

2016 Annual Monitoring Report

Wausau Water Supply NPL Site Wausau, Wisconsin

Table of Contents

1.	Introduction						
	1.1	History		1			
	1.2	Monitorin	ng Background	2			
	1.3	Site Geo	ology	2			
	1.4	Groundw	vater Cleanup Standards	3			
2.	2016	Annual M	lonitoring	3			
	2.1	Additiona	al Monitoring	3			
	2.2	Water Le	evel Monitoring	4			
	2.3	Groundw	vater Sampling	4			
	2.4	Extractio	on Well EW1 Sampling	4			
3.	Ope	Operation and Maintenance					
	3.1	Monitorin	ng Well Inspection	4			
	3.2	City Proc	duction Wells	5			
	3.3	East Ban	nk Source Area Pavement Inspection	6			
4.	Eval	Evaluation of Annual Groundwater Monitoring Data					
	4.1	West Bar	nk	6			
	4.2	East Bank					
	4.3	EW1		9			
	4.4	Hydraulid	c Capture	g			
5.	Site	Site Groundwater Monitoring Plan					
	5.1	Proposed	d Groundwater Monitoring Plan Modifications	g			
		5.1.1 5.1.2	East BankWest Bank	10			
	5.2	Proposed	d Abandonment of Monitoring Wells	12			

Figure Index

igure 1.1	Site Location
igure 1.2	Site Plan
igure 2.1	Groundwater Elevations and Contours October 24 and 25, 2016
igure 4.1	Trichloroethene Concentrations in Groundwater (Fall 2016)
igure 4.2	cis- 1,2- Dichloroethene Concentrations in Groundwater (Fall 2016
igure 4.3	Tetrachloroethene Concentrations in Groundwater (Fall 2016)
igure 4.4	Vinyl chloride Concentrations in Groundwater (Fall 2016)

Table Index

Table 2.1	Groundwater Elevations Fall 2016
Table 2.2	Site Specific VOC List
Table 2.3	Annual Groundwater Sampling Summary – October 2016
Table 3.1	Monitoring Well Inspection
Table 3.2	City Water Supply Well Pumping Averages
Table 4.1	VOC Analytical Results - Annual Groundwater Monitoring Event October 2016
Table 5.1	Current and Proposed Groundwater Monitoring Well Network

Appendix Index

Appendix A	October 24-25, 2016 Laboratory Report and Data Quality Validation Memorandum
Appendix B	Wausau Chemical Pavement Inspection Report
Appendix C	Total Chlorinated VOC Concentration Charts

1. Introduction

GHD Services Inc. (GHD) has prepared this 2016 Annual Monitoring Report for the Wausau Water Supply NPL Site (Site) in Wausau, Wisconsin, on behalf of the Wausau Group of Responsible Parties (Group). This report presents the results of annual groundwater monitoring conducted at the Site in October of 2016.

1.1 History

The Group initiated remedial action at the Site in the early 1990s in accordance with the September 29, 1990, Record of Decision (ROD) and the Consent Decree (CD) entered with the court on January 24, 1991. The final remedial action at the Site consisted of two soil vapor extraction (SVE) systems to address the source areas and groundwater extraction and treatment, utilizing existing municipal production wells (CW3 and CW6) and a remediation well (EW1). The Site location is shown on Figure 1.1 and a Site plan is presented on Figure 1.2.

Source area remediation was accomplished by the installation of SVE systems at Marathon Electric¹ (West Bank) and Wausau Chemical Corporation (East Bank) in January 1994. The SVE system at Marathon Electric operated until April 1996 when the West Bank source remediation was approved as complete. The East Bank SVE system was modified in 1996 and continued to operate. In January 2001 the East Bank SVE system was shut down while evaluation for final closure occurred. The East Bank source remediation was approved as complete in 2007.

The groundwater remediation system consists of two municipal water supply wells (CW3 and CW6) and one extraction well installed at Marathon Electric (EW1). Air strippers, located at the Wausau water treatment plant, treat water from the municipal supply wells. Water from EW1 was treated by air stripping (over riprap on the riverbank) before being discharged to the Wisconsin River.

The pumping rates for the three extraction wells were originally defined in the CD. In the Groundwater Flow Model report (CRA, May 1993), CRA established a range of pumping rates that would maintain capture of the groundwater plume. Subsequently, in an August 4, 1995 letter, the United States Environmental Protection Agency (EPA) approved a pumping configuration range for the three extraction wells. Those pumping rates were:

CW3: 65 hours per week at 1,200 gallons per minute (gpm) to 100 hours per week at 1,100 gpm

CW6: 85 hours to 100 hours per week at 1,400 gpm

EW1: 800 to 900 gpm continuously

EW1 stopped operating in July 2012 due to pump failure. Since EW1 has essentially completed its performance goal, the Group proposed a pilot study to confirm that the groundwater containment network of pumping wells will continue to be effective without the need for pumping at EW1. The EW1 Shutdown Pilot Study Work Plan proposal was submitted to the EPA on September 3, 2013. Via email, dated November 5, 2013, EPA requested that the supplemental data collection for the

Marathon Electric was acquired by Regal Beloit Corporation and is now doing business at the Wausau plant under the Regal name.

Pilot Study start during the 4th quarter of 2013, concurrent with the 2013 annual monitoring event. The Pilot Study was conducted from the 4th quarter of 2013 through the 4th quarter of 2014 and the results were reported to the EPA in March 2015. Although the EPA have not yet provided a final approval of the EW1 shut-down, potential effects of the shut-down have continued to be evaluated through the annual groundwater monitoring conducted in the fall of 2015 and 2016.

From 1985 through 1996, as an interim remedial measure, additional groundwater remediation was provided by a groundwater extraction system operated by Wausau Chemical Corporation (WCC). The extraction system at WCC consisted of a series of shallow wells at the south end of WCC property. Groundwater from this system was treated by air stripping. This remediation was conducted in addition to the requirements of the ROD or the CD and operation ceased in 1996.

From 1993 through 2000 groundwater monitoring was conducted according to the Monitoring Program Plan (CRA, 1994). The Monitoring Program Plan consisted of a complex system of monthly, quarterly, semiannual, and annual monitoring. In June 2000, the Groundwater Monitoring Plan replaced the Monitoring Program Plan as the approved groundwater monitoring program. The Groundwater Monitoring Plan consists of annual monitoring well sampling and quarterly sampling of EW1 (when operating).

The Groundwater Monitoring Plan requires an annual report on the activities occurring the previous calendar year. This report fulfills the requirement for 2016.

1.2 Monitoring Background

Groundwater monitoring at this Site is a combination of hydraulic and water quality monitoring designed to verify that the groundwater extraction wells are containing the contaminant plume and that groundwater quality is improving as a result of past source remedial actions and ongoing volatile organic compound (VOC) removal from the aquifer.

Groundwater remediation at the Wausau Site has been ongoing for over 20 years. Aquifer remediation progress is a slow process but contaminant concentrations have been reduced significantly at the Site. The aquifer has been monitored annually and the data show a downward trend of VOC concentrations in groundwater. Because of the time necessary to achieve groundwater remediation, containment of contaminated groundwater is the primary measurable and achievable short- term objective.

For the purpose of evaluation, groundwater monitoring at Wausau has been divided into two areas, the East Bank and the West Bank of the Wisconsin River, corresponding to the two original source areas. The river forms a natural hydraulic division of the Site. During 2016, two groundwater extraction wells were operated to remove VOC contaminated groundwater. One extraction well is on the West Bank, (CW6) and one is on the East Bank (CW3) (see Figure 1.2).

1.3 Site Geology

The Site is underlain by glacial outwash and alluvial sediments that have filled in the pre- glacial stream valley in which the Wisconsin River now flows. This alluvial aquifer ranges from 0 to 160 feet thick and has an irregular base and lateral boundaries. Relatively impermeable bedrock underlies the aquifer and forms its lateral boundaries within the pre- glacial valley. Six production wells in the

Site area provide drinking water for the City of Wausau. These wells are screened in the glacial outwash and alluvial sand and gravel deposits that underlie and are adjacent to the Wisconsin River.

1.4 Groundwater Cleanup Standards

The Groundwater Monitoring Plan was developed to monitor compliance with cleanup standards for the groundwater at the Site. The groundwater cleanup standards for the Site are the EPA maximum drinking water contaminant levels (MCLs). The MCLs for the primary VOC contaminants of concern at the Site are:

Trichloroethylene (TCE) $5 \mu g/L$ Tetrachloroethylene (PCE) $5 \mu g/L$ cis- 1,2- Dichloroethene (c12DCE) $70 \mu g/L$ Vinyl chloride $2 \mu g/L$

With the exception of vinyl chloride, these standards are the same as the Wisconsin Department of Natural Resources (WDNR) Enforcement Standards (ES). The Wisconsin ES for vinyl chloride is 0.2 µg/L (WDNR Chapter NR 140).

2. 2016 Annual Monitoring

The 2016 annual groundwater monitoring event was conducted on October 24 and 25. Monitoring was conducted in accordance with the Groundwater Monitoring Plan with the following exceptions:

- As reported in the 2000 Annual Monitoring Report, two monitoring wells (WC2 and W51A) are no longer monitored and they were abandoned in 2000.
- Also, as approved by the EPA and WDNR through the 2002 Annual Monitoring Report, the analysis of bis(2- ethylhexyl)phthalate at C4S and W53A was discontinued in 2003.
- Monitoring wells E24 and E24A were abandoned in 2012. Monitoring well E24AR was installed as a replacement.
- Monitoring well E23A was abandoned on September 23, 2014.
- Extraction well EW1 was not operating during 2016, thus, quarterly influent and effluent sampling was not conducted. However, a sample was collected from EW1 during the annual monitoring event.

2.1 Additional Monitoring

At the request of the EPA, additional monitoring was conducted to further assess potential effects related to the shutdown of EW1 and for the evaluation of potential vapor intrusion. These wells were W52A, WSWS, and C7S.

2.2 Water Level Monitoring

Table 2.1 presents the groundwater elevation data measured on October 24 and 25, 2016. Water table contours based on these measurements are presented on Figure 2.1. Field staff measured water levels on the East Bank on October 24 while CW3, the East Bank remediation well, was pumping. West Bank water levels were measured on October 25 while CW6, the West Bank remediation well was operating. As explained above, EW1 was not operating during the 2016 monitoring event. Water levels in the City production wells were measured with the assistance of City staff.

East Bank contours are consistent with flow patterns observed in previous years. The East Bank flow patterns are controlled by the operation of CW3. West Bank contours depict a large cone of influence created by CW6. Under natural conditions, West Bank groundwater would flow generally eastward and discharge to the Wisconsin River. Under pumping conditions however, groundwater flows toward the City supply wells.

2.3 Groundwater Sampling

Groundwater samples were analyzed for the Site specific VOC list (see Table 2.2) by EPA Method 8260. A summary of the groundwater sampling event, including field parameter measurements, is presented in Table 2.3.

Groundwater sampling was conducted according to the Quality Assurance Project Plan, (CRA, February 1994) as amended by a June 11, 1999, letter to the EPA. TestAmerica Laboratories, Inc. analyzed all samples. Laboratory results will be submitted electronically in the Region V Electronic Data Deliverable (EDD) format for inclusion in the Region V EPA database. Copies of the laboratory report and data quality validation memoranda for the 2016 data are presented in Appendix A.

2.4 Extraction Well EW1 Sampling

EW1 did not operate during 2016; thus, influent and post-treatment effluent samples were not collected. However, a sample was collected from EW1 during the annual monitoring event. No VOCs were detected in the EW1 sample.

Operation and Maintenance

Operation and maintenance activities reported in this section cover the City production wells, groundwater monitoring wells, and the annual inspection of the paved surfaces near the East Bank source area.

3.1 Monitoring Well Inspection

All Site monitoring wells were inspected during the October 2016 monitoring round. An inspection form was used to document the following well conditions:

Obscured by brush or other?

- Well ID visible?
- Protective cover and casing condition
- Well cap condition
- Lock condition
- Concrete seal condition
- · Locking cover impeded by well riser?
- Ground condition (subsidence)
- Flush mount surface condition
- Flush mount bolt condition

Table 3.1 presents the results of the inspection. The inspection indicated that all wells were in good to satisfactory condition. Well maintenance conducted during 2016 included replacement of flush-mount vaults at GM2S, GM6D, WW4, W53, and W54. Brush clearing was also conducted at R2S, W56, E26, WC5, MW10A, WSWD, and GM4D.

3.2 City Production Wells

Both CW3 and CW6 operated as required in 2016 with minimal shutdowns or repairs. Table 3.2 presents 2016 pumping data for the six City wells. While only CW3 and CW6 are part of the remediation system, data for all City wells are presented, consistent with previous reports. The table shows, by month, the number of hours each well was operated, the number of gallons pumped from each well, and the average pumping rate while the pump was operating.

Recommended pumping rates for CW3 and CW6 were established in an August 4, 1995 letter from EPA. In accordance with the letter, pumping of CW3 was to be maintained between 65 hours per week at 1,200 gallons per minute (gpm) to 100 hours per week at 1,100 gpm. Pumping of CW6 was set at 85 hours per week at 1,400 gpm. CW3 and CW6 generally operate on alternate weekly schedules where CW6 operates on the weekdays and CW3 operates more on the weekends.

During 2016 CW3 operated for an average of 70.7 hours per week with an average pumping rate of 1,334 gpm, exceeding the requirements of 65 hours per week at 1,200 gpm.

CW6 pumped an average of 97.0 hours per week with an average pumping rate of 1,222 gpm. Although well rehabilitation was conducted in late 2015, the well is no longer capable of pumping at a rate of 1,400 gpm. However, the pumping duration of CW6 was increased to an average of 97 hours per week, which is considerably greater than the requirement of 85 hours per week, thus offsetting the decreased pumping rate. The recommended pumping rate and duration would result in a total annual pumping volume of 371,000,000 gallons and the actual gallons pumped during 2016 was approximately 370,000,000 gallons. Thus the pumping requirement for CW6 was essentially met during 2016.

3.3 East Bank Source Area Pavement Inspection

The EPA and WDNR approved final closure of the East Bank source remediation SVE system in September 2007. As described in the Pavement Cover and Building Maintenance Plan, a requirement of the closure was an annual inspection of the paved areas surrounding the Wausau Chemical property. The purpose of the inspection is to monitor the integrity of the paved areas of the property and make recommendations to minimize rainwater infiltration and prevent direct human contact with soils. In August 2009 the entire pavement area was repaved with new asphalt and the street adjacent to the west side of the property, North River Road, was repaved by the City of Wausau. Also, an approximately 2,800 square foot addition, with concrete floor and roof, was added to the south end of the building in 2009- 2010. Inspections conducted during 2016 found the pavement to be in good condition. A copy of the pavement inspection report is presented in Appendix B.

Evaluation of Annual Groundwater Monitoring Data

The objectives of the annual groundwater monitoring program are to monitor the containment of the contaminant plume and the long- term improvement in groundwater quality. Table 4.1 presents the laboratory results for monitoring well samples collected in October 2016. VOC concentration maps for the principle Site contaminants (TCE, c12DCE, PCE and vinyl chloride) are presented on Figures 4.1 through 4.4.

The 2016 data indicate that the VOC concentrations were stable or decreasing at most well locations. Of the 24 monitoring wells sampled, 17 wells exhibited lower or stable concentrations compared to 2015.

4.1 West Bank

The primary chlorinated VOC found in the West Bank groundwater is TCE, which was detected at 11 of the 16 West Bank monitoring wells, plus City well CW6.

TCE degradation product, c12DCE, was detected at seven locations, however none of the West Bank concentrations exceeded the c12DCE cleanup standard. Vinyl chloride was not detected in West Bank well samples. Monitoring wells with TCE concentrations greater than the MCL of 5 μ g/L included R2D, R4D, W52, W53A, W54, W55, C2S, C4S, and C7S. With the exception of R2D and W55, all of these wells are on Marathon Electric property (see Figure 4.1). The TCE concentration at CW6 (3.3 μ g/L) was below the MCL. City wells CW10 and CW11 were not operating during the October sampling event.

North of EW1 the West Bank plume is in the deeper portion of the aquifer. Two wells in the north portion of the West Bank plume exceeded the MCL for TCE. W52 had a TCE concentration of $12 \mu g/L$ and the TCE concentration at R2D was $21 \mu g/L$. R2D is a deep aquifer well north of the Marathon property. Elevated TCE concentrations at that location indicate that the plume remnant that was in a stagnation zone between EW1 and CW6 is now migrating north to CW6 since EW1

stopped pumping. Concentrations at W52 have increased since EW1 stopped pumping due to changes in groundwater flow patterns. Groundwater in the W52 area may be near the flow divide between CW6 and CW3, and flow may be to the north to CW6 or eastward to CW3.

The historical data for R2D, R3D, and R4D are presented below. Although total chlorinated VOCs are shown here, TCE comprises 90 to 100 percent of the total concentrations listed. The remaining portion would be c12DCE. This table illustrates the southerly migration of higher concentrations from the R2D area to R3D as groundwater moved toward EW1 during the 1990s and 2000s. When EW1 stopped pumping in 2012, TCE concentrations increased at R2D as the aquifer flow direction changed back to the north toward CW6. The shut- down of EW1 eliminated the groundwater flow divide between CW6 and EW1, which should result in a more effective reduction of VOC concentrations in the R2D/R3D area.

Total Chlorinated VOCs (μg/L)						
Year	R2D	R3D	R4D			
1996	1600	2.0	540			
1997	720	5.0	65			
1998	320	580	55			
1999	110	1200	33			
2000	45	1800	58			
2001	17	1500	13			
2002	15	1200	36			
2003	10	980	38			
2004	11	899	51			
2005	7.5	400	56.5			
2006	8.2	490	42			
2007	9.9	280	1.3			
2008	6.5	180	13			
2009	7.3	92	22.9			
2010	6.2	195.7	25.7			
2011	11	203.1	27.6			
2012	6.4	20.7	4.9			
2013	20	4.8	16.6			
March 2014	18.2	73.7	NA			
May 2014	19.1	4.7	7.89			
August 2014	33.2	2.9	NA			
Nov 2014	47.2	2.6	1.8			
2015	33.6	1.8	3.27			
2016	22.9	2.0	5.97			

Monitoring wells south of EW1 are in, or adjacent to, the old landfill, which is the principal West Bank source area. VOC contaminants are more prevalent in the shallower portion of the aquifer near the source area. Monitoring wells south of EW1 that exceeded the MCL for TCE included W53A, W54, C4S, and C7S.

TCE concentrations at W54 increased during 2013 and 2014, but decreased significantly in 2015 and 2016 (see the trend graph in Appendix C). The short term increase in concentration at W54 was probably related to changes in the groundwater flow patterns after EW1 stopped operating; however, concentrations over the last two years appear to be returning to low levels.

The overall areal extent of the West Bank contaminant plume has not changed significantly since EW1 was shutdown. TCE and c12DCE were essentially the only VOCs detected on the West Bank. Figures 4.1 and 4.2 present TCE and c12DCE concentrations, respectively. The contour lines on the figures show the approximate areas of concentrations exceeding the MCL. Charts showing historical total chlorinated VOC concentrations for select West Bank wells are presented in Appendix C.

4.2 Fast Bank

East Bank VOC data are presented in Table 4.1. While PCE was the original contaminant on the East Bank, the presence of TCE, c12DCE, and vinyl chloride, at concentrations that exceed the PCE concentration in many wells, indicates an active natural biodegradation process. For example, at WC5A, E24AR, and WW6 the c12DCE concentration was higher than the PCE and TCE concentrations combined.

PCE or one of its daughter products was detected at 7 of the 11 East Bank monitoring wells and at City well CW3. Three monitoring wells (WC5A, E22A, and E24AR) had concentrations that exceeded the MCL of at least one VOC. The areal extent of the East Bank contaminant plume remained stable compared to 2015 (see Figures 4.1 through 4.4). Total chlorinated VOC concentrations from 2009 through 2016 for key East Bank wells are shown below:

	Total Chlorinated VOCs (μg/L)							
Well	2009	2010	2011	2012	2013	2014	2015	2016
WC3B	1,460/565.2	1.24	2.26	3.47	0.26	6.31	2.86	0.55
WC5A	12.1	9.86	4.6	1.3	7.3	14.93	12.04	26.1
E24AR	13	20	1.4	3.86	22	222.5	136.8	152.1
E22A	231.9	5.03	3.2	25.41	104.9	12.5	8.03	123
E37A	77.35	7.0	140.19	68.06	4.67	3.73	1.61	1.75
WW6	29.97	46.34	17.6	45.48	45.8	51.9	67.6	8.03
CW3	4.48	4.36	4.03	3.58	2.62	3.03	3.15	3.0

The variable increases and decreases in concentrations at individual monitoring wells have been attributed to higher concentration portions of the plume that are flowing from the source area to CW3 where the East Bank groundwater is extracted and treated. Charts showing historical total chlorinated VOC concentrations for select East Bank wells are presented in Appendix C. Individual VOC concentrations for the shallow wells are presented for PCE, TCE, c12DCE, and vinyl chloride on Figures 4.1 through 4.4.

Monitoring well FVD5 is on the former Wausau Energy property, which has groundwater impacts related to petroleum fuels and is independent of the Wausau NPL site remediation process. FVD5 has always exhibited elevated benzene, ethylbenzene, toluene, and xylene (BTEX) concentrations. The benzene concentration of $19 \mu g/L$ exceeded the MCL.

4.3 EW1

EW1 did not operate during 2016, hence, influent and post- treatment effluent samples were not collected. A grab sample was collected from EW1 during the October 2016 monitoring event and no VOCs were detected.

4.4 Hydraulic Capture

Hydraulic capture of the Site contaminant plumes is demonstrated by the water table contours illustrated on Figure 2.1. The water table contours indicate that groundwater flow at the Site was toward the two operating extraction wells (CW3 and CW6). At nested well locations, the water table elevations for shallow and deep wells were similar, indicating horizontal flow and hydraulic containment of the shallow and deeper portions of the aquifer. Additional Monitoring

At the request of the EPA, additional monitoring was conducted to further assess potential effects related to the shutdown of EW1 and for the evaluation of potential vapor intrusion. These wells were W52A, WSWS, and C7S. Laboratory results for these wells are included in Table 4.1. No VOCs were detected at W52A and WSWS. TCE was detected at C7S with a concentration of 14 µg/L.

Site Groundwater Monitoring Plan

The current Site groundwater monitoring plan includes an annual monitoring event that is usually conducted in October. This monitoring event includes measurement of water levels at all Site monitoring wells (56 total) and groundwater sampling of 12 East Bank wells and 13 West Bank wells. Samples are also collected from City Wells CW3 and CW6. All groundwater samples are analyzed for the Site specific VOC list by EPA Method 8260. Table 5.1 summarizes the current monitoring plan. During the annual monitoring event, all wells are inspected to document their condition, including: total depth, casing and grout, well ID, well cap, lock, concrete seal, and ground subsidence.

When EW1 was operating, monitoring was conducted quarterly. Pre- treatment and post- treatment water samples were collected and analyzed for Site specific VOCs.

5.1 Proposed Groundwater Monitoring Plan Modifications

Many of the Site monitoring wells are clustered in groups of two or three wells in which only one of the group is monitored for water quality. Numerous years of water level monitoring has shown that there is very little vertical gradient and groundwater flow is mostly horizontal. Thus clustered wells are not necessary for determining groundwater flow patterns. As such, several wells on the East Bank and West Bank are redundant and are proposed for removal from the monitoring plan. These wells are listed below with the justification for their removal from future monitoring events..

5.1.1 East Bank

The East Bank chlorinated VOC plume is situated primarily in the shallow portion of the aquifer. Thus, where wells are clustered, the shallower wells are sampled for VOC analysis and the deeper wells generally do not provide needed data.

Thus, the following East Bank monitoring wells are proposed to be removed from the list of wells that are monitored for water levels only.

East Bank Mo	East Bank Monitoring Wells to be Removed from Water Level Monitoring List				
Well No.	Justification				
E22	not sampled because it is clustered with E22A and it is not needed for groundwater elevation data				
E26	neither E26 nor E26A are sampled and only E26A is useful for groundwater elevation data				
WC3	not sampled because it is clustered with WC3B and it is not needed for groundwater elevation data				
WC4	the deeper well of the WC4/WC4A cluster; neither well is sampled for VOC analysis and only WC4A is needed for elevation data				
WC5	not sampled because it is clustered with WC5A and it is not needed for groundwater elevation data				

The following wells are proposed to be removed from the list of wells that are sampled for laboratory analysis.

East Bank Monitoring Wells to be Removed from Groundwater Sampling List				
Well No.	Justification			
MW10A	The 10A and 10B cluster monitors the aquifer upgradient from the source. Both wells are sampled for VOC analysis. Only the shallower well, MW10B, is needed for chemical and water level data			
IWD	IWD is on an island in the Wisconsin River. VOC concentrations at this well have been decreasing and have not exceeded the Site cleanup standards since 2009 (see Appendix C). In order to sample IWD, a boat must be rented to ferry supplies and personnel to the island. There is no dock or beach on the island to safely unload and disembark. Given these safety concerns and the low VOC concentrations at this location, it should be removed from the monitoring plan. E21, which is adjacent to the river on the East Bank, and is screened at the same depth as IWD, is a good substitute for IWD			
E23A	Was abandoned in the fall of 2014 due to new construction on the property at N $2^{\rm nd}$ Street and Wausau Avenue			

East Bank Monitoring Wells to be Removed from Groundwater Sampling List				
Well No.	Justification			
E24/E24A	Were abandoned in the spring of 2013 due to new construction at the Bridge Community Health Clinic on N. 2nd Street. E24A was replaced by E24AR, which is monitored for VOC analysis and groundwater elevation			
FVD5	On the former Wausau Energy property that is being managed under the Wisconsin PECFA program. This well monitors petroleum related impacts from the former fuel storage site. Nearby monitoring wells E22A and E37A are sufficient for monitoring the chlorinated compounds in this area.			

Although IWD and the E24 nest have been removed from the sampling list, they were replaced by E21 and E24AR, respectively.

5.1.2 West Bank

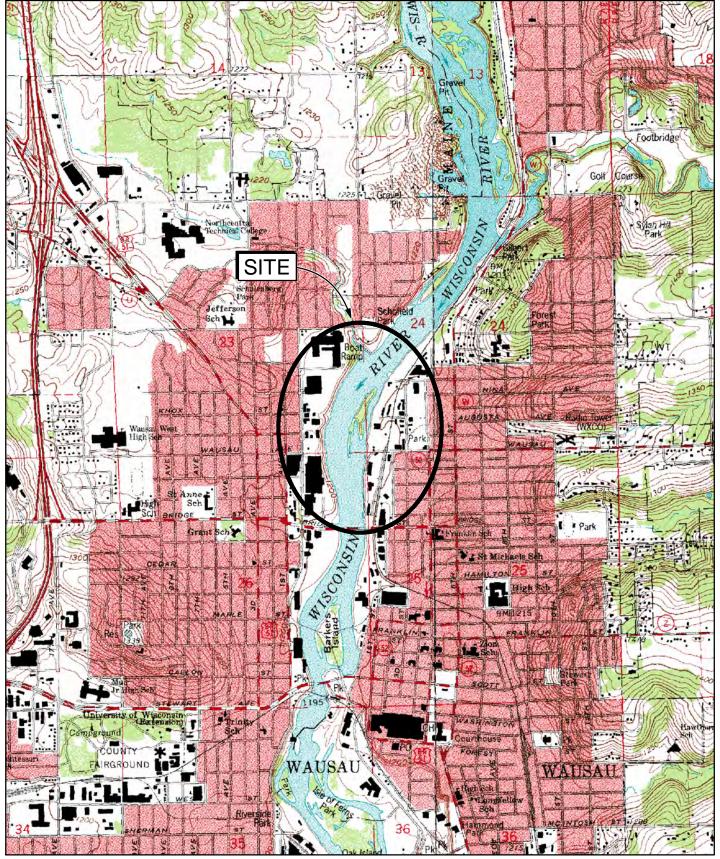
The West Bank plume is situated primarily in the shallow portion of the aquifer near the source area, but descends into the deeper aquifer as it migrates to City well CW6. Thus, where wells are clustered, the shallower wells are sampled for VOC analysis near the source and the deeper wells are sampled away from the source area. Thus, the following West Bank monitoring wells are proposed to be removed from the water level monitoring list. (There are no changes proposed for the sampling list for West Bank monitoring wells.)

West Bank Monitoring Wells to be Removed from Water Level Monitoring List					
Well No.	Justification				
C4D	The deeper well of a cluster with C4S. These wells monitor the aquifer upgradient from the West Bank source. C4S is sampled for VOC analysis, thus C4D is not needed for chemical or water level data.				
MW4B	The shallower well of a cluster that is near CW6. Neither well in the cluster is sampled for VOC analysis and only MW4A is needed for groundwater elevation data.				
R2S	The shallower well of the R2S/R2D cluster that is approximately midway between the source and CW6. R2S was sampled for VOC analysis in 2015 and VOCs were not detected. R2S is not on the regular sampling list and is not needed for water level data. R2D would continue to be sampled for VOC analysis and monitored for groundwater elevation.				
R3S	The shallow well in a cluster with R3D and W50. R3S is a dry well that does not provide chemical or elevation data.				
W50	A mid- aquifer well clustered with R3D and R3S. Typically, it is not used for VOC sampling and it is not needed for elevation data. No VOCs were detected in the 2015 sample from W50.				
W52A	The shallow well clustered with W52. W52A was sampled in 2016 and no VOCs were detected. It is not on the regular sampling list and is not needed for elevation data.				

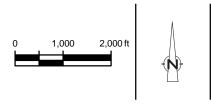
West Bank Monitoring Wells to be Removed from Water Level Monitoring List				
Well No.	Justification			
W53	A deep well in the source area clustered with W53A. It is not used for VOC sampling and it is not needed for elevation data			
W55A	The shallow well clustered with W55, near CW6. W55A was sampled in 2015 and no VOCs were detected. It is not on the regular sampling list and is not needed for elevation data.			
WSWS	Adjacent to the Wisconsin River and the shallow well clustered with WSWD, WSWS was sampled in 2016 and no VOCs were detected. It is not on the regular sampling list and is not needed for elevation data.			

The removal of these 17 wells from the monitoring plan does not reduce the areal coverage of VOC plume monitoring or groundwater elevation monitoring.

Assuming that permanent shut down of EW1 will be approved, monitoring will no longer be conducted at that location.


A revised monitoring plan, based on the modifications proposed herein, is summarized in Table 5.1.

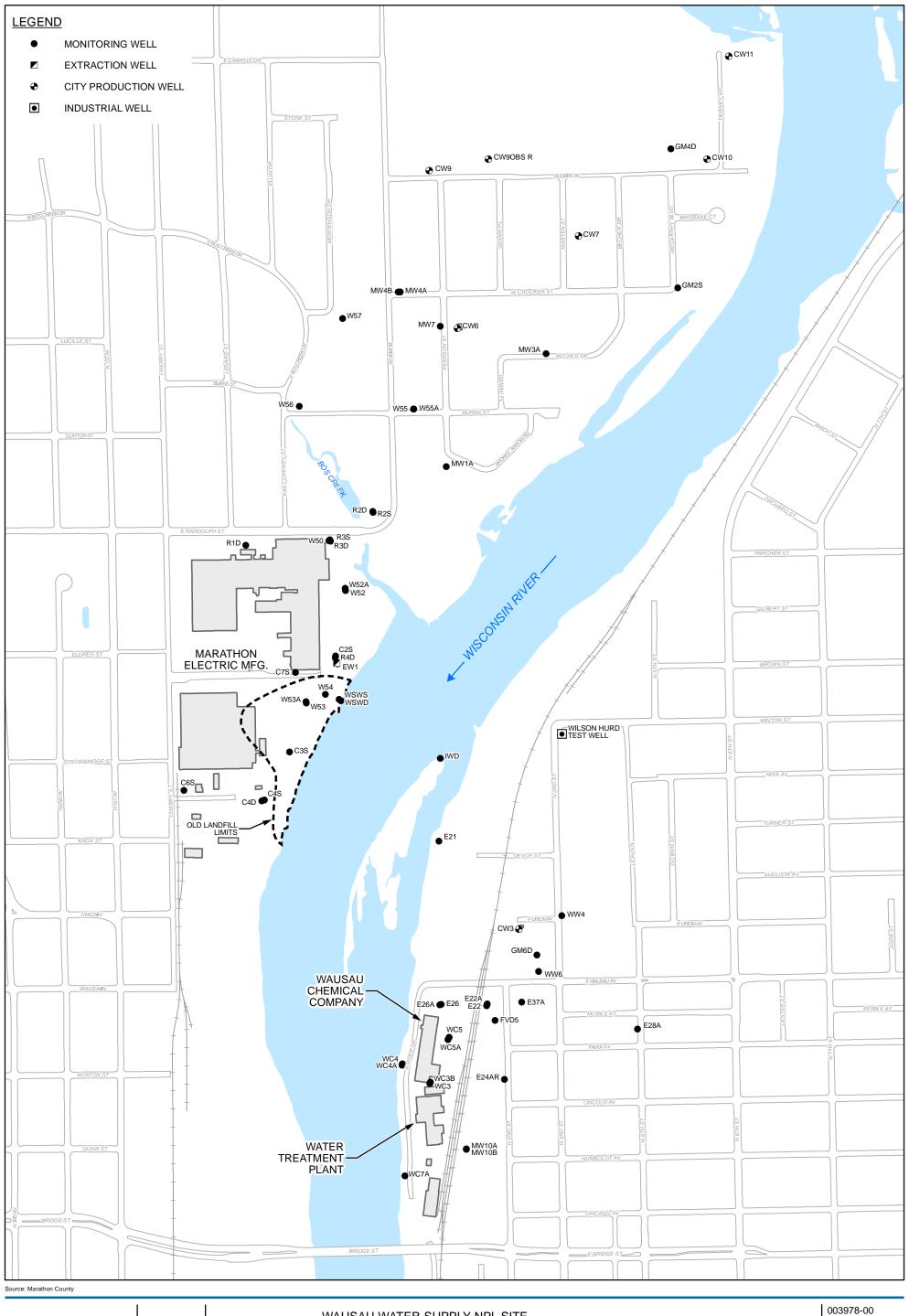
5.2 Proposed Abandonment of Monitoring Wells


Since the monitoring wells listed above are no longer needed to monitor aquifer conditions, they should be properly sealed and abandoned. Upon approval of the proposed monitoring plan, a work plan for the abandonment of these wells will be submitted to EPA and WDNR for approval.

EW1 and its associated treatment and discharge structures should also be sealed and properly dismantled.

FVD5 would not be abandoned because it may be useful for the continued monitoring of the Wausau Energy site.

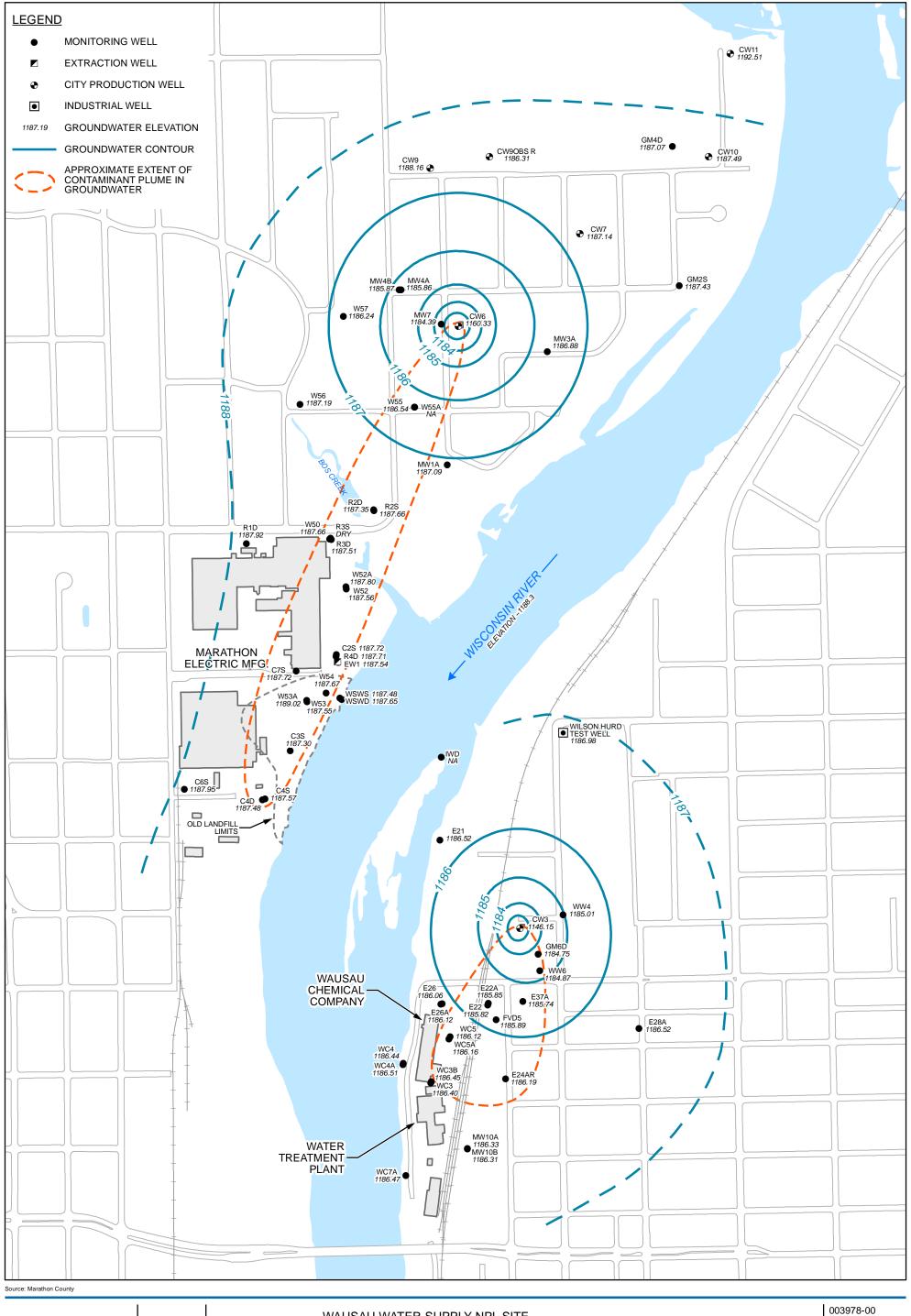
Source: USGS 7.5 Minute Quads - Wausau East; Wausau West



WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN 2016 ANNUAL MONITORING REPORT 003978-00 Mar 9, 2017

SITE LOCATION

FIGURE 1.1

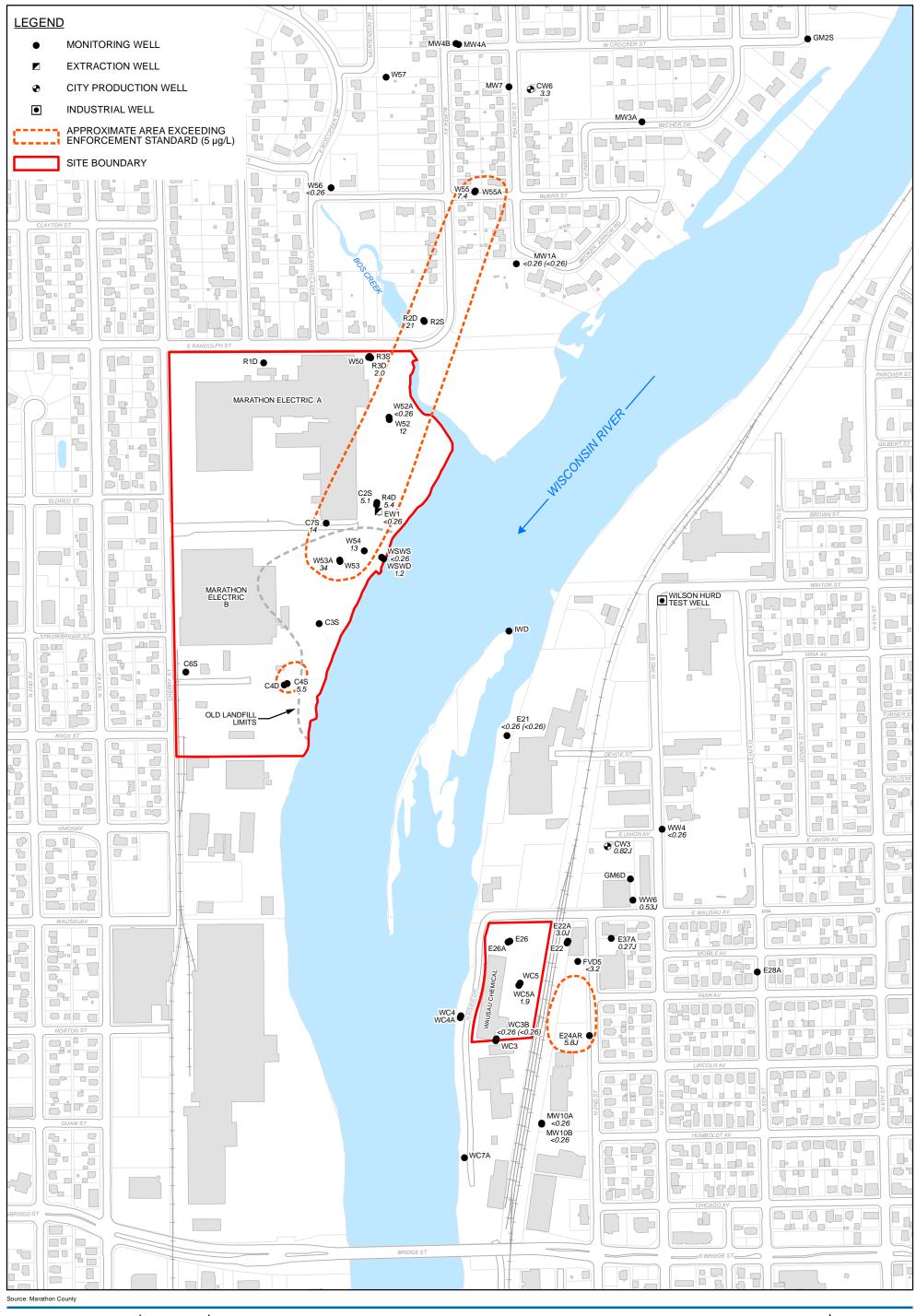


WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN 2016 ANNUAL MONITORING REPORT

Mar 9, 2017

SITE PLAN

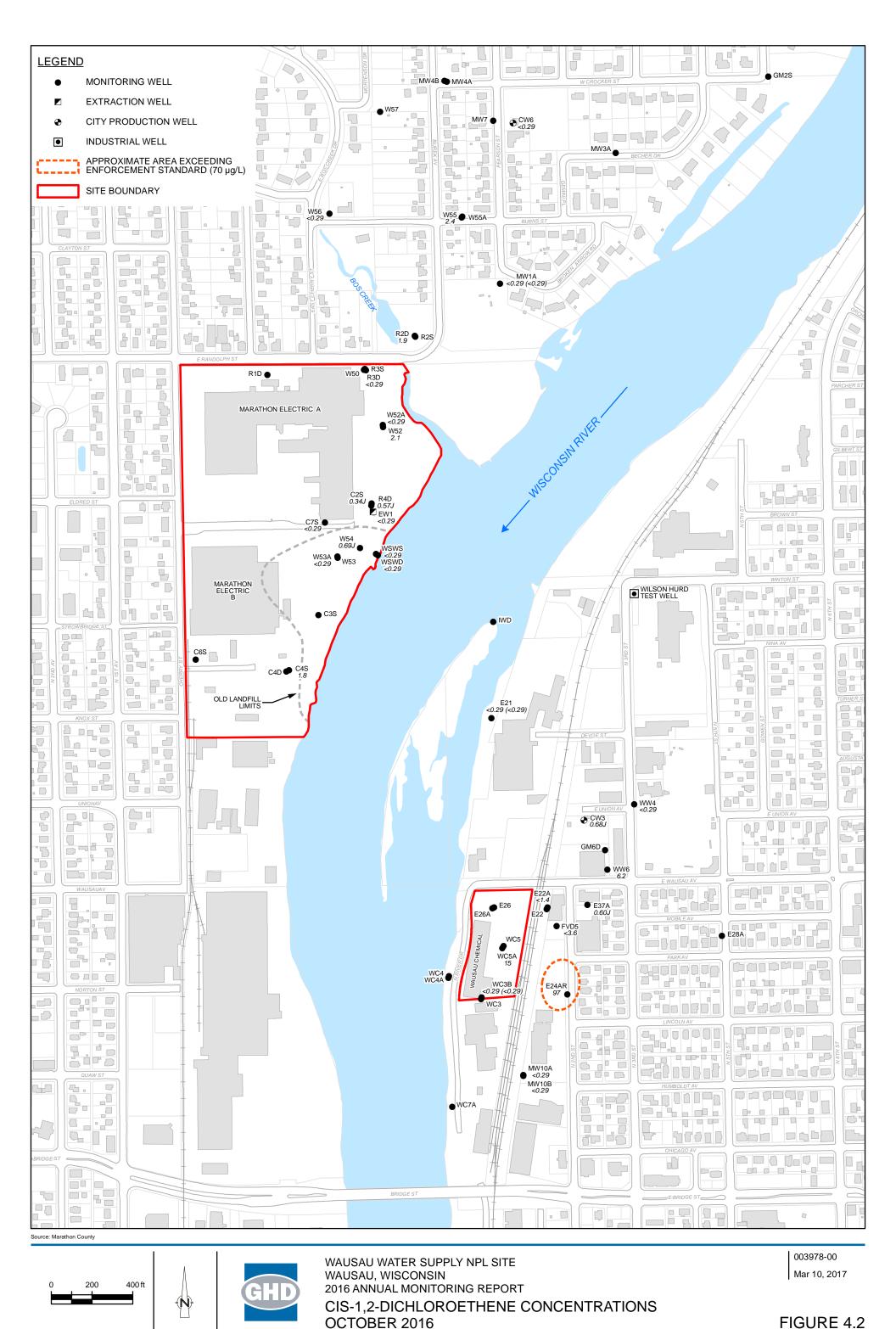
FIGURE 1.2

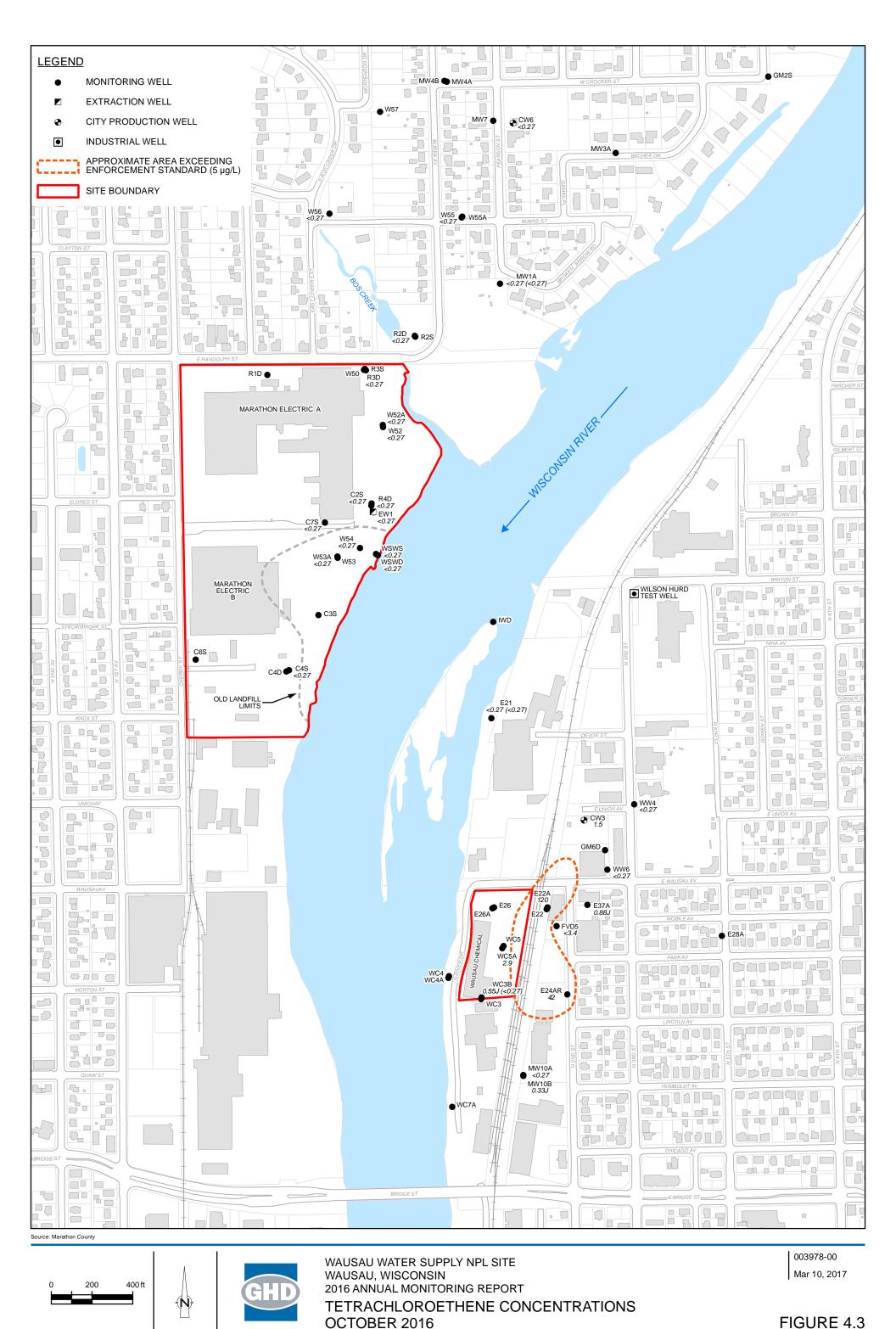


WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN 2016 ANNUAL MONITORING REPORT

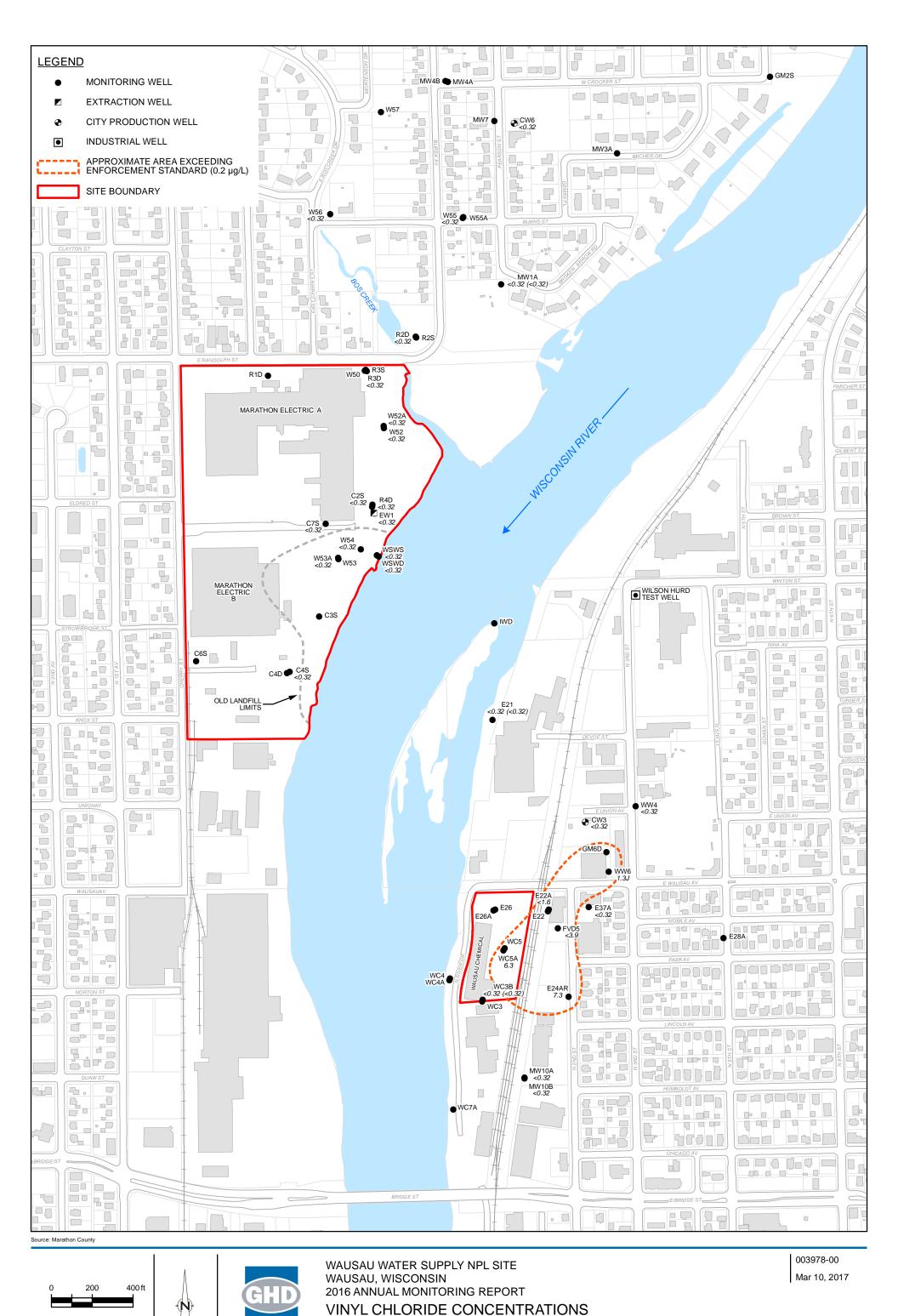
Mar 20, 2017

GROUNDWATER CONTOURS - OCTOBER 25, 2016


0 200 400 ft


WAUSAU WATER SUPPLY NPL SITE
WAUSAU, WISCONSIN
2016 ANNUAL MONITORING REPORT
TRICHLOROETHENE CONCENTRATIONS
OCTOBER 2016

003978-00 Mar 10, 2017


FIGURE 4.1

OCTOBER 2016

OCTOBER 2016

OCTOBER 2016

Table 2.1

Groundwater Elevations - 2016

Wausau Water Supply NPL Site

Wausau, Wisconsin

	Reference Elevation	Water Level (ft BTOC)	Water Table Elevation (ft AMSL)
East Bank		10/24/2016	10/24/2016
CW3*	1202.15	56.00	1146.15
E21	1197.51	10.99	1186.52
E22	1195.47	9.65	1185.82
E22A	1195.88	10.03	1185.85
E24AR	1209.33	23.14	1186.19
E26	1199.02	12.96	1186.06
E26A	1199.13	13.01	1186.12
E28A	1211.60	25.08	1186.52
E37A	1197.84	12.10	1185.74
FVD5	1198.89	13.00	1185.89
GM6D	1198.57	13.82	1184.75
W. HURD	1200.23	13.25	1186.98
IWD	1192.10	NA	NA
MW10A	1210.67	24.34	1186.33
MW10B	1210.37	24.06	1186.31
WC3	1198.26	11.86	1186.40
WC3B	1196.11	9.66	1186.45
WC4	1196.74	10.30	1186.44
WC4A	1196.57	10.06	1186.51
WC5	1196.62	10.50	1186.12
WC5A	1196.66	10.50	1186.16
WC7	1196.77	10.30	1186.47
WW4	1200.34	15.33	1185.01
WW6	1200.53	15.66	1184.87
West Bank		10/25/2016	10/25/2016
EW1	1218.04	30.50	1187.54
CW6*	1220.33	60.00	1160.33
CW7	1224.14	37.00	1187.14
CW9	1226.16	38.00	1188.16
CW9 OBS R	1224.51	38.20	1186.31
CW10	1218.49	31.00	1187.49
CW11	1216.51	24.00	1192.51
C2S	1219.05	31.33	1187.72
C3S	1220.58	33.28	1187.30

Table 2.1

Groundwater Elevations - 2016 Wausau Water Supply NPL Site Wausau, Wisconsin

	Reference Elevation	Water Level (ft BTOC)	Water Table Elevation (ft AMSL)
West Bank co	nt'd.		
C4S	1216.70	29.13	1187.57
C4D	1216.16	28.68	1187.48
C6S	1221.58	33.63	1187.95
C7S	1220.87	33.15	1187.72
GM2S	1211.78	24.35	1187.43
GM4D	1216.35	29.28	1187.07
MW1A	1215.69	28.60	1187.09
MW3A	1220.87	33.99	1186.88
MW4A	1215.48	29.62	1185.86
MW4B	1215.10	29.23	1185.87
MW7	1218.53	34.14	1184.39
R1D	1222.24	34.32	1187.92
R2S	1209.70	22.04	1187.66
R2D	1209.42	22.07	1187.35
R3S	1215.17	Dry	Dry
R3D	1215.42	27.91	1187.51
R4D	1218.90	31.19	1187.71
W50	1215.54	27.88	1187.66
W52	1219.16	31.60	1187.56
W52A	1218.95	31.15	1187.80
W53	1216.67	29.12	1187.55
W53A	1216.90	27.88	1189.02
W54	1216.08	28.41	1187.67
W55	1217.04	30.50	1186.54
W55A	1217.31	NA	NA
W56	1200.01	12.82	1187.19
W57	1201.76	15.52	1186.24
WSWS	1193.04	5.56	1187.48
WSWD	1193.02	5.37	1187.65

Notes:

ft BTOC - Feet below top of casing ft AMSL - Feet above mean sea level

* - Well was pumpingNA - Not Applicable

Table 2.2

Site Specific VOC List Wausau Water Supply NPL Site Wausau, Wisconsin

Acetone
Benzene
Carbon tetrachloride
Chloroform
1,1-Dichloroethene
cis-1,2-Dichloroethene
Ethylbenzene
Methylene chloride
Tetrachloroethene
Toluene
1,1,2-Trichloroethane
Trichloroethene
Vinyl chloride
Xylenes

Table 2.3

Groundwater Sampling Summary - October 2016

Wausau Water Supply NPL Site

Wausau, Wisconsin

Well	Date	рН	Conductivity (us)	Temperature (°C)	Water Clarity	Gallons Removed	Sample ID Number	QA/QC
East Bank CW3	10/24/2016	NA	NA	NA	NA	NA	W-161024-RA-17	
E21	10/24/2016	7.39	710	10.3	Clear	60.0	W-161024-RA-08 W-161024-RA-09 W-161024-RA-07	Duplicate Rinsate
E22A	10/24/2016			NA			W-161024-RA-03	
E24AR	10/24/2016	6.72	624	12.5	Clear	6.0	W-161024-RA-04	
E37A	10/24/2016	6.70	353	6.7	Clear	6.0	W-161024-RA-15	
FVD 5	10/24/2016	6.23	276	14.7	Clear	6.0	W-161024-RA-16	
MW-10B	10/24/2016	6.99	262	12.3	Clear	9.0	W-161024-RA-01	
MW-10A	10/24/2016	7.21	171	12.2	Clear	30.0	W-161024-RA-02	
WC3B	10/24/2016	7.73	NA	13.1	Clear	6.0	W-161024-RA-11 W-161024-RA-12	Duplicate
WC5A	10/24/2016	7.95	NA	13.1	Clear	6.0	W-161024-RA-13 W-161024-RA-14	Field Blank
WW4	10/24/2016	6.80	2430	10.8	Clear	12.0	W-161024-RA-05	
WW6	10/24/2016	7.03	908	10.8	Clear	12.0	W-161024-RA-06	

Table 2.3

Groundwater Sampling Summary - October 2016

Wausau Water Supply NPL Site

Wausau, Wisconsin

Well	Date	рН	Conductivity (us)	Temperature (°C)	Water Clarity	Gallons Removed	Sample ID Number	QA/QC
West Bank C2S	10/25/2016	6.21	749	13.8	Clear	8.0	W-161025-RA-35	
C4S	10/25/2016	7.11	561	9.8	Clear	3.0	W-161025-RA-23	
C7S	10/25/2016	5.91	1381	13.2	Clear	6.0	W-161025-RA-34	
CW6	10/25/2016	6.72	280	9.6	Clear	Grab	W-161025-RA-20	MS/MSD
EW1	10/25/2016	9.05	267	13.3	Clear	Grab	W-161025-RA-28	
MW-1A	10/25/2016	8.44	167	11.1	Clear	8.0	W-161025-RA-26 W-161025-RA-27	Duplicate
R2D	10/25/2016	7.14	561	9.8	Clear	60.0	W-161025-RA-22	
R3D	10/25/2016	7.95	1680	9.8	Clear	60.0	W-161025-RA-31	
R4D	10/24/2016	6.78	1358	15.3	Clear	6.0	W-161024-RA-18	
W52	10/24/2016	7.15	435	11.7	Clear	6.0	W-161024-RA-10	MS/MSD
W52A	10/25/2016	7.09	496	13.2	Clear	6.0	W-161025-RA-29	
W53A	10/24/2016	6.60	1175	12.7	Clear	6.0	W-161024-RA-18	
W54	10/25/2016	8.00	3100	12.3	Clear	45.0	W-161025-RA-30	
W55	10/25/2016	7.04	169	11.3	Clear	6.0	W-161025-RA-25	=:
W56	10/25/2016	7.10	2770	9.8	Clear	30.0	W-161025-RA-24 W-161025-RA-21	Field Blank
WSWD	10/25/2016	7.68	511	24.9	Clear	6.0	W-161025-RA-33	
WSWS	10/25/2016	7.65	413	24.9	Clear	6.0	W-161025-RA-32	

Notes:

NM - Not Measured. Meter was not working.

		Ī				
	сwз	E21	E22	E22A	E24AR	E26
Difficult to find? Brush need cutting?	City pump house	No/No	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	NA	Yes	No	Yes	No	Yes
Protop and Casing Condition	NA	Good	Good	Good	Good	Good
Surface seal visible? Concrete Condition? (Soil/sod covered?)	NA	No, sod covered	Yes, concrete in good condition	Yes, concrete in good condition	Yes, concrete in good condition	No, sod covered
Well Cap Condition (inner/outer)	NA	Good	Good	Good	Good	Good
Does well riser inhibit the protop from being closed and locked?	NA	No	No	No	No	No
Lock Condition	NA	Good	Good	Good	Fair	Good
Ground subsidence?	NA	None	None	None	None	Soil - good
Flush Mount? Potential for ponded water?	NA	Above grade	Flush - No	Flush - No	Flush - No	Above grade
Flush Mount in impervious surface? (surface type)	NA	NA	Soil	Soil	Concrete pad in turf	NA
Flush Mount water tight?	NA	NA	Yes	Yes	Yes	NA
Notes			Cleaned and repaired			

Table 3.1

	E26A	E28A	E37A	FVD5	GM6D	W. HURD
Difficult to find? Brush need cutting?	No/No	No/No	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	Yes	No	Yes	Yes	Yes	Yes
Protop and Casing Condition	Fair	Fair	Good	Good	Good	Good
Surface seal visible? Concrete Condition? (Soil/sod covered?)	No, sod covered	Yes, concrete surface - good	Yes, concrete good	No, protop in gravel.	Yes, concrete surface seal in asphalt	No, sod
Well Cap Condition (inner/outer)	Good	Good	Good	Good	Good	Good
Does well riser inhibit the protop from being closed and locked?	No	No	No	No	No	No
Lock Condition	Fair	Fair	Fair	Good	Good	Fair
Ground subsidence?	Soil - good	No subsidence	No subsidence	None. New gravel.	None	None
Flush Mount? Potential for ponded water?	Above grade	Flush - No	Flush - No	Above grade	Flush - No	Above grade, no
Flush Mount in impervious surface? (surface type)	NA	Concrete sidewalk	Concrete	NA	New concrete vault in asphalt	NA
Flush Mount water tight?	NA	Yes	Yes	NA	Yes	NA
Notes		Bolts replaced				

	IWD	MW10A	MW10B	WC3	WC3B	WC4
Difficult to find? Brush need cutting?	NA	No/No	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	NA	Yes	Yes	No	No	Yes
Protop and Casing Condition	NA NA	Fair -rust	Good	Good	Good	Good
Surface seal visible? Concrete Condition? (Soil/sod covered?)	NA	No, covered with vegetation	No, covered with vegetation	No, sod	Yes, concrete good	No, sod
Well Cap Condition (inner/outer)	NA	Fair, rust	Fair, difficult to remove	Good	Good	Good
Does well riser inhibit the protop from being closed and locked?	NA	No	No	No	No	No
Lock Condition	NA	Good	Fair	Good	Good	Good
Ground subsidence?	NA	None	None	None	None	None
Flush Mount? Potential for ponded water?	NA	Above grade	Above grade	Above grade	Flush - No	Above grade
Flush Mount in impervious surface? (surface type)	NA	NA	NA	<u>.</u>	Yes - Concrete	NA
Flush Mount water tight?	NA	NA	NA	-	Yes	NA
Notes						

	WC4A	WC5	WC5A	WC7	WW4	WW6
Difficult to find? Brush need cutting?	No/No	No/No	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	Yes	Yes	Yes	No, painted over	No	Yes
Protop and Casing Condition	Good	Good	Good	Good	Good	Good
Surface seal visible? Concrete Condition? (Soil/sod covered?)	No, sod	No, gravel and soil	No, gravel and soil	No, soil and grass	New concrete pad	Yes, asphalt - good condition
Well Cap Condition (inner/outer)	Good	Good	Good	Good	Good	Good
Does well riser inhibit the protop from being closed and locked?	No	No	No	No	No	No
Lock Condition	Good	Good	Good	Good	Good	Good
Ground subsidence?	None	None	None	None	None	None
Flush Mount? Potential for ponded water?	Above grade	Above grade	Above grade	Above grade	Flush - No	Above grade
Flush Mount in impervious surface? (surface type)	NA	NA	NA	NA	New concrete pad in sod	NA
Flush Mount water tight?	NA	NA	NA	NA	No	NA
Notes						

Table 3.1

	EW1	CW6	CW9 OBS R	C2S	C3S	C4S
Difficult to find? Brush need cutting?	Pump house	City pump house	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	No	Yes	USGS label	Yes	Yes	Yes
Protop and Casing Condition	Good	NA	Good	Fair	Fair	Fair
Surface seal visible? Concrete Condition? (Soil/sod covered?)	NA	NA	No, sod	No, tall grass	No, sod	No, sod
Well Cap Condition (inner/outer)	NA	NA	Good	Fair	Fair	Fair
Does well riser inhibit the protop from being closed and locked?	NA	NA	Yes	No	No	No
Lock Condition	NA	NA	Good	Fair	Fair	Fair
Ground subsidence?	None	NA	None	None	None	None
Flush Mount? Potential for ponded water?	NA	NA	Above grade	Above grade	Above grade	Above grade
Flush Mount in impervious surface? (surface type)	NA	NA	NA	NA	NA	NA
Flush Mount water tight?	NA	NA	NA	NA	NA	NA
Notes						

			T			
	C4D	C6S	C7S	GM2S	GM4D	MW1A
Difficult to find? Brush need cutting?	No/No	No/No	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	Yes	Yes	Yes	Yes	Yes	No
Protop and Casing Condition	Fair	Fair	Fair	Good	Good	Good
Surface seal visible? Concrete Condition? (Soil/sod covered?)	Yes, concrete - good	No, sod	Yes, concrete - good	New concrete pad	No, sod and leaf litter	No, gravel
Well Cap Condition (inner/outer)	Fair	Fair	Fair	Good	Fair	Good
Does well riser inhibit the protop from being closed and locked?	No	No	No	No	No	No
Lock Condition	Fair	Good	Fair	Good	Good	Good
Ground subsidence?	None	None	None	None	None	None
Flush Mount? Potential for ponded water?	Above grade	Above grade	Above grade	New vault installed	Above grade	Above grade
Flush Mount in impervious surface? (surface type)	NA	NA	NA	Concrete pad in sod	NA	NA
Flush Mount water tight?	NA	NA	NA	Yes	NA	NA
Notes						

Table 3.1

	MW3A	MW4A	MW4B	MW7	R1D	R2S
Difficult to find? Brush need cutting?	No/No	No/No	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	Yes	Yes	Yes	Yes	Yes	Yes
Protop and Casing Condition	Good	Good	Good	Good	Good	Good
Surface seal visible? Concrete Condition? (Soil/sod covered?)	Yes, concrete - good	No, sod	No, leaf litter			
Well Cap Condition (inner/outer)	Good	Good	Good	Good	Fair, rust	Good
Does well riser inhibit the protop from being closed and locked?	No	No	No	No	No	No
Lock Condition	Good	Good	Good	Good	Good	Good
Ground subsidence?	None	None	None	None	None	None
Flush Mount? Potential for ponded water?	Flush - No	Flush - No	Flush - No	Flush - No	Above grade	Above grade
Flush Mount in impervious surface? (surface type)	Soil, grass	Soil, grass	Soil, grass	Grass boulevard	NA	NA
Flush Mount water tight?	Yes	Yes	Yes	Yes	NA	NA
Notes						

Table 3.1

	R2D	R3S	R3D	R4D	W50	W52
Difficult to find? Brush need cutting?	No/No	No/No	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	Yes	Yes	Yes	Yes	Yes	Yes
Protop and Casing Condition	Good	Good	Good	Fair	Fair	Fair
Surface seal visible? Concrete Condition? (Soil/sod covered?)	No, leaf litter	No, sod	No, sod	No, sod and leaf litter	No, sod	No, soil
Well Cap Condition (inner/outer)	Good	Fair	Fair	Fair	Fair	Fair
Does well riser inhibit the protop from being closed and locked?	No	No	No	No	No	No
Lock Condition	Good	Good	Good	Fair	Fair	Fair
Ground subsidence?	None	None	None	None	None	None
Flush Mount? Potential for ponded water?	Above grade	Above grade	Above grade	Above grade	Above grade	Above grade
Flush Mount in impervious surface? (surface type)	NA	NA	NA	NA	NA	NA
Flush Mount water tight?	NA	NA	NA	NA	NA	NA
Notes					_	

Table 3.1

						-
	W52A	W53	W53A	W54	W55	W55A
Difficult to find? Brush need cutting?	No/No	No/No	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	Yes	No	No	Yes	No	No
Protop and Casing Condition	Fair	Fair	Good	Good	Fair	Fair
Surface seal visible? Concrete Condition? (Soil/sod covered?)	No, soil and grass	New concrete pad	Yes, concrete - fair	Yes, concrete -good	No - sod	No - sod
Well Cap Condition (inner/outer)	Fair	Good	Good	Good	Good	Poor, bolt stuck
Does well riser inhibit the protop from being closed and locked?	No	No	No	No	No	No
Lock Condition	Fair	Good	Good	Good	Good	NA
Ground subsidence?	None	None	None	None	None	None
Flush Mount? Potential for ponded water?	Above grade	Flush - No	Flush - No	Flush - No	Flush - No	Flush - No
Flush Mount in impervious surface? (surface type)	NA	Yes, new vault	Concrete	Concrete	Soil, grass	Soil, grass
Flush Mount water tight?	NA	Yes, new vault	Yes	Yes	Yes	Yes
Notes			Bolts replaced	Cover repaired, bolts replaced		To be repaired

Table 3.1 Page 10 of 10

2016 Monitoring Well Inspection Wausau Water Supply NPL Site Wausau, Wisconsin

	W56	W57	wsws	WSWD
Difficult to find? Brush need cutting?	No/No	No/No	No/No	No/No
Clearly labeled on outside? ID tag visible?	Yes	No	Yes	Yes
Protop and Casing Condition	Good	Fair	Good	Good
Surface seal visible? Concrete Condition? (Soil/sod covered?)	No - sod and leaf litter	No, sod	No - sod and leaf litter	No - sod and leaf litter
Well Cap Condition (inner/outer)	Good	Fair	Good	Good
Does well riser inhibit the protop from being closed and locked?	No	No	No	No
Lock Condition	Good	Good	Fair	Fair
Ground subsidence?	None	None	None	None
Flush Mount? Potential for ponded water?	Above grade	Flush - No	Above grade	Above grade
Flush Mount in impervious surface? (surface type)	NA	Soil, grass	NA	NA
Flush Mount water tight?	NA	Yes	NA	NA
Notes				

Table 3.2 Page 1 of 1

2016 City Well Pumping Summary Wausau Water Supply NPL Site Wausau, Wisconsin

		Well	Well	Well	Well	Well	Well
		#3	#6	#7	#9	#10	#11
	Harrina	250.7	200.7	0.40.0	5 0	70.4	00.7
lanam.	Hours	350.7	389.7	243.3	5.8	73.1	96.7
January	Gallons	27.709	28.920	23.796	0.28	14.774	16.766
	gpm	1317	1237	1630	805	3368	2890
	Hours	284.2	402.6	189	105.9	92	104.3
February	Gallons	22.626	28.852	18.58	5.355	18.507	19.888
	gpm	1327	1194	1638	843	3353	3178
	Hours	285.6	452	207.3	38	92.8	121.5
March	Gallons	22.544	31.372	20.103	1.935	18.793	21.509
	gpm	1316	1157	1616	849	3375	2950
	Hours	319	396	168.3	78.9	95.7	87.4
April	Gallons	24.146	28.83	16.149	3.893	17.323	17.224
	gpm	1262	1213	1599	822	3017	3285
	Hours	277	456	256	168	162	146
May	Gallons	21.068	33.488	23.845	8.089	31.292	25.381
	gpm	1268	1224	1552	802	3219	2897
	Hours	278.2	435.2	240.9	191.7	220.5	240.5
June	Gallons	21.675	32.241	21.535	8.991	41.549	41.921
	gpm	1299	1235	1490	782	3141	2905
	Hours	346.6	388.6	275.1	224.4	163.6	183.3
July	Gallons	29.281	30.506	25.093	10.66	31.787	31.951
	gpm	1408	1308	1520	792	3238	2905
	Hours	282.5	457.4	241.6	156.4	177.1	260.8
August	Gallons	23.639	34.706	21.287	7.382	33.255	45.522
	gpm	1395	1265	1468	787	3130	2909
	Hours	296.9	420.1	195.6	120.9	123.8	133.2
September	Gallons	24.462	30.553	16.761	5.805	24.45	23.162
	gpm	1373	1212	1428	800	3292	2898
	Hours	341	401.7	171.9	129.2	115.2	80.8
October	Gallons	28.142	29.042	14.931	6.258	23.198	14.142
	gpm	1375	1205	1448	807	3356	2917
	Hours	286.8	430.6	124.5	91.3	101.6	93.6
November	Gallons	22.93	31.284	10.744	4.406	19.938	16.352
	gpm	1333	1211	1438	804	3271	2912
	Hours	326.8	416.3	115.5	143.5	100.9	104.9
December	Gallons	25.842	30.315	9.855	6.987	20.378	18.312
	gpm	1318	1214	1422	811	3366	2909
Average hrs/		70.7	97.0	46.7	28.0	29.2	31.8
Average gpm		1334	1222	1528	803	3241	2945

Notes:

Hours - Total hours pumped per month
Gallons - Millions of gallons pumped per month

gpm - Gallons per minute

GHD 003978 (38)

Table 4.1 Page 1 of 5

Location ID: Sample Name: Sample Date:			MW10B W-161024-RA-01 10/24/2016	MW10A W-161024-RA-02 10/24/2016	E21 W-161024-RA-08 10/24/2016	E21 W-161024-RA-09 10/24/2016 duplicate	E22A W-161024-RA-03 10/24/2016	E24AR W-161024-RA-04 10/24/2016	E37A W-161024-RA-15 10/24/2016
	Cleanup Standard					·			
	or MCL	Unit							
Volatile Organic Compounds									
1,1,2-Trichloroethane		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U
1,1-Dichloroethene		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U
Acetone		μg/L	10 U	10 U	10 U	10 U	50 U	60 U	10 U
Benzene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U
Carbon tetrachloride		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U
Chloroform (Trichloromethane)		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U
cis-1,2-Dichloroethene	70	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	97	0.60 J
Ethylbenzene	700	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U
Methylene chloride		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U
Tetrachloroethene	5	μg/L	0.33 J	1.0 U	1.0 U	1.0 U	120	42	0.88 J
Toluene	1000	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U
Trichloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	3.0 J	5.8 J	0.27 J
Vinyl chloride	2	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	7.3	1.0 U
Xylenes (total)	10,000	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U

Table 4.1Page 2 of 5

Location ID: Sample Name: Sample Date:			WW4 W-161024-RA-05 10/24/2016	WW6 W-161024-RA-06 10/24/2016	WC3B W-161024-RA-11 10/24/2016	WC3B W-161024-RA-12 10/24/2016 duplicate	WC5A W-161024-RA-14 10/24/2016	FVD5 W-161024-RA-16 10/24/2016	CW3 W-161024-RA-17 10/24/2016
	Cleanup Standard					·			
	or MCL	Unit							
Volatile Organic Compounds									
1,1,2-Trichloroethane		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U	1.0 U
1,1-Dichloroethene		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U	1.0 U
Acetone		μg/L	10 U	10 U	10 U	10 U	10 U	130 U	10 U
Benzene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	19	1.0 U
Carbon tetrachloride		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U	1.0 U
Chloroform (Trichloromethane)		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U	1.0 U
cis-1,2-Dichloroethene	70	μg/L	1.0 U	6.2	1.0 U	1.0 U	15	13 U	0.68 J
Ethylbenzene	700	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	270	1.0 U
Methylene chloride		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U	1.0 U
Tetrachloroethene	5	μg/L	1.0 U	1.0 U	0.55 J	1.0 U	2.9	13 U	1.5
Toluene	1000	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	14	1.0 U
Trichloroethene	5	μg/L	1.0 U	0.53 J	1.0 U	1.0 U	1.9	13 U	0.82 J
Vinyl chloride	2	μg/L	1.0 U	1.3 J	1.0 U	1.0 U	6.3	13 U	1.0 U
Xylenes (total)	10,000	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	720	1.0 U

Location ID: Sample Name: Sample Date:			W52 W-161024-RA-10 10/24/2016	W52A W-161025-RA-29 10/25/2016	W53A W-161024-RA-18 10/24/2016	W54 W-161025-RA-30 10/25/2016	W55 W-161025-RA-25 10/25/2016	W56 W-161025-RA-21 10/25/2016	R2D W-161025-RA-22 10/25/2016
	Cleanup Standard or MCL	Unit							
Volatile Organic Compounds									
1,1,2-Trichloroethane		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acetone		μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform (Trichloromethane)		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	70	μg/L	2.1	1.0 U	1.0 U	0.69 J	2.4	1.0 U	1.9
Ethylbenzene	700	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1000	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5	μg/L	12	1.0 U	34	13.0	7.4	1.0 U	21
Vinyl chloride	2	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes (total)	10,000	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

Location ID: Sample Name: Sample Date:			R3D W-161025-RA-31 10/25/2016	R4D W-161024-RA-19 10/24/2016	MW1A W-161025-RA-26 10/25/2016	MW1A W-161025-RA-27 10/25/2016 duplicate	WSWS W-161025-RA-32 10/25/2016	WSWD W-161025-RA-33 10/25/2016	C2S W-161025-RA-35 10/25/2016
	Cleanup Standard					·			
	or MCL	Unit							
Volatile Organic Compounds									
1,1,2-Trichloroethane		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acetone		μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform (Trichloromethane)		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	70	μg/L	1.0 U	0.57 J	1.0 U	1.0 U	1.0 U	1.0 U	0.34 J
Ethylbenzene	700	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride		μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1000	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5	μg/L	2.0	5.4	1.0 U	1.0 U	1.0 U	1.2	5.1
Vinyl chloride	2	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes (total)	10,000	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

Table 4.1Page 5 of 5

Groundwater Sampling Analytical Results - October 2016 Wausau Water Supply NPL Site Wausau, Wisconsin

Location ID: Sample Name: Sample Date:			C4S W-161025-RA-23 10/25/2016	C7S W-161025-RA-34 10/25/2016	CW6 W-161025-RA-20 10/25/2016	EW1 W-161025-RA-28 10/25/2016	Trip Blank TRIP BLANK 10/25/2016
	Cleanup Standard or MCL	Unit					
Volatile Organic Compounds	i						
1,1,2-Trichloroethane		μg/L	1.0 U				
1,1-Dichloroethene		μg/L	1.0 U				
Acetone		μg/L	10 U	10 U	10 U	10 U	9.8 J
Benzene	5	μg/L	1.0 U				
Carbon tetrachloride		μg/L	1.0 U				
Chloroform (Trichloromethane)		μg/L	0.64 J	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	70	μg/L	1.8	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	700	μg/L	1.0 U				
Methylene chloride		μg/L	1.0 U				
Tetrachloroethene	5	μg/L	1.0 U				
Toluene	1000	μg/L	1.0 U				
Trichloroethene	5	μg/L	5.5	14	3.3	1.0 U	1.0 U
Vinyl chloride	2	μg/L	1.0 U				
Xylenes (total)	10,000	μg/L	1.0 U				

Notes:

Shaded cells indicate concentration exceeded the Site Cleanup Standard

U - Not detected at the associated reporting limit

J - Estimated concentration

Table 5.1

Current and Proposed Groundwater Monitoring Plan Wausau Water Supply NPL Site Wausau, Wisconsin

Current Monitoring Plan

Monitoring	VOC Samp	ole Locations	Laboratory	Groundwater	
Event	East Bank	ast Bank West Bank		Elevations	
Annual -	CW3, E24A, E24B,	EW1, CW6, W53A, W54,	VOC (8260)	All Monitoring Wells, City Wells,	
October	MW10A, MW10B, WW4,	R4D, C2S, R3D, C4S, W52,	(0200)	and EW1(63 wells total)	
	FVD5, E22A, E37A, WC3B, WW6, WC5A,	W56, R2D, WSWD, W55, MW1A			

Proposed Monitoring Plan

Monitoring	VOC Samp	ole Locations	Laboratory	Groundwater
Event	East Bank	West Bank	Analysis	Elevations
Annual - October	CW3, E24AR, MW10B, WW4, E22A, WC3B, WW6, WC5A, E21, E37A	EW1, CW6, W53A, W54, R4D, C2S, R3D, C4S, W52, W56, R2D, WSWD, W55, MW1A	VOC (8260)	E21, E22A, E24AR, E26A, E28A E37A, FVD5, GM6D, W.HURD MW10B, WC3B, WC4A, WC5A WC7, WW4, WW6, C2S, C3S, C4S, C6S, C7S, GM2S, GM4D MW1A, MW3A, MW4A, MW7, R1D, R2D, R3D, R4D, W52, W53A, W54, W55, W56, W57, WSWD, CW9-OBS City Wells CW3, CW6, CW9, CW10, CW1

Appendix A Laboratory Report and Data Quality Validation Memorandum

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-71354-1 Client Project/Site: 3978, Wausau

For:

GHD Services Inc. 1801 Old Highway 8 NW Suite 114 St. Paul, Minnesota 55112

Attn: Mr. Grant Anderson

Denise DHeckler

Authorized for release by: 11/7/2016 10:38:30 AM

Denise Heckler, Project Manager II (330)966-9477

denise.heckler@testamericainc.com

-----LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	11
Surrogate Summary	47
QC Sample Results	49
QC Association Summary	57
Lab Chronicle	59
Certification Summary	65
Chain of Custody	66
Receipt Checklists	70

3

£

R

9

11

12

14

Definitions/Glossary

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	RPD of the LCS and LCSD exceeds the control limits

These commonly used abbreviations may or may not be present in this report.

GlossaryAbbreviation

TEF

TEQ

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Canton

Page 3 of 72

6

Ŏ

12

A E

11/7/2016

Case Narrative

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Job ID: 240-71354-1

Laboratory: TestAmerica Canton

Narrative

Job Narrative 240-71354-1

Comments

No additional comments.

Receipt

The samples were received on 10/27/2016 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

GC/MS VOA

Method(s) 8260B: The following samples was diluted to bring the concentration of target analytes within the calibration range: W-161024-RA-03 (240-71354-3) and W-161024-RA-04 (240-71354-4). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following sample was diluted to bring the concentration of target analytes within the calibration range: W-161024-RA-16 (240-71354-16). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 180-193040 recovered high for Carbon tetrachloride The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 8260B: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 193151 recovered outside control limits for the following analytes: Trichloroethene and Vinyl chloride.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

А

4

_

8

9

11

14

4 /

Method Summary

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PIT

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Sample Summary

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-71354-1	W-161024-RA-01	Water	10/24/16 13:20	10/27/16 09:30
240-71354-2	W-161024-RA-02	Water	10/24/16 13:30	10/27/16 09:30
240-71354-3	W-161024-RA-03	Water	10/24/16 15:00	10/27/16 09:30
240-71354-4	W-161024-RA-04	Water	10/24/16 15:19	10/27/16 09:30
240-71354-5	W-161024-RA-05	Water	10/24/16 15:45	10/27/16 09:30
240-71354-6	W-161024-RA-06	Water	10/24/16 16:20	10/27/16 09:30
240-71354-7	W-161024-RA-07	Water	10/24/16 16:30	10/27/16 09:30
240-71354-8	W-161024-RA-08	Water	10/24/16 17:40	10/27/16 09:30
240-71354-9	W-161024-RA-09	Water	10/24/16 17:40	10/27/16 09:30
240-71354-10	W-161024-RA-10	Water	10/24/16 17:00	10/27/16 09:30
240-71354-11	W-161024-RA-11	Water	10/24/16 13:00	10/27/16 09:30
240-71354-12	W-161024-RA-12	Water	10/24/16 13:00	10/27/16 09:30
240-71354-13	W-161024-RA-13	Water	10/24/16 13:40	10/27/16 09:30
240-71354-14	W-161024-RA-14	Water	10/24/16 13:45	10/27/16 09:30
240-71354-15	W-161024-RA-15	Water	10/24/16 15:00	10/27/16 09:30
240-71354-16	W-161024-RA-16	Water	10/24/16 15:20	10/27/16 09:30
240-71354-17	W-161024-RA-17	Water	10/24/16 12:20	10/27/16 09:30
240-71354-18	W-161024-RA-18	Water	10/24/16 16:00	10/27/16 09:30
240-71354-19	W-161024-RA-19	Water	10/24/16 16:30	10/27/16 09:30
240-71354-20	W-161025-RA-20	Water	10/25/16 07:40	10/27/16 09:30
240-71354-21	W-161025-RA-21	Water	10/25/16 10:55	10/27/16 09:30
240-71354-22	W-161025-RA-22	Water	10/25/16 10:47	10/27/16 09:30
240-71354-23	W-161025-RA-23	Water	10/25/16 11:20	10/27/16 09:30
240-71354-24	W-161025-RA-24	Water	10/25/16 08:00	10/27/16 09:30
240-71354-25	W-161025-RA-25	Water	10/25/16 08:30	10/27/16 09:30
240-71354-26	W-161025-RA-26	Water	10/25/16 10:50	10/27/16 09:30
240-71354-27	W-161025-RA-27	Water	10/25/16 10:50	10/27/16 09:30
240-71354-28	W-161025-RA-28	Water	10/25/16 11:20	10/27/16 09:30
240-71354-29	W-161025-RA-29	Water	10/25/16 12:40	10/27/16 09:30
240-71354-30	W-161025-RA-30	Water	10/25/16 13:15	10/27/16 09:30
240-71354-31	W-161025-RA-31	Water	10/25/16 14:20	10/27/16 09:30
240-71354-32	W-161025-RA-32	Water	10/25/16 15:25	10/27/16 09:30
240-71354-33	W-161025-RA-33	Water	10/25/16 15:35	10/27/16 09:30
240-71354-34	W-161025-RA-34	Water	10/25/16 13:30	10/27/16 09:30
240-71354-35	W-161025-RA-35	Water	10/25/16 14:30	10/27/16 09:30
240-71354-36	TRIP BLANK	Water	10/25/16 00:00	10/27/16 09:30

6

8

9

11

12

14

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-01 Lab Sample ID: 240-71354-1 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 1.0 8260B Tetrachloroethene 0.33 J 0.27 ug/L Total/NA Lab Sample ID: 240-71354-2 Client Sample ID: W-161024-RA-02 No Detections. Client Sample ID: W-161024-RA-03 Lab Sample ID: 240-71354-3 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** 120 5.0 1.3 ug/L 5 Total/NA Tetrachloroethene 8260B Trichloroethene 3.0 J 5.0 5 8260B Total/NA 1.3 ug/L Client Sample ID: W-161024-RA-04 Lab Sample ID: 240-71354-4 Result Qualifier Dil Fac D Analyte RL MDL Unit Method **Prep Type** 97 6.0 cis-1,2-Dichloroethene 17 ug/L 6 8260B Total/NA Tetrachloroethene 42 6.0 6 8260B Total/NA 1.6 ug/L Trichloroethene 5.8 6.0 6 8260B Total/NA 1.5 ug/L 8260B Vinyl chloride 7.3 6.0 1.9 ug/L 6 Total/NA Client Sample ID: W-161024-RA-05 Lab Sample ID: 240-71354-5 No Detections. Client Sample ID: W-161024-RA-06 Lab Sample ID: 240-71354-6 Result Qualifier Dil Fac D Method Analyte RL **MDL** Unit **Prep Type** cis-1,2-Dichloroethene 6.2 1.0 0.29 ug/L 8260B Total/NA Trichloroethene 0.53 J 1.0 0.26 ug/L 1 8260B Total/NA 8260B Vinvl chloride 1.3 1.0 0.32 ug/L Total/NA Client Sample ID: W-161024-RA-07 Lab Sample ID: 240-71354-7 No Detections. Lab Sample ID: 240-71354-8 Client Sample ID: W-161024-RA-08 No Detections. Client Sample ID: W-161024-RA-09 Lab Sample ID: 240-71354-9 No Detections. Client Sample ID: W-161024-RA-10 Lab Sample ID: 240-71354-10 Analyte Result Qualifier RL MDL Unit Dil Fac Method **Prep Type**

This Detection Summary does not include radiochemical test results.

Client Sample ID: W-161024-RA-11

2.1

12

cis-1,2-Dichloroethene

Trichloroethene

TestAmerica Canton

8260B

8260B

Lab Sample ID: 240-71354-11

1

1.0

1.0

0.29 ug/L

0.26 ug/L

Total/NA

Total/NA

TestAmerica Job ID: 240-71354-1

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 Dil Fac
 D
 Method
 Prep Type

 Tetrachloroethene
 0.55
 J*
 1.0
 0.27
 ug/L
 1
 8260B
 Total/NA

No Detections.

Client Sample ID: W-161024-RA-13 Lab Sample ID: 240-71354-13

Analyte	Result Quali	ifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	2.6 J	10	2.5	ug/L	1	_	8260B	Total/NA

Client Sample ID: W-161024-RA-14 Lab Sample ID: 240-71354-14

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Acetone	2.6 J	10	2.5	ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene	15	1.0	0.29	ug/L	1	8260B	Total/NA
Tetrachloroethene	2.9	1.0	0.27	ug/L	1	8260B	Total/NA
Trichloroethene	1.9	1.0	0.26	ug/L	1	8260B	Total/NA
Vinyl chloride	6.3	1.0	0.32	ug/L	1	8260B	Total/NA

Client Sample ID: W-161024-RA-15 Lab Sample ID: 240-71354-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.1	J	10	2.5	ug/L	1	_	8260B	Total/NA
cis-1,2-Dichloroethene	0.60	J	1.0	0.29	ug/L	1		8260B	Total/NA
Tetrachloroethene	0.88	J	1.0	0.27	ug/L	1		8260B	Total/NA
Trichloroethene	0.27	J	1.0	0.26	ug/L	1		8260B	Total/NA

Client Sample ID: W-161024-RA-16 Lab Sample ID: 240-71354-16

Analyte	Result Qualifie	er RL	MDL	Unit	Dil Fac	D Method	Prep Type
Benzene	19	13	3.2	ug/L	12.5	8260B	Total/NA
Ethylbenzene	270	13	3.4	ug/L	12.5	8260B	Total/NA
Toluene	14	13	3.5	ug/L	12.5	8260B	Total/NA
Xylenes, Total	720	13	6.1	ug/L	12.5	8260B	Total/NA

Client Sample ID: W-161024-RA-17 Lab Sample ID: 240-71354-17

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.68 J	1.0	0.29 ug/L		8260B	Total/NA
Tetrachloroethene	1.5	1.0	0.27 ug/L	1	8260B	Total/NA
Trichloroethene	0.82 J	1.0	0.26 ug/L	1	8260B	Total/NA

Client Sample ID: W-161024-RA-18 Lab Sample ID: 240-71354-18

Analyte	Result Quali	ifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Acetone	3.8 J	10	2.5	ug/L	1	8260B	Total/NA
Trichloroethene	34	1.0	0.26	ug/L	1	8260B	Total/NA

Client Sample ID: W-161024-RA-19 Lab Sample ID: 240-71354-19

This Detection Summary does not include radiochemical test results.

TestAmerica Canton

Page 8 of 72

2

4

8

10

12

14

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-16	1024-RA-19	(Continued	d)			Lab Sa	an	ple ID: 2	40-71354-19
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.57		1.0	0.29	ug/L		_	8260B	Total/NA
Trichloroethene	5.4		1.0	0.26	ug/L	1		8260B	Total/NA
Client Sample ID: W-16	1025-RA-20					Lab Sa	an	ple ID: 2	40-71354-20
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	3.3		1.0	0.26	ug/L	1	_	8260B	Total/NA
Client Sample ID: W-16	1025-RA-21					Lab Sa	an	ple ID: 2	40-71354-21
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	4.5	J	10	2.5	ug/L	1	_	8260B	Total/NA
Client Sample ID: W-16	1025-RA-22					Lab Sa	an	ple ID: 2	40-71354-22
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.9		1.0	0.29	ug/L	1	_	8260B	Total/NA
Trichloroethene	21		1.0	0.26	ug/L	1		8260B	Total/NA
Client Sample ID: W-16	1025-RA-23					Lab Sa	an	ple ID: 2	40-71354-23
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.0	J	10	2.5	ug/L	1	_	8260B	Total/NA
Chloroform	0.64	J	1.0	0.27	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	1.8		1.0	0.29	ug/L	1		8260B	Total/NA
Trichloroethene	5.5		1.0	0.26	ug/L	1		8260B	Total/NA
Client Sample ID: W-16	1025-RA-24					Lab Sa	an	ple ID: 2	40-71354-24
 Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Acetone	7.8	J	10	2.5	ug/L	1	_	8260B	Total/NA
Client Sample ID: W-16	1025-RA-25					Lab Sa	an	ple ID: 2	40-71354-25
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	2.6	J	10	2.5	ug/L	1	_	8260B	Total/NA
cis-1,2-Dichloroethene	2.4		1.0	0.29	ug/L	1		8260B	Total/NA
Trichloroethene	7.4		1.0	0.26	ug/L	1		8260B	Total/NA
Client Sample ID: W-16	1025-RA-26					Lab Sa	an	ple ID: 2	40-71354-26
Analyte		Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Acetone	2.5	J	10	2.5	ug/L	1	_	8260B	Total/NA
Client Sample ID: W-16	1025-RA-27					Lab Sa	an	ple ID: 2	40-71354-27
 Analyte		Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Acatona	2.5		10	2.5	//		_	OOCOD	Total/NIA

This Detection Summary does not include radiochemical test results.

3.5 J

Acetone

TestAmerica Canton

8260B

10

2.5 ug/L

Total/NA

Client Sample ID: W-161025-RA-28

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-28

Client Sample ID: W-16	61025-RA-29					Lab Sa	mple ID: 2	40-71354-29
No Detections.							-	
Client Sample ID: W-16	61025-RA-30					Lab Sa	mple ID: 2	40-71354-30
 Analyte	Result	Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
Acetone	3.3	J	10	2.5	ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene	0.69	J	1.0		ug/L	1	8260B	Total/NA
Trichloroethene	13		1.0	0.26	ug/L	1	8260B	Total/NA
Client Sample ID: W-16	61025-RA-31					Lab Sa	mple ID: 2	40-71354-31
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
Acetone	3.7	J	10	2.5	ug/L	1	8260B	Total/NA
Trichloroethene	2.0		1.0	0.26	ug/L	1	8260B	Total/NA
Client Sample ID: W-10	61025-RA-32					Lab Sa	mple ID: 2	40-71354-32
No Detections.								
Client Sample ID: W-16	61025-RA-33					Lab Sa	mple ID: 2	40-71354-33
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Trichloroethene	1.2		1.0	0.26	ug/L	1	8260B	Total/NA
Client Sample ID: W-16	61025-RA-34					Lab Sa	mple ID: 2	40-71354-34
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Trichloroethene	14		1.0	0.26	ug/L	1	8260B	Total/NA
Client Sample ID: W-16	61025-RA-35					Lab Sa	mple ID: 2	40-71354-35
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	0.34	J	1.0	0.29	ug/L	1	8260B	Total/NA
Trichloroethene	5.1		1.0	0.26	ug/L	1	8260B	Total/NA
Client Sample ID: TRIF	BLANK					Lab Sa	mple ID: 2	40-71354-36
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type

9.8 J

Acetone

8260B

10

2.5 ug/L

Total/NA

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-01 Lab Sample ID: 240-71354-1

Date Collected: 10/24/16 13:20 Date Received: 10/27/16 09:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 14:45	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 14:45	1
Acetone	10	U	10	2.5	ug/L			11/02/16 14:45	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 14:45	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 14:45	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 14:45	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 14:45	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 14:45	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 14:45	1
Tetrachloroethene	0.33	J	1.0	0.27	ug/L			11/02/16 14:45	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 14:45	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 14:45	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 14:45	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		72 - 134			-		11/02/16 14:45	1
4-Bromofluorobenzene (Surr)	92		72 - 120					11/02/16 14:45	1
Toluene-d8 (Surr)	90		80 - 120					11/02/16 14:45	1
Dibromofluoromethane (Surr)	90		77 - 127					11/02/16 14:45	1

TestAmerica Canton

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-2

Matrix: Water

Client Sample ID: W-161024-RA-02

Date Collected: 10/24/16 13:30 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 15:14	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 15:14	1
Acetone	10	U	10	2.5	ug/L			11/02/16 15:14	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 15:14	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 15:14	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 15:14	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 15:14	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 15:14	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 15:14	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 15:14	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 15:14	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 15:14	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 15:14	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 15:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		72 - 134			-		11/02/16 15:14	1
4-Bromofluorobenzene (Surr)	92		72 - 120					11/02/16 15:14	1
Toluene-d8 (Surr)	87		80 - 120					11/02/16 15:14	1
Dibromofluoromethane (Surr)	84		77 - 127					11/02/16 15:14	1

Client: GHD Services Inc. Project/Site: 3978, Wausau

Dibromofluoromethane (Surr)

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-03

85

Date Collected: 10/24/16 15:00 Date Received: 10/27/16 09:30

Lab Sample ID: 240-71354-3

11/02/16 12:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	5.0	U	5.0	1.7	ug/L			11/02/16 12:55	5
1,1-Dichloroethene	5.0	U	5.0	1.4	ug/L			11/02/16 12:55	5
Acetone	50	U	50	13	ug/L			11/02/16 12:55	5
Benzene	5.0	U	5.0	1.3	ug/L			11/02/16 12:55	5
Carbon tetrachloride	5.0	U	5.0	1.2	ug/L			11/02/16 12:55	5
Chloroform	5.0	U	5.0	1.4	ug/L			11/02/16 12:55	5
cis-1,2-Dichloroethene	5.0	U	5.0	1.4	ug/L			11/02/16 12:55	5
Ethylbenzene	5.0	U	5.0	1.4	ug/L			11/02/16 12:55	5
Methylene Chloride	5.0	U	5.0	1.8	ug/L			11/02/16 12:55	5
Tetrachloroethene	120		5.0	1.3	ug/L			11/02/16 12:55	5
Toluene	5.0	U	5.0	1.4	ug/L			11/02/16 12:55	5
Trichloroethene	3.0	J	5.0	1.3	ug/L			11/02/16 12:55	5
Vinyl chloride	5.0	U	5.0	1.6	ug/L			11/02/16 12:55	5
Xylenes, Total	5.0	U	5.0	2.4	ug/L			11/02/16 12:55	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		72 - 134			-		11/02/16 12:55	5
4-Bromofluorobenzene (Surr)	99		72 - 120					11/02/16 12:55	5
Toluene-d8 (Surr)	97		80 - 120					11/02/16 12:55	5

77 - 127

Client: GHD Services Inc. Project/Site: 3978, Wausau

Dibromofluoromethane (Surr)

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-04

Date Collected: 10/24/16 15:19 Date Received: 10/27/16 09:30

Lab	Sampl	e ID:	240-7	1354-4
				107

11/02/16 13:22

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	6.0	U	6.0	2.1	ug/L			11/02/16 13:22	6
1,1-Dichloroethene	6.0	U	6.0	1.7	ug/L			11/02/16 13:22	6
Acetone	60	U	60	15	ug/L			11/02/16 13:22	6
Benzene	6.0	U	6.0	1.5	ug/L			11/02/16 13:22	6
Carbon tetrachloride	6.0	U	6.0	1.5	ug/L			11/02/16 13:22	6
Chloroform	6.0	U	6.0	1.6	ug/L			11/02/16 13:22	6
cis-1,2-Dichloroethene	97		6.0	1.7	ug/L			11/02/16 13:22	6
Ethylbenzene	6.0	U	6.0	1.6	ug/L			11/02/16 13:22	6
Methylene Chloride	6.0	U	6.0	2.2	ug/L			11/02/16 13:22	6
Tetrachloroethene	42		6.0	1.6	ug/L			11/02/16 13:22	6
Toluene	6.0	U	6.0	1.7	ug/L			11/02/16 13:22	6
Trichloroethene	5.8	J	6.0	1.5	ug/L			11/02/16 13:22	6
Vinyl chloride	7.3		6.0	1.9	ug/L			11/02/16 13:22	6
Xylenes, Total	6.0	U	6.0	2.9	ug/L			11/02/16 13:22	6
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		72 - 134			-		11/02/16 13:22	6
4-Bromofluorobenzene (Surr)	93		72 - 120					11/02/16 13:22	6
Toluene-d8 (Surr)	90		80 - 120					11/02/16 13:22	6

77 - 127

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-5

Matrix: Water

Client Sample ID: W-161024-RA-05

Date Collected: 10/24/16 15:45 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/03/16 11:16	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 11:16	1
Acetone	10	U	10	2.5	ug/L			11/03/16 11:16	1
Benzene	1.0	U	1.0	0.26	ug/L			11/03/16 11:16	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/03/16 11:16	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/03/16 11:16	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 11:16	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/03/16 11:16	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/03/16 11:16	1
Tetrachloroethene	1.0	U *	1.0	0.27	ug/L			11/03/16 11:16	1
Toluene	1.0	U	1.0	0.28	ug/L			11/03/16 11:16	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/03/16 11:16	1
Vinyl chloride	1.0	U *	1.0	0.32	ug/L			11/03/16 11:16	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/03/16 11:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		72 - 134			-		11/03/16 11:16	1
4-Bromofluorobenzene (Surr)	94		72 - 120					11/03/16 11:16	1
Toluene-d8 (Surr)	94		80 - 120					11/03/16 11:16	1
Dibromofluoromethane (Surr)	91		77 - 127					11/03/16 11:16	1

TestAmerica Canton

3

6

8

9

11

12

Client: GHD Services Inc. Project/Site: 3978, Wausau

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

TestAmerica Job ID: 240-71354-1

11/03/16 11:43

11/03/16 11:43

Client Sample ID: W-161024-RA-06 Lab Sample ID: 240-71354-6

Date Collected: 10/24/16 16:20 Matrix: Water

Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/03/16 11:43	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 11:43	1
Acetone	10	U	10	2.5	ug/L			11/03/16 11:43	1
Benzene	1.0	U	1.0	0.26	ug/L			11/03/16 11:43	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/03/16 11:43	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/03/16 11:43	1
cis-1,2-Dichloroethene	6.2		1.0	0.29	ug/L			11/03/16 11:43	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/03/16 11:43	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/03/16 11:43	1
Tetrachloroethene	1.0	U *	1.0	0.27	ug/L			11/03/16 11:43	1
Toluene	1.0	U	1.0	0.28	ug/L			11/03/16 11:43	1
Trichloroethene	0.53	J	1.0	0.26	ug/L			11/03/16 11:43	1
Vinyl chloride	1.3	*	1.0	0.32	ug/L			11/03/16 11:43	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/03/16 11:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		72 - 134					11/03/16 11:43	1
4-Bromofluorobenzene (Surr)	94		72 - 120					11/03/16 11:43	1

80 - 120

77 - 127

87

85

TestAmerica Canton

11/7/2016

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-7

Matrix: Water

Client Sample ID: W-161024-RA-07

Date Collected: 10/24/16 16:30 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/03/16 12:11	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 12:11	1
Acetone	10	U	10	2.5	ug/L			11/03/16 12:11	1
Benzene	1.0	U	1.0	0.26	ug/L			11/03/16 12:11	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/03/16 12:11	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/03/16 12:11	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 12:11	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/03/16 12:11	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/03/16 12:11	1
Tetrachloroethene	1.0	U *	1.0	0.27	ug/L			11/03/16 12:11	1
Toluene	1.0	U	1.0	0.28	ug/L			11/03/16 12:11	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/03/16 12:11	1
Vinyl chloride	1.0	U *	1.0	0.32	ug/L			11/03/16 12:11	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/03/16 12:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		72 - 134			-		11/03/16 12:11	1
4-Bromofluorobenzene (Surr)	91		72 - 120					11/03/16 12:11	1
Toluene-d8 (Surr)	85		80 - 120					11/03/16 12:11	1
Dibromofluoromethane (Surr)	84		77 - 127					11/03/16 12:11	1

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-08

Date Collected: 10/24/16 17:40 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/03/16 12:38	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 12:38	1
Acetone	10	U	10	2.5	ug/L			11/03/16 12:38	1
Benzene	1.0	U	1.0	0.26	ug/L			11/03/16 12:38	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/03/16 12:38	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/03/16 12:38	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 12:38	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/03/16 12:38	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/03/16 12:38	1
Tetrachloroethene	1.0	U *	1.0	0.27	ug/L			11/03/16 12:38	1
Toluene	1.0	U	1.0	0.28	ug/L			11/03/16 12:38	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/03/16 12:38	1
Vinyl chloride	1.0	U *	1.0	0.32	ug/L			11/03/16 12:38	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/03/16 12:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		72 - 134					11/03/16 12:38	1
4-Bromofluorobenzene (Surr)	93		72 - 120					11/03/16 12:38	1
Toluene-d8 (Surr)	91		80 - 120					11/03/16 12:38	1
Dibromofluoromethane (Surr)	93		77 - 127					11/03/16 12:38	1

TestAmerica Canton

3

_

6

8

10

11

14

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-9

Matrix: Water

Client Sample ID: W-161024-RA-09

Date Collected: 10/24/16 17:40 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/03/16 13:06	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 13:06	1
Acetone	10	U	10	2.5	ug/L			11/03/16 13:06	1
Benzene	1.0	U	1.0	0.26	ug/L			11/03/16 13:06	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/03/16 13:06	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/03/16 13:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 13:06	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/03/16 13:06	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/03/16 13:06	1
Tetrachloroethene	1.0	U *	1.0	0.27	ug/L			11/03/16 13:06	1
Toluene	1.0	U	1.0	0.28	ug/L			11/03/16 13:06	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/03/16 13:06	1
Vinyl chloride	1.0	U *	1.0	0.32	ug/L			11/03/16 13:06	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/03/16 13:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		72 - 134			-		11/03/16 13:06	1
4-Bromofluorobenzene (Surr)	98		72 - 120					11/03/16 13:06	1
Toluene-d8 (Surr)	94		80 - 120					11/03/16 13:06	1
Dibromofluoromethane (Surr)	90		77 - 127					11/03/16 13:06	1

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-10

Matrix: Water

Client Sample ID: W-161024-RA-10

Date Collected: 10/24/16 17:00 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 11:05	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 11:05	1
Acetone	10	U	10	2.5	ug/L			11/02/16 11:05	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 11:05	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 11:05	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 11:05	1
cis-1,2-Dichloroethene	2.1		1.0	0.29	ug/L			11/02/16 11:05	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 11:05	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 11:05	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 11:05	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 11:05	1
Trichloroethene	12		1.0	0.26	ug/L			11/02/16 11:05	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 11:05	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 11:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		72 - 134			-		11/02/16 11:05	1
4-Bromofluorobenzene (Surr)	96		72 - 120					11/02/16 11:05	1
Toluene-d8 (Surr)	93		80 - 120					11/02/16 11:05	1
Dibromofluoromethane (Surr)	87		77 - 127					11/02/16 11:05	1

3

6

8

9

11

12

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-11

Matrix: Water

Client Sample ID: W-161024-RA-11

Date Collected: 10/24/16 13:00 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/03/16 13:34	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 13:34	1
Acetone	10	U	10	2.5	ug/L			11/03/16 13:34	1
Benzene	1.0	U	1.0	0.26	ug/L			11/03/16 13:34	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/03/16 13:34	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/03/16 13:34	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 13:34	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/03/16 13:34	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/03/16 13:34	1
Tetrachloroethene	0.55	J *	1.0	0.27	ug/L			11/03/16 13:34	1
Toluene	1.0	U	1.0	0.28	ug/L			11/03/16 13:34	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/03/16 13:34	1
Vinyl chloride	1.0	U *	1.0	0.32	ug/L			11/03/16 13:34	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/03/16 13:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		72 - 134			-		11/03/16 13:34	1
4-Bromofluorobenzene (Surr)	94		72 - 120					11/03/16 13:34	1
Toluene-d8 (Surr)	88		80 - 120					11/03/16 13:34	1
Dibromofluoromethane (Surr)	87		77 - 127					11/03/16 13:34	1

3

5

8

3

11

12

A A

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-12 Lab Sample ID: 240-71354-12

Date Collected: 10/24/16 13:00

Matrix: Water

Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/03/16 14:01	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 14:01	1
Acetone	10	U	10	2.5	ug/L			11/03/16 14:01	1
Benzene	1.0	U	1.0	0.26	ug/L			11/03/16 14:01	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/03/16 14:01	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/03/16 14:01	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 14:01	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/03/16 14:01	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/03/16 14:01	1
Tetrachloroethene	1.0	U *	1.0	0.27	ug/L			11/03/16 14:01	1
Toluene	1.0	U	1.0	0.28	ug/L			11/03/16 14:01	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/03/16 14:01	1
Vinyl chloride	1.0	U *	1.0	0.32	ug/L			11/03/16 14:01	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/03/16 14:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		72 - 134					11/03/16 14:01	1
4-Bromofluorobenzene (Surr)	92		72 - 120					11/03/16 14:01	1
Toluene-d8 (Surr)	87		80 - 120					11/03/16 14:01	1
Dibromofluoromethane (Surr)	89		77 - 127					11/03/16 14:01	1

TestAmerica Canton

Page 22 of 72

3

5

8

10

11

13

14

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-13

Matrix: Water

Client Sample ID: W-161024-RA-13

Date Collected: 10/24/16 13:40 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 20:22	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 20:22	1
Acetone	2.6	J	10	2.5	ug/L			11/02/16 20:22	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 20:22	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 20:22	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 20:22	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 20:22	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 20:22	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 20:22	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 20:22	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 20:22	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 20:22	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 20:22	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 20:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 134			-		11/02/16 20:22	1
4-Bromofluorobenzene (Surr)	98		72 - 120					11/02/16 20:22	1
Toluene-d8 (Surr)	95		80 - 120					11/02/16 20:22	1
Dibromofluoromethane (Surr)	101		77 - 127					11/02/16 20:22	1

6

8

46

11

12

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-14 Lab Sample ID: 240-71354-14 Matrix: Water

Date Collected: 10/24/16 13:45 Date Received: 10/27/16 09:30

						matrix. Water				
6)	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
	1.0	0.35	ug/L		-	11/02/16 20:46	1	П		
	1.0	0.20	ua/l			11/02/16 20:46	1			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 20:46	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 20:46	1
Acetone	2.6	J	10	2.5	ug/L			11/02/16 20:46	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 20:46	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 20:46	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 20:46	1
cis-1,2-Dichloroethene	15		1.0	0.29	ug/L			11/02/16 20:46	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 20:46	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 20:46	1
Tetrachloroethene	2.9		1.0	0.27	ug/L			11/02/16 20:46	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 20:46	1
Trichloroethene	1.9		1.0	0.26	ug/L			11/02/16 20:46	1
Vinyl chloride	6.3		1.0	0.32	ug/L			11/02/16 20:46	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 20:46	1
Commo modo	0/ 🗖	0					Duamanad	A a l a al	D:/ E

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 134	_		11/02/16 20:46	1
4-Bromofluorobenzene (Surr)	99		72 - 120			11/02/16 20:46	1
Toluene-d8 (Surr)	100		80 - 120			11/02/16 20:46	1
Dibromofluoromethane (Surr)	99		77 - 127			11/02/16 20:46	1

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-15

Date Collected: 10/24/16 15:00 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 21:10	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 21:10	1
Acetone	3.1	J	10	2.5	ug/L			11/02/16 21:10	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 21:10	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 21:10	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 21:10	1
cis-1,2-Dichloroethene	0.60	J	1.0	0.29	ug/L			11/02/16 21:10	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 21:10	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 21:10	1
Tetrachloroethene	0.88	J	1.0	0.27	ug/L			11/02/16 21:10	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 21:10	1
Trichloroethene	0.27	J	1.0	0.26	ug/L			11/02/16 21:10	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 21:10	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 21:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		72 - 134					11/02/16 21:10	1
4-Bromofluorobenzene (Surr)	99		72 - 120					11/02/16 21:10	1
Toluene-d8 (Surr)	93		80 - 120					11/02/16 21:10	1
Dibromofluoromethane (Surr)	100		77 - 127					11/02/16 21:10	1

TestAmerica Canton

3

6

8

40

11

4.0

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-16

Matrix: Water

Client Sample ID: W-161024-RA-16

Date Collected: 10/24/16 15:20 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	13	U	13	4.4	ug/L			11/02/16 15:21	12.5
1,1-Dichloroethene	13	U	13	3.6	ug/L			11/02/16 15:21	12.5
Acetone	130	U	130	31	ug/L			11/02/16 15:21	12.5
Benzene	19		13	3.2	ug/L			11/02/16 15:21	12.5
Carbon tetrachloride	13	U	13	3.0	ug/L			11/02/16 15:21	12.5
Chloroform	13	U	13	3.4	ug/L			11/02/16 15:21	12.5
cis-1,2-Dichloroethene	13	U	13	3.6	ug/L			11/02/16 15:21	12.5
Ethylbenzene	270		13	3.4	ug/L			11/02/16 15:21	12.5
Methylene Chloride	13	U	13	4.5	ug/L			11/02/16 15:21	12.5
Tetrachloroethene	13	U	13	3.4	ug/L			11/02/16 15:21	12.5
Toluene	14		13	3.5	ug/L			11/02/16 15:21	12.5
Trichloroethene	13	U	13	3.2	ug/L			11/02/16 15:21	12.5
Vinyl chloride	13	U	13	3.9	ug/L			11/02/16 15:21	12.5
Xylenes, Total	720		13	6.1	ug/L			11/02/16 15:21	12.5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 134			-		11/02/16 15:21	12.5
4-Bromofluorobenzene (Surr)	107		72 - 120					11/02/16 15:21	12.5
Toluene-d8 (Surr)	107		80 - 120					11/02/16 15:21	12.5
Dibromofluoromethane (Surr)	98		77 - 127					11/02/16 15:21	12.5

4

O

g

9

11

12

13

Client: GHD Services Inc. Project/Site: 3978, Wausau

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-17 Lab Sample ID: 240-71354-17

Date Collected: 10/24/16 12:20 Date Received: 10/27/16 09:30 **Matrix: Water**

11/02/16 11:15

11/02/16 11:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 11:15	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 11:15	1
Acetone	10	U	10	2.5	ug/L			11/02/16 11:15	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 11:15	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 11:15	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 11:15	1
cis-1,2-Dichloroethene	0.68	J	1.0	0.29	ug/L			11/02/16 11:15	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 11:15	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 11:15	1
Tetrachloroethene	1.5		1.0	0.27	ug/L			11/02/16 11:15	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 11:15	1
Trichloroethene	0.82	J	1.0	0.26	ug/L			11/02/16 11:15	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 11:15	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 11:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 134					11/02/16 11:15	1
4-Bromofluorobenzene (Surr)	98		72 - 120					11/02/16 11:15	1

80 - 120

77 - 127

104

9	

Client: GHD Services Inc. Project/Site: 3978, Wausau

Dibromofluoromethane (Surr)

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-18

Date Collected: 10/24/16 16:00 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-18

11/02/16 15:45

Matrix: Water

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 15:45	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 15:45	1
Acetone	3.8	J	10	2.5	ug/L			11/02/16 15:45	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 15:45	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 15:45	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 15:45	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 15:45	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 15:45	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 15:45	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 15:45	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 15:45	1
Trichloroethene	34		1.0	0.26	ug/L			11/02/16 15:45	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 15:45	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 15:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		72 - 134			-		11/02/16 15:45	1
4-Bromofluorobenzene (Surr)	101		72 - 120					11/02/16 15:45	1
Toluene-d8 (Surr)	107		80 - 120					11/02/16 15:45	1

77 - 127

100

TestAmerica Canton

3

6

8

10

11

13

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161024-RA-19

Date Collected: 10/24/16 16:30 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-19

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 16:10	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 16:10	1
Acetone	10	U	10	2.5	ug/L			11/02/16 16:10	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 16:10	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 16:10	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 16:10	1
cis-1,2-Dichloroethene	0.57	J	1.0	0.29	ug/L			11/02/16 16:10	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 16:10	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 16:10	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 16:10	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 16:10	1
Trichloroethene	5.4		1.0	0.26	ug/L			11/02/16 16:10	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 16:10	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		72 - 134					11/02/16 16:10	1
4-Bromofluorobenzene (Surr)	96		72 - 120					11/02/16 16:10	1
Toluene-d8 (Surr)	101		80 - 120					11/02/16 16:10	1
Dibromofluoromethane (Surr)	106		77 - 127					11/02/16 16:10	1

TestAmerica Canton

3

6

8

9

11

12

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-20

Matrix: Water

Client Sample ID: W-161025-RA-20

Date Collected: 10/25/16 07:40 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 11:30	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 11:30	1
Acetone	10	U	10	2.5	ug/L			11/02/16 11:30	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 11:30	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 11:30	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 11:30	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 11:30	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 11:30	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 11:30	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 11:30	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 11:30	1
Trichloroethene	3.3		1.0	0.26	ug/L			11/02/16 11:30	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 11:30	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 11:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			72 - 134			-		11/02/16 11:30	1
4-Bromofluorobenzene (Surr)	106		72 - 120					11/02/16 11:30	1
Toluene-d8 (Surr)	99		80 - 120					11/02/16 11:30	1
Dibromofluoromethane (Surr)	96		77 - 127					11/02/16 11:30	1

TestAmerica Canton

3

6

8

10

11

12

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-21

Matrix: Water

Client Sample ID: W-161025-RA-21

Date Collected: 10/25/16 10:55 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 13:56	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 13:56	1
Acetone	4.5	J	10	2.5	ug/L			11/02/16 13:56	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 13:56	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 13:56	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 13:56	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 13:56	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 13:56	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 13:56	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 13:56	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 13:56	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 13:56	1
Vinyl chloride	1.0	Ú	1.0	0.32	ug/L			11/02/16 13:56	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		72 - 134					11/02/16 13:56	1
4-Bromofluorobenzene (Surr)	102		72 - 120					11/02/16 13:56	1
Toluene-d8 (Surr)	99		80 - 120					11/02/16 13:56	1
Dibromofluoromethane (Surr)	96		77 - 127					11/02/16 13:56	1

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161025-RA-22

Date Collected: 10/25/16 10:47 Date Received: 10/27/16 09:30

Lab Sample	ID: 240-71354-22

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 14:20	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 14:20	1
Acetone	10	U	10	2.5	ug/L			11/02/16 14:20	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 14:20	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 14:20	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 14:20	1
cis-1,2-Dichloroethene	1.9		1.0	0.29	ug/L			11/02/16 14:20	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 14:20	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 14:20	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 14:20	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 14:20	1
Trichloroethene	21		1.0	0.26	ug/L			11/02/16 14:20	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 14:20	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 14:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		72 - 134			-		11/02/16 14:20	1
4-Bromofluorobenzene (Surr)	100		72 - 120					11/02/16 14:20	1
Toluene-d8 (Surr)	101		80 - 120					11/02/16 14:20	1
Dibromofluoromethane (Surr)	95		77 - 127					11/02/16 14:20	1

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-23

Matrix: Water

Client Sample ID: W-161025-RA-23

Date Collected: 10/25/16 11:20 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 14:44	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 14:44	1
Acetone	3.0	J	10	2.5	ug/L			11/02/16 14:44	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 14:44	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 14:44	1
Chloroform	0.64	J	1.0	0.27	ug/L			11/02/16 14:44	1
cis-1,2-Dichloroethene	1.8		1.0	0.29	ug/L			11/02/16 14:44	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 14:44	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 14:44	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 14:44	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 14:44	1
Trichloroethene	5.5		1.0	0.26	ug/L			11/02/16 14:44	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 14:44	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 14:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		72 - 134			-		11/02/16 14:44	1
4-Bromofluorobenzene (Surr)	99		72 - 120					11/02/16 14:44	1
Toluene-d8 (Surr)	98		80 - 120					11/02/16 14:44	1
Dibromofluoromethane (Surr)	94		77 - 127					11/02/16 14:44	1

TestAmerica Canton

2

4

6

8

46

11

12

Client: GHD Services Inc. Project/Site: 3978, Wausau

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161025-RA-24 Lab Sample ID: 240-71354-24

Date Collected: 10/25/16 08:00
Date Received: 10/27/16 09:30

Matrix: Water

11/02/16 15:08

11/02/16 15:08

11/02/16 15:08

_ _

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 15:08	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 15:08	1
Acetone	7.8	J	10	2.5	ug/L			11/02/16 15:08	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 15:08	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 15:08	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 15:08	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 15:08	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 15:08	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 15:08	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 15:08	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 15:08	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 15:08	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 15:08	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 15:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		72 - 134			-		11/02/16 15:08	1

72 - 120

80 - 120

77 - 127

99

93

100

8

10

11

16

Client: GHD Services Inc. Project/Site: 3978, Wausau

Dibromofluoromethane (Surr)

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161025-RA-25

Lab Sample ID

94

Date Collected: 10/25/16 08:30 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-25

11/02/16 15:32

Matrix: Water

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 15:32	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 15:32	1
Acetone	2.6	J	10	2.5	ug/L			11/02/16 15:32	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 15:32	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 15:32	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 15:32	1
cis-1,2-Dichloroethene	2.4		1.0	0.29	ug/L			11/02/16 15:32	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 15:32	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 15:32	1
Tetrachloroethene	1.0	Ü	1.0	0.27	ug/L			11/02/16 15:32	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 15:32	1
Trichloroethene	7.4		1.0	0.26	ug/L			11/02/16 15:32	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 15:32	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 15:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		72 - 134			-		11/02/16 15:32	1
4-Bromofluorobenzene (Surr)	96		72 - 120					11/02/16 15:32	1
Toluene-d8 (Surr)	97		80 - 120					11/02/16 15:32	1

77 - 127

TestAmerica Canton

3

5

0

8

9

11

12

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161025-RA-26

Date Collected: 10/25/16 10:50 Date Received: 10/27/16 09:30

Lab Sample	ID: 240-71354-26

Matrix: Water

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0		1.0		ug/L	<u>-</u> -		11/02/16 15:56	1
1,1-Dichloroethene	1.0		1.0		_			11/02/16 15:56	1
Acetone	2.5	J	10		ug/L			11/02/16 15:56	1
Benzene	1.0	Ü	1.0	0.26	ug/L			11/02/16 15:56	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 15:56	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 15:56	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 15:56	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 15:56	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 15:56	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 15:56	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 15:56	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 15:56	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 15:56	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 15:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			72 - 134			-		11/02/16 15:56	1
4-Bromofluorobenzene (Surr)	100		72 - 120					11/02/16 15:56	1
Toluene-d8 (Surr)	97		80 - 120					11/02/16 15:56	1
Dibromofluoromethane (Surr)	99		77 - 127					11/02/16 15:56	1

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161025-RA-27 Lab Sample ID: 240-71354-27

Date Collected: 10/25/16 10:50 Date Received: 10/27/16 09:30

Lab Sample	:טו	240-7	13	54-27	
		Matr	ix:	Water	٠

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 16:20	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 16:20	1
Acetone	3.5	J	10	2.5	ug/L			11/02/16 16:20	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 16:20	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 16:20	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 16:20	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 16:20	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 16:20	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 16:20	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 16:20	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 16:20	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 16:20	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 16:20	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 16:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		72 - 134			-		11/02/16 16:20	1
4-Bromofluorobenzene (Surr)	100		72 - 120					11/02/16 16:20	1
Toluene-d8 (Surr)	99		80 - 120					11/02/16 16:20	1
Dibromofluoromethane (Surr)	96		77 - 127					11/02/16 16:20	1

_

4

5

8

10

11

13

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161025-RA-28 Lab Sample ID:

Date Collected: 10/25/16 11:20 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-28

Matrix: Water

Method: 8260B - Volatile O Analyte	•	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 16:44	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 16:44	1
Acetone	10	U	10	2.5	ug/L			11/02/16 16:44	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 16:44	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 16:44	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 16:44	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 16:44	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 16:44	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 16:44	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 16:44	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 16:44	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 16:44	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 16:44	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 16:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 134					11/02/16 16:44	1
4-Bromofluorobenzene (Surr)	101		72 - 120					11/02/16 16:44	1
Toluene-d8 (Surr)	99		80 - 120					11/02/16 16:44	1
Dibromofluoromethane (Surr)	97		77 - 127					11/02/16 16:44	1

5

8

10

11

13

14

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-29

Matrix: Water

Client Sample ID: W-161025-RA-29

Date Collected: 10/25/16 12:40 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 17:09	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 17:09	1
Acetone	10	U	10	2.5	ug/L			11/02/16 17:09	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 17:09	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 17:09	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 17:09	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 17:09	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 17:09	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 17:09	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 17:09	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 17:09	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 17:09	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 17:09	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 17:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		72 - 134			-		11/02/16 17:09	1
4-Bromofluorobenzene (Surr)	99		72 - 120					11/02/16 17:09	1
Toluene-d8 (Surr)	96		80 - 120					11/02/16 17:09	1
Dibromofluoromethane (Surr)	101		77 - 127					11/02/16 17:09	1

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-30

Matrix: Water

Client Sample ID: W-161025-RA-30 Date Collected: 10/25/16 13:15 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 17:33	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 17:33	1
Acetone	3.3	J	10	2.5	ug/L			11/02/16 17:33	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 17:33	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 17:33	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 17:33	1
cis-1,2-Dichloroethene	0.69	J	1.0	0.29	ug/L			11/02/16 17:33	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 17:33	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 17:33	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 17:33	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 17:33	1
Trichloroethene	13		1.0	0.26	ug/L			11/02/16 17:33	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 17:33	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 17:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		72 - 134					11/02/16 17:33	1
4-Bromofluorobenzene (Surr)	97		72 - 120					11/02/16 17:33	1
Toluene-d8 (Surr)	96		80 - 120					11/02/16 17:33	1
Dibromofluoromethane (Surr)	98		77 - 127					11/02/16 17:33	1

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-31

Matrix: Water

Client Sample ID: W-161025-RA-31

Date Collected: 10/25/16 14:20 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 17:57	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 17:57	1
Acetone	3.7	J	10	2.5	ug/L			11/02/16 17:57	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 17:57	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 17:57	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 17:57	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 17:57	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 17:57	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 17:57	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 17:57	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 17:57	1
Trichloroethene	2.0		1.0	0.26	ug/L			11/02/16 17:57	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 17:57	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 17:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		72 - 134			-		11/02/16 17:57	1
4-Bromofluorobenzene (Surr)	101		72 - 120					11/02/16 17:57	1
Toluene-d8 (Surr)	101		80 - 120					11/02/16 17:57	1
Dibromofluoromethane (Surr)	99		77 - 127					11/02/16 17:57	1

2

4

6

8

46

11

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161025-RA-32

Date Collected: 10/25/16 15:25 Date Received: 10/27/16 09:30

Lab	Sam	pie	:טו	240-7	1354	.32
				Mat	wise. Ma	4

	Wati IX.	water
repared	Analyzed	Dil Fac
	11/02/16 18:45	1
	11/02/16 18:45	1
	11/02/16 18:45	1
	11/02/16 18:45	1
	11/02/16 18:45	1

ı	
1	8
1	
1	9
1	
1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 18:45	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 18:45	1
Acetone	10	U	10	2.5	ug/L			11/02/16 18:45	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 18:45	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 18:45	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 18:45	1
cis-1,2-Dichloroethene	1.0	Ü	1.0	0.29	ug/L			11/02/16 18:45	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 18:45	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 18:45	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 18:45	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 18:45	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 18:45	1
Vinyl chloride	1.0	Ü	1.0	0.32	ug/L			11/02/16 18:45	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 18:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		72 - 134			-		11/02/16 18:45	1
4-Bromofluorobenzene (Surr)	100		72 - 120					11/02/16 18:45	1
Toluene-d8 (Surr)	98		80 - 120					11/02/16 18:45	1
Dibromofluoromethane (Surr)	96		77 - 127					11/02/16 18:45	1

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-33

Matrix: Water

Client Sample ID: W-161025-RA-33

Date Collected: 10/25/16 15:35 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 19:09	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 19:09	1
Acetone	10	U	10	2.5	ug/L			11/02/16 19:09	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 19:09	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 19:09	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 19:09	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 19:09	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 19:09	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 19:09	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 19:09	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 19:09	1
Trichloroethene	1.2		1.0	0.26	ug/L			11/02/16 19:09	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 19:09	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 19:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		72 - 134			-		11/02/16 19:09	1
4-Bromofluorobenzene (Surr)	104		72 - 120					11/02/16 19:09	1
Toluene-d8 (Surr)	102		80 - 120					11/02/16 19:09	1
Dibromofluoromethane (Surr)	99		77 - 127					11/02/16 19:09	1

2

4

8

46

11

40

14

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-34

Matrix: Water

Client Sample ID: W-161025-RA-34

Date Collected: 10/25/16 13:30 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 19:33	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 19:33	1
Acetone	10	U	10	2.5	ug/L			11/02/16 19:33	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 19:33	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 19:33	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 19:33	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 19:33	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 19:33	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 19:33	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 19:33	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 19:33	1
Trichloroethene	14		1.0	0.26	ug/L			11/02/16 19:33	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 19:33	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 19:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		72 - 134			-		11/02/16 19:33	1
4-Bromofluorobenzene (Surr)	100		72 - 120					11/02/16 19:33	1
Toluene-d8 (Surr)	99		80 - 120					11/02/16 19:33	1
Dibromofluoromethane (Surr)	99		77 - 127					11/02/16 19:33	1

4

6

8

10

11

13

Client: GHD Services Inc. Project/Site: 3978, Wausau

Dibromofluoromethane (Surr)

TestAmerica Job ID: 240-71354-1

Client Sample ID: W-161025-RA-35 Lab Sample

96

Date Collected: 10/25/16 14:30 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-35

11/02/16 19:58

Matrix: Water

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0		1.0		ug/L	— <u> </u>		11/02/16 19:58	1
1,1-Dichloroethene	1.0		1.0		ug/L			11/02/16 19:58	1
Acetone	10	U	10		ug/L			11/02/16 19:58	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 19:58	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 19:58	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 19:58	1
cis-1,2-Dichloroethene	0.34	J	1.0	0.29	ug/L			11/02/16 19:58	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 19:58	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 19:58	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 19:58	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 19:58	1
Trichloroethene	5.1		1.0	0.26	ug/L			11/02/16 19:58	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 19:58	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 19:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		72 - 134					11/02/16 19:58	1
4-Bromofluorobenzene (Surr)	99		72 - 120					11/02/16 19:58	1
Toluene-d8 (Surr)	101		80 - 120					11/02/16 19:58	1

77 - 127

5

8

40

11

16

14

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Lab Sample ID: 240-71354-36

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 10/25/16 00:00 Date Received: 10/27/16 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 11:54	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 11:54	1
Acetone	9.8	J	10	2.5	ug/L			11/02/16 11:54	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 11:54	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 11:54	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 11:54	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 11:54	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 11:54	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 11:54	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 11:54	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 11:54	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 11:54	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 11:54	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 11:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		72 - 134			-		11/02/16 11:54	1
4-Bromofluorobenzene (Surr)	99		72 - 120					11/02/16 11:54	1
Toluene-d8 (Surr)	97		80 - 120					11/02/16 11:54	1
Dibromofluoromethane (Surr)	97		77 - 127					11/02/16 11:54	1

TestAmerica Canton

3

_

6

8

10

11

Surrogate Summary

Client: GHD Services Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Recover	ry (Acceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(72-134)	(72-120)	(80-120)	(77-127)	
240-71354-1	W-161024-RA-01	91	92	90	90	
40-71354-2	W-161024-RA-02	93	92	87	84	
40-71354-3	W-161024-RA-03	93	99	97	85	
40-71354-4	W-161024-RA-04	92	93	90	88	
40-71354-5	W-161024-RA-05	93	94	94	91	
40-71354-6	W-161024-RA-06	89	94	87	85	
40-71354-7	W-161024-RA-07	86	91	85	84	
40-71354-8	W-161024-RA-08	97	93	91	93	
40-71354-9	W-161024-RA-09	95	98	94	90	
40-71354-10	W-161024-RA-10	91	96	93	87	
40-71354-10 MS	W-161024-RA-10	83	89	86	85	
40-71354-10 MSD	W-161024-RA-10	83	92	85	85	
40-71354-11	W-161024-RA-11	93	94	88	87	
40-71354-12	W-161024-RA-12	93	92	87	89	
40-71354-13	W-161024-RA-13	100	98	95	101	
40-71354-14	W-161024-RA-14	100	99	100	99	
40-71354-15	W-161024-RA-15	101	99	93	100	
40-71354-16	W-161024-RA-16	100	107	107	98	
40-71354-17	W-161024-RA-17	100	98	104	104	
40-71354-17 MS	W-161024-RA-17	97	100	104	102	
40-71354-18	W-161024-RA-18	101	101	107	100	
40-71354-19	W-161024-RA-19	102	96	101	106	
40-71354-20	W-161025-RA-20	102	106	99	96	
40-71354-20 MS	W-161025-RA-20	88	93	105	93	
40-71354-20 MSD	W-161025-RA-20	90	101	107	95	
40-71354-21	W-161025-RA-21	95	102	99	96	
40-71354-22	W-161025-RA-22	98	100	101	95	
40-71354-23	W-161025-RA-23	97	99	98	94	
40-71354-24	W-161025-RA-24	103	99	93	100	
40-71354-25	W-161025-RA-25	97	96	97	94	
40-71354-26	W-161025-RA-26	100	100	97	99	
40-71354-27	W-161025-RA-27	96	100	99	96	
40-71354-28	W-161025-RA-28	100	101	99	97	
40-71354-29	W-161025-RA-29	98	99	96	101	
40-71354-30	W-161025-RA-30	98	97	96	98	
40-71354-31	W-161025-RA-31	99	101	101	99	
40-71354-32	W-161025-RA-32	97	100	98	96	
40-71354-33	W-161025-RA-33	99	104	102	99	
40-71354-34	W-161025-RA-34	101	100	99	99	
40-71354-35	W-161025-RA-35	94	99	101	96	
40-71354-36	TRIP BLANK	96	99	97	97	
.CS 180-193034/9	Lab Control Sample	93	98	104	93	
CS 180-193040/7	Lab Control Sample	103	104	105	105	
.CS 180-193065/4	Lab Control Sample	101	108	103	100	
.CS 180-193151/4	Lab Control Sample	89	97	89	85	
CSD 180-193151/5	Lab Control Sample Dup	97	101	98	96	
MB 180-193034/6	Method Blank	94	96	98	92	
MB 180-193040/4	Method Blank	100	97	105	105	
MB 180-193065/8	Method Blank	88	93	97	89	

TestAmerica Canton

2

5

6

_

10

12

Surrogate Summary

Client: GHD Services Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(72-134)	(72-120)	(80-120)	(77-127)
MB 180-193151/8	Method Blank	96	100	97	91
Surrogate Legend					

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

7

9

10

12

12

Client: GHD Services Inc. Project/Site: 3978, Wausau

estAmerica 300 fb. 240-7 1354-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 180-193034/6

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 193034

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 10:56	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 10:56	1
Acetone	10	U	10	2.5	ug/L			11/02/16 10:56	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 10:56	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 10:56	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 10:56	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 10:56	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 10:56	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 10:56	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 10:56	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 10:56	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 10:56	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 10:56	1
Xvlenes. Total	1.0	U	1.0	0.48	ua/L			11/02/16 10:56	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 94 72 - 134 11/02/16 10:56 4-Bromofluorobenzene (Surr) 96 72 - 120 11/02/16 10:56 Toluene-d8 (Surr) 80 - 120 11/02/16 10:56 98 92 77 - 127 11/02/16 10:56 Dibromofluoromethane (Surr)

Lab Sample ID: LCS 180-193034/9

Matrix: Water

Analysis Batch: 193034

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

10.0 10.0	10.3	Qualifier	Unit ug/L	D	%Rec	Limits
			ua/l			
10.0			ug/L		103	77 - 127
	10.6		ug/L		106	71 - 122
20.0	18.1		ug/L		90	10 - 150
10.0	10.2		ug/L		102	80 - 121
10.0	10.1		ug/L		101	59 - 145
10.0	9.87		ug/L		99	78 - 122
10.0	9.92		ug/L		99	80 - 120
10.0	10.5		ug/L		105	80 - 123
10.0	11.0		ug/L		110	80 - 124
10.0	10.0		ug/L		100	71 - 129
10.0	10.7		ug/L		107	80 - 123
10.0	10.9		ug/L		109	80 - 122
10.0	11.0		ug/L		110	80 - 125
10.0	10.3		ug/L		103	79 - 120
10.0	10.4		ug/L		104	61 - 138
	20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	20.0 18.1 10.0 10.2 10.0 10.1 10.0 9.87 10.0 9.92 10.0 10.5 10.0 11.0 10.0 10.7 10.0 10.9 10.0 11.0 10.0 10.3	20.0 18.1 10.0 10.2 10.0 10.1 10.0 9.87 10.0 9.92 10.0 10.5 10.0 11.0 10.0 10.0 10.0 10.7 10.0 10.9 10.0 11.0 10.0 10.3	20.0 18.1 ug/L 10.0 10.2 ug/L 10.0 10.1 ug/L 10.0 9.87 ug/L 10.0 9.92 ug/L 10.0 10.5 ug/L 10.0 11.0 ug/L 10.0 10.0 ug/L 10.0 10.0 ug/L 10.0 10.7 ug/L 10.0 10.9 ug/L 10.0 11.0 ug/L 10.0 10.9 ug/L 10.0 11.0 ug/L	20.0 18.1 ug/L 10.0 10.2 ug/L 10.0 10.1 ug/L 10.0 9.87 ug/L 10.0 9.92 ug/L 10.0 10.5 ug/L 10.0 11.0 ug/L 10.0 10.7 ug/L 10.0 10.9 ug/L 10.0 10.0 ug/L 10.0 10.9 ug/L 10.0 11.0 ug/L 10.0 10.9 ug/L	20.0 18.1 ug/L 90 10.0 10.2 ug/L 102 10.0 10.1 ug/L 101 10.0 9.87 ug/L 99 10.0 9.92 ug/L 99 10.0 10.5 ug/L 105 10.0 11.0 ug/L 110 10.0 10.0 ug/L 100 10.0 10.7 ug/L 107 10.0 10.9 ug/L 109 10.0 11.0 ug/L 110 10.0 10.3 ug/L 103

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		72 - 134
4-Bromofluorobenzene (Surr)	98		72 - 120
Toluene-d8 (Surr)	104		80 - 120
Dibromofluoromethane (Surr)	93		77 - 127

TestAmerica Canton

4

6

8

10

12

13

Client: GHD Services Inc. Project/Site: 3978, Wausau

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-71354-20 MS

Matrix: Water

Analysis Batch: 193034

Client Sample ID: W-161025-RA-20 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 1,1,2-Trichloroethane 1.0 U 10.0 10.3 ug/L 103 77 - 127 1.0 U 10.0 10.1 101 1,1-Dichloroethene ug/L 71 - 12210 - 150 10 U 20.0 16.7 ug/L 84 Acetone 1.0 U 10.0 80 - 121 Benzene 10.2 ug/L 102 Carbon tetrachloride 1.0 U 10.0 9.89 ug/L 99 59 - 145 Chloroform 1.0 U 10.0 9.39 ug/L 94 78 - 122 cis-1,2-Dichloroethene 10.0 9.65 97 80 - 120 1.0 U ug/L Ethylbenzene 1.0 U 10.0 10.6 106 80 - 123 ug/L 1.0 U 10.0 10.6 106 m-Xylene & p-Xylene ug/L 80 - 124 Methylene Chloride 1.0 U 10.0 9.70 ug/L 97 71 - 129o-Xylene 1.0 U 10.0 10.8 ug/L 108 80 - 123Tetrachloroethene 1.0 U 10.0 10.6 ug/L 106 80 - 122 Toluene 1.0 Ü 10.0 10.8 ug/L 108 80 - 125 Trichloroethene 10.0 95 3.3 12.8 ug/L 79 - 120 Vinyl chloride 1.0 U 10.0 9.82 ug/L 98 61 - 138

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		72 - 134
4-Bromofluorobenzene (Surr)	93		72 - 120
Toluene-d8 (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	93		77 - 127

Lab Sample ID: 240-71354-20 MSD

Matrix: Water

Analysis Batch: 193034

Client Sample ID: W-161025-RA-20 Prep Type: Total/NA

RPD MSD MSD %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1,1,2-Trichloroethane 1.0 U 10.0 10.4 ug/L 104 77 - 127 35 1.0 U 1,1-Dichloroethene 10.0 10.6 ug/L 106 71 - 122 5 35 Acetone 10 U 20.0 18.0 ug/L 90 10 - 150 7 35 1.0 U 10.0 10.4 104 80 - 121 Benzene ug/L 32 ug/L Carbon tetrachloride 1.0 U 10.0 9.77 98 59 - 145 35 35 Chloroform 10.0 ug/L 98 78 - 122 1.0 U 9.77 10.0 102 35 cis-1,2-Dichloroethene 1.0 U 10.2 ug/L 80 - 120 Ethylbenzene 1.0 U 10.0 10.9 109 80 - 12333 ug/L m-Xylene & p-Xylene 1.0 U 10.0 10.9 ug/L 109 80 - 124 32 Methylene Chloride 1.0 U 10.0 ug/L 101 71 - 129 35 10 1 o-Xylene 1.0 U 10.0 10.8 ug/L 108 80 - 123 33 Tetrachloroethene 1.0 U 10.0 11.2 ug/L 112 80 - 122 6 35 Toluene 1.0 Ü 10.0 11.0 ug/L 110 80 - 125 35 Trichloroethene 3.3 10.0 12.9 ug/L 96 79 - 120 35 Vinyl chloride 1.0 U 10.0 9.93 ug/L 99 61 - 13835

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		72 - 134
4-Bromofluorobenzene (Surr)	101		72 - 120
Toluene-d8 (Surr)	107		80 - 120

TestAmerica Canton

Page 50 of 72

2

3

5

7

9

10

12

14

4 -

Client: GHD Services Inc. Project/Site: 3978, Wausau

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-71354-20 MSD

Lab Sample ID: MB 180-193040/4

Matrix: Water

Matrix: Water

Analysis Batch: 193034

Analysis Batch: 193040

MSD MSD

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 95 77 - 127 Client Sample ID: W-161025-RA-20

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.35	ug/L			11/02/16 10:40	1
1,1-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 10:40	1
Acetone	10	U	10	2.5	ug/L			11/02/16 10:40	1
Benzene	1.0	U	1.0	0.26	ug/L			11/02/16 10:40	1
Carbon tetrachloride	1.0	U	1.0	0.24	ug/L			11/02/16 10:40	1
Chloroform	1.0	U	1.0	0.27	ug/L			11/02/16 10:40	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/02/16 10:40	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/02/16 10:40	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/02/16 10:40	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/02/16 10:40	1
Toluene	1.0	U	1.0	0.28	ug/L			11/02/16 10:40	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/02/16 10:40	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/02/16 10:40	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/02/16 10:40	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 134		11/02/16 10:40	1
4-Bromofluorobenzene (Surr)	97		72 - 120		11/02/16 10:40	1
Toluene-d8 (Surr)	105		80 - 120		11/02/16 10:40	1
Dibromofluoromethane (Surr)	105		77 - 127		11/02/16 10:40	1

Lab Sample ID: LCS 180-193040/7

Matrix: Water

Analysis Batch: 193040

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Amaryolo Batom 100040	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichloroethane	10.0	10.2		ug/L		102	77 - 127
1,1-Dichloroethene	10.0	9.48		ug/L		95	71 - 122
Acetone	20.0	24.4		ug/L		122	10 - 150
Benzene	10.0	10.2		ug/L		102	80 - 121
Carbon tetrachloride	10.0	10.9		ug/L		109	59 ₋ 145
Chloroform	10.0	9.78		ug/L		98	78 - 122
cis-1,2-Dichloroethene	10.0	9.77		ug/L		98	80 - 120
Ethylbenzene	10.0	10.2		ug/L		102	80 - 123
m-Xylene & p-Xylene	10.0	10.4		ug/L		104	80 - 124
Methylene Chloride	10.0	9.87		ug/L		99	71 - 129
o-Xylene	10.0	10.2		ug/L		102	80 - 123
Tetrachloroethene	10.0	9.82		ug/L		98	80 - 122
Toluene	10.0	10.5		ug/L		105	80 - 125
Trichloroethene	10.0	10.0		ug/L		100	79 - 120
Vinyl chloride	10.0	10.3		ug/L		103	61 - 138

TestAmerica Canton

Page 51 of 72

11/7/2016

QC Sample Results

Client: GHD Services Inc. Project/Site: 3978, Wausau TestAmerica Job ID: 240-71354-1

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		72 - 134
4-Bromofluorobenzene (Surr)	104		72 - 120
Toluene-d8 (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	105		77 - 127

Client Sample ID: W-161024-RA-17

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 193040

Lab Sample ID: 240-71354-17 MS

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloroethane	1.0	U	10.0	9.72		ug/L		97	77 - 127	
1,1-Dichloroethene	1.0	U	10.0	9.55		ug/L		96	71 - 122	
Acetone	10	U	20.0	23.1		ug/L		115	10 - 150	
Benzene	1.0	U	10.0	9.75		ug/L		98	80 - 121	
Carbon tetrachloride	1.0	U	10.0	10.9		ug/L		109	59 - 145	
Chloroform	1.0	U	10.0	9.75		ug/L		97	78 - 122	
cis-1,2-Dichloroethene	0.68	J	10.0	10.2		ug/L		95	80 - 120	
Ethylbenzene	1.0	U	10.0	10.3		ug/L		103	80 - 123	
m-Xylene & p-Xylene	1.0	U	10.0	10.4		ug/L		104	80 - 124	
Methylene Chloride	1.0	U	10.0	9.76		ug/L		98	71 - 129	
o-Xylene	1.0	U	10.0	10.4		ug/L		104	80 - 123	
Tetrachloroethene	1.5		10.0	11.0		ug/L		95	80 - 122	
Toluene	1.0	U	10.0	10.2		ug/L		102	80 - 125	
Trichloroethene	0.82	J	10.0	10.5		ug/L		97	79 - 120	
Vinyl chloride	1.0	U	10.0	10.3		ug/L		103	61 - 138	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		72 - 134
4-Bromofluorobenzene (Surr)	100		72 - 120
Toluene-d8 (Surr)	104		80 - 120
Dibromofluoromethane (Surr)	102		77 - 127

Lab Sample ID: MB 180-193065/8 **Client Sample ID: Method Blank** Prep Type: Total/NA Matrix: Water

Analysis Batch: 193065

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U –	1.0	0.35	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.29	ug/L			11/02/16 10:38	1
10	U	10	2.5	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.26	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.24	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.27	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.29	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.27	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.36	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.27	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.28	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.26	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.32	ug/L			11/02/16 10:38	1
1.0	U	1.0	0.48	ug/L			11/02/16 10:38	1
	Result 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MB MB Result Qualifier 1.0 U	Result Qualifier RL 1.0 U 1.0 1.0 U 1.0 10 U 1.0 1.0 U 1.0	Result Qualifier RL MDL 1.0 U 1.0 0.35 1.0 U 1.0 0.29 10 U 10 2.5 1.0 U 1.0 0.26 1.0 U 1.0 0.24 1.0 U 1.0 0.27 1.0 U 1.0 0.27 1.0 U 1.0 0.36 1.0 U 1.0 0.28 1.0 U 1.0 0.28 1.0 U 1.0 0.26 1.0 U 1.0 0.26 1.0 U 1.0 0.26 1.0 U 1.0 0.26 1.0 U 1.0 0.32	Result Qualifier RL MDL Unit 1.0 U 1.0 0.35 ug/L 1.0 U 1.0 0.29 ug/L 10 U 10 2.5 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.27 ug/L 1.0 U 1.0 0.28 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.32 ug/L	Result Qualifier RL MDL Unit D 1.0 U 1.0 0.35 ug/L 1.0 U 1.0 0.29 ug/L 10 U 10 2.5 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.27 ug/L 1.0 U 1.0 0.27 ug/L 1.0 U 1.0 0.27 ug/L 1.0 U 1.0 0.28 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.32 ug/L	Result Qualifier RL MDL Unit D Prepared 1.0 U 1.0 0.35 ug/L 1.0 U 1.0 0.29 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.24 ug/L 1.0 U 1.0 0.27 ug/L 1.0 U 1.0 0.28 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.26 ug/L 1.0 U 1.0 0.26 ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed 1.0 U 1.0 0.35 ug/L 11/02/16 10:38 1.0 U 1.0 0.29 ug/L 11/02/16 10:38 1.0 U 1.0 0.26 ug/L 11/02/16 10:38 1.0 U 1.0 0.24 ug/L 11/02/16 10:38 1.0 U 1.0 0.27 ug/L 11/02/16 10:38 1.0 U 1.0 0.29 ug/L 11/02/16 10:38 1.0 U 1.0 0.27 ug/L 11/02/16 10:38 1.0 U 1.0 0.28 ug/L 11/02/16 10:38 1.0 U 1.0 0.28 ug/L <t< td=""></t<>

Page 52 of 72

Client: GHD Services Inc. Project/Site: 3978, Wausau

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-193065/8

Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 193065

Prep Type: Total/NA

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		72 - 134		11/02/16 10:38	1
4-Bromofluorobenzene (Surr)	93		72 - 120		11/02/16 10:38	1
Toluene-d8 (Surr)	97		80 - 120		11/02/16 10:38	1
Dibromofluoromethane (Surr)	89		77 - 127		11/02/16 10:38	1

Matrix: Water

Analysis Batch: 193065

Lab Sample ID: LCS 180-193065/4

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 1,1,2-Trichloroethane 10.0 11.1 ug/L 111 77 - 127 1,1-Dichloroethene 10.0 9.71 ug/L 97 71 - 122 Acetone 20.0 17.5 ug/L 87 10 - 150 Benzene 10.0 80 - 121 11.3 ug/L 113 Carbon tetrachloride 10.0 9.30 ug/L 93 59 - 145 Chloroform 10.0 11.0 ug/L 110 78 - 122 cis-1,2-Dichloroethene 10.0 11.0 110 80 - 120 ug/L Ethylbenzene 10.0 10.9 ug/L 109 80 - 123 m-Xylene & p-Xylene 10.0 10.6 ug/L 106 80 - 124 Methylene Chloride 10.0 11.5 ug/L 115 71 - 129 o-Xylene 10.0 10.9 ug/L 109 80 - 123 Tetrachloroethene 10.0 11.0 ug/L 110 80 - 122 Toluene 10.0 11.6 ug/L 116 80 - 125 Trichloroethene 10.0 10.5 ug/L 105 79 - 120 Vinyl chloride 10.0 8.46 ug/L 85 61 - 138

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		72 - 134
4-Bromofluorobenzene (Surr)	108		72 - 120
Toluene-d8 (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	100		77 - 127

Client Sample ID: W-161024-RA-10

Prep Type: Total/NA

Matrix: Water Analysis Batch: 193065

Lab Sample ID: 240-71354-10 MS

Alialysis Datell. 199009									
-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichloroethane	1.0	U	10.0	9.32		ug/L		93	77 - 127
1,1-Dichloroethene	1.0	U	10.0	9.81		ug/L		98	71 - 122
Acetone	10	U	20.0	13.1		ug/L		66	10 - 150
Benzene	1.0	U	10.0	10.2		ug/L		102	80 - 121
Carbon tetrachloride	1.0	U	10.0	8.50		ug/L		85	59 - 145
Chloroform	1.0	U	10.0	9.51		ug/L		95	78 ₋ 122
cis-1,2-Dichloroethene	2.1		10.0	11.9		ug/L		98	80 - 120
Ethylbenzene	1.0	U	10.0	9.69		ug/L		97	80 - 123
m-Xylene & p-Xylene	1.0	U	10.0	10.0		ug/L		100	80 - 124
Methylene Chloride	1.0	U	10.0	9.64		ug/L		96	71 - 129
o-Xylene	1.0	U	10.0	9.87		ug/L		99	80 - 123

TestAmerica Canton

Page 53 of 72

Client: GHD Services Inc. Project/Site: 3978, Wausau

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 240-71354-10 MS

Matrix: Water

Surrogate

Toluene-d8 (Surr)

Analysis Batch: 193065

Client Sample ID: W-161024-RA-10

Prep Type: Total/NA

%Rec.
Limits
80 - 122
80 - 125
79 - 120
61 - 138
٤ 7

MS MS Qualifier Limits %Recovery 72 - 134 83 89 72 - 120 86 80 - 120 85 77 - 127

Lab Sample ID: 240-71354-10 MSD Client Sample ID: W-161024-RA-10 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 193065

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier **Analyte** Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1,1,2-Trichloroethane 1.0 U 10.0 9.25 ug/L 93 77 - 127 35 1,1-Dichloroethene 1.0 U 10.0 9.49 ug/L 95 71 - 122 3 35 Acetone 10 U 20.0 11.9 ug/L 60 10 - 150 10 35 Benzene 1.0 U 10.0 10.3 ug/L 103 80 - 121 32 Carbon tetrachloride 1.0 U 10.0 8.56 ug/L 86 59 - 145 35 Chloroform 1.0 U 10.0 9.88 ug/L 99 78 - 122 35 cis-1,2-Dichloroethene 2.1 10.0 12.1 ug/L 100 80 - 120 35 ug/L Ethylbenzene 1.0 U 10.0 9.92 80 - 123 33 99 10.0 10.1 101 80 - 124 32 m-Xylene & p-Xylene 1.0 U ug/L Methylene Chloride 1.0 U 10.0 9.64 ug/L 96 71 - 12935 o-Xylene 1.0 U 10.0 9.93 ug/L 99 80 - 123 33 Tetrachloroethene 1.0 U 10.0 10.5 ug/L 105 80 - 122 35 10.0 10.1 101 80 - 125 35 Toluene 1.0 Ü ug/L Trichloroethene 12 10.0 20.8 ug/L 83 79 - 120 35 77 Vinyl chloride 10.0 7.74 35 1.0 U ug/L 61 - 138

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	83		72 - 134
4-Bromofluorobenzene (Surr)	92		72 - 120
Toluene-d8 (Surr)	85		80 - 120
Dibromofluoromethane (Surr)	85		77 - 127

Lab Sample ID: MB 180-193151/8

Matrix: Water

Analysis Batch: 193151

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
4	Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1	,1,2-Trichloroethane 1.0	U	1.0	0.35	ug/L			11/03/16 10:48	1
1	,1-Dichloroethene 1.0	U	1.0	0.29	ug/L			11/03/16 10:48	1
Α	Acetone 10	U	10	2.5	ug/L			11/03/16 10:48	1
E	Benzene 1.0	U	1.0	0.26	ug/L			11/03/16 10:48	1
C	Carbon tetrachloride 1.0	U	1.0	0.24	ug/L			11/03/16 10:48	1

TestAmerica Canton

Page 54 of 72

Client: GHD Services Inc. Project/Site: 3978, Wausau

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 180-193151/8

Matrix: Water

Analysis Batch: 193151

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	1.0	U	1.0	0.27	ug/L			11/03/16 10:48	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.29	ug/L			11/03/16 10:48	1
Ethylbenzene	1.0	U	1.0	0.27	ug/L			11/03/16 10:48	1
Methylene Chloride	1.0	U	1.0	0.36	ug/L			11/03/16 10:48	1
Tetrachloroethene	1.0	U	1.0	0.27	ug/L			11/03/16 10:48	1
Toluene	1.0	U	1.0	0.28	ug/L			11/03/16 10:48	1
Trichloroethene	1.0	U	1.0	0.26	ug/L			11/03/16 10:48	1
Vinyl chloride	1.0	U	1.0	0.32	ug/L			11/03/16 10:48	1
Xylenes, Total	1.0	U	1.0	0.48	ug/L			11/03/16 10:48	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	72 - 134		11/03/16 10:48	1
4-Bromofluorobenzene (Surr)	100	72 - 120		11/03/16 10:48	1
Toluene-d8 (Surr)	97	80 - 120		11/03/16 10:48	1
Dibromofluoromethane (Surr)	91	77 - 127		11/03/16 10:48	1

Lab Sample ID: LCS 180-193151/4

Matrix: Water

Analysis Batch: 193151

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloroethane	10.0	9.35	-	ug/L		93	77 - 127	
1,1-Dichloroethene	10.0	8.88		ug/L		89	71 - 122	
Acetone	20.0	14.3		ug/L		71	10 - 150	
Benzene	10.0	9.70		ug/L		97	80 - 121	
Carbon tetrachloride	10.0	8.54		ug/L		85	59 - 145	
Chloroform	10.0	9.43		ug/L		94	78 - 122	
cis-1,2-Dichloroethene	10.0	9.28		ug/L		93	80 - 120	
Ethylbenzene	10.0	9.35		ug/L		94	80 - 123	
m-Xylene & p-Xylene	10.0	9.70		ug/L		97	80 - 124	
Methylene Chloride	10.0	9.41		ug/L		94	71 - 129	
o-Xylene	10.0	9.62		ug/L		96	80 - 123	
Tetrachloroethene	10.0	9.83		ug/L		98	80 - 122	
Toluene	10.0	9.86		ug/L		99	80 - 125	
Trichloroethene	10.0	9.21		ug/L		92	79 - 120	
Vinyl chloride	10.0	8.12		ug/L		81	61 - 138	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		72 - 134
4-Bromofluorobenzene (Surr)	97		72 - 120
Toluene-d8 (Surr)	89		80 - 120
Dibromofluoromethane (Surr)	85		77 - 127

TestAmerica Canton

Page 55 of 72

QC Sample Results

Spike

Added

10.0

10.0

20.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

11.2

10.8

9.74 *

11.6 *

ug/L

ug/L

ug/L

ug/L

Client: GHD Services Inc. TestAmerica Job ID: 240-71354-1 Project/Site: 3978, Wausau

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 180-193151/5

Matrix: Water

1,1,2-Trichloroethane

1,1-Dichloroethene

Carbon tetrachloride

cis-1,2-Dichloroethene

m-Xylene & p-Xylene Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Analyte

Acetone

Benzene

Chloroform

Ethylbenzene

o-Xylene

Toluene

Analysis Batch: 193151

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

					Prep Typ	oe: Tota	al/NA
LCSD	LCSD				%Rec.		RPD
Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
10.7		ug/L	_	107	77 - 127	13	17
10.5		ug/L		105	71 - 122	17	18
15.2		ug/L		76	10 - 150	6	35
11.2		ug/L		112	80 - 121	14	15
10.1		ug/L		101	59 - 145	16	19
10.6		ug/L		106	78 - 122	12	15
10.9		ug/L		109	80 - 120	16	17
10.6		ug/L		106	80 - 123	12	15
10.8		ug/L		108	80 - 124	11	17
10.7		ug/L		107	71 - 129	13	19
10.8		ua/L		108	80 - 123	11	15

116

112

108

97

80 - 122

80 - 125

79 - 120

61 - 138

17

13

15

18

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		72 - 134
4-Bromofluorobenzene (Surr)	101		72 - 120
Toluene-d8 (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	96		77 - 127

10

15

15

15

Client: GHD Services Inc. Project/Site: 3978, Wausau

GC/MS VOA

Analysis Batch: 193034

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-71354-13	W-161024-RA-13	Total/NA	Water	8260B	_
240-71354-14	W-161024-RA-14	Total/NA	Water	8260B	
240-71354-15	W-161024-RA-15	Total/NA	Water	8260B	
240-71354-20	W-161025-RA-20	Total/NA	Water	8260B	
240-71354-21	W-161025-RA-21	Total/NA	Water	8260B	
240-71354-22	W-161025-RA-22	Total/NA	Water	8260B	
240-71354-23	W-161025-RA-23	Total/NA	Water	8260B	
240-71354-24	W-161025-RA-24	Total/NA	Water	8260B	
240-71354-25	W-161025-RA-25	Total/NA	Water	8260B	
240-71354-26	W-161025-RA-26	Total/NA	Water	8260B	
240-71354-27	W-161025-RA-27	Total/NA	Water	8260B	
240-71354-28	W-161025-RA-28	Total/NA	Water	8260B	
240-71354-29	W-161025-RA-29	Total/NA	Water	8260B	
240-71354-30	W-161025-RA-30	Total/NA	Water	8260B	
240-71354-31	W-161025-RA-31	Total/NA	Water	8260B	
240-71354-32	W-161025-RA-32	Total/NA	Water	8260B	
240-71354-33	W-161025-RA-33	Total/NA	Water	8260B	
240-71354-34	W-161025-RA-34	Total/NA	Water	8260B	
240-71354-35	W-161025-RA-35	Total/NA	Water	8260B	
240-71354-36	TRIP BLANK	Total/NA	Water	8260B	
MB 180-193034/6	Method Blank	Total/NA	Water	8260B	
LCS 180-193034/9	Lab Control Sample	Total/NA	Water	8260B	
240-71354-20 MS	W-161025-RA-20	Total/NA	Water	8260B	
240-71354-20 MSD	W-161025-RA-20	Total/NA	Water	8260B	

Analysis Batch: 193040

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-71354-16	W-161024-RA-16	Total/NA	Water	8260B	
240-71354-17	W-161024-RA-17	Total/NA	Water	8260B	
240-71354-18	W-161024-RA-18	Total/NA	Water	8260B	
240-71354-19	W-161024-RA-19	Total/NA	Water	8260B	
MB 180-193040/4	Method Blank	Total/NA	Water	8260B	
LCS 180-193040/7	Lab Control Sample	Total/NA	Water	8260B	
240-71354-17 MS	W-161024-RA-17	Total/NA	Water	8260B	

Analysis Batch: 193065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-71354-1	W-161024-RA-01	Total/NA	Water	8260B	_
240-71354-2	W-161024-RA-02	Total/NA	Water	8260B	
240-71354-3	W-161024-RA-03	Total/NA	Water	8260B	
240-71354-4	W-161024-RA-04	Total/NA	Water	8260B	
240-71354-10	W-161024-RA-10	Total/NA	Water	8260B	
MB 180-193065/8	Method Blank	Total/NA	Water	8260B	
LCS 180-193065/4	Lab Control Sample	Total/NA	Water	8260B	
240-71354-10 MS	W-161024-RA-10	Total/NA	Water	8260B	
240-71354-10 MSD	W-161024-RA-10	Total/NA	Water	8260B	

Analysis Batch: 193151

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-71354-5	W-161024-RA-05	Total/NA	Water	8260B	
240-71354-6	W-161024-RA-06	Total/NA	Water	8260B	

TestAmerica Canton

11/7/2016

Page 57 of 72

QC Association Summary

Client: GHD Services Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-71354-1

GC/MS VOA (Continued)

Analysis Batch: 193151 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-71354-7	W-161024-RA-07	Total/NA	Water	8260B	
240-71354-8	W-161024-RA-08	Total/NA	Water	8260B	
240-71354-9	W-161024-RA-09	Total/NA	Water	8260B	
240-71354-11	W-161024-RA-11	Total/NA	Water	8260B	
240-71354-12	W-161024-RA-12	Total/NA	Water	8260B	
MB 180-193151/8	Method Blank	Total/NA	Water	8260B	
LCS 180-193151/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 180-193151/5	Lab Control Sample Dup	Total/NA	Water	8260B	

3

4

5

9

10

-

13

14

Client: GHD Services Inc. Project/Site: 3978, Wausau

Client Sample ID: W-161024-RA-01

Analysis

Date Collected: 10/24/16 13:20 Date Received: 10/27/16 09:30

Lab Sample ID: 240-71354-1

Matrix: Water

Batch Dilution Batch Prepared Batch Method Factor Number or Analyzed

Run **Prep Type** Type

8260B

Analyst Lab PJJ TAL PIT 11/02/16 14:45

Client Sample ID: W-161024-RA-02 Lab Sample ID: 240-71354-2

193065

Date Collected: 10/24/16 13:30

Total/NA

Matrix: Water

Date Received: 10/27/16 09:30

Dilution Batch Batch Batch **Prepared**

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

PJJ TAL PIT Total/NA 8260B 193065 11/02/16 15:14 Analysis

Client Sample ID: W-161024-RA-03 Lab Sample ID: 240-71354-3

Date Collected: 10/24/16 15:00 Date Received: 10/27/16 09:30

Matrix: Water

Dilution Batch Batch Batch **Prepared**

Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab Total/NA Analysis 8260B 193065 11/02/16 12:55 PJJ TAL PIT

Client Sample ID: W-161024-RA-04 Lab Sample ID: 240-71354-4 **Matrix: Water**

Date Collected: 10/24/16 15:19 Date Received: 10/27/16 09:30

Batch Batch Dilution Batch **Prepared**

Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 8260B 193065 11/02/16 13:22 PJJ TAL PIT Total/NA Analysis 6

Client Sample ID: W-161024-RA-05 Lab Sample ID: 240-71354-5

Date Collected: 10/24/16 15:45 **Matrix: Water**

Date Received: 10/27/16 09:30

Dilution **Batch** Batch Prepared Batch Prep Type Method **Factor** Number or Analyzed Type Run Analyst Lab \overline{PJJ} TAI PIT Total/NA Analysis 8260B 193151 11/03/16 11:16

Client Sample ID: W-161024-RA-06 Lab Sample ID: 240-71354-6

Date Collected: 10/24/16 16:20 **Matrix: Water**

Date Received: 10/27/16 09:30

Batch Batch Dilution Batch Prepared Method Number **Prep Type** Run or Analyzed Type **Factor** Analyst Lab Total/NA PJJ TAL PIT Analysis 8260B 193151 11/03/16 11:43

Client: GHD Services Inc. Project/Site: 3978, Wausau

Client Sample ID: W-161024-RA-07

Date Collected: 10/24/16 16:30 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-7

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 240-71354-12

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 193151 11/03/16 12:11 PJJ TAL PIT

Client Sample ID: W-161024-RA-08 Lab Sample ID: 240-71354-8

Date Collected: 10/24/16 17:40

Date Received: 10/27/16 09:30

.

Dilution Batch Batch Batch **Prepared** Number Prep Type Type Method Run **Factor** or Analyzed Lab Analyst PJJ TAL PIT Total/NA 8260B 193151 11/03/16 12:38 Analysis

Client Sample ID: W-161024-RA-09 Lab Sample ID: 240-71354-9

Date Collected: 10/24/16 17:40

Date Received: 10/27/16 09:30

Ratch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 8260B 193151 11/03/16 13:06 PJJ TAL PIT Total/NA Analysis

Client Sample ID: W-161024-RA-10 Lab Sample ID: 240-71354-10

Date Collected: 10/24/16 17:00

Date Received: 10/27/16 09:30

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Run **Factor** Number **Analyst** Type Lab 193065 PJJ TAL PIT Total/NA 8260B 11/02/16 11:05 Analysis

Client Sample ID: W-161024-RA-11 Lab Sample ID: 240-71354-11

Date Collected: 10/24/16 13:00

Date Received: 10/27/16 09:30

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Analysis 8260B 193151 11/03/16 13:34 PJJ TAL PIT

Client Sample ID: W-161024-RA-12

Date Collected: 10/24/16 13:00

Date Received: 10/27/16 09:30

Dilution Batch Batch Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260B 11/03/16 14:01 PJJ TAL PIT

Client: GHD Services Inc. Project/Site: 3978, Wausau

Client Sample ID: W-161024-RA-13 Lab Sample ID: 240-71354-13

Date Collected: 10/24/16 13:40 **Matrix: Water**

Matrix: Water

Date Received: 10/27/16 09:30

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 193034 11/02/16 20:22 DLF TAL PIT

Client Sample ID: W-161024-RA-14 Lab Sample ID: 240-71354-14

Date Collected: 10/24/16 13:45

Matrix: Water

Date Received: 10/27/16 09:30

Dilution Batch Batch Batch **Prepared** Number or Analyzed Prep Type Type Method Run **Factor** Analyst Lab 11/02/16 20:46 DLF TAL PIT Total/NA 8260B 193034 Analysis

Client Sample ID: W-161024-RA-15 Lab Sample ID: 240-71354-15

Date Collected: 10/24/16 15:00 **Matrix: Water** Date Received: 10/27/16 09:30

Ratch Batch Dilution

Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 8260B 193034 11/02/16 21:10 DLF TAL PIT Total/NA Analysis

Client Sample ID: W-161024-RA-16 Lab Sample ID: 240-71354-16

Date Collected: 10/24/16 15:20 Date Received: 10/27/16 09:30

Analysis

8260B

Batch Batch Dilution Batch **Prepared** Number Method **Factor** or Analyzed **Prep Type** Run **Analyst** Type Lab DLF TAL PIT Total/NA 8260B 193040 11/02/16 15:21 Analysis 12.5

Client Sample ID: W-161024-RA-17 Lab Sample ID: 240-71354-17

Date Collected: 10/24/16 12:20 **Matrix: Water**

Date Received: 10/27/16 09:30

Total/NA

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 8260B Total/NA Analysis 193040 11/02/16 11:15 DLF TAL PIT

Client Sample ID: W-161024-RA-18 Lab Sample ID: 240-71354-18

193040

11/02/16 15:45

DLF

TAL PIT

Date Collected: 10/24/16 16:00 **Matrix: Water** Date Received: 10/27/16 09:30

Dilution Batch Batch Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab

Client: GHD Services Inc. Project/Site: 3978, Wausau

Client Sample ID: W-161024-RA-19

Date Collected: 10/24/16 16:30 Date Received: 10/27/16 09:30 Lab Sample ID: 240-71354-19

Lab Sample ID: 240-71354-20

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 193040 11/02/16 16:10 DLF TAL PIT

Client Sample ID: W-161025-RA-20

Date Collected: 10/25/16 07:40

Date Received: 10/27/16 09:30

Dilution Batch Batch Batch **Prepared** Number Prep Type Type Method Run **Factor** or Analyzed Analyst Lab 11/02/16 11:30 DLF TAL PIT Total/NA 8260B 193034 Analysis

Date Collected: 10/25/16 10:55

Batch Batch Dilution Batch Prepared

Prep Type Type Method Run **Factor** Number or Analyzed Analyst Lab 8260B 193034 11/02/16 13:56 DLF TAL PIT Total/NA Analysis

Client Sample ID: W-161025-RA-22

Date Collected: 10/25/16 10:47

Lab Sample ID: 240-71354-22

Matrix: Water

Date Collected: 10/25/16 10:47 Date Received: 10/27/16 09:30

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Run **Factor** Number **Analyst** Type Lab DLF TAL PIT Total/NA 8260B 193034 11/02/16 14:20 Analysis

Date Collected: 10/25/16 11:20 Date Received: 10/27/16 09:30

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Analysis 8260B 193034 11/02/16 14:44 DLF TAL PIT

Client Sample ID: W-161025-RA-24 Lab Sample ID: 240-71354-24

Date Collected: 10/25/16 08:00 Date Received: 10/27/16 09:30

Dilution Batch Batch Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260B 11/02/16 15:08 DLF TAL PIT

Lab Sample ID: 240-71354-25

Client: GHD Services Inc.

Project/Site: 3978, Wausau

Client Sample ID: W-161025-RA-25

Date Collected: 10/25/16 08:30 Date Received: 10/27/16 09:30

DLF

Analyst

Lab

TAL PIT

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Total/NA Analysis 8260B 193034 11/02/16 15:32

Client Sample ID: W-161025-RA-26 Date Collected: 10/25/16 10:50

Lab Sample ID: 240-71354-26

Date Received: 10/27/16 09:30

Dilution Batch Batch Batch **Prepared** Number Prep Type Type Method Run **Factor** or Analyzed Analyst Lab 11/02/16 15:56 DLF TAL PIT Total/NA 8260B 193034 Analysis

Client Sample ID: W-161025-RA-27

Date Collected: 10/25/16 10:50 Date Received: 10/27/16 09:30

Lab Sample ID: 240-71354-27

Lab Sample ID: 240-71354-28

Lab Sample ID: 240-71354-29

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Ratch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 8260B 193034 11/02/16 16:20 DLF TAL PIT Total/NA Analysis

Client Sample ID: W-161025-RA-28

Date Collected: 10/25/16 11:20

Date Received: 10/27/16 09:30

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Run **Factor** Number **Analyst** Type Lab DLF TAL PIT Total/NA 8260B 193034 11/02/16 16:44 Analysis

Client Sample ID: W-161025-RA-29

Date Collected: 10/25/16 12:40

Date Received: 10/27/16 09:30

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Analysis 8260B 193034 11/02/16 17:09 DLF TAL PIT

Date Collected: 10/25/16 13:15

Date Received: 10/27/16 09:30

Client Sample ID: W-161025-RA-30 Lab Sample ID: 240-71354-30

Dilution Batch Batch Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260B 11/02/16 17:33 DLF TAL PIT

Matrix: Water

Matrix: Water

Matrix: Water

Client: GHD Services Inc. Project/Site: 3978, Wausau

Client Sample ID: W-161025-RA-31 Lab Sample ID: 240-71354-31

Date Collected: 10/25/16 14:20 Matrix: Water

Date Received: 10/27/16 09:30

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 193034 11/02/16 17:57 DLF TAL PIT

Date Collected: 10/25/16 15:25 Date Received: 10/27/16 09:30

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 11/02/16 18:45 DLF TAL PIT Total/NA 8260B 193034 Analysis

Client Sample ID: W-161025-RA-33 Lab Sample ID: 240-71354-33

Date Collected: 10/25/16 15:35

Date Received: 10/27/16 09:30

Ratch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** Lab 8260B 11/02/16 19:09 DLF TAL PIT Total/NA Analysis 193034

Client Sample ID: W-161025-RA-34 Lab Sample ID: 240-71354-34

Date Collected: 10/25/16 13:30

Date Received: 10/27/16 09:30

Batch Batch Dilution Batch **Prepared** Method or Analyzed Run **Factor** Number **Analyst** Prep Type Type Lab 8260B 193034 DLF TAL PIT Total/NA 11/02/16 19:33 Analysis

Client Sample ID: W-161025-RA-35 Lab Sample ID: 240-71354-35

Date Collected: 10/25/16 14:30 Matrix: Water

Date Received: 10/27/16 09:30

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Analysis 8260B 193034 11/02/16 19:58 DLF TAL PIT

Client Sample ID: TRIP BLANK

Lab Sample ID: 240-71354-36

Date Collected: 10/25/16 00:00 Date Received: 10/27/16 09:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260B 11/02/16 11:54 DLF TAL PIT

Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TestAmerica Canton

Matrix: Water

TestAmerica Job ID: 240-71354-1

Client: GHD Services Inc. Project/Site: 3978, Wausau

Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	NELAP	9	01144CA	06-30-14 *
California	State Program	9	2927	04-30-17
Connecticut	State Program	1	PH-0590	12-31-17
Florida	NELAP	4	E87225	06-30-17
Illinois	NELAP	5	200004	07-31-17
Kansas	NELAP	7	E-10336	01-31-17
Kentucky (UST)	State Program	4	58	02-23-17
Kentucky (WW)	State Program	4	98016	12-31-16 *
Minnesota	NELAP	5	039-999-348	12-31-16 *
Minnesota (Petrofund)	State Program	1	3506	07-31-17
Nevada	State Program	9	OH-000482008A	07-31-17
New Jersey	NELAP	2	OH001	06-30-17
New York	NELAP	2	10975	03-31-17
Ohio VAP	State Program	5	CL0024	09-14-17
Oregon	NELAP	10	4062	02-23-17
Pennsylvania	NELAP	3	68-00340	08-31-17
Texas	NELAP	6	T104704517-15-5	08-31-17
USDA	Federal		P330-13-00319	11-26-16 *
Virginia	NELAP	3	460175	09-14-17
Nashington	State Program	10	C971	01-12-17
West Virginia DEP	State Program	3	210	12-31-16 *
Wisconsin	State Program	5	999518190	08-31-17

Laboratory: TestAmerica Pittsburgh

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-17
California	State Program	9	2891	03-31-18
Connecticut	State Program	1	PH-0688	09-30-18
Florida	NELAP	4	E871008	06-30-17
Illinois	NELAP	5	200005	06-30-17
Kansas	NELAP	7	E-10350	01-31-17
Louisiana	NELAP	6	04041	06-30-17
New Hampshire	NELAP	1	2030	04-04-17
New Jersey	NELAP	2	PA005	06-30-17
New York	NELAP	2	11182	03-31-17
North Carolina (WW/SW)	State Program	4	434	12-31-16
Pennsylvania	NELAP	3	02-00416	04-30-17
South Carolina	State Program	4	89014	04-30-17
Texas	NELAP	6	T104704528-15-2	03-31-17
US Fish & Wildlife	Federal		LE94312A-1	10-31-17
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-17
Virginia	NELAP	3	460189	09-14-17
West Virginia DEP	State Program	3	142	01-31-17
Wisconsin	State Program	5	998027800	08-31-17

^{*} Certification renewal pending - certification considered valid.

2,6100,0 CHAIN OF CUSTODY RECORD

1801 Old Highway 8 Northwest, Suite 114

COC NO. SP- 02015 PAGE OFS

(See Reverse Side for Instructions)

St. Paul, Minnesota 55112 United States Fax: (651) 639-0923 Phone: (651) 639-0913

Pro	Project No/ Phase/Task Code: 00.39 78					Laboratory Name:							Lab Location:					SSOW ID:								
Pro	ect Name:	0039 18			-	Lab	Conta	ect:	5"	n	FN	7/6	_	-			Lal	Quote	No:		+		-		Cooler No:	
,	WAU	SAU - N	PL Site					NEWS CO.																		
Pro	ect Location:					SAM	PLE		Co			R QU			2			An	IALYS	s R	EQUE	STED)		Carrier:	
	WAU	isau, wz	L			TY			, T	P	RESE	ERVA	TIOI	1		_		(See E	ack of			2-371P-N			1	- 1
Che	mistry Contac	et:		1			(c)		(C)		-		=	Ď.		aldiu				- 1						
		ANDERS	- Shirt -			(202	Comp		d) pio	3	250	ide	os)	1x25		sisa	-		1 18							
Sar	npler(s):	A TO ON OT	5.031NA	GA		de of C	or Co	pa	Hydrochloria Acid (HCI)	Nitric Acid (HNO ₃)	Sulfuric Acid (H ₂ SO ₄)	ydrox	Water	EnCores 3x5-g, 1x25-g		Containers/Sample	0 3			- 1						
	17.1	(Aire)	3.	1		ix Code back of	(G) or	Serv	ochlo	Acid	ric A	五五	anoll	res 3	v		3			2	40-71	354 C	hain c	of Cus	stody	1
Item	SAMPLE IDEI (Containers for each	NTIFICATION sample may be combi	(ned on one line)	DATE (mm/dd//yy)	TIME (hh:mm)	Matrix (see ba	Grab	Unpr	Hydre	Nitric	Sulfu	Sodium Hydroxide (NaOH)	Meth VOC)	EnCo	Other:	Total	82							MS/	SPECIAL INSTR	RUCTIONS:
1	W-161	024 - RA	10-4	10/24/16	1320	Wh	6		X		9					3	X				Ш					
2	(-	1 - 1	-02		1330		1		X							3	X				Ш				1-	
3	-	-	- 03		1500				X							3	8									
Pa	-	(L	- 04		1519				V							3	X									
ge		_	-05	-1).	1545				×							3	X									
Page 66 of 72			-06		1620				X							3	×									
양 7		-			1630				1							3	X									
8	-		_ Fo ~		1740				X		-					3	1			1						
9	-	-	- 08				+		8								X	-		+	+	-	+			
1	-	-	-09		1740		+	-	X							3	X	-		+	+		+			
0	-	_	-10	_	1700		+		×					-		9	X	-	-	+		\vdash		X		
1	-		-11		1300		4		×							3	X			4					0	
2	-	-	-12		1300				×							3	X								#	
3	-	-	- 13		1340				×							3	X									
1 4	-	-	- 14		1345	11			X	111						3	X									
1 5	L -	+ -]	-15		1500		7		X						_	3.	1									
TA	T Required in	business days (use separate CO	Cs for different	TATs):				To	otal I	Numl	ber o	Cor	tain	ers:	51	N	ites/S	pecial	Requ	irem	ents:				
1000	200	7.7.9	☐1Week ☐2					All	Samp	oles	in Co	ooler	mus	t be o	on C	oc	1								-	
	- 100	INQUISHED BY		COMPANY		DATE			TIME			N I C		F	RECEI	VED I	BY		-1		-3.7	COMP	ANY '		DATE	TIME,
1.	M	1		SHO	IN	16/	1	16	60	_	1	F	1/1	0	1	_	1			-	F	CAL	(10 20 IV	91.38
1	1//			1111	19	071	0_	10			2.	PI	<u> </u>	5	1	1				1	7	11			- Acres	-
11/7/2016	_//				-		-	-				-	_			-	_		_	-	-			-		
<u>Ş.</u>			- 114	V		93			71 7.		3,															
ဘ				THE CHAIL	OF CUST	ODYIS	ALE	GAL D	OCUM	ENT -	-ALL	. FIEL	DS M	UST E	BE CO	MPL	ETED	ACCUR	ATELY						1	

14

CHAIN OF CUSTODY RECORD

COC NO.: **SP-** 02016
PAGE 2 OF 2

(See Reverse Side for Instructions)

1801 Old Highway 8 Northwest, Suite 114 St. Paul, Minnesota 55112 United States Phone: (651) 639-0913 Fax: (651) 639-0923

Pi	roject No/ Phase/Task		Labo	orator	y Na	me:	A	Mor	10-					Lab Location:					SSOW ID:				
PI	roject Name:	1978 U - HPL SITE			Lab	Conta	act:) '	1-11	-						La	b Quote No:					Cooler No:	
Pi	roject Location:	tu, WI			SAM			C			R Q			&			ANALYSI (See Back of		A THE RESERVE		(a)	Carrier:	
C	hemistry Contact:	DERSON				()		(HCI)		9		=	7.1		amble	1	TOBO DIGON OF		1		3/	Airbill No:	
Si	ampler(s):	T, D.O. INACA			Matrix Code (see back of COC)	(G) or Comp	rved	Hydrochloric Acid (HCI)	Nitric Acid (HNO ₃)	Sulfuric Acid (H ₂ SO ₄)	Sodium Hydroxide (NaOH)	Methanol/Water (Soil VOC)	EnCores 3x5-g, 1x25-g		Total Containers/Sample	60 B			1		Request	Date Shipped:	
Item	SAMPLE IDENTIFIC	ATION may be combined on one line)	DATE (mm/dd//yy)	TIME (hh:mm)	Matrix C (see bac	Grab (G	Unprese	Hydroch	Nitric Ac	Sulfuric	Sodium (NaOH)	Methano VOC)	EnCores	Other:	Total Co	82					MS/MSD	COMME SPECIAL INST	
1	w - 1610	74- RA -16	10/24/16	1220	26	67		X							3	×							
2	V-1610	24- Ks -17		19-30	1			×							3	×							
3	W-1610	27- NA18 4- NA19 5- NA-20		1600	11			X							3	×						2!	
Page 67 of 72	W-16103	4-14-19	1	1630		1		X							3	X							
e-67	W-16102	5-14-20	10/25/10	740				Y							9	X	1			1	X		
6	1	14.21	- 61	1022	-			X							3	×							
		pt-22		1047				×							3	X						1 - 7 -	
8		W-23		1170		1		×				1	_ [3	X							
9		124-24		800				y							3	8							
1 0		14-25		830				5							3)	*				HII		
1		PA-26		1050				Y							3	1							
1 2		N4-27		1050				>	2.1						3	y						- 3	
1 3		1, 14-28		1120				>							3	X			1				
1		V 14-29		1240				7							3	Y							
1 5	W-161025	Rt-30		1315	1	V		y							3	Y							
		ss days (use separate CO	Cs for different	TATs):		7		T	otal	Num	ber o	f Co	ntain	ers:	51	N	lotes/ Special F	Requi	reme	nts:			
E]1 Day □ 2 Days □	3 Days ☐ 1 Week ☐ 2	Week Othe	er:			All	Sam	ples	in C	ooler	mus	t be	on C	ос	1			ķ				
	RELINQUISI	HED BY	COMPANY		DATE			TIME					F	RECEI	VED I	BY			C	OMPAN	1Y	DATE	TIME
1.			CHD	1	0/26/	6	1	600	Н	1-	137	11	20	V					TEA	-NO		10/27/16	8130
197	1		59.							2,	V	06		1						-			
11/7/2016										3.								1					
6			THE CHAI	N OF CUS	TODYIS	A LE	GAL L	ocun	MENT	-AL	L FIEL	DS M	UST E	BE C	OMPL	ETEL	ACCURATELY	-		_	_	()	

Distribution:

4

Distribution:

WHITE-Fully Executed Copy (CRA)

CHAIN OF CUSTODY RECORD

COC NO. SP- 02023

GOLDENROD - Sampling Crew

1801 Old Highway 8 Northwest, Suite 114 St. Paul, Minnesota 55112 United States Phone: (651) 639-0913 Fax: (651) 639-0923

(See Reverse Side for Instructions)

CRA Form: COC-10A (20110804)

Project No/ Phase/Task Code:		testAmorica							Lab Location:					SSOW ID:									
Project Name:	7		Lab	Conta	act:									Lab	Quo	te No:						Cooler No:	
Project Location:			SAM		1	С			R QU			&				NAL Y Back						Carrier:	
Chamistry Contact:						(HCI)							ample									Airbill No:	
Sampler(s): Regner D. Ojinaga			Matrix Code (see back of COC)	Grab (G) or Comp (C)	rved	Hydrochloric Acid (HCI)	Nitric Acid (HNO ₃)	Sulfuric Acid (H ₂ SO ₄)	Sodium Hydroxide (NaOH)	ilWater (S	EnCores 3x5-g, 1x25-g		Total Containers/Sample	8							Request	Date Shipped:	
SAMPLE IDENTIFICATION (Containers for each sample may be combined on one line)	DATE (mm/dd//yv)	TIME (hh:mm)	Matrix C (see bac	Grab (G	Unpreserved	Hydroch	Nitric Ac	Sulfuric	Sodium (NaOH)	Methano Voc)	EnCores	Other:	Total Co	8260							MS/MSD	COMMEI SPECIAL INSTE	
1 W-161025-14-31	10125/16	1420	16	6		3							3	À									
2 1 12 - 22		1292	1			3							3	7			-1						
3 \ (A-33		1535	1			3							3	×									
3 Page 68 W-161025-14 - 35 +1.0 blak	1	1330		1		3							3	7				1					
\$ W-161025-14 - 35	V	1430	1	6)							3	Y	-	-				-			
of l											_ 3				4	+	1	+	++	+			
					Tax			4			-			H	-	+		- 1	H	-	-		
9	_			-						_	_			\vdash	-	+		#	+	+	-		
1		-								-		-			-	+		+	+	-	+		
1	-	-	1								-		-		-		H	+	+	+	+		
1					-	-			-				-		+	+	+	1	+	+	+	4===	
2			-	-							-			\vdash	+	+	+	+	+	+	+		_
3			+-	-	-						-	-	-	-		+		+	+				
1		-	-	-	-	-		-	-		-		-	-	-	+	H	+	+	+	-		
TAT Required in business days (use separate COCs f		4 TAT-1	1		-	7	Total	Neum	ber o	f Co.	atain	oro:	16	Ne	too/	Specia	I Poo	wiren	nonto				
☐ 1 Day ☐ 2 Days ☐ 3 Days ☐ 1 Week ☐ 2 Wee					All	_		-	ooler					700	nes/ .	specie	ii Req	uirei	nems.	•			
	OMPANY		DATE			TIME						RECEI		Вү				_ %	Сом	PANY		PATE	TIME
1. 01- 6	KD	10	16/1	4	1	600		1.	5	111	a	>	4	1			-	17	AN	C		10/27/10	9:438
3					4	γ.		2.					1						1				
177 2016								3.		n													
5	THE CHA	IN OF CUS	TODY IS	A LE	GAL E	оси	MENT	-AL	L FIEL	DS M	UST L	BE Co	OMPL	ETED	Accu	IRATEL	Y			_	_		

PINK-Shipper

YELLOW - Receiving Laboratory Copy

Ref: SOP NC-SC-0005, Sample Receiving
Lt:\QAQC\QA Department\QA TARDIS\Document Control\Work Instructions\In Revision\WI-NC-099-101216 Cooler Receipt Form.doc tijl

Login Sample Receipt Checklist

Client: GHD Services Inc. Job Number: 240-71354-1

Login Number: 71354
List Source: TestAmerica Pittsburgh
List Number: 2
List Creation: 11/01/16 02:12 PM

Creator: Watson, Debbie

Creator: Watson, Debbie	_	
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

2

4

5

7

9

10

12

4 1

15

Residual Chlorine Checked.

Login Sample Receipt Checklist

Client: GHD Services Inc. Job Number: 240-71354-1

List Source: TestAmerica Pittsburgh
List Number: 3
List Creation: 11/01/16 02:14 PM

Creator: Watson, Debbie

Creator: Watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is $<$ background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Л

5

6

10

4.0

13

15

Residual Chlorine Checked.

Login Sample Receipt Checklist

Client: GHD Services Inc. Job Number: 240-71354-1

List Source: TestAmerica Pittsburgh Login Number: 71354 List Number: 4 List Creation: 11/01/16 02:17 PM

Creator: Watson Debbie

Creator: Watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Memorandum

November 30, 2016

To: Chuck Ahrens, GHD Ref. No.: 003978

20A

From: Grant Anderson/sb/12 Tel: (651) 639-0913

Subject: Analytical Results and Reduced Data Validation

Groundwater Sampling Event

Wausau Superfund - Wausau, Wisconsin

October 2016

1. Introduction

The following document details a reduced validation of analytical results for groundwater samples collected in support of the groundwater monitoring program at the Wausau Superfund Site in Wausau, Wisconsin on October 24 and 25, 2016. Samples were submitted to TestAmerica Laboratories, Inc. (TestAmerica), located in North Canton, Ohio. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Standard GHD Services, Inc. (GHD) report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody forms, finished report forms, method blank data, recovery data from surrogate spikes/laboratory control samples (LCS)/matrix spike samples, and field QA/QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 3 and applicable guidance from the documents entitled:

- i) Quality Assurance Project Plan (QAPP), Report 2, March 2011
- ii) "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review,"
 October 1999, United States Environmental Protection Agency (USEPA) 540/R 99/008

Item ii) will subsequently be referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criteria and sample preservation requirements for the analyses are summarized in Table 3. The sample chain of custody documents and analytical report were used to determine sample holding times. All samples were analyzed within the required holding time.

All samples were properly preserved and delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

Laboratory method blanks were analyzed at a minimum frequency of one per 20 investigative samples and/or one per analytical batch.

All method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation.

4. Surrogate Spike Recoveries

In accordance with the methods employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for VOC determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory control limits. All surrogate recoveries met the above criteria.

5. Laboratory Control Sample (LCS) Analyses

LCS and/or laboratory control sample duplicates (LCSD) are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects. The relative percent difference (RPD) of the LCS/LCSD recoveries is used to evaluate analytical precision.

For this study, LCS/LCSD were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS/LCSD contained all compounds of interest. With the exception of tetrachloroethene and vinyl chloride, the LCS recoveries and RPDs were within the laboratory control limits, demonstrating acceptable analytical accuracy and precision. Table 4 lists outlying LCS results. Associated sample data are qualified as noted in the table.

003978Memo-12-GW Sampling-Oct 2016

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the preparation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analyte of concern and analyzed as MS/MSD samples. The relative percent difference (RPD) between the MS and MSD is used to assess analytical precision.

MS/MSD analyses were performed as specified in Table 1.

The MS/MSD samples were spiked with all compounds of interest. The percent recoveries and RPD values were within the laboratory control limits demonstrating acceptable analytical accuracy and precision.

7. Field QA/QC Samples

The field QA/QC consisted of one trip blank sample, one rinsate blank sample, two field blank samples and three field duplicate sample sets.

Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, a trip blank sample was submitted to the laboratory for volatile organic compound (VOC) analysis. Acetone was detected in the trip blank. Table 5 lists compounds detected in the trip blank. Associated sample data are qualified as noted in the table.

Rinsate Blank Sample Analysis

To assess field decontamination procedures, ambient conditions at the site, and cleanliness of sample containers, a rinsate blank sample was submitted for analysis, as identified in Table 1. All results were non-detect for the analytes of interest.

Field Blank Sample Analysis

To assess ambient conditions at the site and cleanliness of sample containers, two field blank samples were submitted for analysis, as identified in Table 1. Acetone was detected in the field blanks. However, associated sample results were previously qualified based on acetone detected in the trip blank; therefore, no qualification of data was necessary based on compounds detected in the field blanks.

Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, three field duplicate sample sets were collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with these duplicate samples must be less than 50 percent. If the reported concentration in either the investigative sample or its duplicate is less than five times the reporting limit (RL), the evaluation criteria is one times the RL value.

The field duplicate results were within acceptable agreement, demonstrating acceptable sampling and analytical precision.

8. Analyte Reporting

The laboratory reported detected results down to the laboratory's method detection limit (MDL) for each analyte. Positive analyte detections less than the RL but greater than the MDL were qualified as estimated (J) in Table 2 unless qualified otherwise in this memorandum. Non-detect results were presented as non-detect at the RL in Table 2.

9. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable with the qualifications noted herein.

Table 1

Sample Collection and Analysis Summary Groundwater Sampling Event Wausau Superfund Site Wausau, Wisconsin October 2016

					Analysis/Parameters	
Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	VOC	Comments
W-161024-RA-01	MW10B	water	10/24/16	13:20	Χ	
W-161024-RA-02	MW10A	water	10/24/16	13:30	X	
W-161024-RA-03	E22A	water	10/24/16	15:00	X	
W-161024-RA-04	E24AR	water	10/24/16	15:19	X	
W-161024-RA-05	WW4	water	10/24/16	15:45	X	
W-161024-RA-06	WW6	water	10/24/16	16:20	X	
W-161024-RA-07	E21	water	10/24/16	16:30	X	rinsate blank
W-161024-RA-08	E21	water	10/24/16	17:40	X	
W-161024-RA-09	E21	water	10/24/16	17:40	X	duplicate (RA-08)
W-161024-RA-10	W52	water	10/24/16	17:00	X	MS/MSD
W-161024-RA-11	WC3B	water	10/24/16	13:00	X	
W-161024-RA-12	WC3B	water	10/24/16	13:00	X	duplicate (RA-11)
W-161024-RA-13	WC5A	water	10/24/16	13:40	X	field blank
W-161024-RA-14	WC5A	water	10/24/16	13:45	X	
W-161024-RA-15	E37A	water	10/24/16	15:00	X	
W-161024-RA-16	FVD5	water	10/24/16	15:20	X	
W-161024-RA-17	CW3	water	10/24/16	12:20	X	
W-161024-RA-18	W53A	water	10/24/16	16:00	X	
W-161024-RA-19	R4D	water	10/24/16	16:30	X	
W-161025-RA-20	CW6	water	10/25/16	7:40	X	MS/MSD
W-161025-RA-21	W56	water	10/25/16	10:55	X	
W-161025-RA-22	R2D	water	10/25/16	10:47	X	
W-161025-RA-23	C4S	water	10/25/16	11:20	X	
W-161025-RA-24	W55	water	10/25/16	8:00	X	field blank
W-161025-RA-25	W55	water	10/25/16	8:30	X	
W-161025-RA-26	MW1A	water	10/25/16	10:50	X	
W-161025-RA-27	MW1A	water	10/25/16	10:50	Χ	duplicate (RA-26)
W-161025-RA-28	EW1	water	10/25/16	11:20	X	
W-161025-RA-29	W52A	water	10/25/16	12:40	X	
W-161025-RA-30	W54	water	10/25/16	13:15	Χ	

Table 1

Sample Collection and Analysis Summary Groundwater Sampling Event Wausau Superfund Site Wausau, Wisconsin October 2016

Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	Analysis/Parameters VOC	Comments
W-161025-RA-31	R3D	water	10/25/16	14:20	X	
W-161025-RA-32	WSWS	water	10/25/16	15:25	X	
W-161025-RA-33	WSWD	water	10/25/16	15:35	X	
W-161025-RA-34	C7S	water	10/25/16	13:30	X	
W-161025-RA-35	C2S	water	10/25/16	14:30	X	
TRIP BLANK	Trip Blank	water	10/25/16	-	X	Trip Blank

Notes:

VOC - Volatile Organic Compounds

Table 2 Page 1 of 5

Location ID	:	MW10B	MW10A	E22A	E24AR	WW4	WW6	E21
Sample Name	:	W-161024-RA-01	W-161024-RA-02	W-161024-RA-03	W-161024-RA-04	W-161024-RA-05	W-161024-RA-06	W-161024-RA-08
Sample Date	:	10/24/2016	10/24/2016	10/24/2016	10/24/2016	10/24/2016	10/24/2016	10/24/2016
Parameters	Unit							
Volatile Organic Compounds								
1,1,2-Trichloroethane	μg/L	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	μg/L	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U
Acetone	μg/L		10 U	50 U	60 U	10 U	10 U	10 U
Benzene	μg/L	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	5.0 U	97	1.0 U	6.2	1.0 U
Ethylbenzene	μg/L	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	0.33 J	1.0 U	120	42	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1.0 U	1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	1.0 U	1.0 U	3.0 J	5.8 J	1.0 U	0.53 J	1.0 U
Vinyl chloride	μg/L		1.0 U	5.0 U	7.3	1.0 U	1.3 J	1.0 U
Xylenes (total)	μg/L		1.0 U	5.0 U	6.0 U	1.0 U	1.0 U	1.0 U

Table 2Page 2 of 5

Location ID		E21	W52	WC3B	WC3B	WC5A	E37A	FVD5
Sample Name		W-161024-RA-09) W-161024-RA-11	W-161024-RA-12	W-161024-RA-14		W-161024-RA-16
Sample Date	:	10/24/2016	10/24/2016	10/24/2016	10/24/2016	10/24/2016	10/24/2016	10/24/2016
		duplicate			duplicate			
Parameters	Unit							
Volatile Organic Compounds								
1,1,2-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U
1,1-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U
Acetone	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	130 U
Benzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	19
Carbon tetrachloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U
cis-1,2-Dichloroethene	μg/L	1.0 U	2.1	1.0 U	1.0 U	15	0.60 J	13 U
Ethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	270
Methylene chloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	0.55 J	1.0 U	2.9	0.88 J	13 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	14
Trichloroethene	μg/L	1.0 U	12	1.0 U	1.0 U	1.9	0.27 J	13 U
Vinyl chloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	6.3	1.0 U	13 U
Xylenes (total)	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	720

Table 2 Page 3 of 5

Location ID):	CW3	W53A	R4D	CW6	W56	R2D	C4S
Sample Name	:	W-161024-RA-17	W-161024-RA-18	W-161024-RA-19	W-161025-RA-20	W-161025-RA-21	W-161025-RA-22	W-161025-RA-23
Sample Date	:	10/24/2016	10/24/2016	10/24/2016	10/25/2016	10/25/2016	10/25/2016	10/25/2016
Parameters	Unit							
Volatile Organic Compounds								
1,1,2-Trichloroethane	μg/L	1.0 U						
1,1-Dichloroethene	μg/L	1.0 U						
Acetone	μg/L	10 U						
Benzene	μg/L	1.0 U						
Carbon tetrachloride	μg/L	1.0 U						
Chloroform (Trichloromethane)	μg/L	1.0 U	0.64 J					
cis-1,2-Dichloroethene	μg/L	0.68 J	1.0 U	0.57 J	1.0 U	1.0 U	1.9	1.8
Ethylbenzene	μg/L	1.0 U						
Methylene chloride	μg/L	1.0 U						
Tetrachloroethene	μg/L	1.5	1.0 U					
Toluene	μg/L	1.0 U						
Trichloroethene	μg/L	0.82 J	34	5.4	3.3	1.0 U	21	5.5
Vinyl chloride	μg/L	1.0 U						
Xylenes (total)	μg/L	1.0 U						

Table 2Page 4 of 5

Location ID		W55	MW1A	MW1A	EW1	W52A	W54	R3D
Sample Name	:		W-161025-RA-26					
Sample Date	:	10/25/2016	10/25/2016	10/25/2016	10/25/2016	10/25/2016	10/25/2016	10/25/2016
				duplicate				
Parameters	Unit							
Volatile Organic Compounds								
1,1,2-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acetone	μg/L		10 U	10 U	10 U	10 U	10 U	10 U
Benzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	μg/L	2.4	1.0 U	1.0 U	1.0 U	1.0 U	0.69 J	1.0 U
Ethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	7.4	1.0 U	1.0 U	1.0 U	1.0 U	13	2.0
Vinyl chloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes (total)	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

Table 2Page 5 of 5

Validated Analytical Results Summary Groundwater Sampling Event Wausau Superfund Site Wausau, Wisconsin October 2016

Location ID Sample Name Sample Date	:	WSWS W-161025-RA-32 10/25/2016	WSWD W-161025-RA-33 10/25/2016	C7S W-161025-RA-34 10/25/2016	C2S W-161025-RA-35 10/25/2016	Trip Blank TRIP BLANK 10/25/2016
Parameters	Unit					
Volatile Organic Compounds						
1,1,2-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acetone	μg/L	10 U	10 U	10 U	10 U	9.8 J
Benzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	0.34 J	1.0 U
Ethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	1.0 U	1.2	14	5.1	1.0 U
Vinyl chloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes (total)	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

Table 3

Analytical Methods and Holding Time Criteria Groundwater Sampling Event Wausau Superfund Site Wausau, Wisconsin October 2016

				Holding Time	
Parameter	Method	Matrix	Collection to Extraction (Days)	Collection or Extraction to Analysis (Days)	_
Volatile Organic Compounds (VOC)	SW-846 8260B	Water	-	14	

Notes:

Method References:

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

Table 4

Qualified Sample Results Due to Outlying LCS/LCSD Results Groundwater Sampling Event Wausau Superfund Site Wausau, Wisconsin October 2016

		LCS	LCS	LCSD		Control Li	mits		Qualified	
Parame	teı Analyte	Batch	% Recovery	% Recovery	RPD (percent)	% Recovery	RPD	Associated Sample ID	Result	Units
VOC	Tetrachloroethene	193151	98	116	17	80-122	15	W-161024-RA-11	0.55 J	ug/L
VOC	Vinyl chloride	193151	81	97	18	61-138	16	W-161024-RA-06	1.3 J	ug/L

Notes:

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

RPD - Relative Percent Difference
J - Estimated concentration

Table 5

Qualified Sample Data Due to Analyte Concentrations in the Trip Blanks Groundwater Sampling Event Wausau Superfund Site Wausau, Wisconsin October 2016

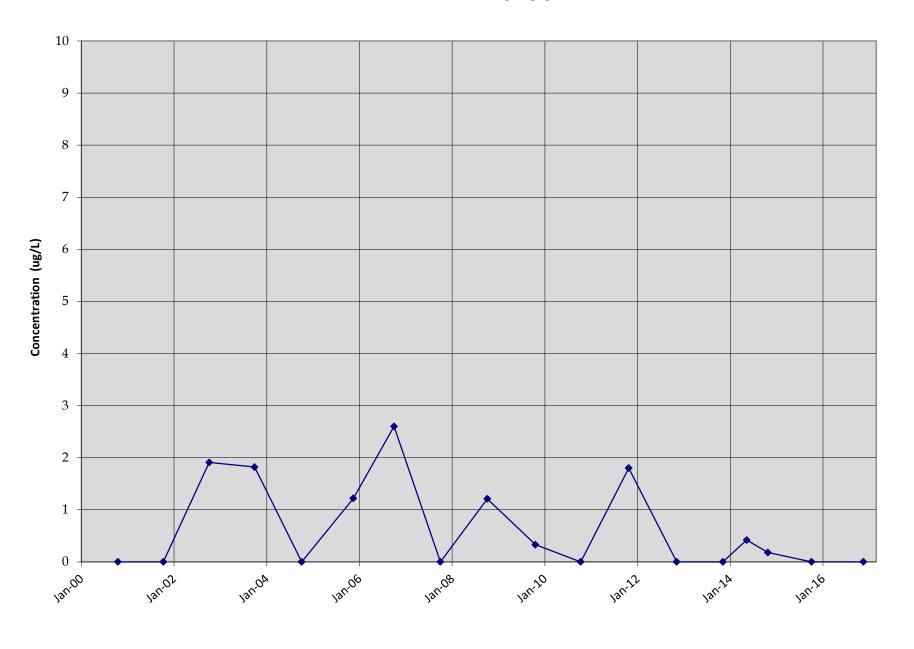
Paramete	Blank Date (mm/dd/yyyy)	Analyte	Blank Result	Associated Sample ID	Original Result	Qualified Result	Units
VOC	10/25/2016	Acetone	9.8 J	W-161024-RA-14	2.6 J	10 U	ug/L
				W-161024-RA-15 W-161024-RA-18	3.1 J 3.8 J	10 U 10 U	ug/L ug/L
				W-161025-RA-21	4.5 J	10 U	ug/L
				W-161025-RA-23	3.0 J	10 U	ug/L
				W-161025-RA-25	2.6 J	10 U	ug/L
				W-161025-RA-26	2.5 J	10 U	ug/L
				W-161025-RA-27	3.5 J	10 U	ug/L
				W-161025-RA-30	3.3 J	10 U	ug/L
				W-161025-RA-31	3.7 J	10 U	ug/L

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

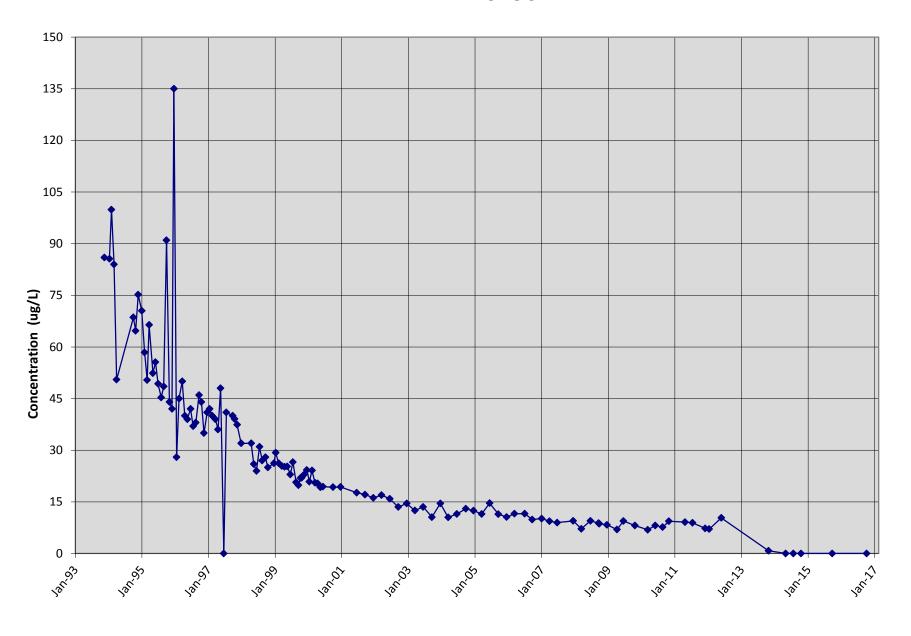
Appendix B Inspection Report

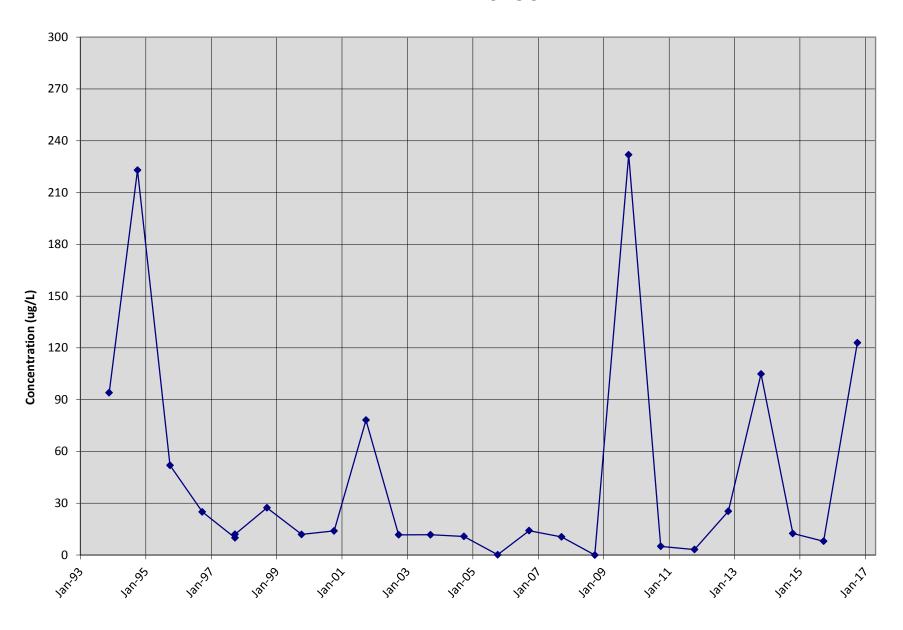

Appendix B - Table 1

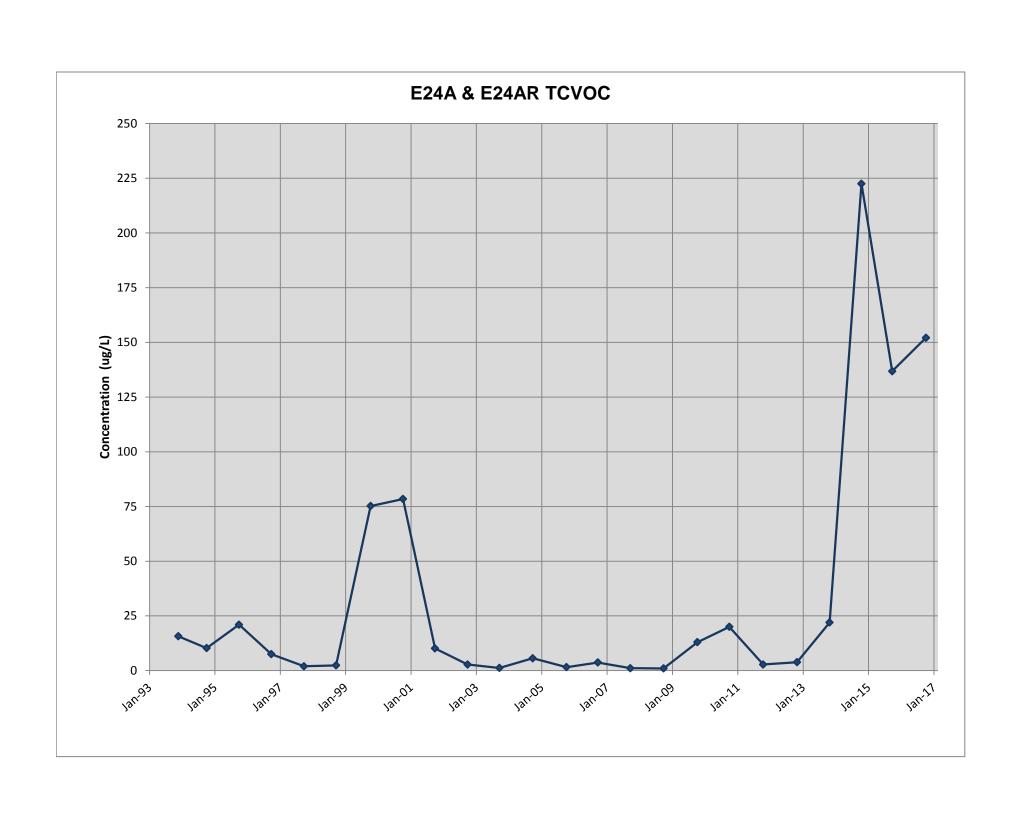
Pavement Barrier Inspection Log Wausau Chemical Corporation

Inspection Date	Inspector	Condition of Cap	Recommendations	Have Recommendations From Previous Inspection Been Implemented?
8/29/2011	Rob Flashinski	Pavement was completely replaced in 2009. Three cracks starting to form, but have not penetrated.	No action required.	Yes.
7/2/2012	Rob Flashinski	Overall condition is very good. Recent work by the gas company has been patched thoroughly. All existing cracks have been filled.	None.	None Existed.
5/21/2013	Rob Flashinski	No change in appearance.	None.	Yes.
11/6/2013	Rob Flashinski	Overall condition is still good. Some hairline type cracks starting to form on the ends of previously filled cracks and near gas company asphalt work.	Nothing at this point. The hairline cracks will likely need attention in the spring.	Yes.
11/7/2014	Rob Flashinski	Overall condition is still good. Some hairline type cracks still exist on the ends of previously filled cracks and asphalt work by gas meter is starting to show again, but no cracks have formed.	Nothing at this point. Expect that some tar caulking will be needed in the spring.	Yes.
10/16/2015	Rob Flashinski	Overall condition is still good. Existing Cracks were sealed by Advanced Seal Coatings.	Nothing at this point.	Yes.
9/14/2016	Rob Flashinski	Overall condition is still good. Prior repair work is still in good condition also	Nothing at this point.	Yes.

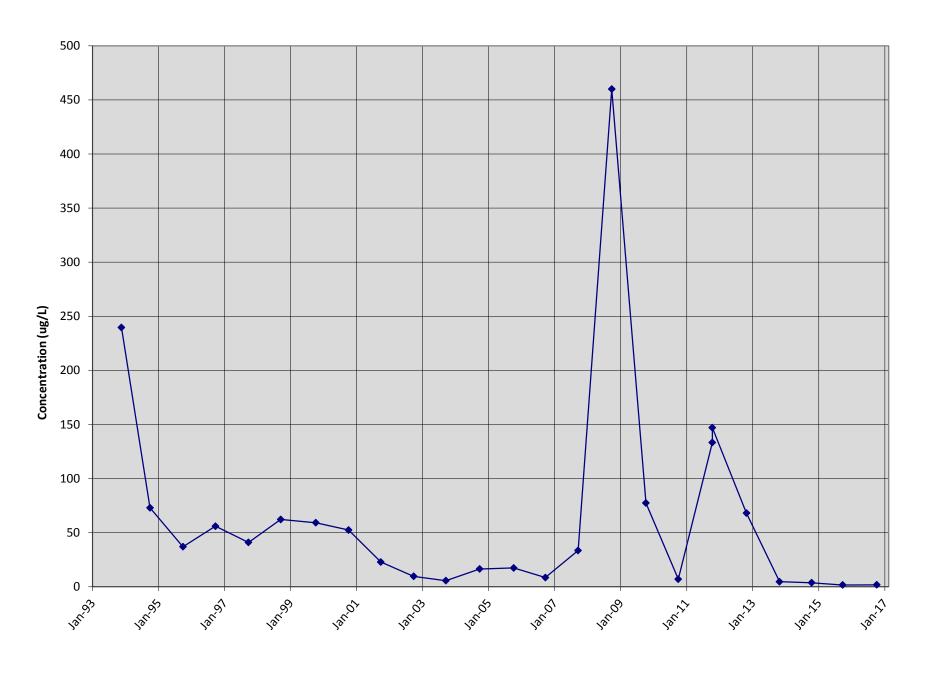
Appendix C Charts


MW1A TCVOC

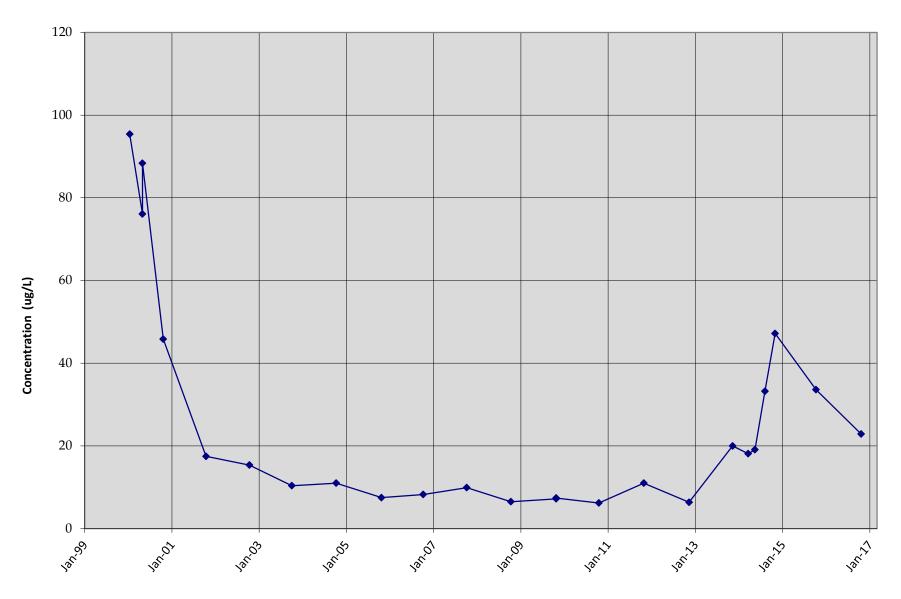

WSWD TCVOC

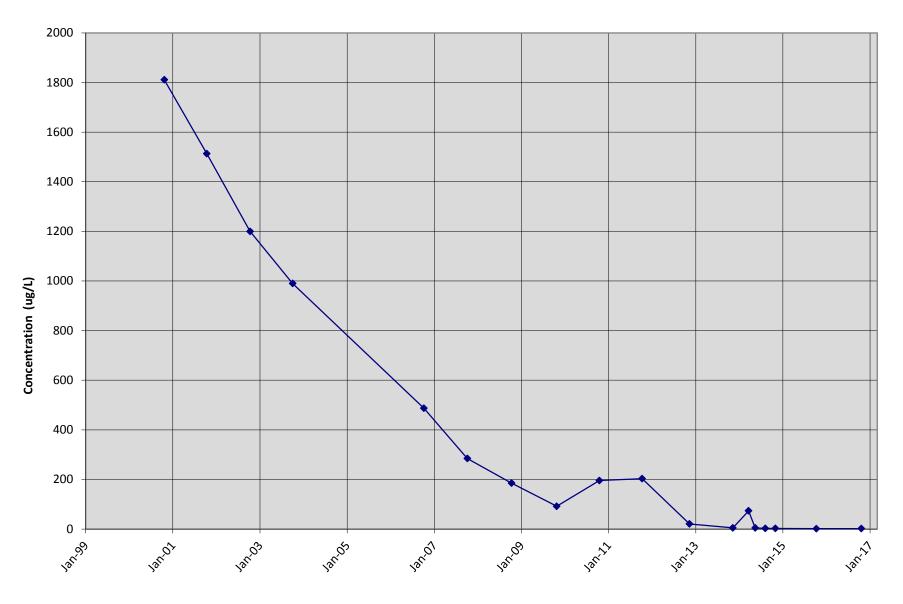


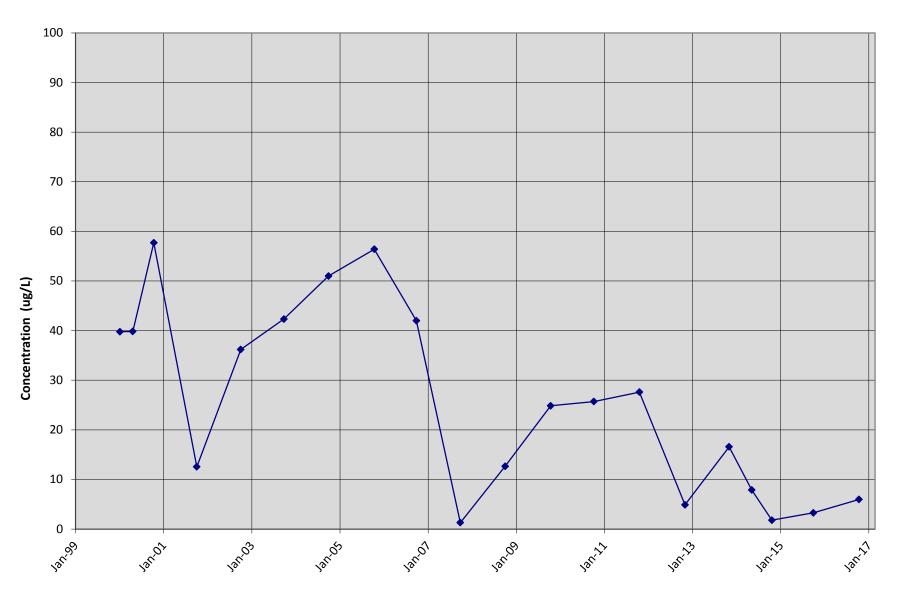
EW1 TCVOC

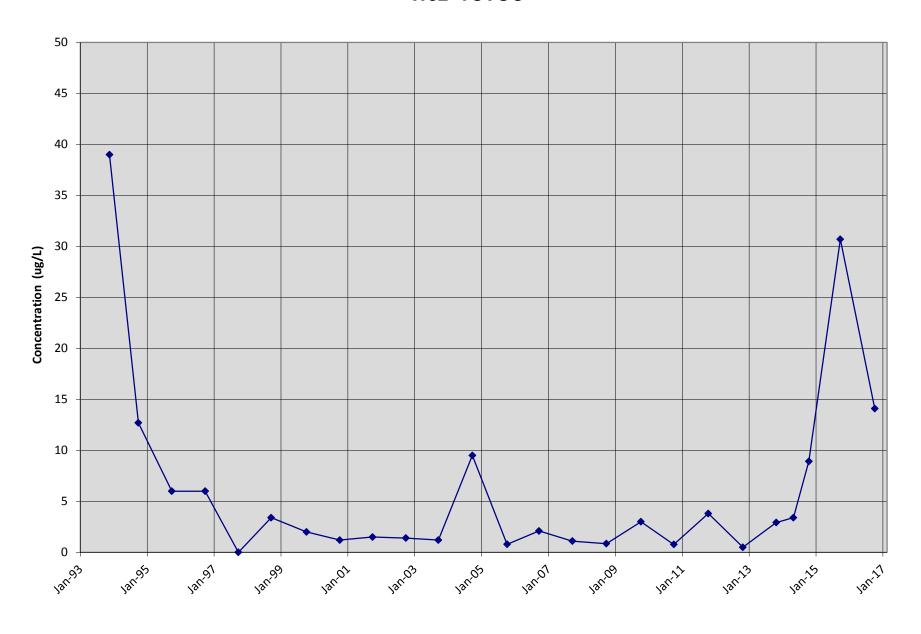


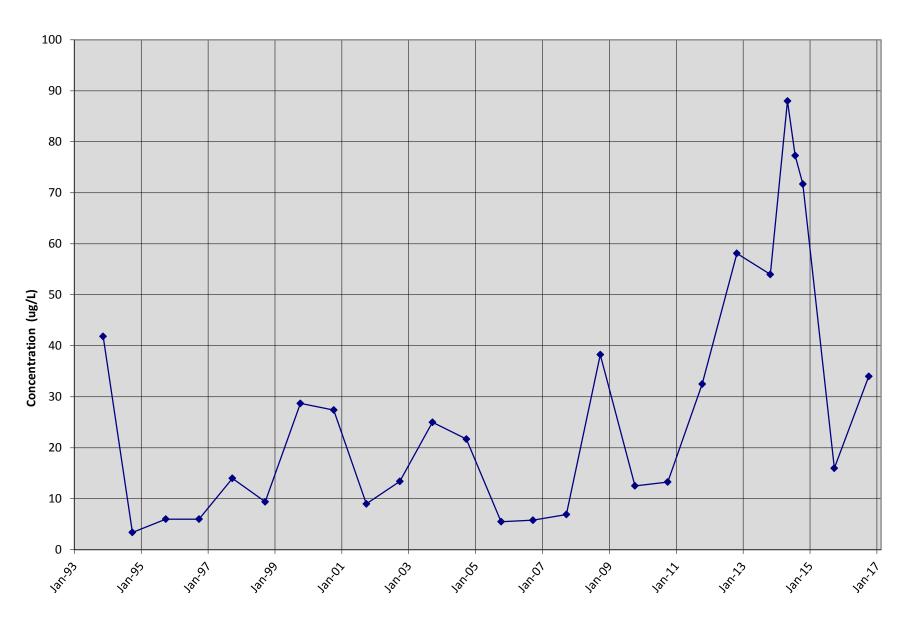
E22A TCVOC

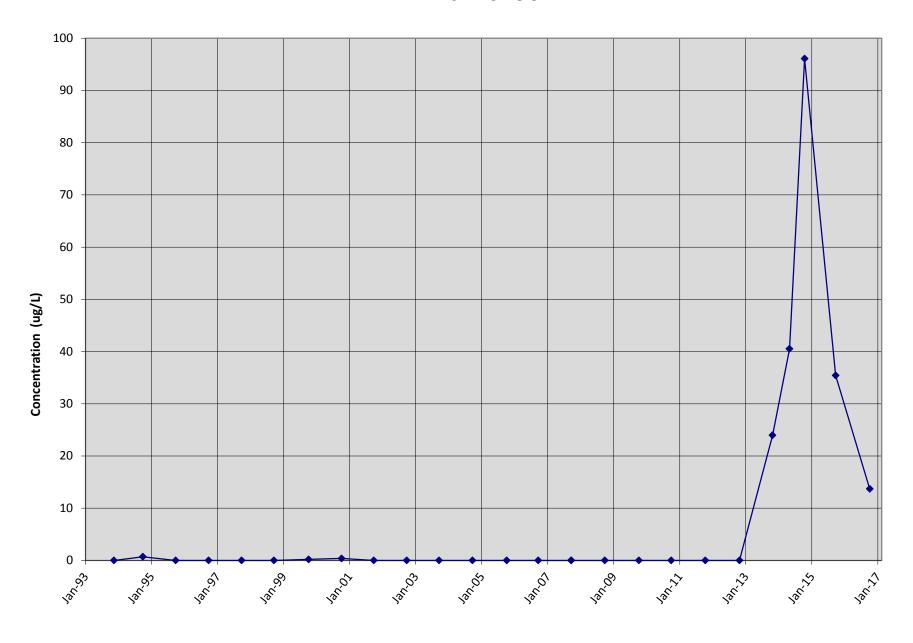


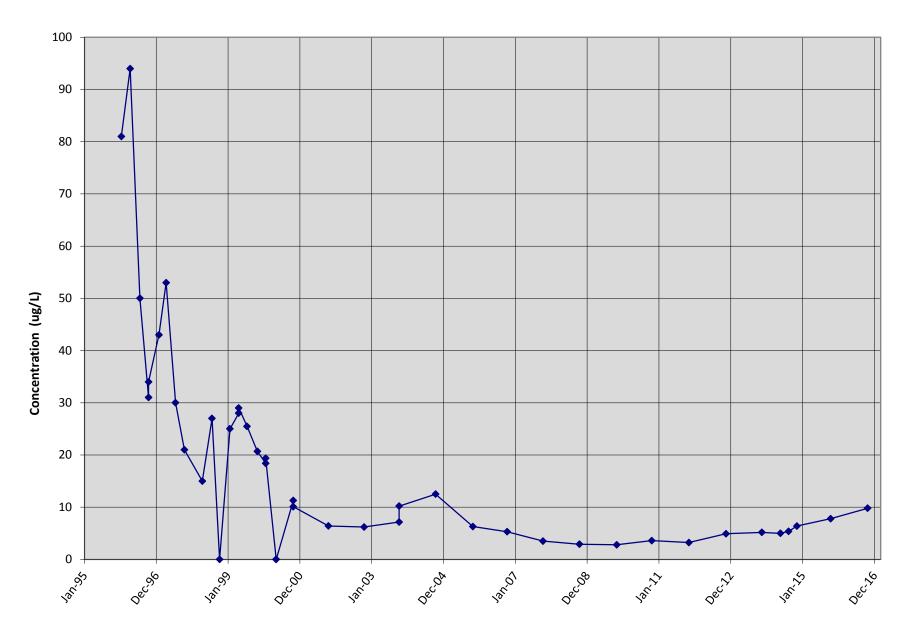

E37A TCVOC

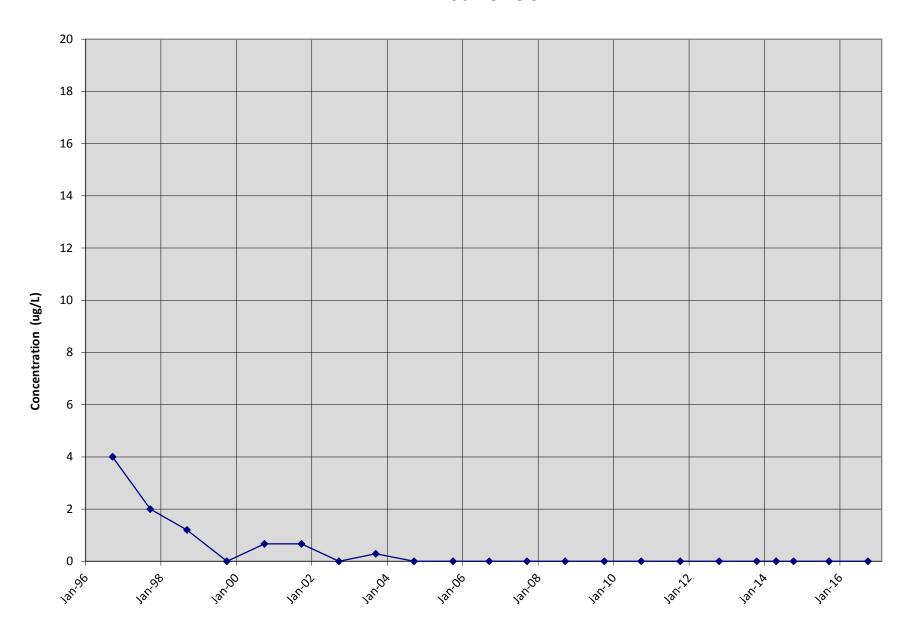

R2D TCVOC

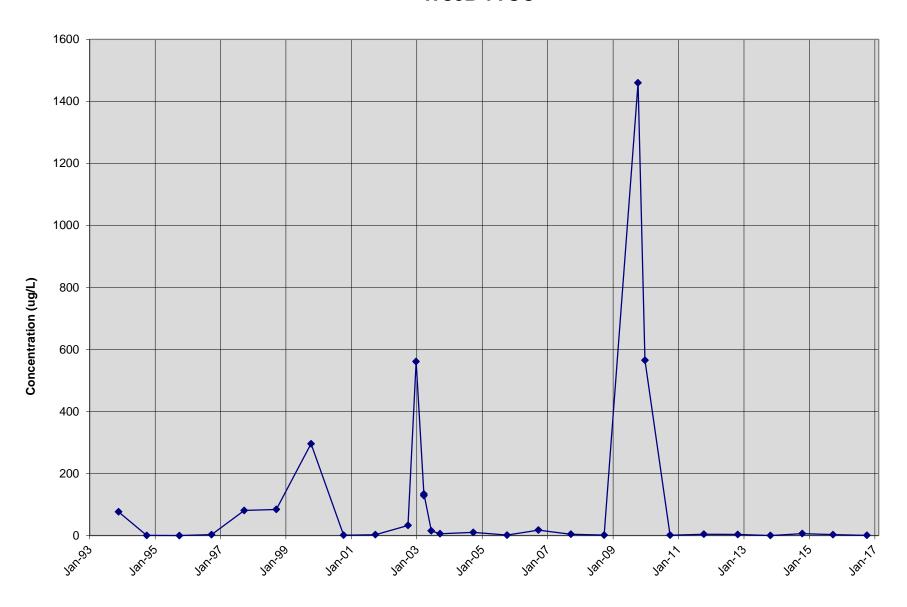

R3D TCVOC

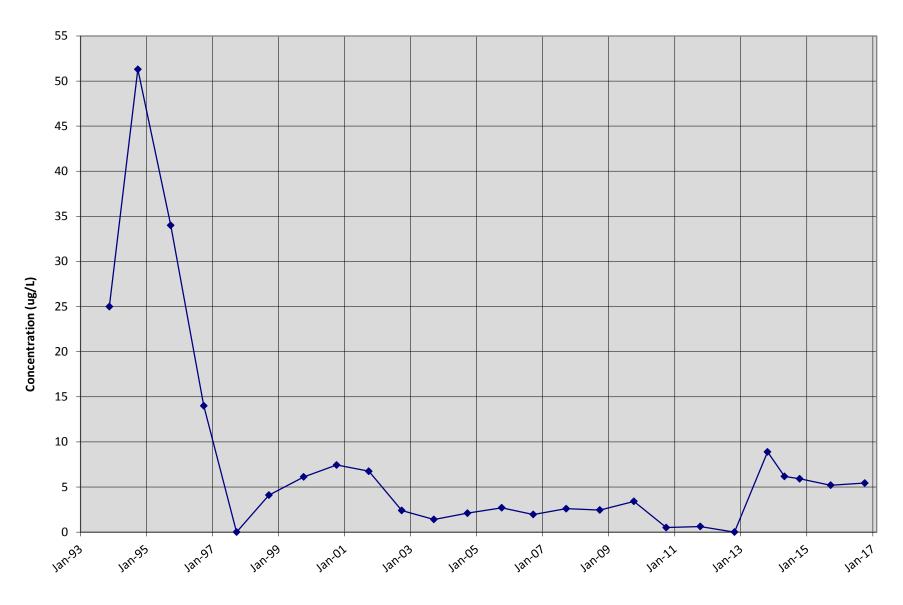

R4D TCVOC

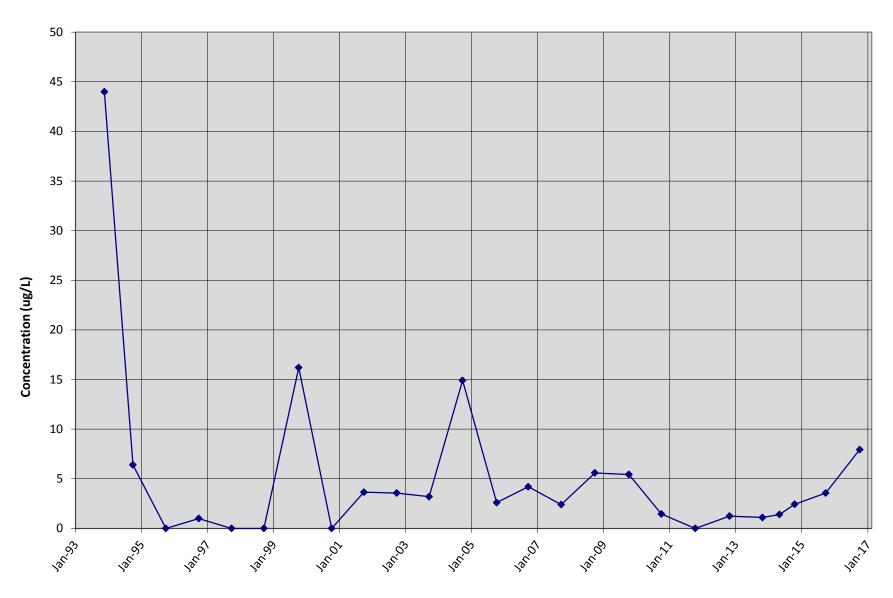

W52 TCVOC

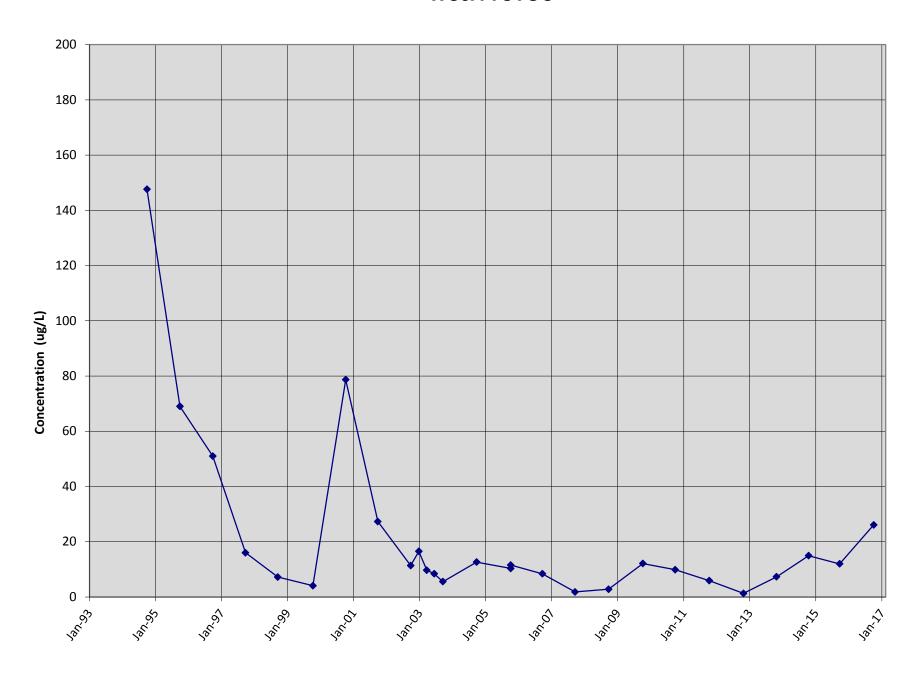

W53A TCVOC

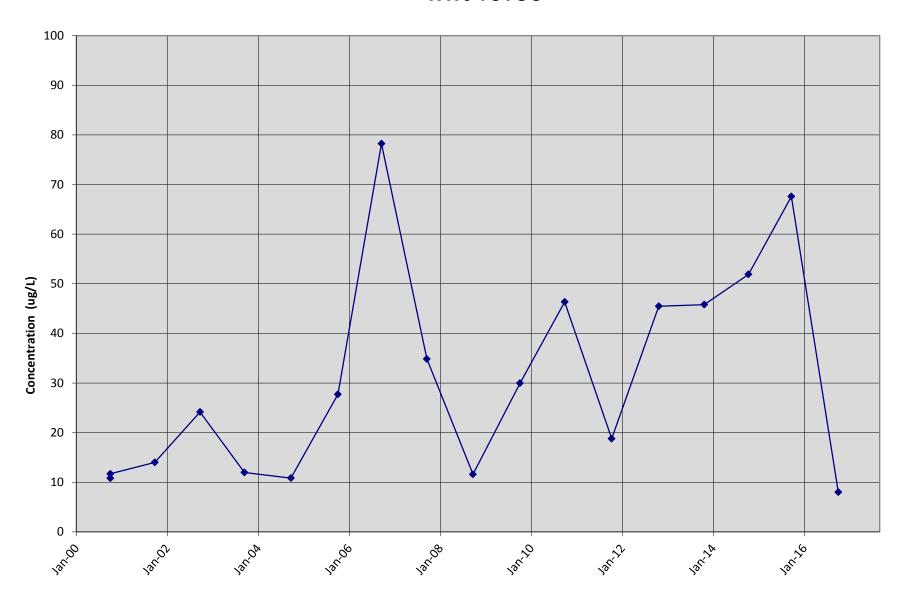

W54 TCVOC

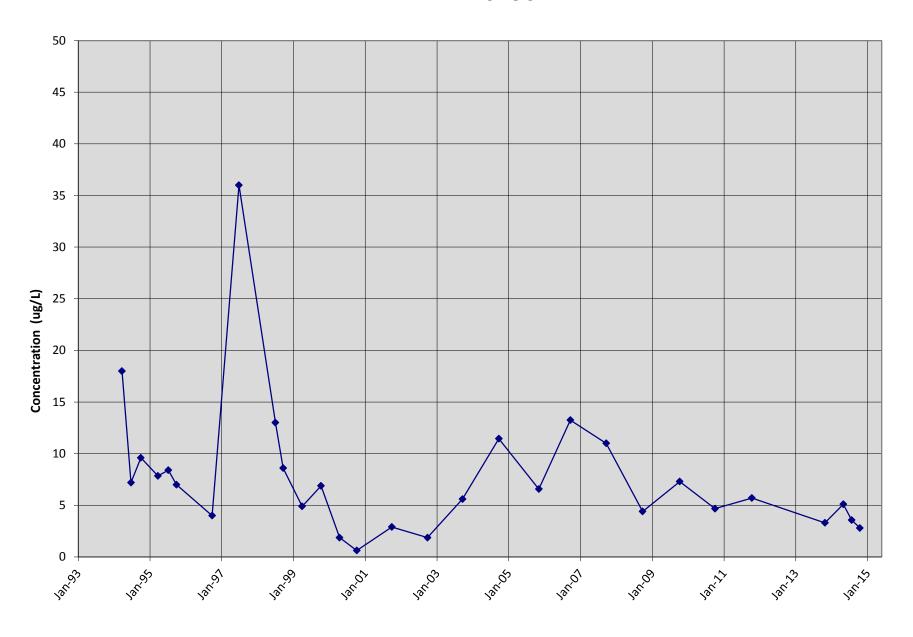

W55 TCVOC

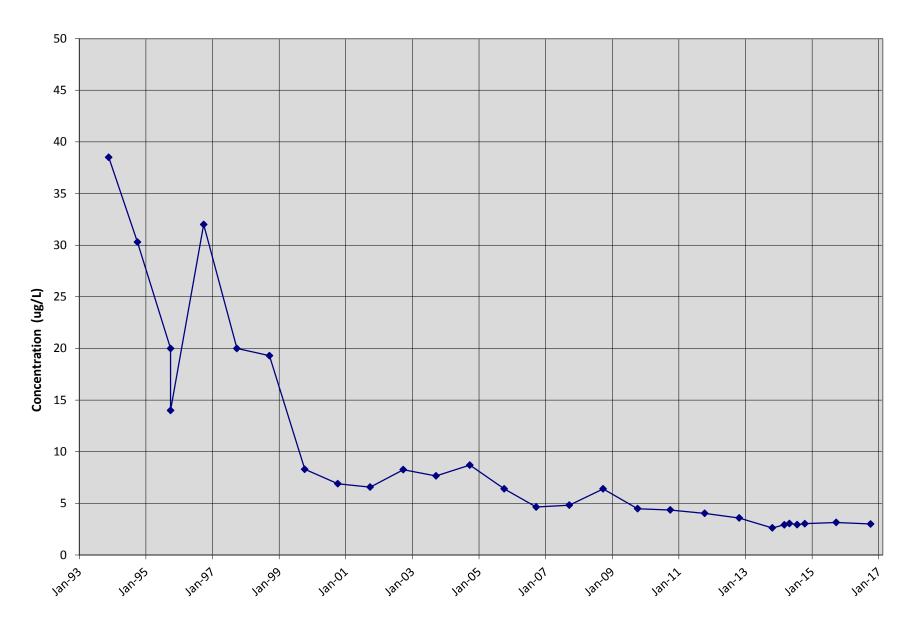

W56 TCVOC

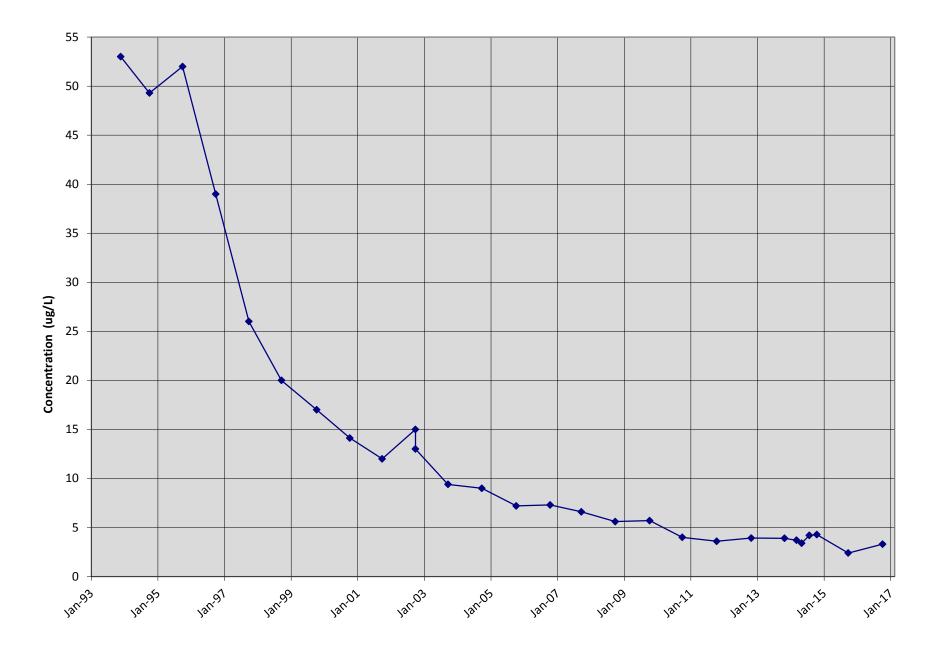

WC3B TVOC


C2S TCVOC


C4S TCVOC


WC5A TCVOC


WW6 TCVOC


IWD TCVOC

CW3 TCVOC

CW6 TCVOC

www.ghd.com

