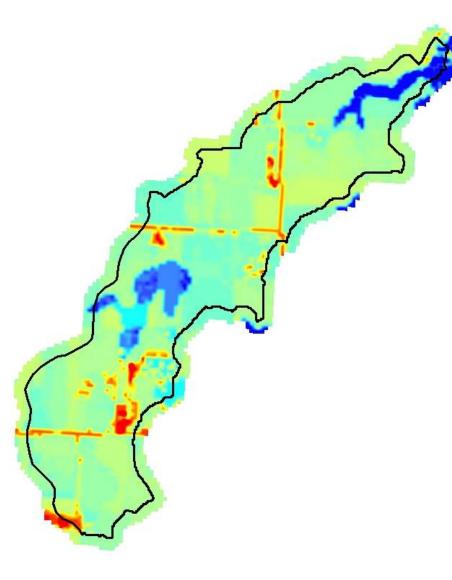
Conditioned DEM "DEM_cond" Optimized Filled DEM "DEM_opfill"

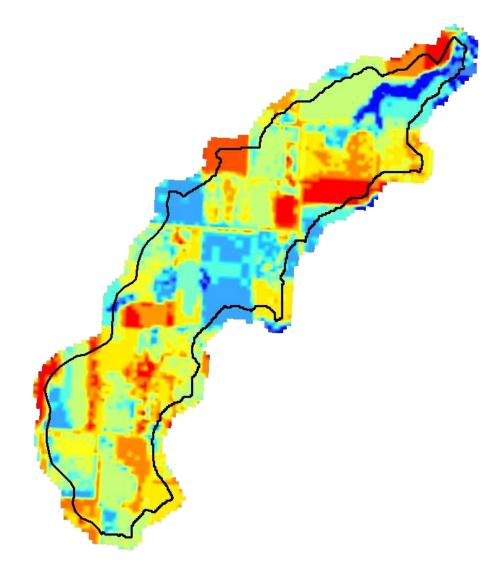


Step 2a: Download precip data

2a. Download precipitation data	
Download frequency-duration data? If yes, define frequency and duration	on below.
Frequency (years) (optional)	
10	200
Duration (hours) (optional)	
24	*
Locally stored frequency-duration data (zip file) (optional)	
Conditioned DEM (for template)	
DEM_cond	
Output precipitation frequency-duration raster, select output folder	
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\precip_10_24	
OK Cancel Environm	ents Show Help >>

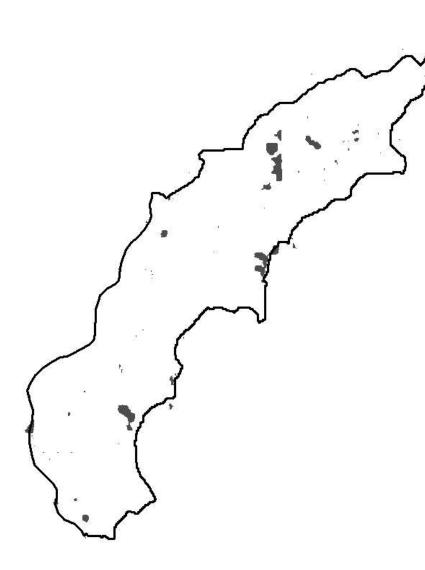
ftp://hdsc.nws.noaa.gov/pub/hdsc/data/mw/

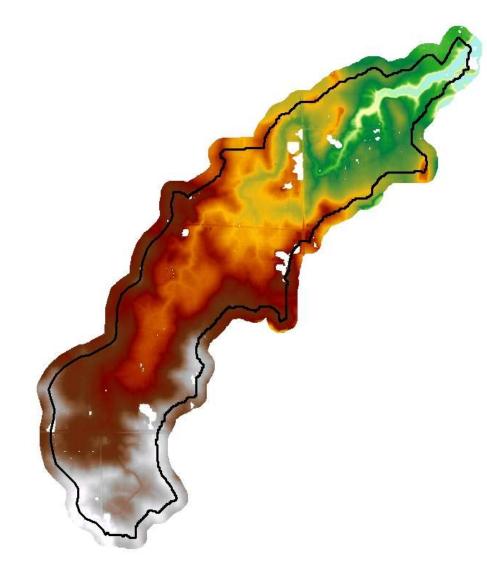




Step 2b: Create curve number raster

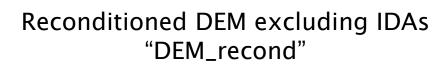
Start year (2008 is recommended) (optional)		
2009	ý.	•
End year (2012 is recommended) (optional)		
2013		•
Use locally stored Cropland Data Layers? (optional)		
	I (6	
-		
		3
	>	×
		F.
gSSURGO geodatabase		
D:\EVAAL_Example\gSSURGO_WI.gdb		
Watershed area (buffered)	_	_
watershed_buffer	▼ €	3
Conditioned DEM for raster template		7
DEM_cond	.	-
Output curve number raster (high estimate), select output folde	r	-
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\CN_high		
Output curve number raster (low estimate), select output folder		_
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\CN_	(-




Curve Number (low estimate) "CN_low" Curve Number (high estimate) "CN_high"

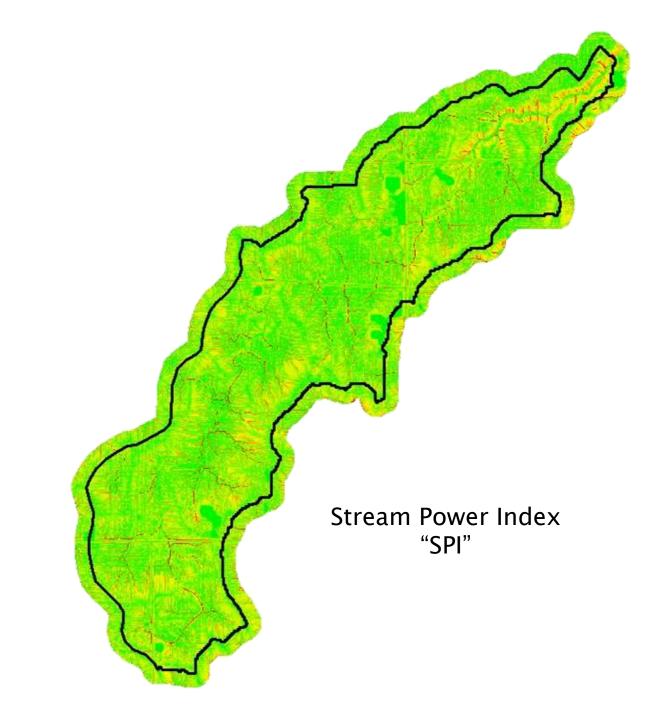
Step 2c: Identify internally draining areas

Conditioned DEM	
DEM_cond	I 🙆
Optimized fill raster	
DEM_opfill	I 🙆
Precipitation frequency-duration raster	
precip_10_24	· ·
Curve number raster	
CN_high	I 🔁
Watershed area (buffered)	
watershed_buffer	I 🔁
Output internally draining areas, select output folder	
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\IDA	
Output DEM excluding internally draining areas, select output folder	
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\DEM_exIDA	

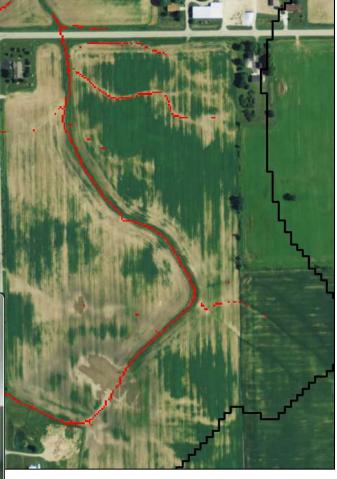

Internally Draining Areas "IDA" DEM excluding internally draining areas "DEM_exIDA"

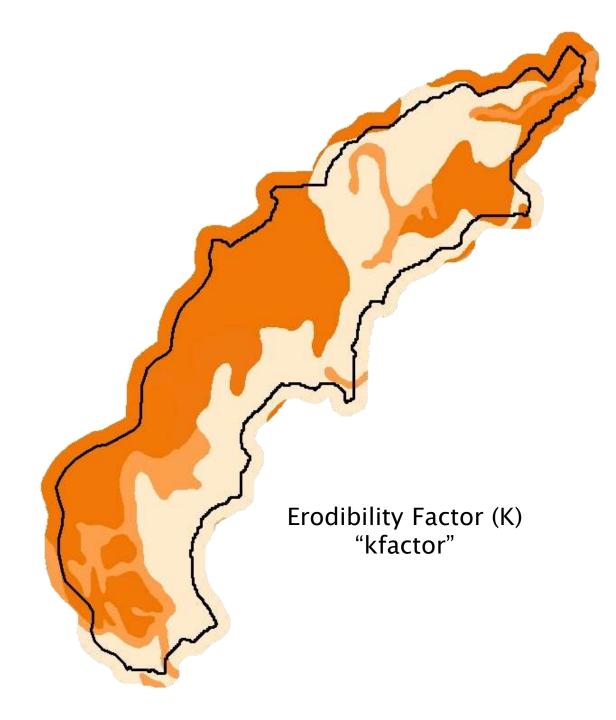
Step 3: Recondition DEM

📑 3. Recondition DEM for internally draining areas	
DEM excluding internally draining areas	*
DEM_exIDA	3 🔁
Internally draining areas raster	
IDA	- 2
Best management practice areas (i.e., grass waterways, riparian buffer areas) (optional)	
	3 🔁
Output Reconditioned DEM excluding internally draining areas, select output folder	
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\DEM_recond	8
	Ŧ
OK Cancel Environments Show	w Help >>



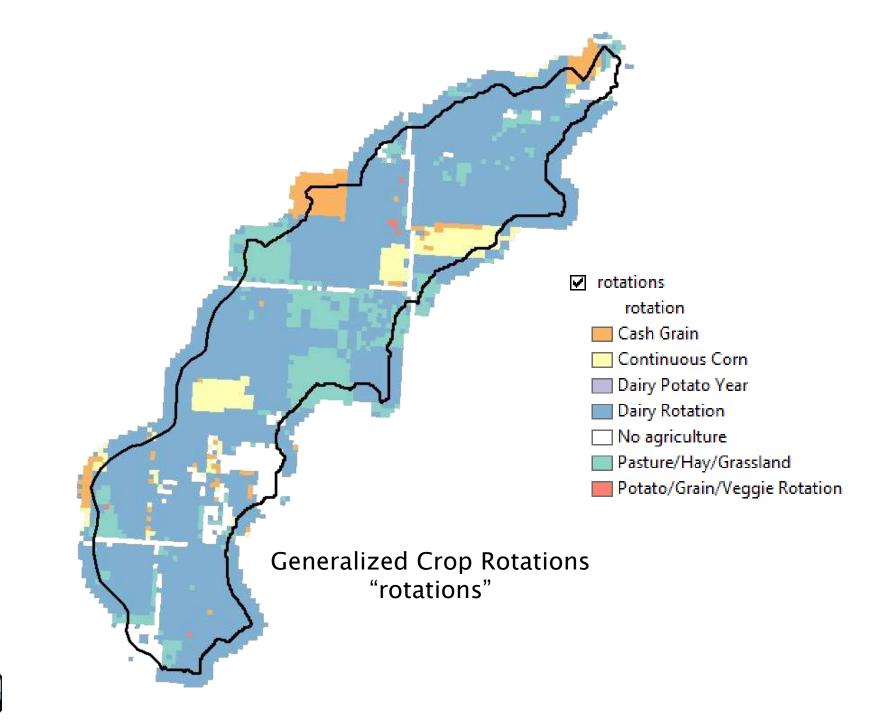
Step 4: Calculate Stream Power Index

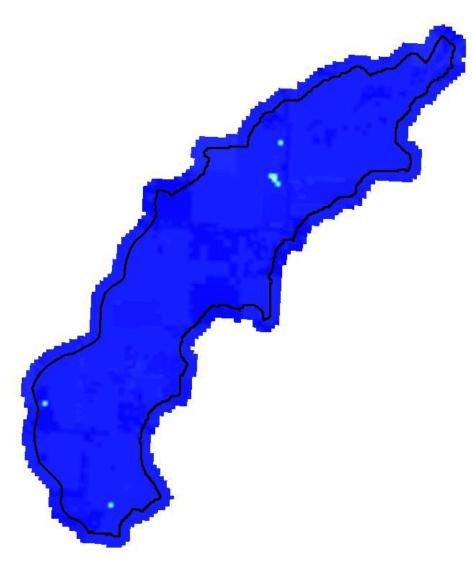

4. Calculate Stream Power Index		
Conditioned DEM		*
DEM_cond	I 🔁	
Reconditioned DEM excluding non-contributing areas	_	
DEM_recond	I 🔁	
Flow accumulation threshold (for a 3-meter resolution grid) 50000		
Output stream power index raster, select output folder		
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\SPI		
		+
OK Cancel Environments	Show Help >>	

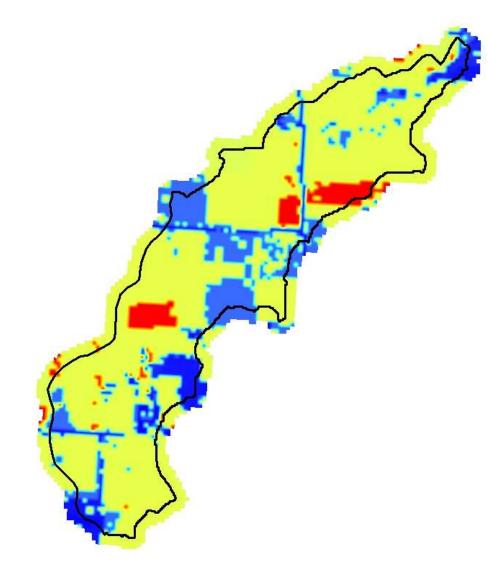

input Raster Da	taset			100 m	and the second second
		Example_Outputs.gdb\SPI			7
Number of Colur	mns to Skip (optional)				
			1	1	(
umber of Rows	s to Skip (optional)		1	1	
gnore Values (o	optional)			\sim	
				1	
			×		
			1		
			I IIIIII		
				<i>a</i> .	None I
					 X
	Laver Pronerties				
0.501 54	Layer Properties		Sec. 1		
Skip Existir	General Source E				
Skip Existir	General Source E	xtent Display Symbology	alues into classes		
Skip Existir	General Source E Show: Unique Values Classified Stretched		alues into classes		
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified	Draw raster grouping v	alues into classes	<none></none>	
Skip Existir	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value Classification	Normalization		
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value	Normalization	<none> sses2</none>	
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value Classification	Normalization		-
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value Classification Manual	Normalization		
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping va Fields Value <value> Classification Manual Color Ramp</value>	Normalization		-
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value <value> Classification Manual Color Ramp </value>	Normalization Class Label 0 - 7		-
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value <value> Classification Manual Color Ramp </value>	Normalization Class Label 0 - 7	sses 2 V	
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value <value> Classification Manual Color Ramp </value>	Normalization Class Label 0 - 7	sses 2 V	-
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value <value> Classification Manual Color Ramp </value>	Normalization Class Label 0 - 7	sses 2 V	-
Skip Existin rea of Intere CalculateS	General Source E Show: Unique Values Classified Stretched	Draw raster grouping value Fields Value <value> Classification Manual Color Ramp </value>	Normalization	sses 2 -	

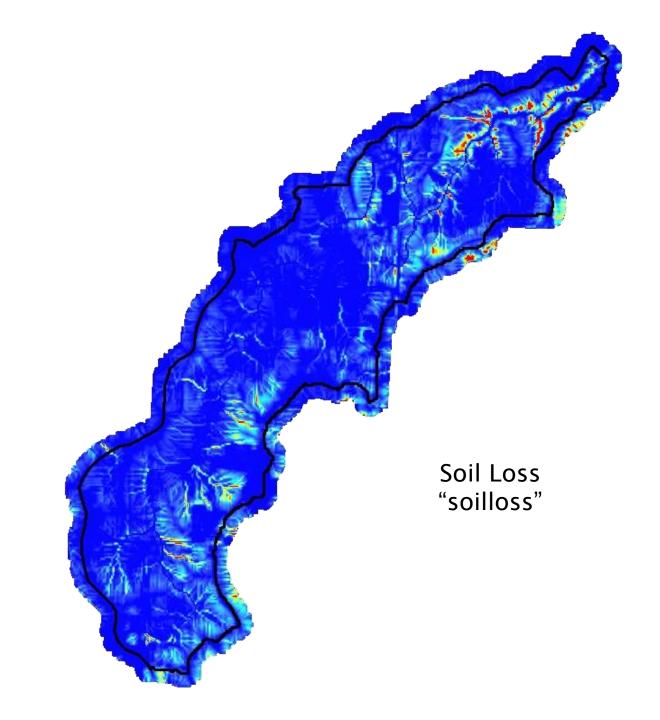
Step 5a: Rasterize K-factor

5a. Rasterize K-factor for USLE		3
gSSURGO database		*
D:\EVAAL_Example\gSSURGO_WI.gdb		
K-factor field		
kwfact		
Conditioned DEM (raster grid template)		
DEM_cond	I 🔁	
Watershed area (buffered)		
watershed_buffer	I 🔁	
Output K-factor raster, select output folder		
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\Kfactor	6	
	_	
OK Cancel Environments	Show Help >>)



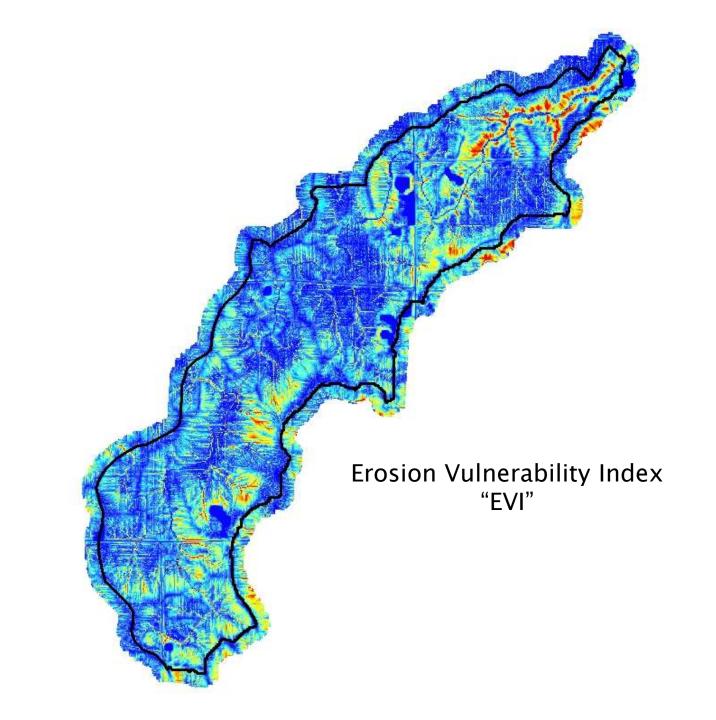

Step 5b: Rasterize C-factor


2009		
End year (2012 is recommended) (optional) 2013		
Use locally stored Cropland Data Layers? (optional)		
		1 🖂
1		
		+
		×
		1
		1
		I
		*
Watershed area (buffered)		
		1
watershed_buffer	<u>.</u>]
watershed_buffer	•	
watershed_buffer Conditioned DEM, for template DEM_cond		
watershed_buffer Conditioned DEM, for template DEM_cond	_ 15	
Conditioned DEM, for template DEM_cond Output crop rotation raster, select output folder D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\rotation		
watershed_buffer Conditioned DEM, for template DEM_cond Output crop rotation raster, select output folder		
watershed_buffer Conditioned DEM, for template DEM_cond Output crop rotation raster, select output folder D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\rotation Output C-factor raster (high estimate), select output folder		


Cover Factor (C) – low estimate "C_low" Cover Factor (C) – high estimate "C_high"

Step 5c: Calculate soil loss index

DEM_cond Reconditioned DEM excluding non-contributing areas DEM_recond Erosivity raster (SI units) (optional) Erosivity constant (optional) K-factor raster kfactor C-factor raster C-factor raster C-factor raster C_high Flow Accumulation threshold (for a 10-meter resolution grid) 1000 Output soil loss raster D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\soilloss	Conditioned DEM		
DEM_recond Erosivity raster (SI units) (optional) Erosivity constant (optional) K-factor raster kfactor C-factor raster C-factor raster C_high Flow Accumulation threshold (for a 10-meter resolution grid) 1000 Output soil loss raster	DEM_cond	T	B
Erosivity raster (SI units) (optional) Erosivity constant (optional) K-factor raster kfactor C-factor raster C_high Flow Accumulation threshold (for a 10-meter resolution grid) 1000 Output soil loss raster	Reconditioned DEM excluding non-contribu	iting areas	-
Erosivity constant (optional) K-factor raster kfactor C-factor raster C_high Flow Accumulation threshold (for a 10-meter resolution grid) 1000 Output soil loss raster	DEM_recond	<u>•</u>	6
K-factor raster kfactor Image: C-factor raster C-factor raster Image: C-factor raster C_high Image: C-factor threshold (for a 10-meter resolution grid) Flow Accumulation threshold (for a 10-meter resolution grid) 1000 Output soil loss raster Image: C-factor raster	Erosivity raster (SI units) (optional)		_
K-factor raster kfactor Image: C-factor raster C-factor raster Image: C-factor raster Flow Accumulation threshold (for a 10-meter resolution grid) Image: C-factor grid) 1000 Output soil loss raster			6
kfactor Image: C-factor raster C_high Image: C-factor raster Flow Accumulation threshold (for a 10-meter resolution grid) Image: C-factor grid) 1000 Output soil loss raster	Erosivity constant (optional)		
C-factor raster C_high Flow Accumulation threshold (for a 10-meter resolution grid) 1000 Output soil loss raster	K-factor raster		\sim
C_high Flow Accumulation threshold (for a 10-meter resolution grid) 1000 Output soil loss raster	kfactor	<u>•</u>	6
Flow Accumulation threshold (for a 10-meter resolution grid) 1000 Output soil loss raster	C-factor raster		_
1000 Output soil loss raster	C_high	×	0
		er resolution grid)	
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\soilloss	Output soil loss raster		
	D:\EVAAL_Example\Example_Data\Examp	ple_Outputs.gdb\soilloss	



Step 6: Calculate erosion vulnerability

Soil loss raster				
soilloss			💽 🔁	
Stream power index ras	er			
SPI			I 🔁	
Zonal statistic boundary	feature class (optional)			
			- 1	
Zonal statistic field (opti	onal)			
Conditioned DEM (for ra	ster template)			
DEM_cond			I 🖻	
Output erosion vulneral	ility index raster, select output folder (op	itional)		
D:\EVAAL_Example\Ex	ample_Data\Example_Outputs.gdb\EVI		6	
Output summary table,	elect output folder (optional)			
			E	

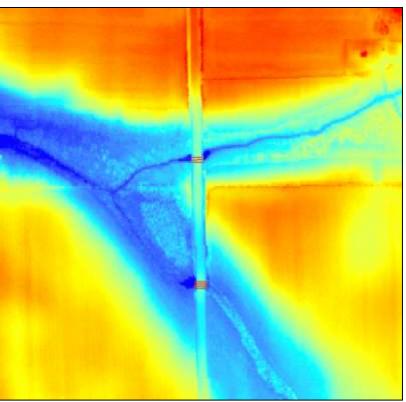
Step 6: Calculate erosion vulnerability

Soil loss raster		
soilloss	I 🖻	
Stream power index raster		
SPI	🖃 🖻	
Zonal statistic boundary feature class (optional)		
fields	2	
Zonal statistic field (optional)		~
OBJECTID	i.	·
Conditioned DEM (for raster template)		
DEM_cond	I 🖻	
Output erosion vulnerability index raster, select output folder (optional)		
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\EVIfields		
Output summary table, select output folder (optional)		_
D:\EVAAL_Example\Example_Data\Example_Outputs.gdb\EVI_fields_tbl	2	

Common Problems

Projection Issues

Input data incorrectly projected


Folder Permissions & Pathnames

- Must have "write" permission to EVAALmaster folder
 - Temp files are stored in scratch.gdb
- No special characters in path name (., &, /, etc.)
 - Better to also have no spaces

Culverts!

- Unnecessary culverts
- Wrong orientation
- Need to have at least one in the watershed
- No culvert lines outside the watershed

Watershed Too Big

- Limit is approximately 75 km² or 30 mi²
 - Actual limit is number of grid cells in raster, so can run into problems with long narrow watershed, or irregular shaped watershed

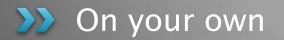
Watershed Boundaries

- Clipping upper parts of watershed at county line
- Not providing an actual watershed

Missing soils data

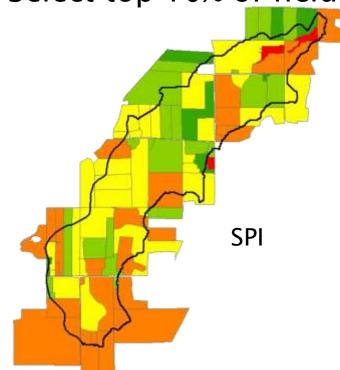
- "holes" in outputs that are not internally draining areas
 - Kwfact is blank in soils database tables
 - Often "udorthents"

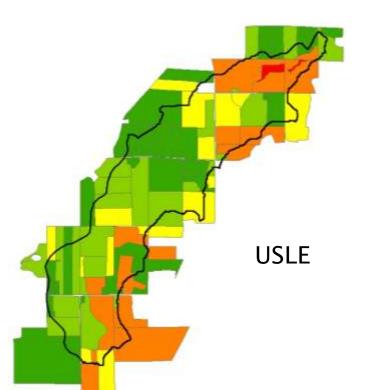
Bugs


 If you get an error, try downloading and using the Development version

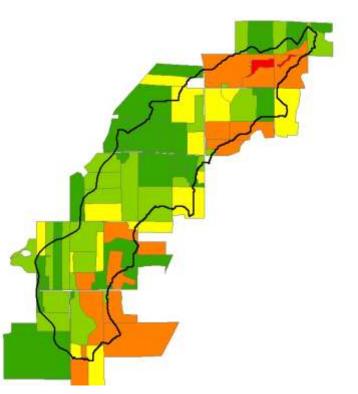
Bugs are fixed there first

Branch: dev 🔻


Exercises

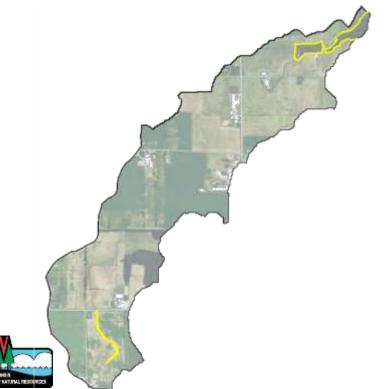


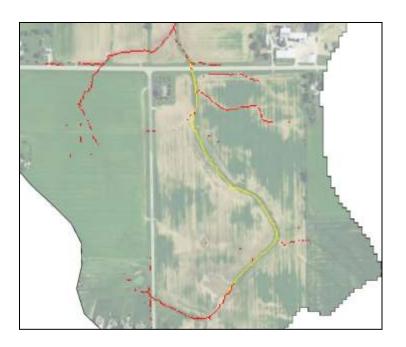
Exercise 1: Visualize by Field Boundaries


- Visualize results by field boundaries
 - Run Zonal Statistics on SPI and soil loss rasters using field boundaries as zones
 - Join resulting tables with field layer
 - Symbolize by mean value
 - Select top 10% of fields

Exercise 2: Mitigation Opportunity

- Mitigation Opportunity
 - Re-run soil loss with low C factor
 - Subtract soil loss (low) from soil loss (high)
 - Run Zonal statistics and join to field table to visualize by fields


Exercise 3: IDA sensitivity to precip


- Sensitivity of IDAs to precipitation
 - Re-run Step 2a using a different frequency and duration
 - How different is the precipitation amount?
 - Re-run Step 2c to see difference in IDAs
 - Do results make sense?

Exercise 4:Create BMP layer

- Use BMP layer to deprioritize areas where practices are already in place
 - Create BMP layer (new polygon feature class)
 - Re-run Step 3 with BMP input
 - See how this changes SPI, soil loss, EVI results

Contact Info

Theresa M. Possley Nelson, PE (608) 266–7037 Theresa.Nelson@wisconsin.gov

dnrwaterqualitymodeling@wisconsin.gov

