Mapping Infiltration Rates in Dane County, Wisconsin

Kathleen Arrington Steve Ventura University of Wisconsin-Madison

Wisconsin Groundwater Coordinating Council November 12, 2010, Madison WI

CONTENTS

Acknowledgments:

 United States Geological Survey
 Dane County

- Outline
 - The issue: groundwater recharge
 - Soil infiltration
 - Our research: goals and methods
 - Results
 - Mapping

Map courtesy of Steve Ventura

Lots of people = lots of water

Map courtesy of Steve Ventura

Causes of groundwater drawdown Pumping

- Loss of recharge
 - Development replaces pervious surfaces with impervious surfaces, which:
 - Reduces infiltration
 - Increases runoff

Mitigating loss of recharge Practices – – Infiltration basins

- Rain gardens
- Maintain soil capacity

Infiltration suitability

Figure 4. Runoff Fraction Under Different Development Scenarios. High infiltration capacity soil is modeled using SCS soil classification 'A' and low infiltration capacity soil is modeled using SCS soil classification 'D.'

Background – soil infiltration properties

Na

What determines infiltration rates?

- Soil properties
 - Texture
 - Structure- macropores and micropores
 - Other (?)

What determines infiltration rates?

- Soil properties
 - texture
 - structure- macropores and micropores
 - Other
 - topography
 - land cover

Infiltration over time

Infiltration over time

Comparing infiltration rates: saturated hydraulic conductivity (K_{sat})

- Key to identifying important recharge areas
- Calculated from steady-state infiltration rate (Reynolds, 1990)
- Accounts for differences in ponding depth and lateral flow

Modeling K_{sat} – pedotransfer functions (ptfs)

- Relationships between soil hydraulic properties (such as K_{sat}) and other soil properties:
 - Texture
 - Bulk density
 - Organic matter content

PTFs with non-soil inputs

Romano and Palladino (2002):

- Added topographic information to existing PTFs
- Slope and aspect improved some soil water retention predictions
- Sharma et al. (2006)
 - Created PTFs from local data: soils only and soils + topography, vegetation
 - Topography and vegetation generally improve soil water retention predictions
 - Improved resolution of prediction maps

Project goals

- Develop a database for Dane County of field measured infiltration rates, soil properties and non-soil properties (landcover, topography)
- Establish relationships between infiltration rates and soil and non-soil properties (PTFs)
- Create a county-wide map of relative infiltration rates

Why not use an existing model?

- Usually macropore flow is not considered
- Existing K_{sat} models only use soil properties as inputs
- Spatial resolution limited to detail of soil maps

Hypotheses

- Locally-developed PTFs will have lower prediction error than the following K_{sat} estimates:
 - Soil Survey (SSURGO, NASIS database)
 - Texture/porosity table (Rawls et al., 1998)
 - Rosetta (Schaap et al., 2001)
 - Kozeny-Carman (Ahuja et al., 1984; Rawls et al., 1998)
 - PALMS (Bonilla et al., 2008)

 PTFs that include non-soil properties will have lower prediction error than those based on soil properties alone

Methods

Na

"La

Na

7 11

Сc

Na

079F

Na

Soil samples:

- 4 depths (0, 15, 30, 45cm)
 - 2-3 replicates
- Analyzed for:
 - Organic matter (LOI)
 - Bulk density
 - Particle size distribution (hydrometer method)

Infiltration sites

Geologic Regions

Geology	Percentage of sites	Percentage of county
Driftless	51	20
Glacial Till	27	49
Glacial Outwash	12	ал 9 тр ¹⁰
Alluvial Deposits	Na	12
Lacustrine	6	. 7

Soils

- 25 different soil series
- 37 different soil map units- covering 47% of Dane County
- 11 of 12 soil textural classes

Percent of total samples/area

	Measured	NASIS	Measured	NASIS
Texture	0-30cm	Horizon 1	30-60cm	Horizon 2
Coarse	14	1 1	14	2
Medium	71	94	54	36
Fine	14	5	32	62

Landcover

Landcover category	Percent of sites	Percent of county area*
Forest	Na 16	14
Grassland/shrub	22	2
Developed	22	Na 13 Na
Pasture/hay	14	19
Cropland	26	46
Other (water, wetlands)	0	8

Na

*based on National Landcover Database (USGS, 2001)

aLa

Results

Na

=La

Na

7 13

Cc

"Na

079F

Na

Infiltration measurements

		Ksat (mm/hr)		Mea	sured	
		Rawls	Rawls		Ksat	Number of
Texture	Porosity	(98)*	(92)	PALMS	(mm/hr)*	sites
Sand	8.		210.0	210	360.1	2
	0.44	181.9				
	0.39	91.4				
Loamy sand	2		61.1	122.2	181.1	6
	0.49	123.0				
	0.39	41.4				
Sandy loam	-		25.9	103.6	60.9	6
carray roam	0.47	55.8	20.0	100.0	00.0	°
	0.37	12.8				
Loam	-	12.0	13.2	66	73 7	11
LUain	0.47	39	13.2	00	73.7	
	0.30	6.2				
Ciltian	0.39	0.2	6.0	47.0	60.0	44
Silt loam	-	111	0.8	47.0	60.0	11
	0.49	14.4				
Sandy alow	0.39	3.4				
Sandy clay	~		13	38.7		
IUan	0.11	77	4.0	50.7		
	0.44	2.0				
Claudaam	0.37	2.0	0.0	22.0	40.7	6
Clay loam	-	10	2.3	32.2	49.7	0
	0.48	4.2				
	0.4	0.7				
Silty clay loam	-		1.5	25.5	108.6	6
	0.5	3.7				
	0.43	4.9				
Sandy clay		1 Days	1.2	25.2		
	0.39	0.9				
Clay	-		0.6	24		
	0.48	2.0				
	0.4	1.8				
Silty clay	-		0.9	24.3		
	0.53	1.8				

079F

*Geometric means

7 11

K_{sat} by surface textural class

S=sand, LS=foamy sand, SII=sandy loam, L=loam, SiL=silt loam, SCL=sandy clay loam, CL=clay loam, SiCL= silty clay loam, SC=sandy clay, C=clay, and SiC=silty clay

K_{sat} by landcover

Possible models

	Model	Model	Model	Model	Model
Coefficient	1b	2a	2b	3 b	4b
Constant	5.55	5.87	7.4	5.5	5.74
Landcover	-0.364		-0.312	-0.351	-0.262
Ln (%sand:0-15cm)		1.19			
Bulk density: 0-15cm					
Bulk density: 15-30cm		-3.89	-1.48		-1.92
Textural class: 0-15cm				-0.276	-0.308
%Organic matter: 15-30cm				0.246	
Elevation					0.00362
2					
R^2 adjusted	0.18	0.21	0.212	0.29	0.33
AIC _c	7.85	9.02	8.81	8.68	9.69
0	man and				
1 1 m m m 1 s					
			MA		

How well do these and other models predict K_{sat}?

- RMSE = root mean squared error
- RMSE = $\sqrt{(\Sigma(Observed predicted)^2)}$ /number of observations)

Cross-validation

- Used to evaluate the prediction error of a model without an independent dataset
- Procedure:
 - Remove one observation
 - Develop model
 - Evaluate prediction error of removed observation
 - Repeat for all observations

Model comparison

Model	RMSE
Soil Survey estimate	1.63
Texture-porosity table	2.32
Kozeny-Carman equation	2.28
Rosetta	2.15
PALMS	1.19
Model 1b(landcover)	1.17
Model 2a (Ln(%sand-0to15cm), bulk density-15to30cm)	1.06
Model 2b (landcover, bulk density- 0to15cm)	1.06
Model 3b (textural class-0-15cm, %organic matter-15-30cm, landcover)	1.06
Model 4b (textural class-0-15cm, bulk density-15-30cm, landcover, elevation)	1.02

Infiltration Maps

Na

"La

079F

Na

Extrapolating results

- Data Sources:
 - SURGO map units (1:15,840) combined with representative values from NASIS database:
 - Percent sand (surface horizon)
 - Bulk density (surface horizon)
 - National Land Cover Database (NLCD) (USGS, 2001): 30m resolution

Verona: township: percent sand

Verona township: bulk density

Verona township: infiltration (soil property model)

Verona township: landcover

Verona township: infiltration (soil/landcover model)

3

Miles

2

Predicted infiltration: soil property model

Predicted infiltration: soil and landcover model

Percent of county area

		lodel
Infiltration Category	Soils only	Soils and landcover
Very low	14	14 *
Low	9	32
Medium	45	24
High	27	24 10
Very high	Na 7 PS	5
	2 12	
" "La	Ma	

Predicted infiltration: Soil Survey estimate

Map comparison

- Maps developed from PTFs have greater spatial detail and lower prediction error than Soil Survey K_{sat} estimates
- Soil/landcover map has greater spatial detail and slightly lower prediction error than soil property map

Potential uses

- Maps suitable for township or watershedbased planning – e.g., identify areas of towns important for recharge
- Limited utility at finer scales due to significant prediction error, but can raise awareness of site considerations
- Stormwater management practice siting and design still require site-specific measurements

Conclusions

- Infiltration measurements are consistent with PALMS, higher than other estimates
- Local PTFs have significant prediction error, but lower than other K_{sat} estimates
- Landcover slightly improves K_{sat} predictions and increases spatial resolution of predictive maps
- Relative infiltration maps suitable for township or watershed-scale planning

Questions?

Na

Steve Ventura (608)262-6416 sventura@wisc.edu

COLLEGE OF AGRICULTURAL & LIFE SCIENCES University of Wisconsin-Madison

Acknowledgements:

- Committee members: Steve Ventura, John Norman, Nick Balster, Ken Potter, Anita Thompson, and Cindy Stiles
- Field/lab assistants: Terri Emond, Sam Eldred, Samuel Freitag
- Training: Brian Lepore, Ana Wells, Marie Johnston
- Statistics consulting: Jun Zhu
- Extra field help: Nina Trautmann, Becky Carvin, Jeremiah Yahn
- Mapping feedback: Jeremy Balousek, Michelle Richardson, Kevin Connors, Josh Harder, Mike Kakuska, Dave Hart
- Child care: Tom, Tommy and Robyn Maher, Joanne Cahill, Brett Czerwonka, Page Pisapia