The Fundamentals of Chlorine Chemistry and Disinfection

December 2007

George Bowman,
The Wisconsin State Lab of Hygiene
and
Rick Mealy,
The Wisconsin Dept. of Natural Resources

How do you respond to a water-related emergency?

...people reportedly becoming ill

...suspicion is it might be the water

...it could be a bacterial illness

...or it might be viral in nature

How do you respond?

"Nooooo!"

is NOT an acceptable response

"The best defense is a good offense."

heavyweight champion Jack Dempsey

How effective is chlorine?

- ☐ We need a measure to gauge the killing power
- ☐ The measure commonly used is the "CT" value for any particular agent
- ☐ "CT" stands for Concentration x Time
- ☐ Concentration is in ppm (parts per million)
- ☐ Time is in minutes
- ☐ A CT value of 10 could mean
 - \triangle Exposure to 10 ppm for 1.0 minute (10 x 1 = 10)
 - \triangle Exposure to 1.0 ppm for 10 minutes (1 x 10 = 10)
 - \triangle Exposure to 2.0 ppm for 5 minutes (2 x 5 = 10)
- ☐ The lower the CT value, the more effective the killing agent is

Effect of Cl₂ on E.coli

- Recent study on effect of chlorine on E. coli
- Tested 6 strains of O157:H7 at 4 Cl₂ levels
 - № 0.25 mg/L
 - § 0.5 mg/L
 - [№] 1.0 mg/L

X 0 0.5 1 and 2 mins contact time

- 5/6 isolates + E. coli control strain were highly susceptible to chlorine
- >7 log10 reduction of each of these strains by <u>0.25 mg/L</u> free chlorine <u>within 1 min (CT value = 0.25)</u>

Each " \log_{10} " = 90% reduction; 4 \log_{10} = 99.99% reduction SDWA requires 4 \log reduction

OK, chlorine works, but how? and why?

Chlorine gas rapidly hydrolyzes to hypochlorous acid : $Cl_2 + H_2O \rightarrow HOCI + H^+ + CI^-$

Aqueous solutions of sodium or calcium hypochlorite hydrolyze :

$$Ca(OCI)_2 + 2H_2O \rightarrow Ca^{2+} + 2HOCI + 2OH^-$$

NaOCI + $H_2O \rightarrow Na^+ + HOCI + OH^-$

The two chemical species formed by chlorine in water, hypochlorous acid (HOCI) and hypochlorite ion (OCI –) are commonly referred to as "free" or "available"

Hypochlorous acid is a weak acid and will disassociate:

In waters with pH between 6.5-8.5, the reaction is incomplete and both species (HOCl and OCl –) will be present.

Hypochlorous acid (HOCI) is the more (20x) germicidal form.

Effect of increasing bleach* concentration on pH of typical southwest WI well.					
Free Cl ₂ ppm	рН	% HOCI	% OCI-		
100	7.83	30%	70%		
200	8.33	10%	90%		
500	8.73	5%	95%		
1000	9.24	3%	97%	household bleach: HOCI FAC H. HOCI of FAC	
2000	9.57	2%	98%	usehold	
		_,,	uce of	hous HOCI of FAC	
			Ozy b	Ch, tiveness best	
			\\\	effective is the	
			-ch'	lorine s	
1000 9.24 3% 97% 2000 9.57 2% 98% Use of household bleach. Thorine gas is the best chlorine gas in the best chlorin					
*Household bleach = 5.25% available chlorine					

What are chloramines? How do they affect disinfection?

a) At pHs < 8, significant levels of HOCl are present

b) If NH₃ is present, HOCl will react to form one of 3 chloramines depending on pH, temperature, & reaction time.

Monochloramine: (stinky)

2NH₃ + 2HOCl **Ψ** 2NH₂Cl + 2H₂O

Dichloramine: (stinkier)

2NH₂CI + 2HOCI **Ψ** 2NHCl₂ + 2H₂O

Trichloramine: (stinkiest!)

c) additional free chlorine + chloramine ⇒ H+, H₂O , and N₂ gas which will come out of solution.

Chloramines: effective vs. bacteria but NOT viruses.

Chlorine Disinfection: other concerns

Free Available Chlorine (FAC) is the major (disinfection agent)

"Demands" on chlorine

Instantaneous

If the water contains iron (Fe⁺²) and manganese (Mn⁺²), insoluble oxides are formed on introduction of chlorine

Intermediate

Reaction of chlorine with ammonia to form chloramines. This "combined chlorine" offers limited disinfection

Longer Term

Organic matter- chlorine is consumed during the oxidation process

BOTTOM LINE

Disinfection cannot proceed until the oxidant demand has been destroyed.

How do I know if I have "free" chlorine (FAC) needed for best disinfection?

☐ To have free available chlorine for disinfection you must be past the "breakpoint"
☐ Before the breakpoint, chlorine is used up by inorganics (oxidizing Fe, Mn to chloride) and organics (chloramine formation) in the system
■ Beyond breakpoint, every ppm of chlorine added to the system is measured as FREE chlorine
☐ "Shock" chlorination is another rapid way to ensure the presence of significant FAC.

Ensuring you are at Breakpoint

- Measure Free and Total chlorine
- Bump up chlorinator to increase chlorine dose a certain known amount
- On the following day, re-test Free and Total chlorine.
- If Total increases but Free does not, you are NOT at breakpoint.
- Repeat process until both Total and Free chlorine increase similarly upon adjustment

Why Breakpoint Chlorination?

- Recommended deterrent to bioterrorism
 - 2 of the DNR's "16 recommendations" for reducing risk relate to chlorination
 - Many biotoxins can be inactivated by proper disinfection with "free" chlorine.
- Public protection
 - Remember the Walkerton, Ontario outbreak (May 2000) of E. coli O157:H7
- Liability protection for your water utility.
 - illnesses... loss of life
 attorneys... litigation...

Can you have too much chlorine?

Chlorine is a health concern at certain levels of exposure. Drinking water containing chlorine in excess of standards:

- potential for irritating effects to eyes and nasal passages.
- potential for stomach discomfort.

Disinfection ByProducts Rule (FR 12/16/98)

Maximum Residual Disinfection Level (MRDL): **4.0 mg/L**Compliance is based on an <u>annual average</u>.

(this allows the residual to be substantially increased on a short term basis such as would be required to deal with a known or suspected act of chemical/ bio-terrorism)

Little or no risk with drinking water that meets the USEPA MRDL and should be considered safe with respect to chlorine.

pH & disinfection (chlorine): What you need to know

- 1. The best disinfection occurs at lower pH.
- If you have high alkalinity and high pH (> 8) consider longer chlorine contact time due to reduced efficiency of the hypochlorite form.
- Chlorine (hypochlorite) is a strong base. Therefore, in a low alkalinity system, be wary of pH changes with chlorination.

Chlorination Alternatives

- Chloramination
- UV
- Ozone
- Chlorine Dioxide
- Bromination

Chloramines as a disinfectant

- Addition of ammonia (NH₃) and chlorine (Cl₂) compounds separately. Compounds typically used:
 - Anhydrous ammonia
 - Hypochlorous acid (HOCI)
- Ammonia is applied <u>first</u> because it tends to prevent formation of trichloramine (chlorinous odor and taste)
- Adding ammonia first also prevents the formation of THMs.
- Target ratio: 3:1 HOCl to NH₃ produces the best tasting water

Chloramines as a disinfectant

- Reactions
 - Monochloramine: NH₃ + Cl₂ = NH₂Cl + HCl
 - Dichloramine: NH₃ + 2Cl₂ = NHCl₂ + 2HCl
 - Trichloramine: NH₃ + 3Cl₂ = NCl₃ + 3HCl
 pH control is key to successful chloramination in PWS

(Note for breakpoint chlorination): To eliminate NH₃ in drinking water using the breakpoint process, (e.g., surface water supply) chlorine is fed at a ratio of 10-12 to 1 to the ammonia level.

 When chloramines are used, the distribution system must be continually monitored for mono- and dichloramine residuals and DO. Total chlorine is not enough.

Chloramination: potential problems

- Adding NH₃ may compromise water quality at the tap
- Should the residual chloramine be depleted in the distribution system, serious dead-end problems can result.
- Nitrification can occur.
- Residual chloramines can pass through RO membranes on dialysis machines which can cause damage to red blood cells.
- Chloramines are toxic to aquatic life in aquariums.
- Requires longer contact time to be an effective germicidal agent.
- The process is complex, requires careful control and continual monitoring.
- Taste and odor problems can occur

Chloramines as a disinfectant

Taste and odor threshold concentrations:

Free chlorine (HOCl): 20 mg/L

Monochloramine (NH₂CI): 5.0 mg/L

Dichloramine (NHCl₂): 0.8 mg/L

• Trichloramine (NCl₃): 0.02 mg/L

Disinfection Techniques Summary

- Chlorine in very low doses and minimal contact time can easily kill even the most heinous of bacteria (E. coli O157:H7)
- Some of the alternative disnfection techniques CAN provide superior disinfection to chlorine, but there are cost and maintenance issues to consider
- Many alternative techniques still require post-chlorination to meet NR 809 requirements.

Final Thoughts

The best defense to provide continual protection of public health...

- ...if possible, practice breakpoint chlorination
- ...test for and maintain a FAC residual of 0.5 ppm throughout the system
- ...remember that disinfection is based on "CT" ...
 - Concentration (ppm)
 - ★ Contact Time (minutes)
- ...regardless of whether you use chlorine or chloramination, control of pH is absolutely critical

Questions?

Rick Mealy

(608) 264-6006 richard.mealy@Wisconsin.gov

Wisconsin DNR PO Box 7921 Madison, WI 53707

George Bowman

(608) 224-6279 gtb@mail.slh.wisc.edu

State Laboratory of Hygiene 2601 Agriculture Drive Madison, WI 53718

State Lab web address: http://www.slh.wisc.edu/outreach/ LabCert web address:

http://www.dnr.state.wi.us/org/es/science/lc/

Periodic Table - Halogen sequence

Those elements in the same column share similar properties, thus we can expect Bromine and lodine to have some disinfectant capability.

As one moves downward through a column, molecular weight increases increasing toxicity potential.

[Notice the proximity of Iodine (I)to toxic heavy metals such as antimony (Sb) and lead (Pb)]

Bromine & Iodine Disinfection

Bromine

 $H_2O + Br_2 \Rightarrow H^+ + Br^- + HOBr$

- Major difference (vs. Cl2): effectiveness starts dropping at pH 8.5
- Does form bromamines...as effective as HOBr
- Bromine is relatively scarce, making it more expensive choice
- Bromine is more physiologically active thus its use is limited.

lodine

 $H_2O + I_2 \Rightarrow H^+I^- + HOI$

- Effectiveness NOT affected by pH
- Does NOT react with ammonia (no Iodamines)
- lodine is very scarce, making it a very expensive choice
- lodine is extremely physiologically active (i.e., thyroid gland)...thus its use is limited.

Chlorine Dioxide Disinfection

Initially used at Niagara Falls water utility (ca. 1944) for taste & odor control.

Produced by reacting sodium chlorite with chlorine or an acid.

Advantages

- Strong disinfectant
- Does NOT produce THMs
- •effective vs. Cryptosporidium & Giardia
- weakens organism allowing chlorine to work

DIS-Advantages

- Relatively expensive to generate; explosive above 10%
- •Unstable--reverts to chlorite & chlorate (other DBPs)

Ozone Disinfection

- 3 O₂ ⇐⇒ 2 O_{3 (ozone)}
- $O_3 \rightarrow O_2 + O_{\text{oxygen radical}}$
- Bugs killed immediately upon contact (cell rupture)
- Oxygen radical apparently is the actual cause
- strongest disinfectant used in water treatment
- effectiveness unimpaired by NH₃ or pH
- leaves DO in its wake
- Must be generated on-site
- no residual
- difficult to adjust to differing demand
- expensive

Ozone - Advantages & Disadvantages

ADVANTAGES

- Strong oxidizing power + short contact time = effective kill of bugs & viruses in seconds;
- Produces no taste or odor;
- Provides oxygen to the water after disinfecting;
- Requires no chemicals;
- · Oxidizes iron and manganese;
- Destroys and removes algae;
- Reacts with and removes all organic matter;
- Decays rapidly in water, avoiding any undesirable residual effects;
- Removes color, taste, and odor;
- · Aids coagulation.

DIS-ADVANTAGES

- Toxicity \(\bar{\pi} \) with concentration and exposure time;
- Cost is > chlorination;
- Installation can be complicated;
- Ozone-destroying device is required at the exhaust
- May produce undesirable aldehydes and ketones by reacting with certain organics;
- No residual in distribution system,
 ∴post-chlorination is required;
- Much less soluble in water than chlorine; thus special mixing devices are necessary; and
- Oxidizes some refractory organics either too slowly or not at all to be of practical significance.

UV Disinfection

- Kill bugs by oxidizing their enzymes and destroying genetic material
- Most effective wavelength is 2,650 Angstroms(Å) (anything less than 3,100 is effective)
- ♣ Mercury vapor lamp is economical, produces 2.537 Å
- Water needs to be clear/colorless and shallow (3-5" deep)
- No residual effect
- Cost is high

