PFAS Technical Group

October 15, 2021

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

Agenda

- Welcome and Introductions
- Michigan Airport Grant & Sampling Initiative Mike Jury, MI
- Validation of Fluorine-Free AFFF against Military Specificiation Performance Criteria – Satya Chauhan, Battelle Memorial Institute
- Conclusions & Next Steps

Wisconsin DNR's PFAS Technical Group -Michigan Airport Results October 15, 2021

Mike Jury, PFAS Specialist Remediation and Redevelopment Division (517) 242-9578 JuryM1@Michigan.gov

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

Review of Potential Aviation Sources/Release Locations

• AFFF

- Fire Training Areas
- Fire Stations
- Emergency Response Location
- WWTP Facilities
- Landfills
- Maintenance Shops
 - Hydraulic Oils

- Storage Areas
 - Surface Drainage
 - Spray Test Areas
 - Hangars

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DI

Potential AFFF Sources at Airports

Fire Training

Emergency Response

Bulk Fuel Storage

Fire Station

AFFF Storage Areas

Hangar Suppression Systems

Storm Water Drainage

Equipment Testing

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

AECOM

Sampling Considerations

- Purpose
- Locations
- Procedures
- Analytical Methods

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

Sampling Considerations

- Purpose
 - Nature of Investigation
 - Extent of Investigation
 - Potential Pathways
 - Drinking Water, Groundwater, Surface Water, Storm Water
 - Soil Movement

Sampling Considerations

- Locations
 - Historic Use Areas
 - Accident Areas
 - Storm Water
 - Movement of soils on property can create multiple locations

Sampling Considerations

- Procedures
 - Quantification levels how low?
 - How many compounds to sample for what method?
 - Cross contamination from decontamination water sample it before you use it
 - QA/QC, how about that QAPP?

Sampling Considerations

- Analytical Methods to Consider
 - EPA 537.1 and EPA Method 533 (Drinking Water)
 - LC MS/MS, Isotope Dilution Method (all other media)
- ASTM D7979 (water)
- ASTM D7968 (soil)
- DOD QSM 5.3 (QA protocol)

Michigan PFAS Groundwater Clean-up Criteria and Drinking Water Standards

Compound	Michigan Standards
PFNA	6 ppt
PFOA	8 ppt
PFOS	16 ppt
PFHxS	51 ppt
GenX (HFPO-DA)	370 ppt
PFBS	420 ppt
PFHxA	400,000 ppt

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

Michigan Airport Grants

- MI awarded grants to 19 airports in the fall 2020 to conduct testing at commercial services airport
- Up to \$250,000 grant per airport
- Two rounds (RFPs) were done to allocate the funds
- Grants had two conditions:
 - Had to submit Phase 1 results and proposed phase 2 plans to MDOT and EGLE for review/approval
 - Had to follow EGLE sampling protocols
- Grant funds were generally used for soil, groundwater, and storm water sampling on-site
- In some cases, EGLE sampled residential wells, groundwater, and surface water around the airports

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

On-Site Investigations

Michigan Airport Grants - Findings

- One entity did not follow all protocols used an untested hose for decon water
- Otherwise, having the 2 grant requirements worked well
- Recommend having a Phase 1 results call with the airport, contractor, remediation and water staff; discuss proposed phase 2 work, too
- If AFFF was used to fight a fire/accident, for training or testing, or was spilled, you can expect to find it in soil, groundwater or surface water

Michigan Airport Grants - Findings

- Highest groundwater result was 730,000 ppt PFOS
- Highest storm water result was 9,100 ppt PFOS
- Surface water sampling was done by EGLE staff near many of the 19 airports
- EGLE sampled res wells adjacent to all of these airports if any were found to exist after reviewing res well data in a state-wide database and in consult with the local Health Department
- DHHS and local health lead the health response (notifications, bottled water, filter units) for res well sampling

Off-Site Investigations

Next Steps

- Airport grants need to be finished by early spring 2021
- Airports will have ongoing obligations to delineate plumes, address storm water issues per any storm water permits, and conduct interim responses/remediation efforts

MICHIGAN PFAS ACTION RESPONSE TEAM (MPART) www.Michigan.gov/PfasResponse

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

Progress in Enhancing Performance of PFAS-free Foams (PFFs) against Military Specification Criteria

Dr. Satya P. Chauhan Senior Program Director Chauhan@Battelle.org

Presented to Wisconsin Dept. of Natural Resources October 15,2021

- SERDP and ESTCP R&D program on replacing AFFF for military applications
- Objectives of ESTCP-funded Battelle Projects
- PFF products and vendors
- Results for environmental, corrosion, and other properties
- Selected technologies to enhance firefighting performance
 - Compressed Air Foam (CAF); Ultra High Pressure (UHP); Additives
- Firefighting performance data
- Key points and future plans

SERDP and ESTCP Programs on AFFF Replacement for Firefighting

- SERDP is supporting R&D on emerging PFFs that have better firefighting performance than COTS PFFs
 - Initiated evaluation of toxicity of COTS and emerging PFFs
 - Just initiated R&D program to develop functional additives to enhance performance of PFFs
- ESTCP is funding validation testing of COTS and maturing PFFs as well as alternative foam delivery technologies
- Supporting compliance with NDAA of FY20
 - Prohibition on use of AFFF for on-shore use beginning Oct 1, 2024
 - Navy to publish new Mil-Spec for PFFs by Jan 31, 2023 and ensure that such agents are available no later than Oct 1, 2023

Objectives of Battelle's Projects

- Assessment, optimization, and demonstration of 16+ mature PFFs against MIL-PRF-24385F
- Assessment including
 - Environmental (LC₅₀, IC₂₅)
 - Corrosivity
 - Fire Performance (extinguishment time and burnback time)

- Optimization of PFFs using commonly available technologies
 - Compressed Air Foam (CAF)
 - Ultra-high Pressure (UHP)
- Demonstration/Validation against military relevant firefighting scenarios
- Technology Transition

ORCE CIVIL ENGINEER CEN

Candidate PFF Product and Vendor Names

WP19-5299 ESTCP Project	WP20-5335 ESTCP Project
Enviro USP 2-3%/ Fomtec®	Phos-Chek® FF 1%/ Phos-Chek®
Re-Healing™ 3%/ Solberg	Ecopol Premium/ BioEx
Phos-Chek® FF 3-6%/ Phos-Chek®	Novel foam/ BioEx
Ecopol A and Ecopol A+/ BioEx	Pyrocool®/ Pyrocool
FireAde®/ Fire Service Plus	FireBull/ Fire Service Plus
Avio® Green (Jet Foam)/National Foam (Jet/Angus)	GFFF/ Green Fire
Universal Green/ National Foam	Avigard/ Solberg
Novacool UEF/ Novacool	FT Slam/ Fire Terminator

Performance Objectives

Performance Objective	Data Requirements	Success Criteria	Success Criteria Achieved?		
Quantitative Performance Objectives (Laboratory-based Mil-Spec Testing)					
Corrosion	As described in MIL-PRF- 24385F	 Corrosion rates for 4 substrates 	 3 PFFs passed all 3 PFFs with partial failures More being tested 		
Environmental Impact	 LC₅₀ /IC₂₅ Ultimate Biological Oxygen Demand (BOD₂₀) Chemical Oxygen Demand (COD) 	• $LC_{50} > 500 \frac{mg}{L}$ • $\frac{BOD_{20}}{COD} < 0.65$ • $COD < 1,000k \frac{mg}{L}$	 No PFF passes C6 AFFF does not pass BOD₂₀/COD BOD and COD complete for 13/16 products 		
Other Physical Properties	 Viscosity Refractive Index pH Spreading coefficient (surface and interfacial tension) 	 Viscosity(25°C) > 2 cSt Viscosity(5°C) < 20 cSt Refractive Index > 1.3630 pH (7.0-8.5) Spreading Coeff > 3 	 No PFF meets all requirements; all fail spreading coefficient Some PFFs are highly non-Newtonian Complete for 13 of 16 products 		

Environmental Impact

- LC_{50} and IC_{25} data obtained for fathead minnows
- LC₅₀ for as-rec'd PFFs is 50-100 mg/L (EPA Tox Category: Slightly Toxic)
 - As-delivered foam value is 1,500-3,000 mg/L
- All PFFs fall below the 0.65 BOD20/COD spec (typically 0.3-0.4)
- All PFFs pass the COD requirement of <1,000,000 mg/L

[1] Schaefer, T. (2013). *Aquatic Impact of Firefighting Foams* [White paper]. Retrieved January 23, 2020 from Solberg Foam: <u>https://www.solbergfoam.com/getattachment/b1698ff8-e0f5-4e09-b3ac-426a59c4bb7e/WP-Aquatic-Impact-of-AFFF-F-2012007.aspx</u>

Corrosion and Various Physical Properties

- MIL-SPEC corrosion testing to date indicates that the primary concern is with failures for the C70600 Cu-Ni coupons for several PFFs
 - Diluted 10% by volume in seawater; metal coupons submerged for 60 days
- Some products marginally failed specs for physical properties like pH and refractive index, but these have no bearing on fire performance
- No PFFs have a positive spreading coefficient or exhibit inherent film-forming behavior; values are 0.0 to minus 5.0 <u>vs</u>. spec of ≥3.0.
- The Mil-Spec requires viscosity of ≥2 cp at 25°C which all PFFs meet
 - Some are highly non-Newtonian and far exceed the maximum spec viscosity of 20 cp at 5°C

Firefighting Performance Objectives

Performance Objective	Data Requirements	Success Criteria	Success Criteria Achieved?			
Quantitative Performance Objectives (28-ft ² Mil-Spec, Gasoline Fires)						
Foamability/Drain Time	As described n MIL-PRF- 24385F	 25% foam drain time ≥150 s Foam expansion ≥5 	• Yes			
90% Control	Heat Flux	• NA	• NA			
Fire Extinguishment	Stopwatch	 Extinguishment time ≤30 s 	• No			
Burnback/Cold Burnback	StopwatchHeat flux	• Burnback time ≥360 s	 Yes for 5 of 7 PFFs Yes for 1 other with CAF only 			
Qualitative Performance Objectives (20-ft diameter and 91-ft Diameter Fuel Fires)						
Handling/usability	Testing notes	Fire control and extinguishment	Yes for 20-ft diameter			

CAF vs. Air-aspirated Foam

- More uniform bubble distribution influences foam stability
 - Measured by 25% drain time

Laundess, A. J., et.al., Fire Technology, 47(1), 149-162

Site Description-SKY X Fire Hanger

- AFCEC/Tyndall AFB
 - Located near Panama City, FL
- Mil-Spec Fire Testing
 - 28-ft² fires

Extinguishment Time vs. Foam Delivery Method – E10 Gas

 Average reduction of 47% in extinguishment time with CAF

Extinguishment Time vs. Foam Expansion Ratio – Ethanol-free Gas

 Average 39% decrease in extinguishment time; optimum near foam Expansion Ratio (ER) of 12

Extinguishment Time– E-free Gas at Optimum Foam Expansion Ratio of 12

• Average ~20 seconds (40%) reduction in extinguishment time (25% w/o PFF 9)

Burnback Time for WP20 PFFs – E-free Gas

- Average 100% increase in burnback time
- All CAF data at optimum ER of 12

Extinguishment time – E-free Gas vs. Jet A Fuel

 Extinguishment time for Jet A fire is about 27% lower than for E-Free gas with CAF at ER 15

Mil-Spec-scale Testing Summary for PFFs Selected for Large-scale Fire Testing

Product	Mil-Spec Extinguishment	Mil-Spec Burnback	Optimum CAF Extinguishment	Optimum CAF Burnback
PFF 4	58±7	226±4	50±3	407±26
PFF 6	73±3	565±25	46±7	1088±54
PFF 7	92±5	308±20	46±3	755±32
PFF 8.2	62±8	195±10	46±0	451±26
PFF 12	195±65	198±44	54±.7	Pending
PFF 15	78±14	262±15	49±4	586±29

Site Description-Silver Flag Training Site

- AFCEC/Tyndall AFB
 - Located near Panama City, FL
- Large Fire Testing
 - 91-ft diameter (6,504-ft²) fire training pit
 - Outdoor facilities at Silver Flag training area
 - Home to RED HORSE (Air Force Rapid Engineer Deployable, Heavy Operational Repair Squadron)

Large-scale Fire performance- CAF at 454-ft² Fire Size

- Initial results with Jet-A fire (454-ft² at 0.053 gpm/ft² application rate)
 - PFF 8.2: 33, 32, and 33 seconds
 - PFF 6: 28, 26, and 28 seconds; compared to 35 seconds at 28-ft2

Ultra High Pressure (UHP) Technology

- Truck pressure 1100-1400 psi
 - Typically uses aspirating nozzle
- Reduces foam application rate
- Small droplet size enhances cooling effect
 - Can be combined with dry chemical to take out three sides of the "Fire Tetrahedron" at once to improve firefighting

Large-scale Fire performance- UHP

- A 454-ft² fire set up using a 24-ft diameter fire ring was set up and tested with a P-34 fire truck with UHP capability, using Jet-A fuel
 - The extinguishment times with PFF 8.2 were 44, 55, and 82 seconds, at an application rate of 0.030 gpm/ft² (42% of Mil-Spec application rate)
 - The results are encouraging, so we are continuing with testing other down-selected PFFs
 - Also plan to test using a smaller, 314-ft² size to achieve higher application rates, to see if the fire extinguishment time can be reduced

Key points

- No PFFs tested so far meet the Mil-Spec
 - Aquatic, acute toxicity EPA Category: "Slightly Toxic"
 - Viscosity of several leading products is very high; may require equipment changes to reduce handling problems
 - Some products have corrosivity concerns
- All fail fire extinguishment time requirements and a few fail burnback time requirement
 - Extinguishment times reduced with CAF by and average of 40+%
 - Burnback times increased with CAF by an average of 100+%, making several marginal PFFs meet the Mil-Spec
 - The top 3 products have very similar extinguishment times of ~45 seconds at optimum CAF conditions and near 30 seconds for Jet A (~35% lower)
- Six (6) PFFs have been down-selected for field-scale testing (PFFs 4, 6, 7, 8.2, 12, and 15), which have extinguishment times in 45-50 seconds range
- Scalability of CAF to 454-ft² size, for jet fuel, appears looks good so far

Remaining Testing

- Field-scale testing of CAF on 6 PFFs with Jet A at 6,504-ft² fire size
- Additional CAF testing at 314-ft² scale for 3 products @ 0.071 gpm/ft²
- Exploration of 2-3 newly-developed PFFs, selected from recent SERDP testing
- Further exploration of best way to utilize UHP benefits
 - A 314 ft2 (20-ft diameter fire ring) set up ready for testing with Efree gasoline
 - Need to test at higher than the 0.030 gpm/ft2 explored so far
- Dual-agent testing (PFF plus Purple K) at 314-ft² fire size with E-free gasoline

Acknowledgements

- Dr. Bridgett Ashley (co-PI); AFCEC/Tyndall AFB
- Dr. Heather Luckarift; Battelle
- Malena Maraviglia; Battelle
- Andrew McMeans; Battelle
- Steven Wells; Battelle
- Dr. Robin Nissan; SERDP/ESTCP

DNR Updates, Conclusions & Next Steps

WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV