ABSTRACT

Hemlock was once thought to be a declining species in the northern forests as a result of factors inherent in forest communities. Recent studies have shown that without high deer populations, hemlock communities are stable entities and that hemlock growing on podzolized soils will be present in the terminal forests.

In northern Wisconsin's original forests, deer populations averaged less than 10 deer/mile² and hemlock dominated various areas by the strategy of: (1) extreme shade tolerance, slow growth, site deterioration, and extreme age; and (2) as a result of periodic catastrophic events. The absence of seedling hemlock has been blamed on deer browsing, when poor seedbeds and dense overstories may be the causal factors.

A management strategy based on a shelterwood system of cutting may solve the problems of the initial establishment of hemlock seedlings and eventually enable hemlock to grow beyond the reach of white-tailed deer.
INTRODUCTION

Most of the forest management techniques used to promote forest wildlife are logical outgrowths of sound timber management. The clearcutting of aspen, white birch, and spruce-fir types benefits forest game species and provides a sustained yield of forest products. Wildlife managers recognize that forest types such as northern white-cedar and hemlock are key ingredients of the winter range of deer in north central Wisconsin. Ecologists consider these forest types a valuable component of the forest system. However, both cedar and hemlock are slow growing, relatively uneconomical trees, and are not regenerating across most of Wisconsin's northern forest. This presents land managers with a dilemma. Sound wildlife management dictates maintenance of these forest types while sound forest management dictates conversion to faster-growing more economical timber types.

ECOLOGY

A hemlock stand is defined as a stand composed of: (1) white pine and hemlock which are predominant in mixture, (2) hemlock which is pure or dominant over any single associate, and/or (3) hemlock and yellow birch which are predominant in mixture.

Hemlock is a major component of three Society of American Foresters' (1975) forest types in Wisconsin: White Pine-Hemlock (Type 22), Hemlock (Type 23), and Hemlock-Yellow Birch (Type 24). It also occurs in ten other forest types in the Lake States (Fowells 1965).

Hemlock's main range in Wisconsin is in the northeast and north central portions of the state. It extends west to Bayfield, Rusk and Clark Counties and south to Marathon, Shawano, Brown, and Manitowoc Counties (Goder 1961). Isolated stands are found in Douglas and Washburn Counties and on steep north-facing hills and cliffs in southwestern Wisconsin (Iowa, Sauk, Grant and Richland Counties). Hemlock reaches the western limits of its range in isolated stands in northeastern Minnesota (Fowells 1965).

Flaccus and Ohmann (1964) indicated that the dropping out of hemlock and yellow birch as one proceeds westward from north central Wisconsin is associated with decline in effectiveness of precipitation. They believed that discrete stands were able to exist beyond the species' main range because of past catastrophic events and because of site characteristics which compensate for the climatic changes.

Hemlock was a significant component of the northern mesic forests of Wisconsin prior to 1850 (Curtis 1959). Extensive logging followed by wildfires and land clearing resulted in massive conversion of hemlock-hardwood communities to second growth northern hardwoods or aspen-white birch.

Natural History of Hemlock Trees

Hemlock is a medium-sized tree which grows to a height of 100 ft. and a diameter of 30 in. Under favorable conditions, pure virgin stands attain yields of about 20,000 BF/acre (Wilde 1976).
Hemlock can grow in dense shade for 25 to 200 years, can grow rapidly once released (Frothingham 1915), and has a longevity potential of 600 years (Kozlowski 1971)—the record being 988 years (Fowells). Bourdeau and Laverick (1958) found the chlorophyll content in the sun needles of hemlock was about the same as that of shade needles in red and white pine. Hemlock trees of less than 1 in. diameter are sometimes over 100 years old and 2- to 3-in. saplings may be as much as 200 years old. One 10-in. tree in a dense virgin stand was 359 years old, while other trees of the same age but of dominant crown class were 24 to 36 in. in diameter (Fowells 1965).

Hemlock produces good seed crops in about two of every three years (Godman and Mattson 1976). As many as 13% million sound hemlock seeds/acre can be present in a good seed year (Davis and Hart 1961). There is, however, poor viability in Wisconsin with only approximately 25% of the seed crop capable of germinating. Dominant hemlock trees begin to bear viable seed at 30 to 50 years of age in fully stocked stands. Old-growth trees continue to produce viable seeds for up to 450 or more years (Fowells 1965). Hygroscopic cone scales and small seed size insure widespread dispersal.

Since hemlock seeds are relatively small, the radical has great difficulty penetrating even small thicknesses of forest litter and it is usually unable to penetrate a mat of sugar maple leaves or hemlock needles. Lutz (1930), Hough (1943), Potzger (1946), Stearns (1951), and Godman (1956) found that hemlock seedlings became established only on rotten fallen logs, stumps, or on ttip-up mounds. Moss-covered logs and stumps are organic sites that remain moist throughout the growing season and provide suitable seedbeds for germination and early seedling survival.

Germination occurs best at a temperature of 59°F on a mixed humus-mineral soil seedbed (Godman, pers. comm.). The vast majority of hemlock seeds do not germinate in Wisconsin because of various environmental conditions on the forest floor. If a seedling does germinate, it may be: (1) smothered by hardwood leaf fall, (2) desiccated during frequent hot, dry periods during the summer, (3) killed by damping-off (Rhizoctonia) or root-rot fungi, (4) eaten by mammals such as the red-backed vole, snowshoe hare, and the white-tailed deer, or (5) damaged by frost heaving.

Seedlings usually grow 1-2 in. the first year, reaching 10-20 in. in height after 4-7 years. Early seedling survival depends on consistent moisture in the upper soil horizons during the growing season, adequate light, and freedom from competition from other trees and shrubs. Dense understory growth of raspberries, mountain maple, red maple, or sugar maple inhibits hemlock seedlings growth.

Nature hemlock trees are resistant to fall frosts and put out shoot growth late in spring. The tree is usually shallow rooted and thus easily injured by drought, damage to the roots, sudden exposure after heavy logging, and windthrow. Windshake is present in most old growth stands. Hemlock trees are susceptible to heavy damage by the sap-sucker, the porcupine, and the hemlock borer. For a discussion of diseases and insect pests (of which there are few) see Baker (1972), Fowells (1965), and Hepting (1971). Hemlock is susceptible to spruce budworm, but only during very heavy infestations.

Natural History of Hemlock Communities

The hemlock community has been described both: (1) as a self-perpetuating community, and (2) as a long-lived seral community which gives way to a maple-basswood community. Brown and Curtis (1952) stated:

Tsuga is a tree which presents troubling problems that have provoked a great deal of research. Briefly stated these are: how does a stand of

Tsuga originate and is it self-perpetuating? According to Hough (1936) and Hough and Forbes (1943) Tsuga probably seeds best after a disaster. They found that in a large forest in northwestern Pennsylvania the Tsuga trees could be separated into definite age classes. If Tsuga were capable of becoming established under a mature forest canopy, the trees would be of all ages. Stearns (1951) made age determinations on many trees in Wisconsin and found that some had been suppressed for many years before finally gaining a place in the canopy, but that others started in the open. He found a suggestion of periodicity such as described by Hough. Lutz (1930) and Graham (1941) both felt that Tsuga was capable of self-perpetuation but Lutz did mention that in dense stands reproduction was scanty.

Because of the lack of hemlock reproduction in hemlock or hardwood forests, Brown and Curtis (1952) and Curtis (1959) believed that hemlock was not as tolerant as sugar maple and that hemlock forests would eventually be replaced by forests dominated by sugar maple.

McIntosh (1972) found that hemlock communities in the Catskill Mountains of New York began as nearly pure stands which slowly became mixed as northern hardwoods encroached on them.

Their long life span perpetuates these trees for extended periods, but in this they are analogous to pine-hardwood stands. It seems improbable that...climax forests of hemlock eventually break up and deteriorate, only to return once more, gradually as the dominant form of vegetation...as Langford and Buell
(1969) interpreting Hough and Forbes (1943) suggest, except as the result of periodic disturbance. Contrary to this view and to Martin's (1959) assertion that hemlock is the climax species and encroaches on hardwood forests, hemlock is not climax in the Catskills and gives no evidence of spreading effectively into hardwood forests at any altitude.

On the other hand, Goff (1967) studied the forests of the Menominee Indian Reservation in Wisconsin and concluded that hemlock communities were the terminal forests on stratified loamy sands and sandy loams, as well as on loams and shallow silt loams. He found an intimate relationship between surface organic soil horizons, particularly the litter layer, and tree species replacement patterns. The overstory tree species determined the nature of the soil surface organic layers with their annual increment to the litter, and by the degree of interception of atmospheric moisture. In hemlock communities there was a thick, acid mor litter layer under which the mineral soil became acid and low in nutrients and ion exchange capacity. Beneath a solid hemlock overstory, invading trees and shrubs were subjected to veritable desert conditions. This was in sharp contrast to the rich ephemeral ground layer in the maple-basswood forests of the silt loams.

Goff (1968) and Goff and Zedler (1972) studied the successional sequence of tree species on the Menominee Indian Reservation. They determined that the post-fire successional sequence on medium-textured soils progressed from aspen to white pine to hemlock to sugar maple and other tolerant hardwoods. They concluded that there was a relatively stable association of hemlock and yellow birch which occurred between the rich old growth maple-basswood forests and the lowland hardwoods. Hemlock was found to be a long-lived seral species on the deep silt loams, but was a member of the terminal forest on the sandy loams.

Hett and Loucks (1976) concluded that these cycles are inherent in the biological characteristics of the species expressed through systematic changes in forest structure over centuries. Thus, deviations from a negative exponential density-diameter curve in hemlock stands should not be interpreted as an unbalanced condition which needs to be altered through management. Hemlock-hardwood stands should be managed with silvicultural techniques (shelterwood) that duplicate and enhance natural processes. The use of an uneven-aged silvicultural system, in the presence of fire control and high deer populations, will result in the conversion of hemlock communities to maple communities.
Establishment Following Fire

There are conflicting opinions concerning the role of fire in the establishment of hemlock. Stearns (1949) studied an undisturbed hemlock-hardwood forest in Forest County, Wisconsin, and concluded that fire was rarely of much importance as the initial agent of catastrophe, although it often followed windfall. Stearns found that hot slash fires burned from the surrounding cutover lands to the edge of the old growth, but rarely penetrated more than a few rods.

Graham (1941) believed that fire played an important role in northern forests, but found that hemlock could reproduce without fire. He believed that no hemlock became established during dry years and that mass reproduction took place during a series of wet years. At other times, occasional trees in especially favorable spots gained a foothold. When fires occurred the older trees survived while the others perished. Repeatedly burned stands exhibited an even-aged structure. Graham admits that under certain conditions hemlock mass established after fire. Nevertheless, he maintained that hemlock was not a fire species and that it can and does reproduce on the forest floor.

Studies have shown, however, that many seedbeds suitable for hemlock regeneration were created through fire in northern Wisconsin (Maissurow 1941):

Of 1,722 reproduction plots studied, only 14 showed the presence of individual (hemlock) seedlings. Its reproduction, however, is often found on areas burned over, where it grows in association with paper birch, tolerant hardwoods, and softwoods.

The age structure of hemlock-hardwood stands is simple. Without a single exception, the stands are essentially even-aged, and contain a considerable admixture of white pine and even paper birch. Their fire origin is unquestionable. This is fully substantiated by the composition of young stands springing up on areas burned over and made up of hemlock overtopped by white birch or mixtures of hemlock with aspen, white birch, tolerant hardwoods, white spruce, and balsam.

Goff (1967) found that hemlock established in very high densities following surface fire beneath an intact overstory. He found a dense hemlock fire-fringe in many areas along the Shawano-Menominee County line where fire burned into the Menominee pine-hemlock stands from adjacent cutover areas. Trees of 1-6 in. dbh often exceed 1,000/acre in this fire fringe.

Miles and Smith (1960) studied three hemlock stands in Nova Scotia. They found that all three stands were essentially even-aged and all could be traced to major fires 70, 150, and 150+ years ago. They concluded that fire was a major factor in the development of even-aged hemlock stands in Nova Scotia.

In north central Wisconsin, examples of dense, fire-origin hemlock can be found in Section 12, T39N, R4E; Section 1, T38N, R9E; Sections 11 and 12, T35N, R9E (Oneida County); and Section 27, T34N, R10E (Langlade County).

Current Research

Godman (pers. comm.) is conducting research on optimum field germination temperatures of hemlock and associated species. He found that the measurements of surface soil temperatures correlate well with the presence and absence of hemlock according to the literature -- even though this factor was not inferred or considered by earlier investigators.

The current research on germination temperatures shows that hemlock germinates best at a temperature of 59°F. In contrast, sugar maple germinates best at 34°F, northern white-cedar at temperatures above 65°F with other species falling between these extremes. Yellow birch germinates best at temperatures similar to hemlock. Under field and stand conditions the problem is maintaining the optimum germination temperature for an adequate period to achieve germination. Scarification or burning results in a marked increase of surface soil temperature (closer to optimum for hemlock and yellow birch) that will occur earlier in the growing season when surface moisture conditions are more reliable.

This information infers that sugar maple is always present because it has a low germination temperature requirement rather than because of its tolerance. Hemlock and white-cedar are more tolerant than sugar maple, but have much higher germination temperature requirements that are seldom achieved in nature or by management. In addition, the often stated concept of "cool-moist" conditions for hemlock and yellow birch, since they occur on logs and stumps, may be a misinterpretation. Thermometers placed on stumps, logs and raised sites show consistently higher temperatures than the soil surface; thus, warm-moist conditions are indicated.

Browsing by White-tailed Deer

Many authors have studied the effect of deer browsing on the regeneration of hemlock-hardwood forests (DeBoer 1947, Swift 1948, Arbogast and Heinselman 1950, Graham 1954 and 1958, Dahlberg and Guettinger 1956, Stoeckeler et al. 1957, Beals 1960, and Hough 1965). These authors found that deer eliminated northern white cedar, hemlock, and ground hemlock understories, and caused heavy damage to sugar maple and other hardwoods. These findings have been confirmed by numerous field biologists and foresters.
In a recent study in northern Wisconsin, Anderson and Loucks (1977) very clearly stated that browsing by deer can have a significant effect on hemlock regeneration. They indicated that once heavily browsed, hemlock had little potential for regrowth. However, heavily browsed sugar maple seedlings readily resprouted and could easily outgrow deer browsing if given relief from browsing for a few years. The differential response of hemlock and sugar maple to browsing favored the success of sugar maple in the understory and the reduction of hemlock. They concluded that heavy browsing did cause the absence of hemlock reproduction observed by Stearns (1951), Brown and Curtis (1952), and Curtis (1959).

Anderson and Loucks studied hemlock regeneration in a deer enclosure on the Flambeau River State Forest, Sawyer County, Wisconsin. They found that upon removal of browsing pressure, hemlock seedlings became established, although it may take a century before an all-aged structure returns to the forest. Twelve years of protection from browsing resulted in recovery of only the seedling class. It is interesting that three other hemlock stands studied on the Flambeau River State Forest had no hemlock seedlings after four years of protection.

Godman (pers. comm.) has questioned the significance of deer browsing in inhibiting hemlock regeneration. He points out the absence of a heavily browsed hemlock seedling layer below the annual snow level. Godman believes a variety of environmental factors inhibit hemlock seedling establishment and where these limiting factors are absent a dense hemlock seedling layer can be established. Poor seedbed conditions may explain the absence of hemlock seedlings in some of the exclosures on the Flambeau River State Forest. Extensive studies by Godman and Krefting (1960), Tubbs (1960), Godman and Tubbs (1973), and Godman and Mattson (1976) on yellow birch showed that seedbed and canopy played a very important role in seedling establishment.

A hemlock stand in Section 4, T38N, R7E, Oneida County had, over a period of years, occasional sawtimber hemlock trees removed and had the understory duff and humus layers periodically removed by raking (used as mulch in a nearby nursery). These operations resulted in high canopy light penetration on a mineral soil seedbed. As a consequence, there are abundant hemlock seedlings and saplings in the treated areas in spite of a deer population of 20 to 25 deer/mile² of range.

On the Menominee and Lac du Flambeau Indian Reservations in Wisconsin, deer densities are in the range of 5-10 deer/mile² and many of the forests of these reservations contain an abundant hemlock seedling and sapling class. It seems, that when deer populations drop below 10 deer/mile², hemlock will very slowly establish itself provided that seedbed, moisture, and temperature are conducive to the germination, establishment, and growth of hemlock.

In Wisconsin, it is evident that deer have had a severe effect on hemlock seedlings and saplings from the early 1930's to the present. Most studies of deer damage to forest reproduction were conducted during this period which coincided with deep populations of from 25 to over 40 deer/mile² of range. Such high deer populations eliminate understory hemlock and enable sugar maple to dominate.

STATUS OF HEMLOCK--1979

Hemlock stands make up only one-half of one percent of the 1.3 million acres of public forest lands in north central Wisconsin. This is, at most, 6,412 acres (Table 1). Many of these hemlock stands are in poor condition because of heavy cutting and hardwood invasion, but other stands are in good condition and can be maintained for very long periods (Table 2). Characteristically, there are no hemlock seedlings or saplings in the present hemlock stands. A heavy understory of sugar maple, red maple, mountain maple, and raspberries exists in most disturbed hemlock stands. Consequently, once the overstory hemlock is removed, the understory red maple and sugar maple dominate the site and the hemlock type is lost. The use of northern hardwood management guides in hemlock stands and high deer populations have resulted in the degradation of hemlock stands.

Approximately 20 million BF of saw timber hemlock for industrial roundwood is harvested in Wisconsin each year (Blyth et al. 1976). During the 1970's, large volumes of hemlock were removed from the Wisconsin Trust Land holdings in northeastern Wisconsin in an effort to convert to northern hardwoods. National, state, and county foresters selectively thinned hemlock stands on public forest lands for many years. This resulted in the gradual conversion to hardwoods. In the past, the Eagle River Ranger District (Nicolet National Forest) removed large volumes of hemlock. Some old growth hemlock stands were clearcut and the hemlock component of hardwood stands was systematically removed. The Northern Highland-American Legion State Forest continues a selective harvest in hemlock stands under a "Big Tree Silviculture" program. The Oneida, Lincoln and Langlade County forests cut hemlock on a very limited basis.

The major industrial forests with significant stands of hemlock are the Connor Lumber Company of Laona and U.O.P., Inc., a subsidiary of the Singer Company of California. U.O.P., Inc. currently owns the old Goodman Block in Forest and Florence Counties. Foresters for these companies indicate that single tree selection is being used to manage their hemlock-hardwood forests and that there is very little hemlock regeneration. Connor Lumber Company owns about 8,000 acres of old growth stands which contain hemlock. Consolidated Papers, Inc. has a small acreage of hemlock in the Summit Lake Block, Langlade County. Hemlock is declining on all of these industrial forests.
TABLE 1. Acres Typed as Hemlock-Hardwood on Public Lands in the North Central District

<table>
<thead>
<tr>
<th>Public Lands</th>
<th>Total Forest Acres</th>
<th>Hemlock Acres</th>
<th>Percent of Total Forest</th>
<th>Number of Stands</th>
<th>Mean Stand Size (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Forests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Highland</td>
<td>150,480</td>
<td>1,397</td>
<td>0.9</td>
<td>45</td>
<td>31</td>
</tr>
<tr>
<td>American Legion</td>
<td>48,930</td>
<td>498</td>
<td>1.0</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>County Forests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langlade</td>
<td>121,710</td>
<td>822*</td>
<td>0.7</td>
<td>78</td>
<td>10</td>
</tr>
<tr>
<td>Lincoln</td>
<td>97,689</td>
<td>158</td>
<td>0.2</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Oneida</td>
<td>79,289</td>
<td>190</td>
<td>0.2</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Vilas</td>
<td>36,211</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Forest</td>
<td>10,856</td>
<td>20</td>
<td>0.2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Marathon</td>
<td>24,810</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicolet National Forest</td>
<td>652,001</td>
<td>1,402**</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wis. State Trust Lands</td>
<td>59,127</td>
<td>1,915†</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,281,103</td>
<td>6,412</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*There are 66 stands with 15 acres or less.
†From 1975 Nicolet Timber inventory (an expansion of a 15% sample).
‡An estimate from inspection of aerial photos and field checks. Many stands have been recently cut.

<table>
<thead>
<tr>
<th>Stands</th>
<th>Stocking</th>
<th>Large Sawtimber</th>
<th>Small Sawtimber</th>
<th>Pole Timber</th>
<th>Seedling and Sapling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>Good</td>
<td>158</td>
<td>401</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Highland</td>
<td>Medium</td>
<td>110</td>
<td>380</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td>30</td>
<td>81</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>American</td>
<td>Good</td>
<td>129</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Legion</td>
<td>Medium</td>
<td>200</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td>0</td>
<td>57</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Langlade</td>
<td>Good</td>
<td>3</td>
<td>12</td>
<td>104</td>
<td>3</td>
</tr>
<tr>
<td>County</td>
<td>Medium</td>
<td>14</td>
<td>23</td>
<td>554</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td>20</td>
<td>12</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Lincoln</td>
<td>Good</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>County</td>
<td>Medium</td>
<td>0</td>
<td>36</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td>4</td>
<td>66</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oneida</td>
<td>Good</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>County</td>
<td>Medium</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>668</td>
<td>1,117</td>
<td>816</td>
<td>10</td>
</tr>
</tbody>
</table>
VALUES

Hemlock is an important biological resource of Wisconsin. It has ecological, scientific, and aesthetic values which necessitate special management procedures and considerations.

It is desirable to maintain hemlock as winter cover for white-tailed deer. Pure hemlock stands, because of their dense, closed-canopy condition, significantly reduce wind velocity and snow depth. Deer actively seek out hemlock stands in the winter months and utilize them mainly as cover. There may also be a relationship between porcupine use, windfall, and deer use in hemlock stands. Most hemlock stands are used by some deer during the winter. In addition, deer are able to utilize hemlock-hardwood stands which would not be utilized if the hemlock component was removed. The cover value of hemlock-hardwood stands diminishes as the individual hemlock trees become widely spaced. Successive thinnings and salvage operations will eventually eliminate the hemlock if selective cutting continues.

Current deer yard management plans developed by the Department of Natural Resources call for a deferral of cutting in hemlock stands until reliable regeneration techniques can be developed. Small hemlock groves (from 6 trees to several acres in size) should not be thinned, but rather maintained in a dense, uncut condition. This is particularly significant along swamp edges and in hardwood stands located adjacent to wintering areas. These small islands of green cover enable deer to move to and from browsing areas during severe weather. In deer yards, hemlock is managed as a cover species, not a food species.

Scattered hemlock trees and small hemlock stands act as islands of green cover and add habitat diversity to the northern hardwood forest. Habitat diversity is the key to management of wildlife in the extensive forest. Habitat diversity will be increased by developing an interspersion of age classes among stands, while maintaining the greatest number of naturally occurring tree and shrub species.

MANAGEMENT

Objectives

1. To maintain the existing hemlock acreage and avoid invasion by sugar maple, red maple, or upland brush.

2. To begin hemlock regeneration in selected stands by developing dense sapling stands through shelterwood cuts in an even-aged silvicultural system. The shelterwood sequence makes conditions favorable for a new wave of hemlock seedlings below a hemlock canopy. Because of the very small acreage in hemlock, and because of the unreliable regeneration techniques, I strongly recommend deferral of most hemlock stands until reliable regeneration techniques are developed.

Strategy

The strategy for management includes the following points:

1. Do not convert existing hemlock stands to northern hardwoods (i.e., avoid establishing an understory of tolerant hardwoods).

2. If a hemlock stand cannot be managed for hemlock because of time or budget constraints, defer the stand until such management can be undertaken.

3. Relatively pure hemlock stands which show good vigor should be deferred.

4. The biological rotation age of a hemlock stand (cycles occurring at 150 and 320 years) is very much longer than the economic rotation age.

5. Unless obvious mortality will occur without removal, do not cut or thin the scattered hemlock trees or the small hemlock groves which occur in hardwood or swamp conifers stands. Maintain dense, closed canopy hemlock.

6. Do not use northern hardwood marking guides in hemlock stands.

Recommendations

The following key is designed to aid in making management decisions for the limited number of hemlock stands to be treated in hemlock regeneration tests.

KEY

1. Stand has important aesthetic or scientific characteristics, show good vigor and little hardwood invasion, or occurs on extremely hilly terrain.........................Defer.

2. Stand immature......Release hemlock understory

4. Stand not essential for deer shelter...Manage for hardwoods (see section on Intermediate Treatment). Maintain overstory hemlock to pathological rotation.
4. Stand does not have the above characteristics. Manage for hemlock...

5. Hardwood poles abundant....Intermediate treatment

5. Hardwood poles scarce....Begin Shelterwood Sequence

Discussion of Recommendations

There are no reliable methods for regenerating Hemlock. The following procedures for regenerating hemlock stands are modifications of Godman and Krefting (1960), Godman and Tubbs (1973), Tubbs (1969, 1977, and 1978), and recommendations of R. M. Godman (pers. comm.). Research being coordinated by R. M. Godman on various Lake States National Forests and on the Argonne Experimental Forest will eventually develop more detailed recommendations.

Hemlock may be regenerated by an even-aged silvicultural system. Hemlock is a light-seeded species which requires particular seedbed conditions. These include:

a. Warm, moist, exposed soil for germination.

b. Freedom from competition of deciduous trees and shrubs.

c. High canopy crown cover (approximately 80%).

d. Protection from damping-off fungi.

The technique described here has not been widely used in Wisconsin and should be tried on an experimental basis until current research is completed.

Hemlock regeneration depends on three factors: (1) successful, massive germination of seeds, (2) successful, massive establishment of seedlings (30,000/acre), and (3) protection of saplings from deer browsing. So far, we have not successfully accomplished factors (1) and (2). Protection from browsing by deer will occur when the overstory is clearcut. Clearcutting will exclude wintering deer from the stand.

Shelterwood Sequence

The shelterwood sequence consists of thinning the overstory, preparing the seedbed, direct seeding, and removal of the overstory in two cuts. The seedbed can be prepared before or after logging.

1. Rotation age for timber production is approximately 150 years. Scarify at least 75% of the area. Scarification can be done after maple seed and leaf fall or in early spring. A small crawler tractor (T6 fire cat) and Athens disc or a small crawler tractor with blade can be used to carefully mix the humus and mineral soil. This operation will destroy maple seeds and remove advance maple regeneration. A mixed humus-mineral soil seedbed will remain moist during dry periods. Ground fire is an alternative to mechanical seedbed preparation. Fire may be able to control the various damping-off fungi which are present in the soil. Spring scarification or burning should be done after surface temperatures become too high for maple germination but ideal for hemlock germination (59°F).

2. Thin the stand from below to 80% crown cover. Do not use basal area marking guides. Discriminate against sugar maple, red maple and tolerant hardwoods and leave good quality sawtimber hemlock and yellow birch. Remove as many understory trees as possible, but maintain a uniform 80% crown cover. Do not cut below 80% crown cover. When spacing permits, remove the largest sugar maple trees first. If manpower is available, remove unmerchantable sugar maple from the understory. The resulting stand should have a park-like appearance.

3. Direct seed the area with at least one-half pound of hemlock seeds per acre. Seeding can be done in early winter to prevent rodent damage. Spring seeding requires a properly stratified seed. Treat the hemlock seed with a fungicide (Arasan-75).

4. After at least six years and when a vigorous hemlock seedling understory has developed, thin the stand from below to 60% crown cover. Do not cut below 60% crown cover. Discriminate against tolerant hardwoods. The length of the establishment period will depend on the particular site. Logging should occur during snowcover.

5. When the hemlock is at least 5 ft in height, clearcut the overstory during the winter months. Overstory removal may not be necessary if the management goal is aesthetics or natural diversity. In this case, let the hemlock saplings develop slowly as the overstory slowly opens up. Rotation age for cover and aesthetics is up to 250 years (Tubbs 1978).

Intermediate Treatment

Intermediate treatment consists of thinning the stand from below. Understory sugar maple, red maple, and other tolerant hardwoods are to be marked and cut. A uniform, high canopy 80% crown will be maintained. Do not encourage scattered openings in the canopy.

Some hemlock stands have abundant hardwood sapling advance regeneration. It is difficult and expensive to eliminate this low competition. Killing hardwood advance regeneration with fire or herbicides has several shortcomings (Godman and Tubbs 1973:7). A combination of a herbicide treatment followed by discing may prove successful in eliminating large hardwood saplings. When it is apparent that the advance hardwood regeneration cannot be controlled, manage the stand for hardwoods. However, do not cut the existing hemlock. Maintain these trees to biological maturity.
The above recommendations are based on the premise that hemlock is a desirable species which should be maintained in the forest system. Because of the very limited acreage of hemlock on the public lands, great care should be taken to protect the integrity of existing hemlock stands. Marking crews should have a complete understanding of the management techniques.

Our main challenge is to maintain the present hemlock acreage on our public lands through preservation and regeneration. This is essential because of the small and rapidly diminishing hemlock acreage in Wisconsin.

Common and Scientific Names of Plants and Animals

Plants

Aspen
Balsam fir
Basswood
Birch, yellow
Birch, paper
Elm, American
Hemlock, eastern
Hemlock, ground
Maple, mountain
Maple, red
Maple, sugar
Pine, white
Pine, red
Spruce, white
White cedar, northern
Blackberries
Raspberries
Beaked hazel
Witch-hobble

Populus tremuloides
Abies balsamea
Tilia americana
Betula alleghaniensis
Betula papyrifera
Ulmus americana
Tsuga canadensis
Tsuga canadensis
Acer spicatum
Acer rubrum
Acer saccharum
Pinus strobus
Pinus resinosa
Picea glauca
Thuja occidentalis
Rubus sp.
Rubus sp.
Corylus cornuta
Viburnum alnifolium

Animals

Deer, white-tailed
Hare, snowshoe
Porcupine
Sapsucker, yellow-bellied
Squirrel, red
Vole, red-backed
Hemlock Borer
Budworm

Odocoileus virginianus
Lepus americanus
Erithizon dorsatum
Sphyrapicus varius
Sitta carolinensis
Clethrionomys gapperi
Melanophila fulvoguttata
Choristoneura fumiferana

ACKNOWLEDGMENTS

The author wishes to extend appreciation to R. M. Godman for extensive technical advice on hemlock ecology and management. This report was supported in part by funds from the Federal Aid in Wildlife Restoration under Pittman-Robertson Projects W-149-D-3 and W-149-D-4.

Ruth L. Hine, Editor
Cathy J. Halpin, Typist
Anne G. Chacon, Copy Editor
REFERENCES

Adams, M. S. and O. L. Loucks

Anderson, R. C., O. L. Loucks, and A. M. Swain

Anderson, R. C. and O. L. Loucks
1977. White-tailed deer (Odocoileus virginianus) influence on structure and composition of Tsuga canadensis forests. (In prep.)

Arbogast, C. Jr., and M. L. Heinselman

Auclair, A. N.

Auclair, A. N. and F. G. Goff

Baker, W. L.

Baldwin, H. I.
1934. Further notes on the germination of hemlock seed. J. For. 32:99-100.

Baldwin, H. I. and D. A. Rock

Beals, E. W., G. Cottam and R. J. Vogl

Bjorkbom, J. C. and R. G. Larson
Blyth, J. E., E. F. Landt, J. W. Whipple, and J. T. Hahn

Bormann, F. H. and R. B. Platt

Bormann, F. H. and M. F. Buell

Bourdeau, P. F.

Bourdeau, P. F. and M. L. Laverick

Braun, E. L.

Braun, W. L.

Brown, J. H., Jr.
1960. The role of fire in altering the species composition of forests in Rhode Island. Ecology 41:310-316.

Brown, R. T. and J. T. Curtis

Burns, G. P.

Cayford, J. H. (ed.)

Christenson, E. M.

Clepper, H. E.

Cunningham, R. N. and H. G. White

Curtis, J. T.
Cushing, E. J.

Dahlberg, B. L. and R. C. Guettinger

Darlington, H. T.

Daubenmire, R. R.

Davis, G. and A. C. Hart

DeBoer, S. G.

Doran, W. L.

Egler, F. E.

Eyre, F. H. and W. H. Zillgitt

Flaccus, E. and L. F. Ohmann

Fowells, H. A.

Friesner, R. C. and J. E. Potzger
Frothingham, E. H.
1913. The eastern hemlock. USDA Bull. 152. 43 pp.

Gates, F. C. and G. E. Nichols
1930. Relation between age and diameter in trees of the primeval northern hardwood forest. J. For. 28:395-398.

Gleason, H. A.

Godder, H. A.

Godman, R. M. and L. W. Krefting

Godman, R. M. and C. H. Tubbs

Godman, R. M. and G. A. Mattson

Goff, F. G.

Goff, F. G. and P. H. Zedler

Goff, F. G. and D. West

Goodman, R. B.

Gordon, R. B.
Graham, S. A.

Harlow, S. H.

Hepting, G. H.

Hett, J. M.

Hett, J. M. and O. L. Loucks

Hough, A. F.
Hough, A. F. and R. D. Forbes

Hussain, A. and R. D. Shenefelt

Jacobs, R. D.

Jordan, J. S. and W. M. Sharp

Keever, C.

Kenoyer, L. A.

Koroleff, A.
1954. Leaf litter is a killer. J. For. 52:178-82.

Kozlowski, T. T.

Krefting, L. W.

Leak, W. B.

Leak, W. B., D. S. Solomon, and S. M. Filip

Lutz, H. J.
1930. Original forest composition in northwestern Pennsylvania as indicated by early land survey notes. J. For. 28:1098-1103.
Maissurow, D. K.

1941. The role of fire in the perpetuation of virgin forests of northern Wisconsin. J. For. 39:201-207.

Marshall, R.

Martin, N. D.

McIntosh, R. P.

Mergen, F.

Merrill, P. H. and P. C. Hawley

Meyer, H. A. and D. O. Stevenson

Miles, M. L. and E. C. Smith

Moore, B., H. M. Richards, and A. B. Stout

Morey, H. F.

Nichols, G. E.

Nienstaedt, H.

Nienstaedt, H. and H. B. Kriebel

Nienstaedt, H. and J. S. Olson

18

Ohmann, L. F. and M. F. Buell

Olmsted, N. W. and J. D. Curtis

Olson, J. S.

Olson, J. S. and H. Nienstaedt

Olson, J. S., F. W. Stearns, and H. Nienstaedt

Oosting, H. J. and D. W. Hess

Parker, J.

Potzger, J. E.

Potzger, J. E. and R. C. Friesner

Randall, C. E.

Schmelz, D. V. and A. A. Lindsey

Schopmeyer, C. S.

Sears, P. B.

Secrest, H. C., H. J. MacAlney, and R. C. Lorenz
Shugart, H. H., Jr., T. R. Crow and J. H. Hett

Society of American Foresters

Spencer, J. S. and H. W. Thorne

Spurr, S. H.

Stearns, F. W.

Stearns, F. and J. Olson

Stickel, P. W.

Stoeckler, J. H.

Stoecker, J. H. and C. Arbogast, Jr.

Stoecker, J. H., R. O. Strothmann, and L. W. Krefting

Swartley, J. K.
1950. Directions for rooting and growing of hemlock cuttings. The Hemlock Arboretum Bull. No. 69.

Swift, E.

Switzenberg, D. F., T. C. Nelson, and B. C. Jenkins

Taylor, J. C.
The Nature Conservancy

Tourney, J. W. and E. J. Neethling

Tubbs, C. H.

Tubbs, C. H. and F. T. Metzger

Tucker, G. F. and W. H. Emmingham

Turberville, H. W. and A. F. Hough

U.S. Forest Service

Voigt, G. K.

Webb, W. L.

Webb, W. L., R. T. King, and E. F. Patrie

1956. Effect of the white-tailed deer on mature northern hardwood forest. J. For. 54:391-398.

Wilde, S. A.

Wilson, L. R.

Wisconsin Conservation Commission

Wright, H. E.