Assessing Levels and Potential Health Effects of Endocrine Disrupting Chemicals in Groundwater Associated with Karst Areas in Northeast Wisconsin

> Angela Bauer, Ph.D. Professor, Human Biology and Environmental Science and Policy -and-

> > Michael Zorn, Ph.D.

Associate Professor, Natural and Applied Sciences, Chemistry, and Environmental Science and Policy

History of groundwater contamination in northeast Wisconsin

- Areas characterized by carbonate bedrock, shallow soil depths and karst features
- NEW Karst Task Force (2007) reports a significant proportion of wells contaminated by bacteria or high levels of nitrate (~30% in Brown and Calumet Counties)
- Linked to manure runoff, especially during spring thaw

Objectives of study:

- Assess whether the following contaminants are present in well water samples collected in NEW:
 - Bacteria (E. coli, total coliform, enterococci)
 - Nitrates
 - Endocrine disrupting contaminants (EDCs)
- Determine whether the presence of EDCs correlates with that of other contaminants
- Determine whether the presence of contaminants in well water correlates with season / recharge events

What are Endocrine Disrupting Chemicals (EDCs)?

- chemicals that interfere with the normal functioning of hormones in animals and humans
 - Source: animal waste, human waste, pesticides
 - potential mechanisms of action:
 - hormone mimicry
 - disturbance of hormone production and secretion
 - disruption of hormone receptors

Dutch, UWGB

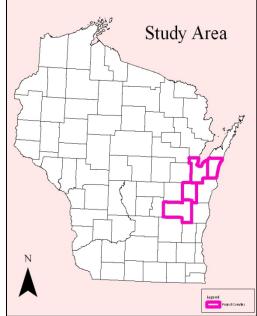
Possible EDC effects in humans

- overall lifetime exposure to estrogens correlates w/ increased risk of cancer in hormone-sensitive tissues
 - prostate cancer, testicular cancer, breast cancer
- developmental problems
 - abnormal development of male sex organs
 - reduced sperm count

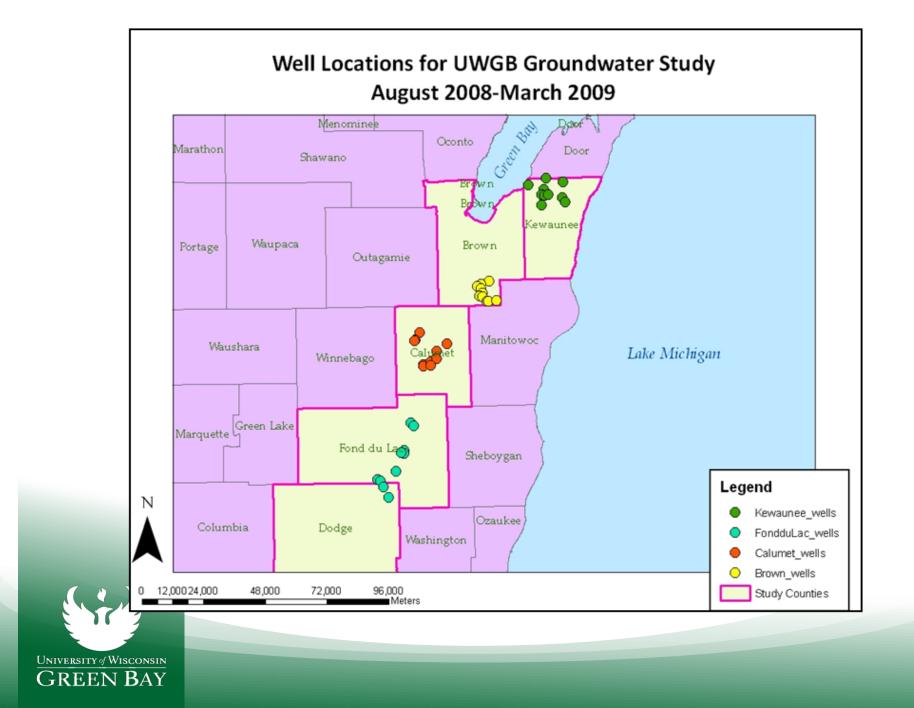
How do EDCs get into the water?

- Groundwater: infiltration of run-off into soils
 - stormwater run-off
 - agricultural run-off
 - Synthetic or endogenous hormones
 - Pesticides
 - Leaky septic tanks, landfills

Cattle given estradiol as a growth hormone: Urine 5-6 x normal concentration of estradiol!


Study Area

- northeast Wisconsin
 - Brown, Calumet, Fond du Lac, &


Kewaunee

UNIVERSITY OF WISCONSIN

- carbonate bedrock, shallow soil depths
 - limestone dissolution \rightarrow karst features
 - sinkholes, bedrock fractures
- heavy agriculture
- wells w/ past contamination
 - bacteria and nitrate
 - pharmaceuticals, hormones?

Methods

- 10 private wells from each county
 - 2 control
 - 8 susceptible
 - past results, shallow soils, shallow casing
 - Agricultural areas
- sample four times
 - August 08: summer low flow
 - November 08: low flow (no recharge events)
 - February 09: melting event
 - March 09: melting event
- collected by reps from county agencies & DNR

Methods

 bacteria → UW-Oshkosh Environmental Microbiology Lab

- **coliform:** surface water, soil, and fecal waste
 - safe levels: 0 coliform/100mL
 - Escherichia coli: fecal coliform
 - conclusive evidence of fecal contamination
 - enterococci: bacteria found in fecal waste
 - may be more reliable indicator than E. coli

Methods

- nitrate and EDCs analyzed in UWGB labs
 - nitrate: measured using Lachat QuickChem 8500 Flow Injection Analysis System
 - EDCs: organics extracted with a carbon disk
 - within 24 hours

 Wisconsin State Lab of Hygiene's protocol for the extraction of organic compounds from water

- Used to assess estrogenicity of samples
- Greater estrogenicity → faster proliferation of MCF7-BOS breast cancer cells
- Standard curve range: 0.05 pM 10,000 pM 17 β estradiol
- Samples:
 - 100-, 200-, 400-, 800-,
 1600-fold dilutions
 - Spikes, ICI antagonist, and blank samples included in each 24 well plate

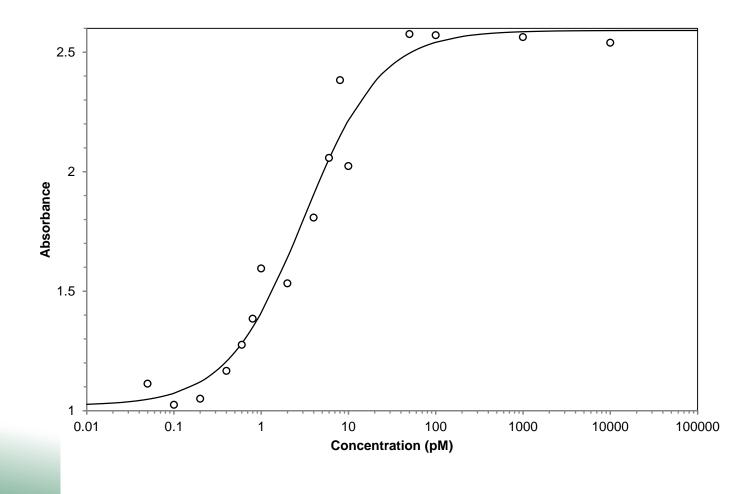


Table 1. Percentage of groundwater wells falling in different nitrate concentration ranges during each sampling period.

		Concentration (mg/L NO ₃ -N)					
Sampling Period	No. Wells Sampled	0 – 2	2 – 5	5 – 10	> 10		
1	40	17.5 %	7.5 %	20.0 %	55.0 %		
2	37	21.6 %	8.1 %	21.6 %	48.7 %		
3	39	18.0 %	12.8 %	18.0 %	51.3 %		
4	37	11.1 %	33.3 %	33.3 %	22.2 %		

Table 2: Percentage of groundwater wells with unsafe levels of coliform, enterococci, and *E. coli* during each sampling period.

Sampling			
Period	Coliform	E. Coli	Enterococci
1	62.5 %	12.5 %	27.5 %
2	40.5 %	2.7 %	10.8 %
3	59.0 %	7.7 %	29.7 %
4	64.9 %	27.0 %	46.0 %

Table 3: Percentage of sampled groundwater wells with detectable estradiol equivalents (EEq) in the E-screen assay during each sampling period.

Sampling Period	EEq Detections ^a
1	50.0 %
2	27.0 %
3	13.9 %
4	5.4 %

^a Limit of sensitivity = 1 pM EEq in sample extracts

Table 4: Summary of significant differences in averageconcentrations between sampling periods for susceptiblewell water samples measured in this study.

Sampling Periods

Parameter	1 and 2	1 and 3	1 and 4	2 and 3	2 and 4	3 and 4
Nitrate	-	-	1 > 4	-	-	-
Conductivity	-	-	1 > 4	-	2 > 4	-
Coliform	-	-	4 > 1	3 > 2	4 > 2	4 > 3
Enterococci	1 > 2	-	-	3 > 2	4 > 2	4 > 3
E. coli	-	-	4 > 1	-	4 > 2	-
E-screen	-	1 > 3	1 > 4	-	2 > 4	-

University of Wisconsin GREEN BAY

Health Implications

- No public health standard for Eeq
 - EPA screening program
 - Nano-molar range
 - Conservative value might be 1 ng/L
- One well tested above 1 ng/L in the E-screen
 - B12-2: 3.5 ng/L
 - BD in other periods
- Most wells tested well below this range
 - Anti-estrogenic effects?
 - Toxicity?

Conclusions

- Groundwater contamination with nitrate, bacteria and EDCs is a common problem in karst areas of NEW
- EDC contamination was greater during the months of August and November
- Bacterial contamination was greatest during the months of February and March
- No correlation exists between water quality parameters

