

November 1, 2022

Ms. Jennifer Dorman
Remediation and Redevelopment Program
Wisconsin Department of Natural Resources
1027 West St. Paul Ave.
Milwaukee, WI 53233

Project # 40443A

Subject: Second Round of Commissioning for Community Within the Corridor – West Block –

Buildings 6, 7, 8A, and 8B

3212 W. Center St., 2727 N. 32nd St., and 2758 N. 33rd St., Milwaukee, WI 53210

BRRTS #: 02-41-587376, FID #: 341333190

Dear Ms. Dorman:

On behalf of the Community Within the Corridor Limited Partnership, K. Singh & Associates, Inc. (KSingh) is pleased to submit the results of second round of Commissioning of the Vapor Mitigation System for Buildings 6, 7, 8A, and 8B for the Community Within the Corridor – West Block project. Commissioning was performed in accordance with the Commissioning Plan that was approved by WDNR on May 23, 2022.

Sub-slab Depressurization System Vacuum Measurements

The sub-slab depressurization system installed in Buildings 6, 7, 8A and 8B was tested on 09/19/2022. The locations of the relevant buildings in relation to the project area are shown in Figure 1. A handheld hammer drill was used to install vapor pins beneath the slab of the structure. A digital manometer was utilized to take measurements of vacuum below the slab after the vapor points passed a water dam test. Seventeen locations were chosen to take measurements to get an accurate model of sub-slab depressurization from each suction point. Vapor pins could not be advanced in five of the planned locations (SVP-2 through SVP-6) due to wood flooring present throughout Building 8A, except for in stairwells.

In accordance with a vapor mitigation system commissioning plan submitted by KSingh on April 21, 2022, a reading of 0.004 inches water was utilized to determine whether the system was adequately operating. Recorded measurements range from 0.010 to 0.440 inches of water, all of which are above the minimum measurement.

The locations and results of September 2022 sub-slab depressurization measurements are depicted on Figure 1 and summarized in Table 1. The greatest vacuum measurements are observed in the vicinity of the highest exceedances of vapor risk screening levels (VRSLs). The lowest vacuum readings are observed near the northern and southern ends of Building 7 outside the areas of documented exceedances of VRSLs. Based on the known VRSLs exceedances extents and the measured vacuum readings, the sub-slab depressurization system has exceeded its design requirements.

Passive Indoor Air Sampling

Following documentation of adequate sub-slab depressurization, passive air sampling was performed in accordance with the approved Commissioning Plan. A total of 23 passive air samplers were set up and sampled over a 1-week period from September 12, 2022 until September 19, 2022. The locations of the passive air samplers are included in Figure 2A through Figure 2H.

On September 19, 2022, the passive air samplers were submitted to Eurofins Air Toxics, LLC Folsom, CA for analysis for chlorinated solvents including Trichloroethylene (TCE), Tetrachloroethylene (PCE), cis-1,2-Dichloroethylene (cis-DCE), and trans-1,2-Dichloroethylene (trans-DCE). The results are included in Attachment A and summarized in Table 2.

Trichloroethene was reported in one sample (IA-8B-01B) in exceedance of the Residential Indoor Air Vapor Action Levels (VALs) based on the February 2022 Quick Look-Up Table from WDNR. The maximum concentration of TCE detected in indoor air was 2.1 ug/m³ which is the same value as the residential indoor air VAL. The background sample collected indicated concentrations of TCE were detected at concentrations of 12.9% of the residential indoor air VAL, indicating that the TCE exceedance at IA-8B-01B may be due to background concentrations.

Three indoor air samples will be collected in the vicinity of IA-8B-01B in order to confirm sample results.

Exhaust Sampling

Seven fans were installed on the roof of buildings 6, 7, 8A, and 8B as part of the vapor mitigation system. As part of commissioning, 1.4L Summa canisters provided by Synergy Environmental Lab, Inc. (Synergy) were utilized to gather air quality data from three fans on September 21, 2022. Samples were gathered for fifteen minutes via vapor lines extended into the fan system while the fans were operating. System tightness was confirmed with shut in testing, and sample lines were purged between each sample. Upon completion of sampling, cannisters were submitted to Synergy for analysis of TO-15 parameters.

Test results are included in Attachment B. Results from Synergy document concentrations of PCE and TCE in exhaust samples. PCE concentrations in exhaust demonstrate PCE concentrations greater than the Residential Indoor Air VAL. Based on the concentrations of PCE and TCE in the exhaust, some mass reduction is taking place in the sub-slab.

The results of the May 2022 fan air quality sampling are summarized in Table 3 and the locations of sampled fans are included on Figure 1. One sample (EP-7) was not analyzed due to equipment malfunction and will be retested.

Conclusions and Recommendations

The following conclusions were reached based on the sampling.

Based on the results of sub-slab vacuum measurements, the vapor mitigation system installed on the

- subject site adequately creates vacuum beneath the building slab for buildings 6, 7, 8A, and 8B.
- Passive indoor air results show that TCE exceeded its VAL at sample location IA-8B-01B with a concentration of 2.1 ug/m³.
- Fan emissions sampling indicates that PCE and TCE are still present in the sub-slab and that mass reduction is taking place.
- Based on the results from the first two rounds of commissioning, the system is operating as intended.
 The third round of commissioning is scheduled for December 2022.

Robert I Reinehe

Please contact us if you have any questions or seek clarification regarding this information.

Sincerely,

K. SINGH & ASSOCIATES, INC.

lustin Bush

Justin P. Bush Staff Geologist

Bush Robert T. Reineke, P.E logist Project Manager

Pratap N. Singh, Ph.D., P.E.

Principal Engineer

cc: Shane LaFave / Roers Companies Que El-Amin / Scott Crawford, Inc.

Attachments:

Figure 1 Sub-slab Depressurization Locations and Results

Figure 2A - Figure 2H Indoor Air Sampling Locations
Table 1 Vacuum Measurement Results

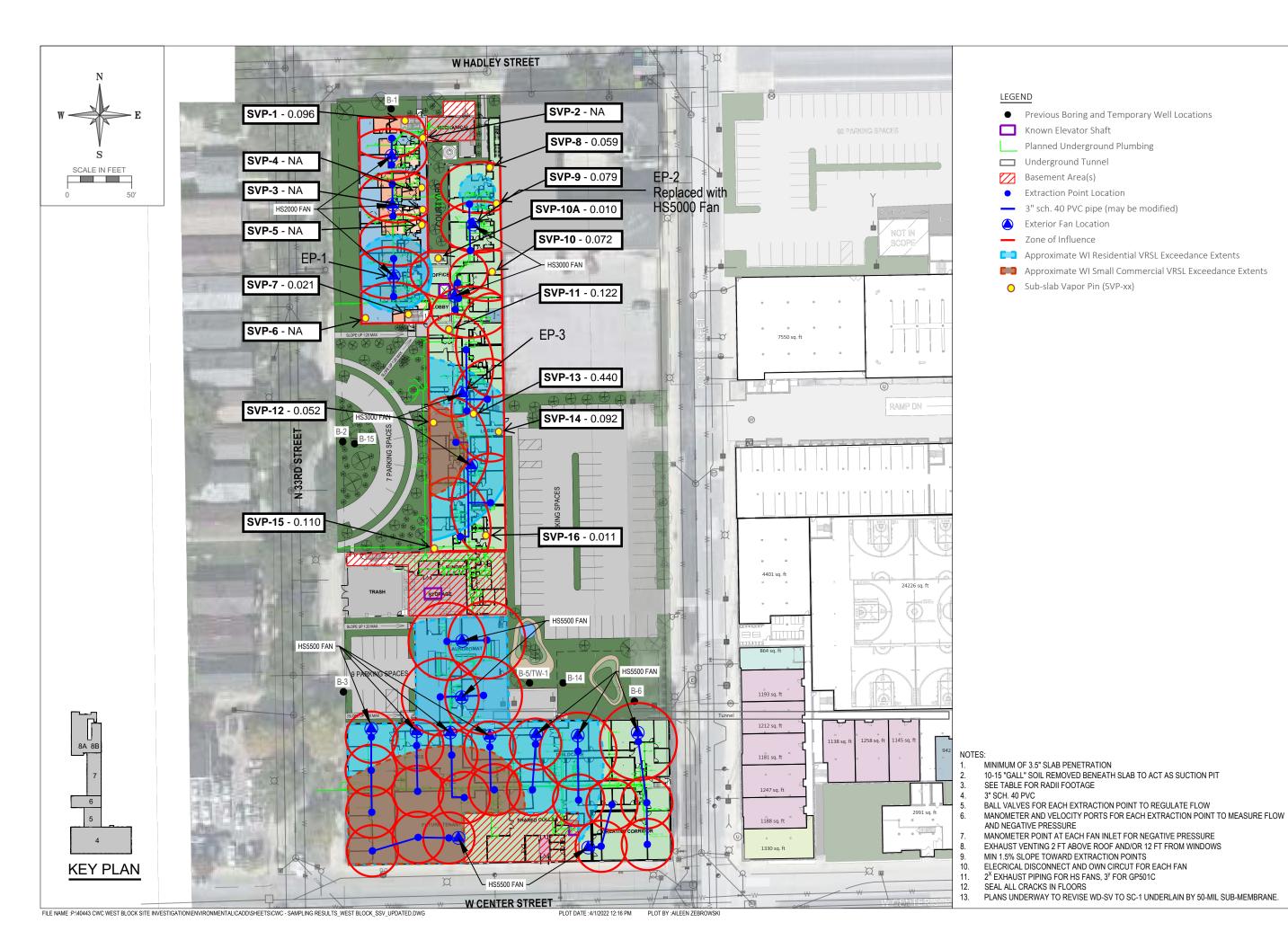

Table 2 Passive Air Sampling Results for Commissioning

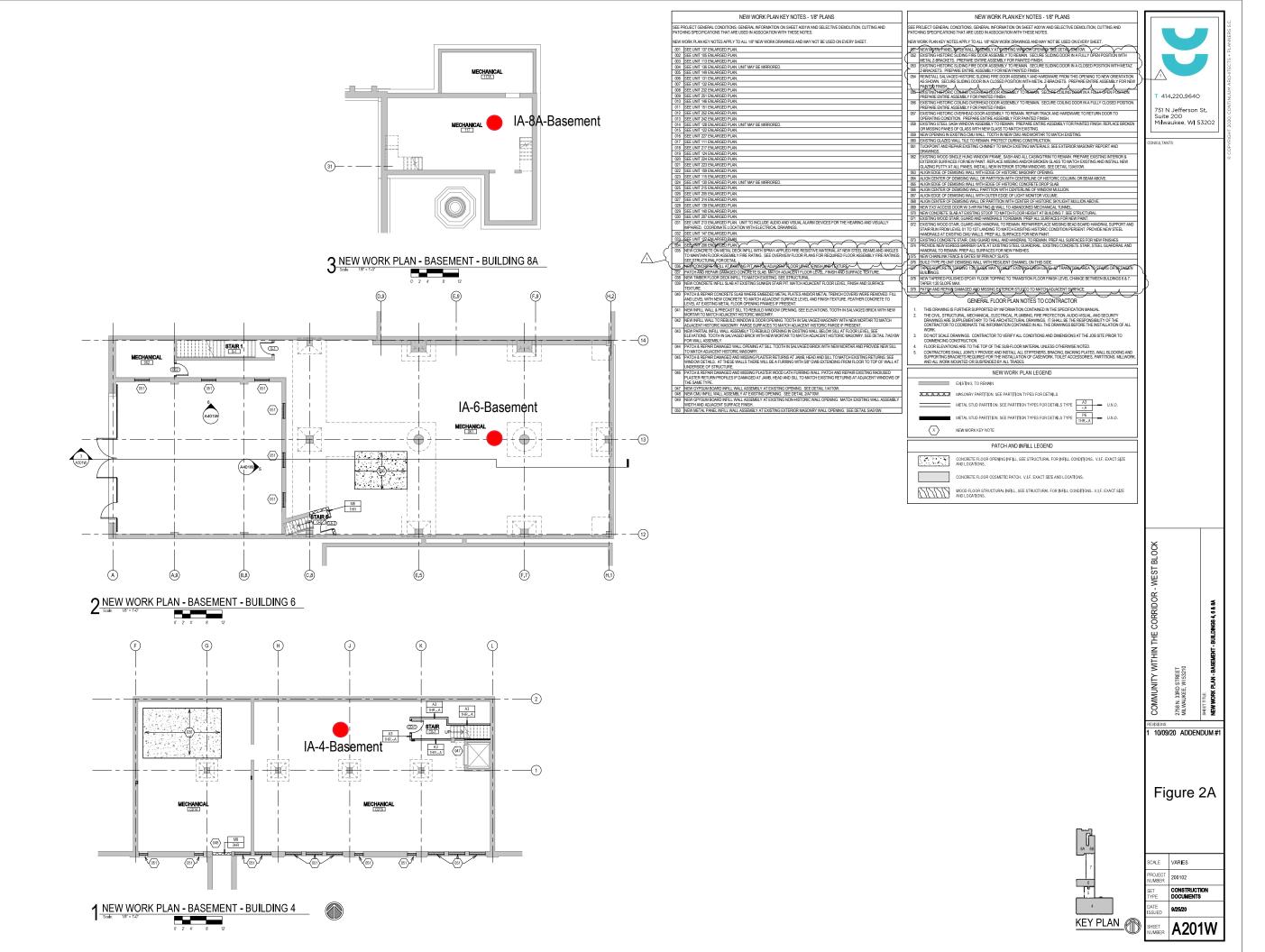
Table 3 Exhaust Fan Sampling Results
Attachment A Passive Air Sampling Test Results
Attachment B Exhaust Fan Sampling Test Results

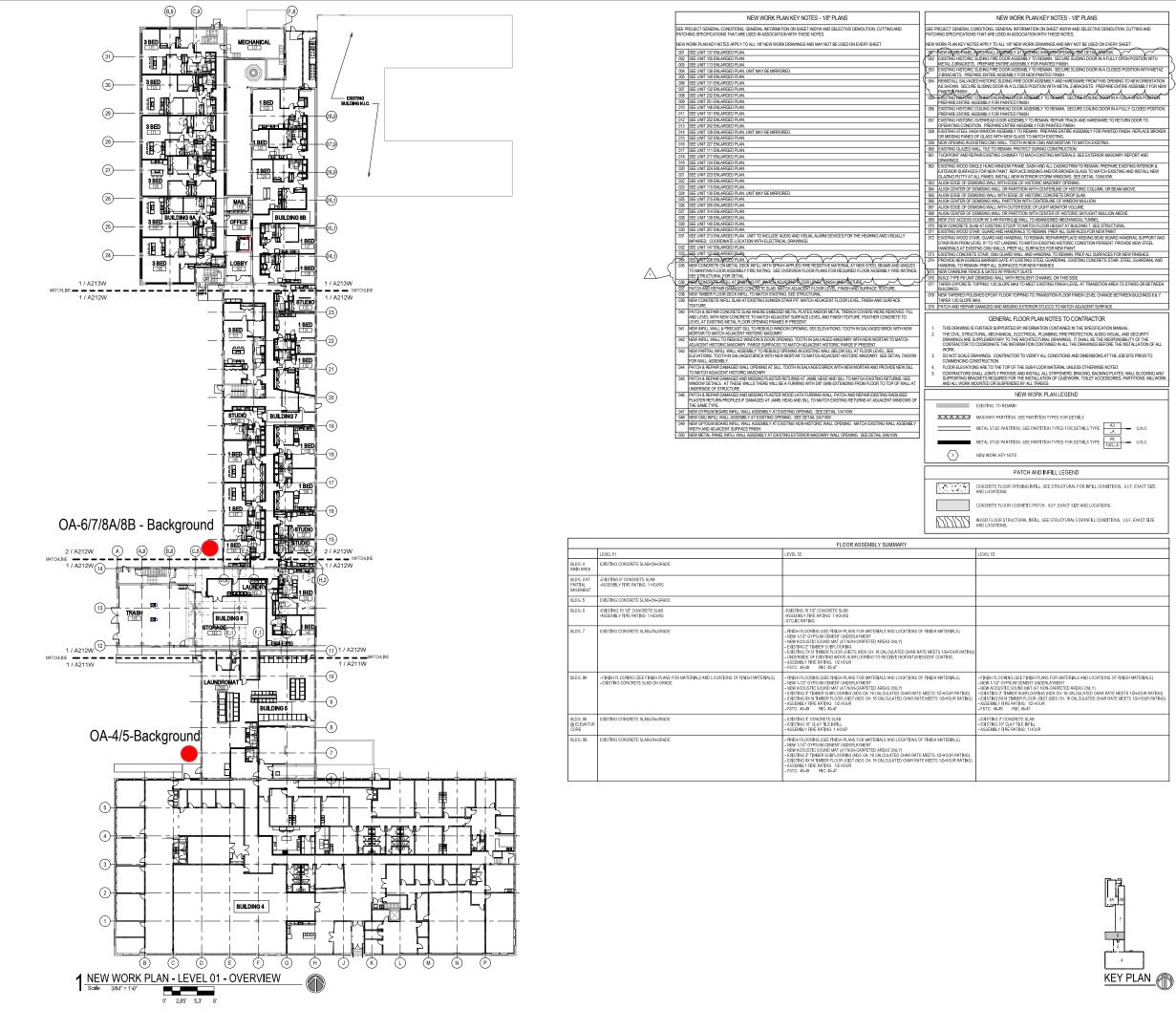
FIGURES

3636 North 124th Street Wauwatosa, WI 53222 262-821-1171

CONSULTANT

STIGATION REPORT ENTER ST., 2758 N. 33RD ST. ITY WITHIN THE CORRIDOR - WEST BLOCK


COMMUNITY WITHIN THE CORRIDOR LIMITED PARTNERSHIP SITE INVESTIGATION F 3212 W. CENTER ST., 2 COMMUNITY WITHIN T MILWAUKEE, WI 53210 PROJECT NUMBER: 40


CLIENT:

06/02/2022

SHEET TITLE
Sub-slab Depressurization Location and Results

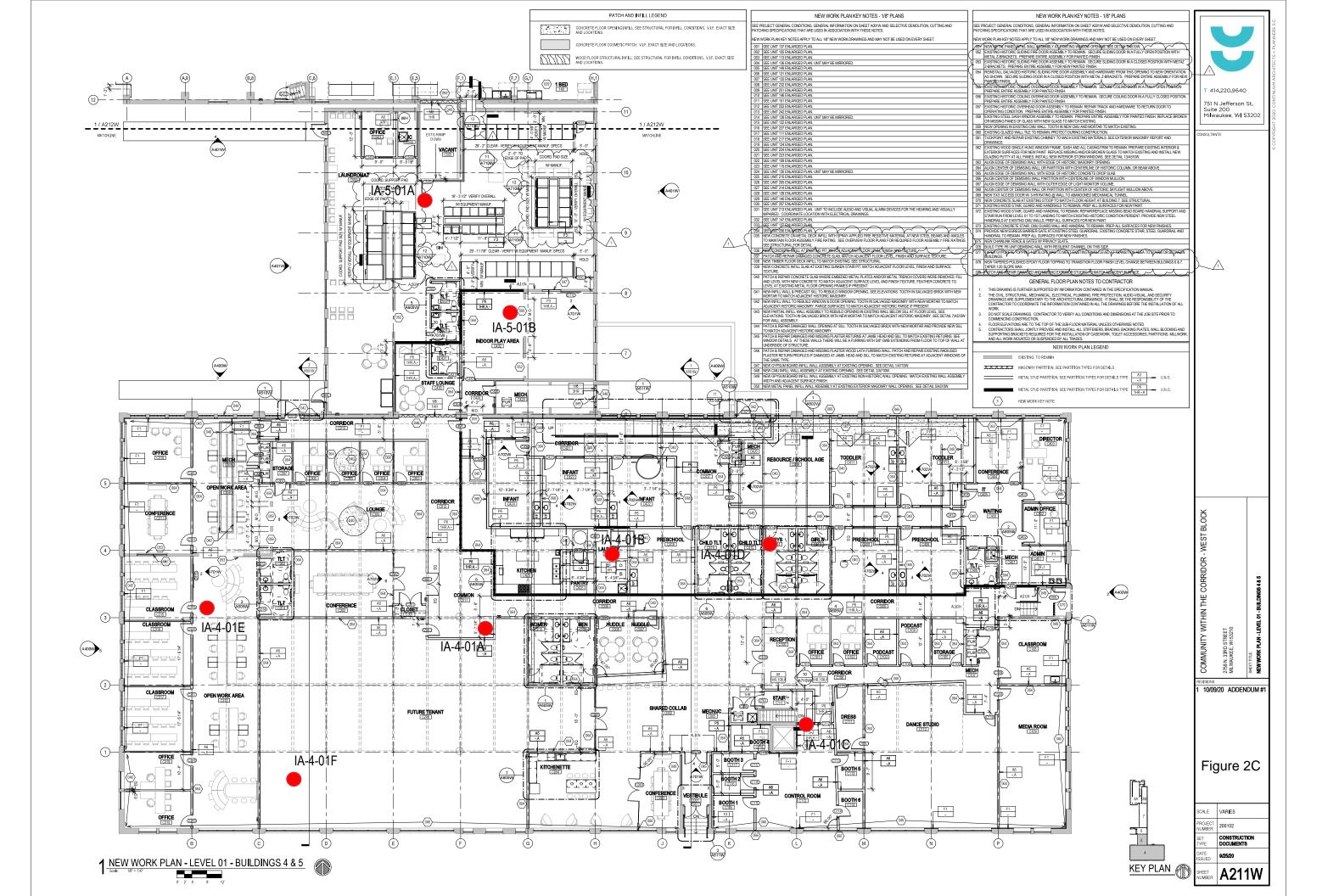
FIGURE 1

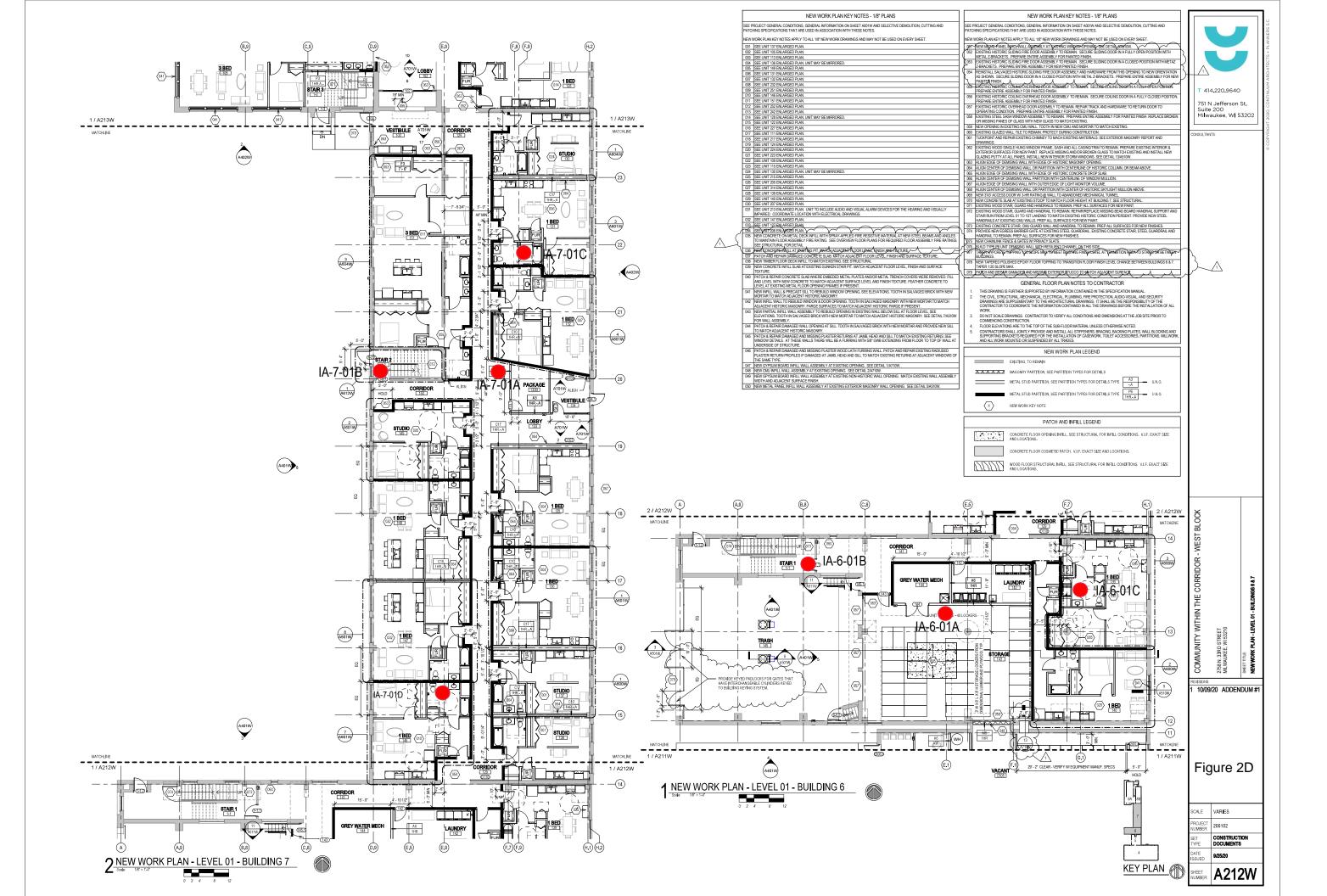
414.220.9640

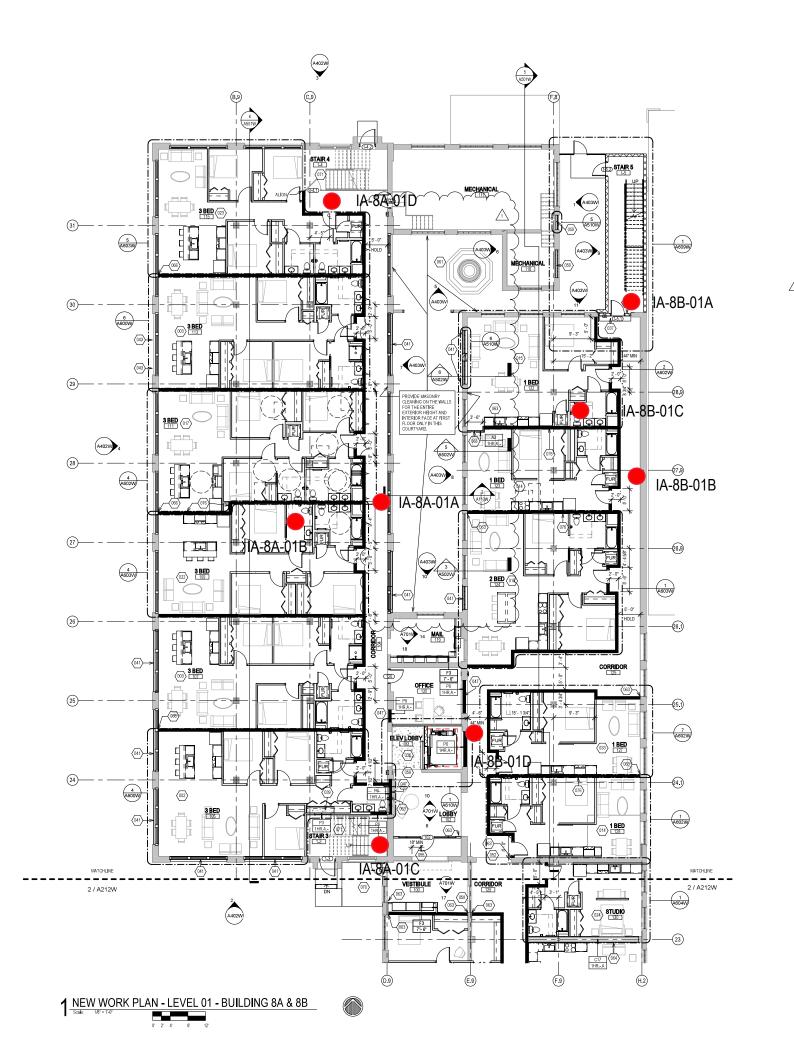
751 N Jefferson St. Suite 200 Milwaukee, WI 53202

> 2758 N. 33RD STREET MILWAUKEE, WI 53210

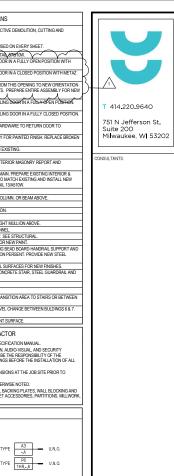
10/09/20 ADDENDUM#1

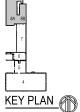

Figure 2B

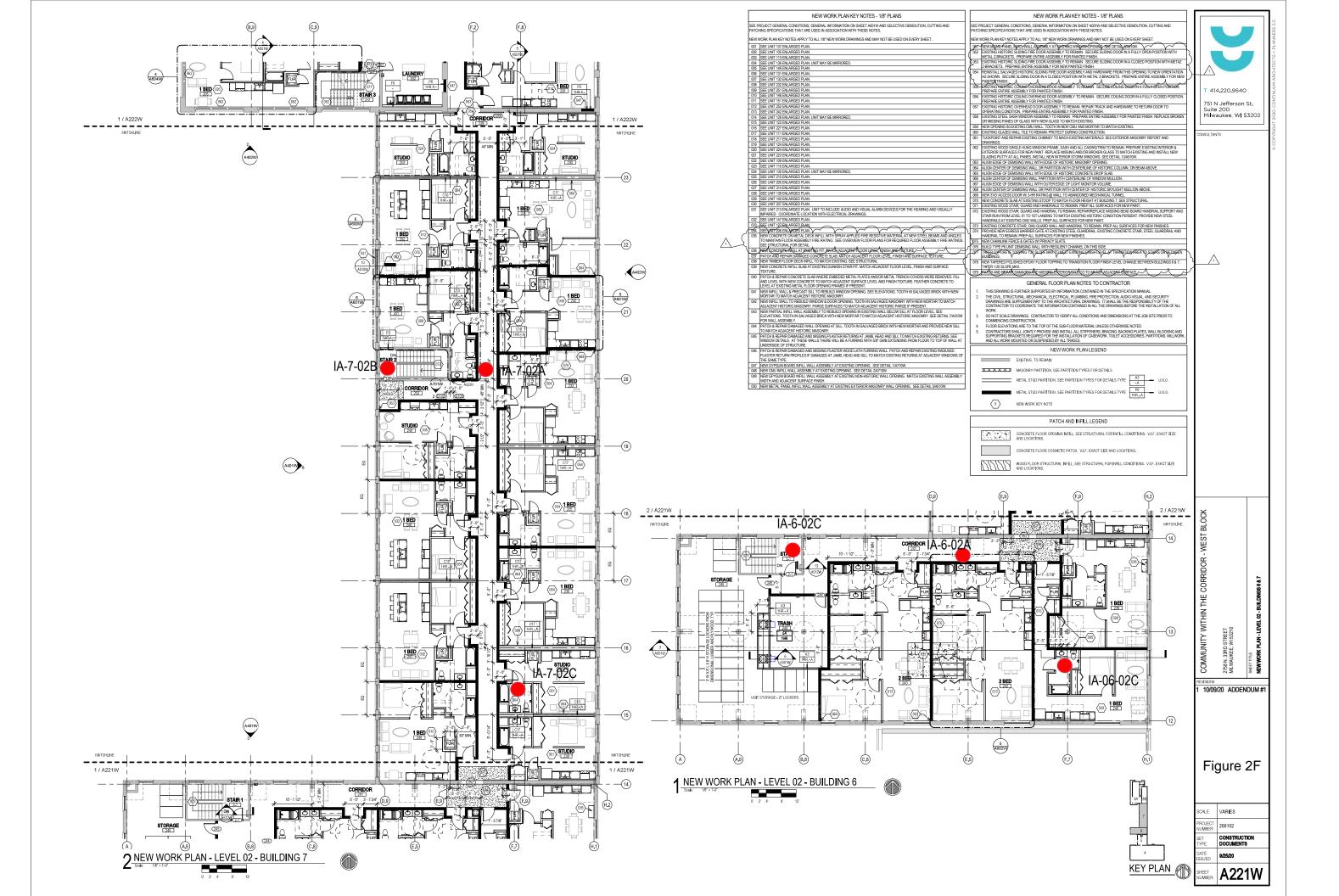

VARIES 200102


9/25/20

CONSTRUCTION DOCUMENTS


A210W




2758 N. 33RD STREET MILWAUKEE, WI 53210

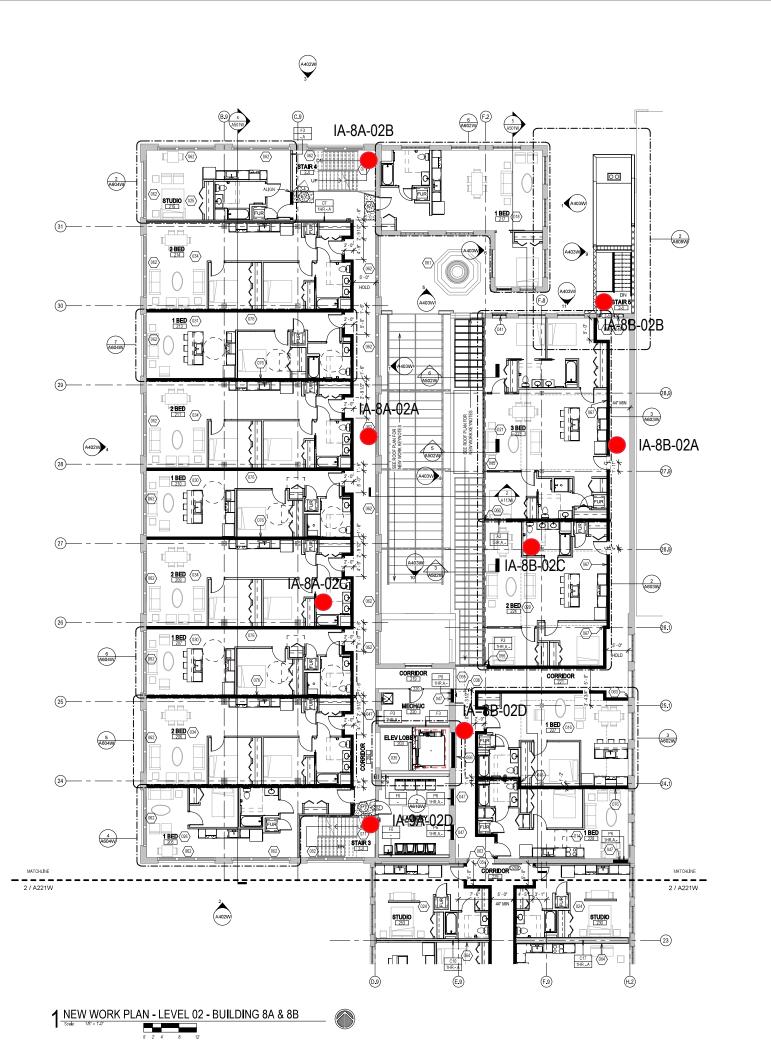

10/09/20 ADDENDUM#1

Figure 2E

VARIES 200102 CONSTRUCTION DOCUMENTS 9/25/20 A213W

T 414.220,9640

TO NEW ORDENTATION
A ASSEME Y FOR NEW
EXPERIEN POSHER

TY CLOSED POSHION
EN DOOR TO
SH REPLACE BROKEN

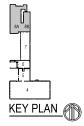
SHOOD TO
SHOULTANTS:

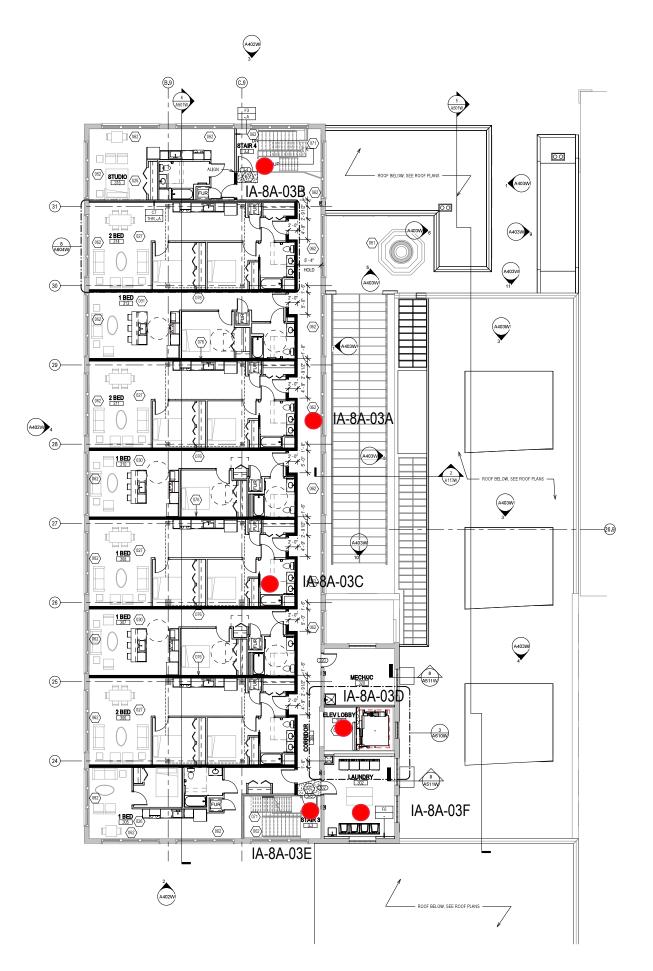
CONSULTANTS:

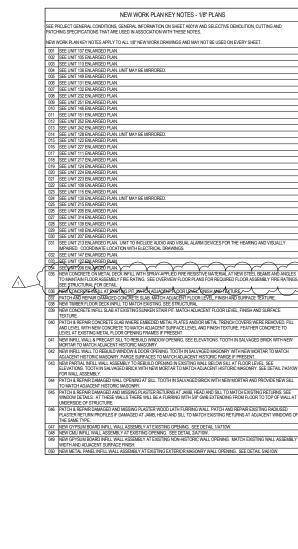
COMMONITY WITHIN THE CONNIDOR - WEST BELL 2758 N 3800 STREET

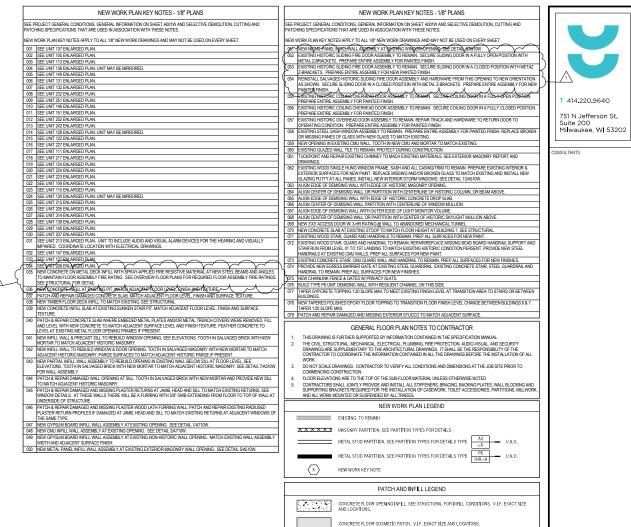
REVISIONS: 1 10/09/20 ADDENDUM #1

Figure 2G


CALE VARIES


ROJECT 200102


TO CONSTRUCTION DOCUMENTS


9/25/20

A222W

414.220.9640

Figure 2H

VARIES 200102 CONSTRUCTION DOCUMENTS

9/25/20

A231W

KEY PLAN

WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.I.F. EXACT SIZE AND LOCATIONS.

NEW WORK PLAN - LEVEL 03 - BUILDING 8A

TABLES

TABLE 1 - VACUUM MEASUREMENT RESULTS COMMUNITY WITHIN THE CORRIDOR - WEST BLOCK MILWAUKEE, WI PROJECT NUMBER: 40443

	1	1
Sample	Date	Reading
Location	Date	(inches H2O)
SVP-1	9/19/2022	0.096
SVP-2	9/19/2022	NA**
SVP-3	9/19/2022	NA**
SVP-4	9/19/2022	NA**
SVP-5	9/19/2022	NA**
SVP-6	9/19/2022	NA**
SVP-7	9/19/2022	0.021
SVP-8	9/19/2022	0.059
SVP-9	9/19/2022	0.079
SVP-10	9/19/2022	0.072
SVP-10A	9/19/2022	0.010
SVP-11	9/19/2022	0.011
SVP-12	9/19/2022	0.052
SVP-13	9/19/2022	0.440
SVP-14	9/19/2022	0.092
SVP-15	9/19/2022	0.110
SVP-16	9/19/2022	0.011

^{*}Readings were compared to a threshold value of 0.004 inches H2O.

^{**} Location not able to be sampled.

TABLE 2 - PASSIVE AIR SAMPLING RESULTS FOR COMMISSIONING COMMUNITY WITHIN THE CORRIDOR - WEST BLOCK MILWAUKEE, WI PROJECT NUMBER:40443

	Sample Deployment	Sample Pickup	Trichloroethene	Tetrachloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene
Units			ug/m3	ug/m3	ug/m3	ug/m3
Method			EPA TO-17	EPA TO-17	EPA TO-17	EPA TO-17
Residential Vapor Action			2.1	42		
Level			2.1	42		
Sample Name						
IA-8A-01A	9/12/2022	9/19/2022	1.8			2.8
IA-8A-01B	9/12/2022	9/19/2022	1.2			2.7
IA-8A-01C	9/12/2022	9/19/2022				0.6
IA-8A-01D	9/12/2022	9/19/2022	1.2			2.8
IA-8A-02A	9/12/2022	9/19/2022	0.65			1.6
IA-8A-02B	9/12/2022	9/19/2022	2			1.9
IA-8A-02C	9/12/2022	9/19/2022	0.17			0.5
IA-8A-02D	9/12/2022	9/19/2022	0.21			3.7
IA-8A-03A	9/12/2022	9/19/2022	0.4			2.6
IA-8A-03B	9/12/2022	9/19/2022	0.9			2.4
IA-8A-03C	9/12/2022	9/19/2022				0.66
IA-8A-03D	9/12/2022	9/19/2022	0.46			3.2
IA-8A-03E	9/12/2022	9/19/2022	0.18			4.3
IA-8A-03F	9/12/2022	9/19/2022	0.41			2.9
IA-8A-03-Basement	9/12/2022	9/19/2022	0.36	0.3		6.2
IA-8B-01A	9/12/2022	9/19/2022	0.21			
IA-8B-01B	9/12/2022	9/19/2022	2.1			2.2
IA-8B-01C	9/12/2022	9/19/2022				
IA-8B-01D	9/12/2022	9/19/2022	1.9			1.9
IA-8B-02A	9/12/2022	9/19/2022	0.67			1.2
IA-8B-02B	9/12/2022	9/19/2022	0.28			
IA-8B-02D	9/12/2022	9/19/2022	0.7			1.2
OA-6/7/8A/8B Background	9/12/2022	9/19/2022	0.27			
Lab Blank	9/12/2022	9/19/2022	1.8	ND	ND	2.8
Lab Blank	9/12/2022	9/19/2022	1.2	ND	ND	2.7

TABLE 3 - EXHAUST FAN SAMPLING RESULTS COMMUNITY WITHIN THE CORRIDOR - WEST BLOCK MILWAUKEE, WI PROJECT NUMBER: 40443

	SUI	B-SLAB VAPOR V	RSL	EP-1	EP-1	EP-2	EP-2	EP-3	EP-3	EP-4	EP-5	EP-6	EP-7
	AF = 0.03	AF=0.03	AF = 0.01	PRE-DEVELOPMENT	PRE-DEVELOPM								
		CHAL	LARGE	5/9/2022	9/21/2022	5/9/2022	9/21/2022	5/9/2022	9/21/2022	9/21/2022	9/21/2022	9/21/2022	9/21/2022
CHEMICAL (ug/m ³)	RESIDENTIAL	SMALL COMMERCIAL	COMMERCIAL / INDUSTRIAL	ug/m ³	ug/m ³								
1,1,1-Trichloroethane	170,000	730,000	2,200,000	< 0.249	< 0.249	4.7	< 0.249	1.03	< 0.249	2.56	2.28	0.92	
1,1,2,2-Tetrachloroethane	1.6	7	21	< 0.325	< 0.325	< 0.325	< 0.325	< 0.325	< 0.325	< 0.325	< 0.325	< 0.325	
1,1,2-Trichloroethane	0.7	2.9	8.8	< 0.258	< 0.258	< 0.258	< 0.258	< 0.258	< 0.258	< 0.258	< 0.258	< 0.258	
1,1-Dichloroethane	600	2,600	7,700	< 0.187	< 0.187	< 0.187	< 0.187	< 0.187	< 0.187	< 0.187	< 0.187	< 0.187	
1,1-Dichloroethene	7,000	29,000	88,000	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	
1,2,4-Trichlorobenzene	700	2933	8,800	< 0.657	< 0.657	< 0.657	< 0.657	< 0.657	< 0.657	< 0.657	< 0.657	< 0.657	
1,2,4-Trimethylbenzene 1,2-Dichlorobenzene	2,100 700	8,700 2933	26,000 8,800	4.3 < 0.235	3.09	5 < 0.235	8.6 < 0.235	4.6 < 0.235	7.9 < 0.235	17.2	16.1	20.3	
1.2-Dichloroethane	36	160	470	< 0.24	< 0.233	< 0.24	< 0.24	< 0.24	< 0.233	< 0.24	< 0.233	< 0.24	
1,2-Dichloropropane	14	60	180	< 0.28	< 0.28	< 0.28	< 0.28	< 0.28	< 0.28	< 0.28	< 0.28	< 0.28	
1,2-Dichlorotetrafluoroethane				< 0.446	< 0.446	< 0.446	< 0.446	< 0.446	< 0.446	< 0.446	< 0.446	< 0.446	
1,3,5-Trimethylbenzene	2,100	8,700	26,000	1.28	1.08	2.01	3.7	1.57	2.99	6.4	5.8	6.8	
1,3-Butadiene				< 0.143	< 0.143	< 0.143	< 0.143	< 0.143	< 0.143	< 0.143	< 0.143	< 0.143	
1,3-Dichlorobenzene				< 0.302	< 0.302	< 0.302	< 0.302	< 0.302	< 0.302	< 0.302	< 0.302	< 0.302	
1,4-Dichlorobenzene 1,4-Dioxane	8 18	37 83.3	110 250	< 0.302 < 0.157	0.96 7.1	< 0.302 < 0.157	0.96 12.6	< 0.302 < 0.157	0.48 J 12.5	0.6 J 13.5	0.48 J 13.8	0.42 J 13.2	
2-Hexanone		03.3	250	< 0.157	< 0.222	< 0.157	< 0.222	< 0.157	< 0.222	< 0.222	< 0.222	< 0.222	
4-Ethyltoluene	_			0.59 J	0.93	1.18	3.2	0.74	2.31	4.7	4.1	4.5	
Acetone	106,667	466,667	1,400,000	195	770	24.8	590	126	570	680	820	420	
Benzene	120	530	1,600	2.04	3.5	1.47	3.3	5.7	4.7	5.8	5.7	4.6	
Benzyl Chloride	1.9	8	25	< 0.209	< 0.209	< 0.209	< 0.209	< 0.209	< 0.209	< 0.209	< 0.209	< 0.209	
Bromodichloromethane	2.53	11	33	< 0.374	< 0.374	0.47 J		1.27	< 0.374	< 0.374	< 0.374	< 0.374	
Bromoform Bromomethane	86.6 17.3	367 73	1,100 220	< 0.414 < 0.2	< 0.414	< 0.414	< 0.414	< 0.414	< 0.414	< 0.414	< 0.414	< 0.414	
Carbon Disulfide	2.433	10,333	31.000	0.2 0.37 J	< 0.2 110	0.34 J	< 0.2 63	< 0.2 0.34 J	47	49	< 0.2 41	32	
Carbon Tetrachloride	156	667	2,000	0.5 J	3.3	0.63 J	11	0.57 J	14.8	370	340	91	
Chlorobenzene	173	733	2,200	< 0.251	0.51 J	< 0.251	0.69 J	< 0.251	0.6 J	0.74 J	0.79 J	0.65 J	
Chloroethane	33,333	146,667	440,000	< 0.159	1.48	< 0.159	0.84	< 0.159	< 0.159	< 0.159	0.66	< 0.159	
Chloroform	3,100	13,000	39,000	1.56	2.68	1.12	4.3	4.2	2.82	3.6	4	3.5	
Chloromethane	3,100	13,000	39,000	< 0.831 < 0.197	2.06 J	< 0.831	3.2	< 0.831	1.07 J	1.36 J	1.38 J	1.42 J	
cis-1,2-Dichloroethene cis-1,3-Dichloropropene				< 0.197	< 0.197 < 0.234	< 0.197 < 0.234	< 0.197 < 0.234	0.277 J < 0.234	< 0.197 < 0.234	< 0.197 < 0.234	< 0.197 < 0.234	< 0.197 < 0.234	
Cyclohexane	3,333	14,667	44,000	7.3	2.96	1.69	1.58	7.5	1.76	2.13	2.2	1.34	
Dibromochloromethane				< 0.376	< 0.376	< 0.376	< 0.376	< 0.376	< 0.376	< 0.376	< 0.376	< 0.376	
Dichlorodifluoromethane	3,300	14,667	44,000	2.62	5.5	2.57	3.5	2.57	3.2	3.7	4.1	3.4	
EDB (1,2-Dibromoethane)	0.157	0.67	2	< 0.342	< 0.342	< 0.342	< 0.342	< 0.342	< 0.342	< 0.342	< 0.342	< 0.342	
Ethanol				19.3	2250 10	4.8	2610 10	8.3	1720 10	1370 J	1250 10	780 10	
Ethyl Acetate				1.15	3.3	< 0.176	2.38	< 0.176	1.87	2.05	1.94	1.62	
Ethylbenzene	370	1,600	4,900	0.52 J 3.8	19.8 61	28.4 1.68	36 32	17.5 9.9	32 26.3	40 26.8	42 23.4	42 16.8	
Heptane Hexachlorobutadiene	4.3	 19	56	< 0.489	< 0.489	< 0.489	< 0.489	< 0.489	< 0.489	< 0.489	< 0.489	< 0.489	
Hexane	1.400	6.000	18.000	5.1	15.5	2.5	8.9	5.6	9.4	8.5	9.5	6.6	
Isopropyl Alcohol				9.6	39	1.33	39	3.4	54	66	63	54	
m&p-Xylene	3,300	15,000	44,000	2.17	71	80	143	44	107	169	172	178	
Methyl ethyl ketone (MEK)	17,333	73,333	220,000	33	830	15.7	630	58	510	510	500	301	
Methyl isobutyl ketone (MIBK)	10,333	43,333	130,000	2.46	7	0.37 J	7.1	1.02	8.1	9.9	11.4	8.6	
Methyl Methacrylate	0.700		47.000	< 0.217	2.66	< 0.217	2.37	< 0.217	2.13	1.96	1.88	1.8	
Methyl tert-butyl ether (MTBE) Methylene chloride	3,700 21,000	16,000 87,000	47,000 260,000	< 0.16 21	< 0.16 32	< 0.16 18.8	< 0.16 24.7	< 0.16 20.8	< 0.16 25.9	< 0.16 18.8	< 0.16 27.8	< 0.16 15.7	
Naphthalene	21,000	6,000	360	< 0.675	0.78 J	0.73 J	0.73 J	0.68 J	0.68 J	0.68 J	0.78 J	0.84 J	
<u>_</u>	3,300	15,000	44,000	1.86	0.78 J 21.6		0.73 J 59	10.6	0.68 J 37	0.68 J 60		0.84 J 65	
o-Xylene Propene	3,300	15,000	44,000	6	32	20.6 4.9	25.2	< 0.079	25	34	61 43	23.8	
Styrene	3,333	14,667	44,000	< 0.181	42	0.43 J	104	0.255 J	79	126	124	137	
Tetrachloroethene (PCE)	1,400	6,000	18,000	76	10	57	2.04	57	1.9	1.63	1.83	5.6	
Tetrahydrofuran	7,000	29,333	88,000	181	20.1	37	17.1	183	16.3	17.5	15.5	15.8	
Toluene	170,000	730,000	2,200,000	4.8	137	7.6	137	12.2	122	122	117	97	
trans-1,2-Dichloroethene				2.02	1.43	3.2	5	3.2	6.6	4.1	2.89	4.2	
trans-1,3-Dichloropropene	-		-	< 0.198	< 0.198	< 0.198	< 0.198	< 0.198	< 0.198	< 0.198	< 0.198	< 0.198	
Trichloroethene (TCE)	70	290	880	< 0.237	0.59 J	0.86	0.8	1.18	1.02	1.34	2.2	1.61	
Trichlorofluoromethane Trichlorotrifluoroethane				1.24	1.97	1.24	1.97 0.84 J	1.29 0.54	1.74 0.84 J	2.36	2.19	1.91 0.77 J	
Vinyl acetate	700	2933	8,800	0.54 J < 0.203	0.84 J < 0.203	0.54 J < 0.203	< 0.203	< 0.203	< 0.203	0.77 J < 0.203	0.84 J < 0.203	< 0.203	
	700	2300	0,000	0.200	. 0.200	. 0.200	. 0.200	- 0.200	. 0.200	. 0.200	0.200	0.200	

All results in micrograms per cubic meter (ug/m³)

"J" Flag = Analyte detected between Limit of Detection and Limit of Quantitation

"10" Code = Linear Range of Calibration Curve Exceeded

VRSL = Vapor Risk Screening Levels

Indicates detection is above Residential VRSLs

Indicates detection is above Large Commercial / Industrial VRSLs

ATTACHMENTS

ATTACHMENT A

Passive Air Sampling Test Results

10/7/2022 Mr. Robert Reineke K Singh & Associates 3636 N 124th St

Wauwatosa WI 53222

Project Name: CWC - West Block

Project #: 40443A

Workorder #: 2209608B

Dear Mr. Robert Reineke

The following report includes the data for the above referenced project for sample(s) received on 9/23/2022 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Jade White at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Jade White

Project Manager

WORK ORDER #: 2209608B

Work Order Summary

CLIENT: Mr. Robert Reineke **BILL TO:** Mr. Robert Reineke

> K Singh & Associates 3636 N 124th St

3636 N 124th St Wauwatosa, WI 53222 Wauwatosa, WI 53222

PHONE: **P.O.** #

FAX: PROJECT # 40443A CWC - West Block

DATE RECEIVED: 09/23/2022 **CONTACT:** Jade White **DATE COMPLETED:** 10/07/2022

FRACTION #	<u>NAME</u>	<u>TEST</u>
14A	IA-8A-01A	Passive S.E. RAD130/SKC
15A	IA-8A-01B	Passive S.E. RAD130/SKC
16A	IA-8A-01C	Passive S.E. RAD130/SKC
17A	IA-8A-01D	Passive S.E. RAD130/SKC
18A	IA-8A-02A	Passive S.E. RAD130/SKC
19A	IA-8A-02B	Passive S.E. RAD130/SKC
20A	IA-8A-02C	Passive S.E. RAD130/SKC
21A	IA-8A-02D	Passive S.E. RAD130/SKC
22A	IA-8A-03A	Passive S.E. RAD130/SKC
23A	IA-8A-03B	Passive S.E. RAD130/SKC
24A	IA-8A-03C	Passive S.E. RAD130/SKC
25A	IA-8A-03D	Passive S.E. RAD130/SKC
26A	IA-8A-03E	Passive S.E. RAD130/SKC
27A	IA-8A-03F	Passive S.E. RAD130/SKC
28A	IA-8A-Basement	Passive S.E. RAD130/SKC
29A	IA-8B-01A	Passive S.E. RAD130/SKC
30A	IA-8B-01B	Passive S.E. RAD130/SKC
31A	IA-8B-01C	Passive S.E. RAD130/SKC
32A	IA-8B-01D	Passive S.E. RAD130/SKC
33A	IA-8B-02A	Passive S.E. RAD130/SKC
34A	IA-8B-02B	Passive S.E. RAD130/SKC
35A	IA-8B-02D	Passive S.E. RAD130/SKC
36A	OA-6/7/8A/8B Background	Passive S.E. RAD130/SKC

Continued on next page

K Singh & Associates

WORK ORDER #: 2209608B

Work Order Summary

CLIENT: Mr. Robert Reineke BILL TO: Mr. Robert Reineke

K Singh & Associates
3636 N 124th St
Wauwatosa, WI 53222

K Singh & Associates
3636 N 124th St
Wauwatosa, WI 53222

PHONE: P.O.#

FAX: PROJECT # 40443A CWC - West Block

DATE RECEIVED: 09/23/2022 **CONTACT:** Jade White **DATE COMPLETED:** 10/07/2022

FRACTION #	NAME	<u>TEST</u>
37A	Lab Blank	Passive S.E. RAD130/SKC
37B	Lab Blank	Passive S.E. RAD130/SKC
38A	CCV	Passive S.E. RAD130/SKC
38B	CCV	Passive S.E. RAD130/SKC
38C	CCV	Passive S.E. RAD130/SKC
39A	LCS	Passive S.E. RAD130/SKC
39AA	LCSD	Passive S.E. RAD130/SKC
39B	LCS	Passive S.E. RAD130/SKC
39BB	LCSD	Passive S.E. RAD130/SKC

	1	cide Thayes		
CERTIFIED BY:		00	DATE: $\frac{10/07/22}{}$	

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP – CA009332021-13, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 K Singh & Associates Workorder# 2209608B

Twenty-three Radiello 130 (Solvent) samples were received on September 23, 2022. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

If validated uptake rates were not available, rates were estimated using the chemical's diffusion coefficient in air and the geometric constant of the sampler. Chemicals that are poorly retained by the sorbent over the sampling duration may exhibit a low bias. All concentrations calculated using estimated rates are qualified with a "C" flag.

To calculate ug/m3 concentrations in the Lab Blanks, a sampling duration of 10110 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - C Estimated concentration due to calculated sampling rate
 - CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Client Sample ID: IA-8A-01A

Lab ID#: 2209608B-14A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)	
Trichloroethene	0.10	0.15	1.2	1.8	
trans-1,2-Dichloroethene	0.20	0.34	1.6 C	2.8 C	

Client Sample ID: IA-8A-01B

Lab ID#: 2209608B-15A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.84	1.2
trans-1,2-Dichloroethene	0.20	0.33	1.6 C	2.7 C

Client Sample ID: IA-8A-01C

Lab ID#: 2209608B-16A

Compound	Rpt. Limit (ug)	Kpt. Limit (ug/m3)	(ug)	(ug/m3)
trans-1,2-Dichloroethene	0.20	0.33	0.36 C	0.60 C

Client Sample ID: IA-8A-01D

Lab ID#: 2209608B-17A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.15	0.84	1.2
trans-1,2-Dichloroethene	0.20	0.34	1.7 C	2.8 C

Client Sample ID: IA-8A-02A

Lab ID#: 2209608B-18A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.45	0.65
trans-1,2-Dichloroethene	0.20	0.33	0.97 C	1.6 C

Client Sample ID: IA-8A-02B

Lab ID#: 2209608B-19A

Client Sample ID: IA-8A-02B

Lab ID#: 2209608B-19A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)	
Trichloroethene	0.10	0.14	1.4	2.0	
trans-1,2-Dichloroethene	0.20	0.33	1.1 C	1.9 C	

Client Sample ID: IA-8A-02C

Lab ID#: 2209608B-20A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.12	0.17
trans-1.2-Dichloroethene	0.20	0.33	0.30 C	0.50 C

Client Sample ID: IA-8A-02D

Lab ID#: 2209608B-21A

Compound	Rpt. Limit (ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.14	0.21
trans-1,2-Dichloroethene	0.20	0.33	2.2 C	3.7 C

Client Sample ID: IA-8A-03A

Lab ID#: 2209608B-22A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.28	0.40
trans-1,2-Dichloroethene	0.20	0.33	1.6 C	2.6 C

Client Sample ID: IA-8A-03B

Lab ID#: 2209608B-23A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.62	0.90
trans-1,2-Dichloroethene	0.20	0.33	1.4 C	2.4 C

Client Sample ID: IA-8A-03C

Lab ID#: 2209608B-24A

	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)	
trans-1.2-Dichloroethene	0.20	0.33	0.40 C	0.66 C	

Client Sample ID: IA-8A-03D

Lab ID#: 2209608B-25A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.32	0.46
trans-1,2-Dichloroethene	0.20	0.33	1.9 C	3.2 C

Client Sample ID: IA-8A-03E

Lab ID#: 2209608B-26A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.12	0.18
trans-1,2-Dichloroethene	0.20	0.33	2.6 C	4.3 C

Client Sample ID: IA-8A-03F

Lab ID#: 2209608B-27A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)	
Trichloroethene	0.10	0.14	0.28	0.41	
trans-1,2-Dichloroethene	0.20	0.33	1.8 C	2.9 C	

Client Sample ID: IA-8A-Basement

Lab ID#: 2209608B-28A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.25	0.36
Tetrachloroethene	0.10	0.17	0.18	0.30
trans-1,2-Dichloroethene	0.20	0.33	3.8 C	6.2 C

Client Sample ID: IA-8B-01A

Lab ID#: 2209608B-29A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.15	0.14	0.21

Client Sample ID: IA-8B-01B

Lab ID#: 2209608B-30A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.15	1.4	2.1
trans-1,2-Dichloroethene	0.20	0.34	1.3 C	2.2 C

Client Sample ID: IA-8B-01C

Lab ID#: 2209608B-31A
No Detections Were Found.

Client Sample ID: IA-8B-01D

Lab ID#: 2209608B-32A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)	
Trichloroethene	0.10	0.15	1.3	1.9	
trans-1,2-Dichloroethene	0.20	0.34	1.1 C	1.9 C	

Client Sample ID: IA-8B-02A

Lab ID#: 2209608B-33A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)	
Trichloroethene	0.10	0.14	0.46	0.67	_
trans-1,2-Dichloroethene	0.20	0.33	0.75 C	1.2 C	

Client Sample ID: IA-8B-02B

Lab ID#: 2209608B-34A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.19	0.28

Client Sample ID: IA-8B-02D

Lab ID#: 2209608B-35A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.49	0.70
trans-1,2-Dichloroethene	0.20	0.33	0.70 C	1.2 C

Client Sample ID: OA-6/7/8A/8B Background

Lab ID#: 2209608B-36A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.19	0.27

Client Sample ID: IA-8A-01A Lab ID#: 2209608B-14A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100627sim	Date of Collection: 9/19/22 10:36:00 AM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 05:54 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.15	1.2	1.8
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.34	1.6 C	2.8 C

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F, duration time = 9876 minutes.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130

Client Sample ID: IA-8A-01B Lab ID#: 2209608B-15A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100628sim	Date of Collection: 9/19/22 10:58:00 AM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 06:20 PM
		Date of Extraction: 10/6/22

_	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.84	1.2
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.6 C	2.7 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10048 \ minutes.$

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	

Client Sample ID: IA-8A-01C Lab ID#: 2209608B-16A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100629sim	Date of Collection: 9/19/22 1:28:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 06:47 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.36 C	0.60 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10074 \ minutes.$

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130

Client Sample ID: IA-8A-01D Lab ID#: 2209608B-17A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100630sim	Date of Collection: 9/19/22 10:31:00 AM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 07:14 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.15	0.84	1.2
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.34	1.7 C	2.8 C

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F, duration time = 9846 minutes.

Surrogates	%Recovery	Method Limits
Toluene-d8	96	70-130

Client Sample ID: IA-8A-02A Lab ID#: 2209608B-18A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100631sim	Date of Collection: 9/19/22 1:12:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 07:40 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.45	0.65
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.97 C	1.6 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10096 \ minutes.$

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130

Client Sample ID: IA-8A-02B Lab ID#: 2209608B-19A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100632sim	Date of Collection: 9/19/22 11:35:00 AM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 08:06 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	1.4	2.0
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.1 C	1.9 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10002 \ minutes.$

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	

Client Sample ID: IA-8A-02C Lab ID#: 2209608B-20A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100633sim	Date of Collection: 9/19/22 12:33:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 08:33 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.12	0.17
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.30 C	0.50 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10098 \ minutes.$

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	

Client Sample ID: IA-8A-02D Lab ID#: 2209608B-21A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100634sim	Date of Collection: 9/19/22 1:15:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 08:59 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.14	0.21
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	2.2 C	3.7 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10107 \ minutes.$

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130

Client Sample ID: IA-8A-03A Lab ID#: 2209608B-22A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100635sim	Date of Collection: 9/19/22 12:54:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 09:26 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.28	0.40
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.6 C	2.6 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10108 \ minutes.$

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130

Client Sample ID: IA-8A-03B Lab ID#: 2209608B-23A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100636sim	Date of Collection: 9/19/22 11:03:00 AM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 09:52 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.62	0.90
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.4 C	2.4 C

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 9991 minutes.

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130

Client Sample ID: IA-8A-03C Lab ID#: 2209608B-24A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100637sim	Date of Collection: 9/19/22 12:50:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 10:18 PM
		Date of Extraction: 10/6/22

Rpt. Limit Rpt. Limit Amount **Amount** Compound (ug/m3) (ug/m3) (ug) (ug) 0.10 0.14 Not Detected Not Detected Trichloroethene 0.10 Not Detected Not Detected Tetrachloroethene 0.17 0.10 0.16 Not Detected C Not Detected C cis-1,2-Dichloroethene trans-1,2-Dichloroethene 0.20 0.33 0.40 C 0.66 C

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F, duration time = 10110 minutes.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130

Client Sample ID: IA-8A-03D Lab ID#: 2209608B-25A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100638sim	Date of Collection: 9/19/22 1:00:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 10:45 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.32	0.46
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.9 C	3.2 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10100 \ minutes.$

	~/ ~	Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130

Client Sample ID: IA-8A-03E Lab ID#: 2209608B-26A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100639sim	Date of Collection: 9/19/22 1:02:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 11:11 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.12	0.18
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	2.6 C	4.3 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10099 \ minutes.$

Surrogates	%Recovery	Method Limits
Toluene-d8	97	70-130

Client Sample ID: IA-8A-03F Lab ID#: 2209608B-27A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100640sim	Date of Collection: 9/19/22 12:58:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/6/22 11:38 PM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.28	0.41
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.8 C	2.9 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 9985 \ minutes.$

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	

Client Sample ID: IA-8A-Basement Lab ID#: 2209608B-28A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100422sim	Date of Collection: 9/19/22 2:28:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 06:38 PM
		Date of Extraction: 10/4/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.25	0.36
Tetrachloroethene	0.10	0.17	0.18	0.30
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	3.8 C	6.2 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10088 \ minutes.$

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130

Client Sample ID: IA-8B-01A Lab ID#: 2209608B-29A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100423sim	Date of Collection: 9/19/22 10:51:00 AM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 07:04 PM
		Date of Extraction: 10/4/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.15	0.14	0.21
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.34	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F, duration time = 9883 minutes.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130

Client Sample ID: IA-8B-01B Lab ID#: 2209608B-30A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100424sim	Date of Collection: 9/19/22 10:42:00 AM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 07:31 PM
		Date of Extraction: 10/4/22

Rpt. Limit Rpt. Limit Amount **Amount** Compound (ug/m3) (ug/m3) (ug) (ug) 0.10 0.15 1.4 2.1 Trichloroethene 0.10 0.17 Not Detected Not Detected Tetrachloroethene Not Detected C Not Detected C 0.10 0.16 cis-1,2-Dichloroethene trans-1,2-Dichloroethene 0.20 0.34 1.3 C 2.2 C

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F, duration time = 9870 minutes.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130

Client Sample ID: IA-8B-01C Lab ID#: 2209608B-31A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100425sim	Date of Collection: 9/19/22 12:09:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 07:57 PM
		Date of Extraction: 10/4/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10096 \ minutes.$

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130

Client Sample ID: IA-8B-01D Lab ID#: 2209608B-32A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100426sim	Date of Collection: 9/19/22 10:46:00 AM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 08:24 PM
		Date of Extraction: 10/4/22

Rpt. Limit Rpt. Limit Amount **Amount** Compound (ug/m3) (ug/m3) (ug) (ug) 0.10 0.15 1.3 1.9 Trichloroethene 0.10 0.17 Not Detected Not Detected Tetrachloroethene Not Detected C 0.10 0.16 Not Detected C cis-1,2-Dichloroethene trans-1,2-Dichloroethene 0.20 0.34 1.1 C 1.9 C

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F, duration time = 9871 minutes.

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130

Client Sample ID: IA-8B-02A Lab ID#: 2209608B-33A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100427sim	Date of Collection: 9/19/22 1:17:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 08:50 PM
		Date of Extraction: 10/4/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.46	0.67
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.75 C	1.2 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10085 \ minutes.$

	~/ ~	Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130

Client Sample ID: IA-8B-02B Lab ID#: 2209608B-34A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100428sim	Date of Collection: 9/19/22 1:22:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 09:16 PM
		Date of Extraction: 10/4/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.19	0.28
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10097 \ minutes.$

	~/ ~	Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130

Client Sample ID: IA-8B-02D Lab ID#: 2209608B-35A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100429sim	Date of Collection: 9/19/22 1:20:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 09:43 PM
		Date of Extraction: 10/4/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.49	0.70
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.70 C	1.2 C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10082 \ minutes.$

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130

Client Sample ID: OA-6/7/8A/8B Background

Lab ID#: 2209608B-36A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100430sim	Date of Collection: 9/20/22 1:28:00 PM
Dil. Factor:	1.00	Date of Analysis: 10/4/22 10:09 PM
		Date of Extraction: 10/4/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.19	0.27
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10008 \ minutes.$

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130

Client Sample ID: Lab Blank Lab ID#: 2209608B-37A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100410sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/4/22 01:19 PM
		Date of Extraction: 10/4/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10110 \ minutes.$

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130

Client Sample ID: Lab Blank Lab ID#: 2209608B-37B

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100703sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/7/22 09:52 AM
		Date of Extraction: 10/6/22

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

 $Temperature = 77.0F \ , \ duration \ time = 10110 \ minutes.$

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130

Client Sample ID: CCV Lab ID#: 2209608B-38A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100406sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/4/22 11:32 AM
		Date of Extraction: NA

Compound	%Recovery	
Trichloroethene	96	
Tetrachloroethene	95	
cis-1,2-Dichloroethene	91	
trans-1,2-Dichloroethene	88	
Container Type: NA - Not Applicable		
		Method
Surrogates	%Recovery	Limits

Surrogates	%Recovery	Limits
Toluene-d8	93	70-130

Client Sample ID: CCV Lab ID#: 2209608B-38B

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100617sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/6/22 01:56 PM
		Date of Extraction, NA

Compound	%Recovery	
Trichloroethene	104	
Tetrachloroethene	104	
cis-1,2-Dichloroethene	102	
trans-1,2-Dichloroethene	101	
Container Type: NA - Not Applicable		

Surrogates	%Recovery	Method Limits
Toluene-d8	101	70-130

Client Sample ID: CCV Lab ID#: 2209608B-38C

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100702sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/7/22 09:24 AM
		Date of Extraction: NA

Compound	%Recovery	
Trichloroethene	106	
Tetrachloroethene	101	
cis-1,2-Dichloroethene	107	
trans-1,2-Dichloroethene	107	
Container Type: NA - Not Applicable		

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130

Client Sample ID: LCS Lab ID#: 2209608B-39A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 18100408sim Date of Collection	: NA
---	------

Dil. Factor: 1.00 Date of Analysis: 10/4/22 12:26 PM

Date of Extraction: 10/4/22

		Method
Compound	%Recovery	Limits
Trichloroethene	95	70-130
Tetrachloroethene	88	70-130
cis-1,2-Dichloroethene	97	70-130
trans-1,2-Dichloroethene	97	70-130
Container Type: NA - Not Applicable		
		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130

Client Sample ID: LCSD Lab ID#: 2209608B-39AA

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 18100409sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 10/4/22 12:52 PM

Date of Extraction: 10/4/22

		Method
Compound	%Recovery	Limits
Trichloroethene	98	70-130
Tetrachloroethene	88	70-130
cis-1,2-Dichloroethene	102	70-130
trans-1,2-Dichloroethene	102	70-130
Container Type: NA - Not Applicable		
		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130

Client Sample ID: LCS Lab ID#: 2209608B-39B

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18100618sim	Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 10/6/22 02:23 PM

Date of Extraction: 10/6/22

	2/5	Method
Compound	%Recovery	Limits
Trichloroethene	103	70-130
Tetrachloroethene	100	70-130
cis-1,2-Dichloroethene		70-130
trans-1,2-Dichloroethene	92	70-130
Container Type: NA - Not Applicable		
		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130

Client Sample ID: LCSD Lab ID#: 2209608B-39BB

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 18100619sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 10/6/22 02:49 PM

Date of Extraction: 10/6/22

Compound	%Recovery	Method Limits
Trichloroethene	101	70-130
Tetrachloroethene	99	70-130
cis-1,2-Dichloroethene	91	70-130
trans-1,2-Dichloroethene	87	70-130
Container Type: NA - Not Applicable		
		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130

ATTACHMENT B

Exhaust Fan Sampling Test Results

Synergy Environmental Lab, LLC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

ROBERT REINEKE K SINGH & ASSOCIATES 3636 N. 124TH STREET MILWAUKEE. WI 53222

Report Date 12-Oct-22

Project Name CWC WEST EXHAUST SAMPLING Invoice # E41506

Project # 40443

Lab Code 5041506A
Sample ID VP-1
Sample Matrix Air

Sample Date 9/21/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
Air Samples										
Acetone	770	ug/m3	2.99	9.5	10	TO-15		9/30/2022	CJR	1
Benzene	3.5	ug/m3	0.136	0.433	1	TO-15		9/29/2022	CJR	1
Benzyl Chloride	< 0.209	ug/m3	0.209	0.665	1	TO-15		9/29/2022	CJR	1
Bromodichloromethane	< 0.374	ug/m3	0.374	1.19	1	TO-15		9/29/2022	CJR	1
Bromoform	< 0.414	ug/m3	0.414	1.32	1	TO-15		9/29/2022	CJR	1
Bromomethane	< 0.2	ug/m3	0.2	0.637	1	TO-15		9/29/2022	CJR	1
1,3-Butadiene	< 0.143	ug/m3	0.143	0.454	1	TO-15		9/29/2022	CJR	1
Carbon Disulfide	110	ug/m3	0.138	0.44	1	TO-15		9/29/2022	CJR	1
Carbon Tetrachloride	3.3	ug/m3	0.307	0.978	1	TO-15		9/29/2022	CJR	1
Chlorobenzene	0.51 "J"	ug/m3	0.251	0.798	1	TO-15		9/29/2022	CJR	1
Chloroethane	1.48	ug/m3	0.159	0.507	1	TO-15		9/29/2022	CJR	1
Chloroform	2.68	ug/m3	0.3	0.953	1	TO-15		9/29/2022	CJR	1
Chloromethane	2.06 "J"	ug/m3	0.831	2.64	1	TO-15		9/29/2022	CJR	1
Cyclohexane	2.96	ug/m3	0.212	0.674	1	TO-15		9/29/2022	CJR	1
Dibromochloromethane	< 0.376	ug/m3	0.376	1.2	1	TO-15		9/29/2022	CJR	1
1,4-Dichlorobenzene	0.96	ug/m3	0.302	0.96	1	TO-15		9/29/2022	CJR	1
1,3-Dichlorobenzene	< 0.302	ug/m3	0.302	0.96	1	TO-15		9/29/2022	CJR	1
1,2-Dichlorobenzene	< 0.235	ug/m3	0.235	0.749	1	TO-15		9/29/2022	CJR	1
Dichlorodifluoromethane	5.5	ug/m3	0.263	0.836	1	TO-15		9/29/2022	CJR	1
1,2-Dichloroethane	< 0.24	ug/m3	0.24	0.763	1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethane	< 0.187	ug/m3	0.187	0.596	1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethene	< 0.21	ug/m3	0.21	0.668	1	TO-15		9/29/2022	CJR	1
cis-1,2-Dichloroethene	< 0.197	ug/m3	0.197	0.626	1	TO-15		9/29/2022	CJR	1
trans-1,2-Dichloroethene	1.43	ug/m3	0.231	0.734	1	TO-15		9/29/2022	CJR	1
1,2-Dichloropropane	< 0.28	ug/m3	0.28	0.89	1	TO-15		9/29/2022	CJR	1

Project Name CWC WEST EXHAUST SAMPLING Invoice # E41506

Proiect # 40443

Lab Code5041506ASample IDVP-1Sample MatrixAirSample Date9/21/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
trans-1,3-Dichloropropene	< 0.198	ug/m3	0.198	0.63	1	TO-15		9/29/2022	CJR	1
cis-1,3-Dichloropropene	< 0.234	ug/m3	0.234	0.745	1	TO-15		9/29/2022	CJR	1
1,2-Dichlorotetrafluoroethane	< 0.446	ug/m3	0.446	1.42	1	TO-15		9/29/2022	CJR	1
1,4-Dioxane	7.1	ug/m3	0.157	0.5	1	TO-15		9/29/2022	CJR	1
EDB (1,2-Dibromoethane)	< 0.342	ug/m3	0.342	1.09	1	TO-15		9/29/2022	CJR	1
Ethanol	2250	ug/m3	1.52	4.82	10	TO-15		9/30/2022	CJR	10
Ethyl Acetate	3.3	ug/m3	0.176	0.559	1	TO-15		9/29/2022	CJR	1
Ethylbenzene	19.8	ug/m3	0.203	0.645	1	TO-15		9/29/2022	CJR	1
4-Ethyltoluene	0.93	ug/m3	0.214	0.681	1	TO-15		9/29/2022	CJR	1
Heptane	61	ug/m3	0.265	0.845	1	TO-15		9/29/2022	CJR	1
Hexachlorobutadiene	< 0.489	ug/m3	0.489	1.56	1	TO-15		9/29/2022	CJR	1
Hexane	15.5	ug/m3	0.235	0.748	1	TO-15		9/29/2022	CJR	1
2-Hexanone	< 0.222	ug/m3	0.222	0.707	1	TO-15		9/29/2022	CJR	1
Isopropyl Alcohol	39	ug/m3	0.109	0.347	1	TO-15		9/29/2022	CJR	1
Methyl ethyl ketone (MEK)	830	ug/m3	1.78	5.67	10	TO-15		9/30/2022	CJR	1
Methyl isobutyl ketone (MIBK)	7.0	ug/m3	0.168	0.536	1	TO-15		9/29/2022	CJR	1
Methyl Methacrylate	2.66	ug/m3	0.217	0.69	1	TO-15		9/29/2022	CJR	1
Methylene chloride	32	ug/m3	0.159	0.506	1	TO-15		9/29/2022	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.16	ug/m3	0.16	0.509	1	TO-15		9/29/2022	CJR	1
Naphthalene	0.78 "J"	ug/m3	0.675	2.15	1	TO-15		9/29/2022	CJR	1
Propene	32	ug/m3	0.079	0.251	1	TO-15		9/29/2022	CJR	1
Styrene	42	ug/m3	0.181	0.577	1	TO-15		9/29/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.325	ug/m3	0.325	1.03	1	TO-15		9/29/2022	CJR	1
Tetrachloroethene	10	ug/m3	0.278	0.884	1	TO-15		9/29/2022	CJR	1
Tetrahydrofuran	20.1	ug/m3	0.131	0.417	1	TO-15		9/29/2022	CJR	1
Toluene	137	ug/m3	0.184	0.585	1	TO-15		9/29/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.657	ug/m3	0.657	2.09	1	TO-15		9/29/2022	CJR	1
1,1,1-Trichloroethane	< 0.249	ug/m3	0.249	0.793	1	TO-15		9/29/2022	CJR	1
1,1,2-Trichloroethane	< 0.258	ug/m3	0.258	0.822	1	TO-15		9/29/2022	CJR	1
Trichloroethene (TCE)	0.59 "J"	ug/m3	0.237	0.754	1	TO-15		9/29/2022	CJR	1
Trichlorofluoromethane	1.97	ug/m3	0.337	1.07	1	TO-15		9/29/2022	CJR	1
Trichlorotrifluoroethane	0.84 "J"	ug/m3	0.402	1.28	1	TO-15		9/29/2022	CJR	1
1,2,4-Trimethylbenzene	3.09	ug/m3	0.283	0.899	1	TO-15		9/29/2022	CJR	1
1,3,5-Trimethylbenzene	1.08	ug/m3	0.232	0.739	1	TO-15		9/29/2022	CJR	1
Vinyl acetate	< 0.203	ug/m3	0.203	0.645	1	TO-15		9/29/2022	CJR	1
Vinyl Chloride	< 0.148	ug/m3	0.148	0.472	1	TO-15		9/29/2022	CJR	1
m&p-Xylene	71	ug/m3	0.377	1.2	1	TO-15		9/29/2022	CJR	1
o-Xylene	21.6	ug/m3	0.218	0.695	1	TO-15		9/29/2022	CJR	1

Project Name CWC WEST EXHAUST SAMPLING

Proiect # 40443

Lab Code 5041506B
Sample ID VP-2
Sample Matrix Air

Sample Viatrix 7411 Sample Date 9/21/20	122									
Sample Date 9/21/20	Result	Unit	LOD	1.00	Dil	Method	Ext Date	Run Date	Δnalvet	Code
_	Result	Cint	LOD	LOQ	DII	Memou	Lat Date	Run Date	rinaryst	Couc
Organic										
Air Samples										
Acetone	590	ug/m3	2.99			TO-15		9/30/2022	CJR	1
Benzene	3.3	ug/m3	0.136			TO-15		9/29/2022	CJR	1
Benzyl Chloride	< 0.209	ug/m3	0.209			TO-15		9/29/2022	CJR	1
Bromodichloromethane	< 0.374	ug/m3	0.374			TO-15		9/29/2022	CJR	1
Bromoform	< 0.414	ug/m3	0.414			TO-15		9/29/2022	CJR	1
Bromomethane	< 0.2	ug/m3	0.2			TO-15		9/29/2022	CJR	1
1,3-Butadiene	< 0.143	ug/m3	0.143	0.454		TO-15		9/29/2022	CJR	1
Carbon Disulfide	63	ug/m3	0.138			TO-15		9/29/2022	CJR	1
Carbon Tetrachloride	11	ug/m3	0.307	0.978		TO-15		9/29/2022	CJR	1
Chlorobenzene	0.69 "J"	ug/m3	0.251	0.798		TO-15		9/29/2022	CJR	1
Chloroethane	0.84	ug/m3	0.159			TO-15		9/29/2022	CJR	1
Chloroform	4.3	ug/m3	0.3			TO-15		9/29/2022	CJR	1
Chloromethane	3.2	ug/m3	0.831	2.64		TO-15		9/29/2022	CJR	1
Cyclohexane	1.58	ug/m3	0.212			TO-15		9/29/2022	CJR	1
Dibromochloromethane	< 0.376	ug/m3	0.376	1.2	1	TO-15		9/29/2022	CJR	1
1,4-Dichlorobenzene	0.96	ug/m3	0.302			TO-15		9/29/2022	CJR	1
1,3-Dichlorobenzene	< 0.302	ug/m3	0.302		1	TO-15		9/29/2022	CJR	1
1,2-Dichlorobenzene	< 0.235	ug/m3	0.235	0.749	1	TO-15		9/29/2022	CJR	1
Dichlorodifluoromethane	3.5	ug/m3	0.263	0.836	1	TO-15		9/29/2022	CJR	1
1,2-Dichloroethane	< 0.24	ug/m3	0.24			TO-15		9/29/2022	CJR	1
1,1-Dichloroethane	< 0.187	ug/m3	0.187	0.596	1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethene	< 0.21	ug/m3	0.21	0.668	1	TO-15		9/29/2022	CJR	1
cis-1,2-Dichloroethene	< 0.197	ug/m3	0.197	0.626	1	TO-15		9/29/2022	CJR	1
trans-1,2-Dichloroethene	5.0	ug/m3	0.231	0.734	1	TO-15		9/29/2022	CJR	1
1,2-Dichloropropane	< 0.28	ug/m3	0.28	0.89	1	TO-15		9/29/2022	CJR	1
trans-1,3-Dichloropropene	< 0.198	ug/m3	0.198	0.63	1	TO-15		9/29/2022	CJR	1
cis-1,3-Dichloropropene	< 0.234	ug/m3	0.234	0.745	1	TO-15		9/29/2022	CJR	1
1,2-Dichlorotetrafluoroethane	< 0.446	ug/m3	0.446			TO-15		9/29/2022	CJR	1
1,4-Dioxane	12.6	ug/m3	0.157	0.5	1	TO-15		9/29/2022	CJR	1
EDB (1,2-Dibromoethane)	< 0.342	ug/m3	0.342	1.09	1	TO-15		9/29/2022	CJR	1
Ethanol	2610	ug/m3	1.52	4.82	10	TO-15		9/30/2022	CJR	10
Ethyl Acetate	2.38	ug/m3	0.176		1	TO-15		9/29/2022	CJR	1
Ethylbenzene	36	ug/m3	0.203	0.645	1	TO-15		9/29/2022	CJR	1
4-Ethyltoluene	3.2	ug/m3	0.214	0.681	1	TO-15		9/29/2022	CJR	1
Heptane	32	ug/m3	0.265	0.845	1	TO-15		9/29/2022	CJR	1
Hexachlorobutadiene	< 0.489	ug/m3	0.489	1.56	1	TO-15		9/29/2022	CJR	1
Hexane	8.9	ug/m3	0.235	0.748	1	TO-15		9/29/2022	CJR	1
2-Hexanone	< 0.222	ug/m3	0.222	0.707	1	TO-15		9/29/2022	CJR	1
Isopropyl Alcohol	39	ug/m3	0.109	0.347	1	TO-15		9/29/2022	CJR	1
Methyl ethyl ketone (MEK)	630	ug/m3	1.78	5.67	10	TO-15		9/30/2022	CJR	1
Methyl isobutyl ketone (MIBK)) 7.1	ug/m3	0.168	0.536	1	TO-15		9/29/2022	CJR	1
Methyl Methacrylate	2.37	ug/m3	0.217	0.69	1	TO-15		9/29/2022	CJR	1
Methylene chloride	24.7	ug/m3	0.159	0.506	1	TO-15		9/29/2022	CJR	1
Methyl tert-butyl ether (MTBE	< 0.16	ug/m3	0.16	0.509	1	TO-15		9/29/2022	CJR	1

Invoice # E41506

Project Name CWC WEST EXHAUST SAMPLING Invoice # E41506

Project # 40443

Lab Code5041506BSample IDVP-2Sample MatrixAirSample Date9/21/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Naphthalene	0.73 "J"	ug/m3	0.675	2.15	1	TO-15		9/29/2022	CJR	1
Propene	25.2	ug/m3	0.079	0.251	1	TO-15		9/29/2022	CJR	1
Styrene	104	ug/m3	0.181	0.577	1	TO-15		9/29/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.325	ug/m3	0.325	1.03	1	TO-15		9/29/2022	CJR	1
Tetrachloroethene	2.04	ug/m3	0.278	0.884	1	TO-15		9/29/2022	CJR	1
Tetrahydrofuran	17.1	ug/m3	0.131	0.417	1	TO-15		9/29/2022	CJR	1
Toluene	137	ug/m3	0.184	0.585	1	TO-15		9/29/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.657	ug/m3	0.657	2.09	1	TO-15		9/29/2022	CJR	1
1,1,1-Trichloroethane	< 0.249	ug/m3	0.249	0.793	1	TO-15		9/29/2022	CJR	1
1,1,2-Trichloroethane	< 0.258	ug/m3	0.258	0.822	1	TO-15		9/29/2022	CJR	1
Trichloroethene (TCE)	0.80	ug/m3	0.237	0.754	1	TO-15		9/29/2022	CJR	1
Trichlorofluoromethane	1.97	ug/m3	0.337	1.07	1	TO-15		9/29/2022	CJR	1
Trichlorotrifluoroethane	0.84 "J"	ug/m3	0.402	1.28	1	TO-15		9/29/2022	CJR	1
1,2,4-Trimethylbenzene	8.6	ug/m3	0.283	0.899	1	TO-15		9/29/2022	CJR	1
1,3,5-Trimethylbenzene	3.7	ug/m3	0.232	0.739	1	TO-15		9/29/2022	CJR	1
Vinyl acetate	< 0.203	ug/m3	0.203	0.645	1	TO-15		9/29/2022	CJR	1
Vinyl Chloride	< 0.148	ug/m3	0.148	0.472	1	TO-15		9/29/2022	CJR	1
m&p-Xylene	143	ug/m3	0.377	1.2	1	TO-15		9/29/2022	CJR	1
o-Xylene	59	ug/m3	0.218	0.695	1	TO-15		9/29/2022	CJR	1

Project Name CWC WEST EXHAUST SAMPLING

Proiect # 40443

Lab Code5041506CSample IDVP-3Sample MatrixAirSample Date9/21/2022

54112022	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
Air Samples										
Acetone	570	ug/m3	2.99	9.5	10	TO-15		9/30/2022	CJR	1
Benzene	4.7	ug/m3	0.136	0.433	1	TO-15		9/29/2022	CJR	1
Benzyl Chloride	< 0.209	ug/m3	0.209	0.665	1	TO-15		9/29/2022	CJR	1
Bromodichloromethane	< 0.374	ug/m3	0.374	1.19	1	TO-15		9/29/2022	CJR	1
Bromoform	< 0.414	ug/m3	0.414	1.32	2 1	TO-15		9/29/2022	CJR	1
Bromomethane	< 0.2	ug/m3	0.2	0.637	1	TO-15		9/29/2022	CJR	1
1,3-Butadiene	< 0.143	ug/m3	0.143	0.454	1	TO-15		9/29/2022	CJR	1
Carbon Disulfide	47	ug/m3	0.138	0.44	1	TO-15		9/29/2022	CJR	1
Carbon Tetrachloride	14.8	ug/m3	0.307	0.978	3 1	TO-15		9/29/2022	CJR	1
Chlorobenzene	0.60 "J"	ug/m3	0.251	0.798	3 1	TO-15		9/29/2022	CJR	1
Chloroethane	< 0.159	ug/m3	0.159	0.507	1	TO-15		9/29/2022	CJR	1
Chloroform	2.82	ug/m3	0.3	0.953	1	TO-15		9/29/2022	CJR	1
Chloromethane	1.07 "J"	ug/m3	0.831	2.64	1	TO-15		9/29/2022	CJR	1
Cyclohexane	1.76	ug/m3	0.212	0.674	1	TO-15		9/29/2022	CJR	1
Dibromochloromethane	< 0.376	ug/m3	0.376	1.2	2 1	TO-15		9/29/2022	CJR	1
1,4-Dichlorobenzene	0.48 "J"	ug/m3	0.302	0.96	5 1	TO-15		9/29/2022	CJR	1
1,3-Dichlorobenzene	< 0.302	ug/m3	0.302	0.96	5 1	TO-15		9/29/2022	CJR	1
1,2-Dichlorobenzene	< 0.235	ug/m3	0.235	0.749	1	TO-15		9/29/2022	CJR	1
Dichlorodifluoromethane	3.2	ug/m3	0.263	0.836	5 1	TO-15		9/29/2022	CJR	1
1,2-Dichloroethane	< 0.24	ug/m3	0.24	0.763	1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethane	< 0.187	ug/m3	0.187	0.596	5 1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethene	< 0.21	ug/m3	0.21	0.668	3 1	TO-15		9/29/2022	CJR	1
cis-1,2-Dichloroethene	< 0.197	ug/m3	0.197			TO-15		9/29/2022	CJR	1
trans-1,2-Dichloroethene	6.6	ug/m3	0.231			TO-15		9/29/2022	CJR	1
1,2-Dichloropropane	< 0.28	ug/m3	0.28			TO-15		9/29/2022	CJR	1
trans-1,3-Dichloropropene	< 0.198	ug/m3	0.198			TO-15		9/29/2022	CJR	1
cis-1,3-Dichloropropene	< 0.234	ug/m3	0.234			TO-15		9/29/2022	CJR	1
1,2-Dichlorotetrafluoroethane	< 0.446	ug/m3	0.446			TO-15		9/29/2022	CJR	1
1,4-Dioxane	12.5	ug/m3	0.157			TO-15		9/29/2022	CJR	1
EDB (1,2-Dibromoethane)	< 0.342	ug/m3	0.342			TO-15		9/29/2022	CJR	1
Ethanol	1720	ug/m3	1.52			TO-15		9/30/2022	CJR	10
Ethyl Acetate	1.87	ug/m3	0.176			TO-15		9/29/2022 9/29/2022	CJR	1
Ethylbenzene 4-Ethyltoluene	32	ug/m3 ug/m3	0.203			TO-15			CJR	1
•	2.31 26.3	Ü	0.214			TO-15 TO-15		9/29/2022 9/29/2022	CJR CJR	1
Heptane Hexachlorobutadiene	< 0.489	ug/m3	0.265			TO-15		9/29/2022	CJR CJR	1
Hexane	9.4	ug/m3 ug/m3	0.489 0.235			TO-15		9/29/2022	CJR CJR	1 1
2-Hexanone	< 0.222	ug/m3	0.233			TO-15		9/29/2022	CJR	1
Isopropyl Alcohol	54	ug/m3	0.109			TO-15		9/29/2022	CJR	1
Methyl ethyl ketone (MEK)	510	ug/m3	1.78			TO-15		9/30/2022	CJR	1
Methyl isobutyl ketone (MIBK)	8.1	ug/m3	0.168			TO-15		9/30/2022	CJR CJR	1
Methyl Methacrylate	2.13	ug/m3	0.108			TO-15		9/29/2022	CJR	1
Methylene chloride	25.9	ug/m3	0.217			TO-15		9/29/2022	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.16	ug/m3	0.139			TO-15		9/29/2022	CJR	1
	. 0.10	~g,1113	0.10	0.507	•	1010		,, <u> </u>	2010	•

Invoice # E41506

Project Name CWC WEST EXHAUST SAMPLING Invoice # E41506

Proiect # 40443

Lab Code5041506CSample IDVP-3Sample MatrixAirSample Date9/21/2022

	Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
Naphthalene	0.68 "J"	ug/m3	0.675	2.15	1	TO-15		9/29/2022	CJR	1
Propene	25	ug/m3	0.079	0.251	1	TO-15		9/29/2022	CJR	1
Styrene	79	ug/m3	0.181	0.577	1	TO-15		9/29/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.325	ug/m3	0.325	1.03	1	TO-15		9/29/2022	CJR	1
Tetrachloroethene	1.9	ug/m3	0.278	0.884	1	TO-15		9/29/2022	CJR	1
Tetrahydrofuran	16.3	ug/m3	0.131	0.417	1	TO-15		9/29/2022	CJR	1
Toluene	122	ug/m3	0.184	0.585	1	TO-15		9/29/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.657	ug/m3	0.657	2.09	1	TO-15		9/29/2022	CJR	1
1,1,1-Trichloroethane	< 0.249	ug/m3	0.249	0.793	1	TO-15		9/29/2022	CJR	1
1,1,2-Trichloroethane	< 0.258	ug/m3	0.258	0.822	1	TO-15		9/29/2022	CJR	1
Trichloroethene (TCE)	1.02	ug/m3	0.237	0.754	1	TO-15		9/29/2022	CJR	1
Trichlorofluoromethane	1.74	ug/m3	0.337	1.07	1	TO-15		9/29/2022	CJR	1
Trichlorotrifluoroethane	0.84 "J"	ug/m3	0.402	1.28	1	TO-15		9/29/2022	CJR	1
1,2,4-Trimethylbenzene	7.9	ug/m3	0.283	0.899	1	TO-15		9/29/2022	CJR	1
1,3,5-Trimethylbenzene	2.99	ug/m3	0.232	0.739	1	TO-15		9/29/2022	CJR	1
Vinyl acetate	< 0.203	ug/m3	0.203	0.645	1	TO-15		9/29/2022	CJR	1
Vinyl Chloride	< 0.148	ug/m3	0.148	0.472	1	TO-15		9/29/2022	CJR	1
m&p-Xylene	107	ug/m3	0.377	1.2	1	TO-15		9/29/2022	CJR	1
o-Xylene	37	ug/m3	0.218	0.695	1	TO-15		9/29/2022	CJR	1

Project Name CWC WEST EXHAUST SAMPLING

Proiect # 40443

Lab Code5041506DSample IDVP-4Sample MatrixAirSample Date9/21/2022

54112022	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
Air Samples										
Acetone	680	ug/m3	2.99	9.5	10	TO-15		9/30/2022	CJR	1
Benzene	5.8	ug/m3	0.136	0.433	1	TO-15		9/29/2022	CJR	1
Benzyl Chloride	< 0.209	ug/m3	0.209	0.665	1	TO-15		9/29/2022	CJR	1
Bromodichloromethane	< 0.374	ug/m3	0.374	1.19	1	TO-15		9/29/2022	CJR	1
Bromoform	< 0.414	ug/m3	0.414	1.32	2 1	TO-15		9/29/2022	CJR	1
Bromomethane	< 0.2	ug/m3	0.2	0.637	1	TO-15		9/29/2022	CJR	1
1,3-Butadiene	< 0.143	ug/m3	0.143	0.454	1	TO-15		9/29/2022	CJR	1
Carbon Disulfide	49	ug/m3	0.138	0.44	1	TO-15		9/29/2022	CJR	1
Carbon Tetrachloride	370	ug/m3	3.07	9.78	3 10	TO-15		9/30/2022	CJR	1
Chlorobenzene	0.74 "J"	ug/m3	0.251	0.798	3 1	TO-15		9/29/2022	CJR	1
Chloroethane	< 0.159	ug/m3	0.159	0.507	1	TO-15		9/29/2022	CJR	1
Chloroform	3.6	ug/m3	0.3	0.953	1	TO-15		9/29/2022	CJR	1
Chloromethane	1.36 "J"	ug/m3	0.831	2.64	1	TO-15		9/29/2022	CJR	1
Cyclohexane	2.13	ug/m3	0.212	0.674	1	TO-15		9/29/2022	CJR	1
Dibromochloromethane	< 0.376	ug/m3	0.376	1.2	2 1	TO-15		9/29/2022	CJR	1
1,4-Dichlorobenzene	0.60 "J"	ug/m3	0.302	0.96	5 1	TO-15		9/29/2022	CJR	1
1,3-Dichlorobenzene	< 0.302	ug/m3	0.302	0.96	5 1	TO-15		9/29/2022	CJR	1
1,2-Dichlorobenzene	< 0.235	ug/m3	0.235	0.749	1	TO-15		9/29/2022	CJR	1
Dichlorodifluoromethane	3.7	ug/m3	0.263	0.836	5 1	TO-15		9/29/2022	CJR	1
1,2-Dichloroethane	< 0.24	ug/m3	0.24	0.763	1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethane	< 0.187	ug/m3	0.187	0.596	5 1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethene	< 0.21	ug/m3	0.21	0.668	3 1	TO-15		9/29/2022	CJR	1
cis-1,2-Dichloroethene	< 0.197	ug/m3	0.197	0.626	5 1	TO-15		9/29/2022	CJR	1
trans-1,2-Dichloroethene	4.1	ug/m3	0.231	0.734	1	TO-15		9/29/2022	CJR	1
1,2-Dichloropropane	< 0.28	ug/m3	0.28	0.89	1	TO-15		9/29/2022	CJR	1
trans-1,3-Dichloropropene	< 0.198	ug/m3	0.198			TO-15		9/29/2022	CJR	1
cis-1,3-Dichloropropene	< 0.234	ug/m3	0.234			TO-15		9/29/2022	CJR	1
1,2-Dichlorotetrafluoroethane	< 0.446	ug/m3	0.446			TO-15		9/29/2022	CJR	1
1,4-Dioxane	13.5	ug/m3	0.157			TO-15		9/29/2022	CJR	1
EDB (1,2-Dibromoethane)	< 0.342	ug/m3	0.342			TO-15		9/29/2022	CJR	1
Ethanol	1370	ug/m3	1.52			TO-15		9/30/2022	CJR	10
Ethyl Acetate	2.05	ug/m3	0.176			TO-15		9/29/2022	CJR	1
Ethylbenzene	40	ug/m3	0.203			TO-15		9/29/2022	CJR	1
4-Ethyltoluene	4.7	ug/m3	0.214			TO-15		9/29/2022	CJR	1
Heptane	26.8	ug/m3	0.265			TO-15		9/29/2022	CJR	1
Hexachlorobutadiene	< 0.489	ug/m3	0.489			TO-15		9/29/2022	CJR	1
Hexane	8.5	ug/m3	0.235			TO-15		9/29/2022	CJR	1
2-Hexanone	< 0.222	ug/m3	0.222			TO-15		9/29/2022	CJR	1
Isopropyl Alcohol	66 510	ug/m3	0.109			TO-15		9/29/2022	CJR	1
Methyl isobutyl ketone (MEK)	510	ug/m3	1.78			TO-15		9/30/2022	CIR	1
Methyl Methycrylete	9.9 1.96	ug/m3	0.168			TO-15 TO-15		9/29/2022 9/29/2022	CJR CJR	1
Methyl Methacrylate Methylene chloride	1.96	ug/m3 ug/m3	0.217 0.159			TO-15 TO-15		9/29/2022	CJR CJR	1
Methyl tert-butyl ether (MTBE)	< 0.16	ug/m3 ug/m3	0.159			TO-15		9/29/2022	CJR CJR	1
Memyr tert-outyr ether (MTDE)	< 0.10	ug/III3	0.10	0.505	. 1	10-13		31 L31 LULL	CJK	1

Invoice # E41506

Project Name CWC WEST EXHAUST SAMPLING Invoice # E41506

Proiect # 40443

Lab Code5041506DSample IDVP-4Sample MatrixAirSample Date9/21/2022

	Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
Naphthalene	0.68 "J"	ug/m3	0.675	2.15	1	TO-15		9/29/2022	CJR	1
Propene	34	ug/m3	0.079	0.251	1	TO-15		9/29/2022	CJR	1
Styrene	126	ug/m3	0.181	0.577	1	TO-15		9/29/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.325	ug/m3	0.325	1.03	1	TO-15		9/29/2022	CJR	1
Tetrachloroethene	1.63	ug/m3	0.278	0.884	1	TO-15		9/29/2022	CJR	1
Tetrahydrofuran	17.5	ug/m3	0.131	0.417	1	TO-15		9/29/2022	CJR	1
Toluene	122	ug/m3	0.184	0.585	1	TO-15		9/29/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.657	ug/m3	0.657	2.09	1	TO-15		9/29/2022	CJR	1
1,1,1-Trichloroethane	2.56	ug/m3	0.249	0.793	1	TO-15		9/29/2022	CJR	1
1,1,2-Trichloroethane	< 0.258	ug/m3	0.258	0.822	1	TO-15		9/29/2022	CJR	1
Trichloroethene (TCE)	1.34	ug/m3	0.237	0.754	1	TO-15		9/29/2022	CJR	1
Trichlorofluoromethane	2.36	ug/m3	0.337	1.07	1	TO-15		9/29/2022	CJR	1
Trichlorotrifluoroethane	0.77 "J"	ug/m3	0.402	1.28	1	TO-15		9/29/2022	CJR	1
1,2,4-Trimethylbenzene	17.2	ug/m3	0.283	0.899	1	TO-15		9/29/2022	CJR	1
1,3,5-Trimethylbenzene	6.4	ug/m3	0.232	0.739	1	TO-15		9/29/2022	CJR	1
Vinyl acetate	< 0.203	ug/m3	0.203	0.645	1	TO-15		9/29/2022	CJR	1
Vinyl Chloride	< 0.148	ug/m3	0.148	0.472	1	TO-15		9/29/2022	CJR	1
m&p-Xylene	169	ug/m3	0.377	1.2	1	TO-15		9/29/2022	CJR	1
o-Xylene	60	ug/m3	0.218	0.695	1	TO-15		9/29/2022	CJR	1

Project Name CWC WEST EXHAUST SAMPLING

Project # 40443

Lab Code5041506ESample IDVP-5Sample MatrixAir

Sample Date 9/21/2022

Sample Date 9/	21/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
Air Samples											
Acetone		820	ug/m3	2.99	9.5	5 10	TO-15		9/30/2022	CJR	1
Benzene		5.7	ug/m3	0.136	0.433	3 1	TO-15		9/29/2022	CJR	1
Benzyl Chloride		< 0.209	ug/m3	0.209	0.665	5 1	TO-15		9/29/2022	CJR	1
Bromodichloromethane		< 0.374	ug/m3	0.374	1.19	1	TO-15		9/29/2022	CJR	1
Bromoform		< 0.414	ug/m3	0.414	1.32	2 1	TO-15		9/29/2022	CJR	1
Bromomethane		< 0.2	ug/m3	0.2	0.637	7 1	TO-15		9/29/2022	CJR	1
1,3-Butadiene		< 0.143	3 ug/m3	0.143	0.454	1	TO-15		9/29/2022	CJR	1
Carbon Disulfide		41	ug/m3	0.138	0.44	1	TO-15		9/29/2022	CJR	1
Carbon Tetrachloride		340	ug/m3	3.07	9.78	3 10	TO-15		9/30/2022	CJR	1
Chlorobenzene		0.79 "J"	ug/m3	0.251	0.798	3 1	TO-15		9/29/2022	CJR	1
Chloroethane		0.66	ug/m3	0.159	0.507	7 1	TO-15		9/29/2022	CJR	1
Chloroform		4.0	ug/m3	0.3	0.953	3 1	TO-15		9/29/2022	CJR	1
Chloromethane		1.38 "J"	ug/m3	0.831	2.64	1	TO-15		9/29/2022	CJR	1
Cyclohexane		2.2	ug/m3	0.212	0.674	1	TO-15		9/29/2022	CJR	1
Dibromochloromethane		< 0.376	5 ug/m3	0.376	1.2	2 1	TO-15		9/29/2022	CJR	1
1,4-Dichlorobenzene		0.48 "J"	ug/m3	0.302	0.96	5 1	TO-15		9/29/2022	CJR	1
1,3-Dichlorobenzene		< 0.302	2 ug/m3	0.302	0.96	5 1	TO-15		9/29/2022	CJR	1
1,2-Dichlorobenzene		< 0.235	5 ug/m3	0.235	0.749	1	TO-15		9/29/2022	CJR	1
Dichlorodifluoromethar	ie	4.1	ug/m3	0.263	0.836	5 1	TO-15		9/29/2022	CJR	1
1,2-Dichloroethane		< 0.24	ug/m3	0.24	0.763	3 1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethane		< 0.187	7 ug/m3	0.187	0.596	5 1	TO-15		9/29/2022	CJR	1
1,1-Dichloroethene		< 0.21	ug/m3	0.21	0.668	3 1	TO-15		9/29/2022	CJR	1
cis-1,2-Dichloroethene		< 0.197	Ü	0.197	0.626	5 1	TO-15		9/29/2022	CJR	1
trans-1,2-Dichloroethen	e	2.89	ug/m3	0.231			TO-15		9/29/2022	CJR	1
1,2-Dichloropropane		< 0.28	ug/m3	0.28			TO-15		9/29/2022	CJR	1
trans-1,3-Dichloroprope		< 0.198		0.198			TO-15		9/29/2022	CJR	1
cis-1,3-Dichloropropene		< 0.234	C	0.234			TO-15		9/29/2022	CJR	1
1,2-Dichlorotetrafluoro	ethane	< 0.446	Ü	0.446			TO-15		9/29/2022	CJR	1
1,4-Dioxane		13.8	ug/m3	0.157			TO-15		9/29/2022	CJR	1
EDB (1,2-Dibromoetha	ne)	< 0.342	•	0.342			TO-15		9/29/2022	CJR	1
Ethanol		1250	ug/m3	1.52			TO-15		9/30/2022	CJR	10
Ethyl Acetate		1.94	ug/m3	0.176			TO-15		9/29/2022	CJR	1
Ethylbenzene		42	ug/m3	0.203			TO-15		9/29/2022	CJR	1
4-Ethyltoluene		4.1	ug/m3	0.214			TO-15		9/29/2022	CJR	1
Heptane		23.4	ug/m3	0.265			TO-15		9/29/2022	CJR	1
Hexachlorobutadiene		< 0.489	Ü	0.489			TO-15		9/29/2022	CJR	1
Hexane 2-Hexanone		9.5 < 0.222	ug/m3 2 ug/m3	0.235 0.222			TO-15 TO-15		9/29/2022 9/29/2022	CJR CJR	1
		63	C	0.222			TO-15		9/29/2022	CJR	1
Isopropyl Alcohol			ug/m3								1
Methyl isobutyl ketone (M		500	ug/m3	1.78			TO-15 TO-15		9/30/2022	CJR CJR	1 1
Methyl isobutyl ketone Methyl Methacrylate	(MIDK)	11.4 1.88	ug/m3 ug/m3	0.168 0.217			TO-15		9/29/2022 9/29/2022	CJR CJR	1
Methylene chloride		27.8	ug/m3 ug/m3	0.217			TO-15		9/29/2022	CJR CJR	1
Methyl tert-butyl ether (< 0.16	ug/m3	0.139			TO-15		9/29/2022	CJR	1
Monty to to outy of the ()	< 0.10	ug/III3	0.10	0.505	. 1	10-13), L), LULL	CJIC	1

Invoice # E41506

Project Name CWC WEST EXHAUST SAMPLING Invoice # E41506

Proiect # 40443

Trichlorotrifluoroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl acetate

Vinyl Chloride

m&p-Xylene

o-Xylene

0.84 "J"

< 0.203

< 0.148

16.1

5.8

172

61

Lab Code5041506ESample IDVP-5Sample MatrixAirSample Date9/21/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Naphthalene	0.78 "J"	ug/m3	0.675	2.15	1	TO-15		9/29/2022	CJR	1
Propene	43	ug/m3	0.079	0.251	1	TO-15		9/29/2022	CJR	1
Styrene	124	ug/m3	0.181	0.577	1	TO-15		9/29/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.325	ug/m3	0.325	1.03	1	TO-15		9/29/2022	CJR	1
Tetrachloroethene	1.83	ug/m3	0.278	0.884	1	TO-15		9/29/2022	CJR	1
Tetrahydrofuran	15.5	ug/m3	0.131	0.417	1	TO-15		9/29/2022	CJR	1
Toluene	117	ug/m3	0.184	0.585	1	TO-15		9/29/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.657	ug/m3	0.657	2.09	1	TO-15		9/29/2022	CJR	1
1,1,1-Trichloroethane	2.28	ug/m3	0.249	0.793	1	TO-15		9/29/2022	CJR	1
1,1,2-Trichloroethane	< 0.258	ug/m3	0.258	0.822	1	TO-15		9/29/2022	CJR	1
Trichloroethene (TCE)	2.2	ug/m3	0.237	0.754	1	TO-15		9/29/2022	CJR	1
Trichlorofluoromethane	2.19	ug/m3	0.337	1.07	1	TO-15		9/29/2022	CJR	1

1.28

0.899

0.739

0.645

0.472

0.695

1.2

1

1

1

1

1

1

TO-15

TO-15

TO-15

TO-15

TO-15

TO-15

TO-15

9/29/2022

9/29/2022

9/29/2022

9/29/2022

9/29/2022

9/29/2022

9/29/2022

CJR

CJR

CJR

CJR

CJR

CJR

CJR

1

1

1

1

0.402

0.283

0.232

0.203

0.148

0.377

0.218

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

Project Name CWC WEST EXHAUST SAMPLING

Proiect # 40443

Lab Code 5041506F Sample ID VP-6 Sample Matrix Air

Sample Date 9/21/2022

Sample Date	9/21/2022										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
Air Samples											
Acetone		420	ug/m3	2.99	9.5	5 10	TO-15		9/30/2022	CJR	1
Benzene		4.6	ug/m3	0.136	0.433	3 1	TO-15		9/29/2022	CJR	1
Benzyl Chloride		< 0.2	09 ug/m3	0.209	0.665	5 1	TO-15		9/29/2022	CJR	1
Bromodichlorometha	ne	< 0.3	74 ug/m3	0.374	1.19) 1	TO-15		9/29/2022	CJR	1
Bromoform		< 0.4	14 ug/m3	0.414	1.32	2 1	TO-15		9/29/2022	CJR	1
Bromomethane		< 0.2	ug/m3	0.2	0.637	7 1	TO-15		9/29/2022	CJR	1
1,3-Butadiene		< 0.1	43 ug/m3	0.143	0.454	1	TO-15		9/29/2022	CJR	1
Carbon Disulfide		32	ug/m3	0.138	0.44	4 1	TO-15		9/29/2022	CJR	1
Carbon Tetrachloride	;	91	ug/m3	0.307	0.978	3 1	TO-15		9/29/2022	CJR	1
Chlorobenzene		0.65 "J"	ug/m3	0.251	0.798	3 1	TO-15		9/29/2022	CJR	1
Chloroethane		< 0.1	59 ug/m3	0.159	0.507	7 1	TO-15		9/29/2022	CJR	1
Chloroform		3.5	ug/m3	0.3	0.953	3 1	TO-15		9/29/2022	CJR	1
Chloromethane		1.42 "J"	ug/m3	0.831	2.64	1	TO-15		9/29/2022	CJR	1
Cyclohexane		1.34	ug/m3	0.212	0.674	1	TO-15		9/29/2022	CJR	1
Dibromochlorometha	ine	< 0.3	76 ug/m3	0.376	5 1.2	2 1	TO-15		9/29/2022	CJR	1
1,4-Dichlorobenzene		0.42 "J"	ug/m3	0.302	0.96	5 1	TO-15		9/29/2022	CJR	1
1,3-Dichlorobenzene		< 0.3	· ·	0.302	0.96	5 1	TO-15		9/29/2022	CJR	1
1,2-Dichlorobenzene		< 0.2	0	0.235	0.749) 1	TO-15		9/29/2022	CJR	1
Dichlorodifluorometh	nane	3.4	ug/m3	0.263	0.836	5 1	TO-15		9/29/2022	CJR	1
1,2-Dichloroethane		< 0.2		0.24			TO-15		9/29/2022	CJR	1
1,1-Dichloroethane		< 0.1		0.187			TO-15		9/29/2022	CJR	1
1,1-Dichloroethene		< 0.2	Ü	0.21			TO-15		9/29/2022	CJR	1
cis-1,2-Dichloroether		< 0.1	ε	0.197			TO-15		9/29/2022	CJR	1
trans-1,2-Dichloroeth		4.2	ug/m3	0.231			TO-15		9/29/2022	CJR	1
1,2-Dichloropropane		< 0.2	0	0.28			TO-15		9/29/2022	CJR	1
trans-1,3-Dichloropro	•	< 0.1	Č	0.198			TO-15		9/29/2022	CJR	1
cis-1,3-Dichloropropo		< 0.2	ε	0.234			TO-15		9/29/2022	CJR	1
1,2-Dichlorotetrafluo	roethane	< 0.4	Ü	0.446			TO-15		9/29/2022	CJR	1
1,4-Dioxane		13.2	ug/m3	0.157			TO-15		9/29/2022	CJR	1
EDB (1,2-Dibromoet	hane)	< 0.3	Ü	0.342			TO-15		9/29/2022	CJR	1
Ethanol		780	ug/m3	1.52			TO-15		9/30/2022	CJR	10
Ethyl Acetate		1.62 42	ug/m3	0.176			TO-15 TO-15		9/29/2022 9/29/2022	CJR CJR	1
Ethylbenzene		4.5	ug/m3	0.203			TO-15			CJR CJR	1
4-Ethyltoluene		16.8	ug/m3	0.214			TO-15		9/29/2022 9/29/2022	CJR	1
Heptane Hexachlorobutadiene		< 0.4	ug/m3	0.265			TO-15		9/29/2022	CJR CJR	1
Hexane		6.6	89 ug/m3 ug/m3	0.469			TO-15		9/29/2022	CJR	1
2-Hexanone		< 0.2	•	0.233			TO-15		9/29/2022	CJR	1
Isopropyl Alcohol		54	ug/m3	0.109			TO-15		9/29/2022	CJR	1
Methyl ethyl ketone (MFK)	301	ug/m3	1.78			TO-15		9/30/2022	CJR	1
Methyl isobutyl keton		8.6	ug/m3	0.168			TO-15		9/30/2022	CJR	1
Methyl Methacrylate		1.8	ug/m3	0.100			TO-15		9/29/2022	CJR	1
Methylene chloride		15.7	ug/m3	0.217			TO-15		9/29/2022	CJR	1
Methyl tert-butyl ethe	er (MTBE)	< 0.1	•	0.13			TO-15		9/29/2022	CJR	1
	()	. 0.1	_ ug/m3	0.10	0.50	•			J. 23, 2022		-

Invoice # E41506

Project Name CWC WEST EXHAUST SAMPLING Invoice # E41506

Proiect # 40443

Lab Code 5041506F Sample ID VP-6 Sample Matrix Air Sample Date 9/21/2022

	Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date A	nalyst	Code
Naphthalene	0.84 "J"	ug/m3	0.675	2.15	1	TO-15		9/29/2022	CJR	1
Propene	23.8	ug/m3	0.079	0.251	1	TO-15		9/29/2022	CJR	1
Styrene	137	ug/m3	0.181	0.577	1	TO-15		9/29/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.325	ug/m3	0.325	1.03	1	TO-15		9/29/2022	CJR	1
Tetrachloroethene	5.6	ug/m3	0.278	0.884	1	TO-15		9/29/2022	CJR	1
Tetrahydrofuran	15.8	ug/m3	0.131	0.417	1	TO-15		9/29/2022	CJR	1
Toluene	97	ug/m3	0.184	0.585	1	TO-15		9/29/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.657	ug/m3	0.657	2.09	1	TO-15		9/29/2022	CJR	1
1,1,1-Trichloroethane	0.92	ug/m3	0.249	0.793	1	TO-15		9/29/2022	CJR	1
1,1,2-Trichloroethane	< 0.258	ug/m3	0.258	0.822	1	TO-15		9/29/2022	CJR	1
Trichloroethene (TCE)	1.61	ug/m3	0.237	0.754	1	TO-15		9/29/2022	CJR	1
Trichlorofluoromethane	1.91	ug/m3	0.337	1.07	1	TO-15		9/29/2022	CJR	1
Trichlorotrifluoroethane	0.77 "J"	ug/m3	0.402	1.28	1	TO-15		9/29/2022	CJR	1
1,2,4-Trimethylbenzene	20.3	ug/m3	0.283	0.899	1	TO-15		9/29/2022	CJR	1
1,3,5-Trimethylbenzene	6.8	ug/m3	0.232	0.739	1	TO-15		9/29/2022	CJR	1
Vinyl acetate	< 0.203	ug/m3	0.203	0.645	1	TO-15		9/29/2022	CJR	1
Vinyl Chloride	< 0.148	ug/m3	0.148	0.472	1	TO-15		9/29/2022	CJR	1
m&p-Xylene	178	ug/m3	0.377	1.2	1	TO-15		9/29/2022	CJR	1
o-Xylene	65	ug/m3	0.218	0.695	1	TO-15		9/29/2022	CJR	1

"J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

~ 1	~
Code	Comment

Laboratory QC within limits.

10 Linear range of calibration curve exceeded.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Michaelyllul

Authorized Signature