LEAD AND COPPER RULE Understanding Test Results and Calculating the $90^{\text {th }}$ Percentile

- Lead and copper analytical results are evaluated against an Action Level, not an MCL.
- When the concentration in more than 10 percent of tap water samples collected during any monitoring period is greater than the Action Level, your system has an Action Level Exceedance, and will need to notify consumers of the health risks associated with lead and copper in drinking water.
- Your system is in compliance with the Lead and Copper Rule when the 90-percent value of the samples collected are less than or equal to the Action Level for lead or copper.
- The Action Level for lead is $15 \mu \mathrm{~g} / \mathrm{L}$
- The Action Level for Copper is $1300 \mu \mathrm{~g} / \mathrm{L}$
- In order to determine compliance, calculate the $90^{\text {th }}$ percentile lead and copper values for samples collected within your system, and compare them back to lead and copper Action Levels.

CALCULATING COMPLIANCE

1.) Place samples in ascending order from the lowest concentration to the highest concentration. Be sure to assess compliance for lead and copper samples separately.
2.) Assign each sample a number, with the sample having the lowest concentration being number 1 .
3.) Multiply the number of samples taken by 0.9 ; the resultant number correlates to the lead or copper value that represents the $90^{\text {th }}$ percentile (EX: if you collect 60 samples, the value of lead or copper of the $54^{\text {th }}$ sample is the $90^{\text {th }}$ percentile. $60 \times 0.9=54$).
4.) If the $90^{\text {th }}$ percentile value is greater than the Action Level, you will be contacted by your DNR Representative, and be instructed to conduct additional activities to determine compliance with the Lead and Copper Rule.
5.) For public water systems sampling at less than 10 locations, the $90^{\text {th }}$ percentile is found by averaging the two highest concentrations.
6.) DON'T FORGET to notify customers of lead and copper sample results REGARDLESS of $90^{\text {th }}$ percentile results.

EXAMPLE CALCULATIONS:

Example 1	
Samples	Lead Results ($\mathrm{\mu g} / \mathrm{L})$
1	0.72
2	0.98
3	1.4
4	2.4
5	3.6
6	6.9
7	9.2
8	12.3
$\mathbf{9}$	$\mathbf{1 8 . 6}$
10	21.7

Example 2	
Samples	Copper Results ($\boldsymbol{\mu g} / \mathbf{L})$
1	10
2	91
3	888
4	1000
5	$\mathbf{1 1 0 0}$

Example 1 - Calculating Lead $90^{\text {th }}$ Percentile Value:

- 10 samples $\times 0.9=9$; the $9^{\text {th }}$ sample is the $90^{\text {th }}$ percentile value for the entire sample set
- The $90^{\text {th }}$ percentile is $18.6 \mu \mathrm{~g} / \mathrm{L}$
- The $90^{\text {th }}$ percentile is $>$ Action Level
- Inform consumers of the health risks associated with lead in drinking water
- Your DNR Representative will contact you and you will be instructed to conduct additional monitoring activities to determine compliance with the Lead and Copper Rule

Example 2 - Calculating Copper $90^{\text {th }}$ Percentile Value:

- 5 samples = less than ten sampling locations (see 6.) above)
- Average two highest concentrations = samples 4 and 5

$$
\text { - }(1000+1100) / 2=1050 \mu \mathrm{~g} / \mathrm{L}
$$

- The $90^{\text {th }}$ percentile is $1050 \mu \mathrm{~g} / \mathrm{L}$
- The $90^{\text {th }}$ percentile is <Action Level
- System is in compliance until the next round of applicable monitoring

LEAD AND COPPER RULE Understanding Test Results and Calculating the $90^{\text {th }}$ Percentile

LEAD SAMPLE RESULTS IN ASCENDING ORDER (LOW TO HIGH)	
Sample Number	Sample Result

COPPER SAMPLE RESULTS IN ASCENDING ORDER (LOW TO HIGH)	
Sample Number	Sample Result

