Project # 40443A

June 20, 2022

Ms. Jennifer Dorman Remediation and Redevelopment Program Wisconsin Department of Natural Resources 1027 West St. Paul Ave. Milwaukee, WI 53233

Subject: First Round of Commissioning for Community Within the Corridor – West Block – Buildings 6, 7, 8A, and 8B 3212 W. Center St., 2727 N. 32nd St., and 2758 N. 33rd St., Milwaukee, WI 53210 BRRTS #: 02-41-587376, FID #: 341333190

Dear Ms. Dorman:

On behalf of the Community Within the Corridor Limited Partnership, K. Singh & Associates, Inc. (KSingh) is pleased to submit the results of first round of Commissioning of the Vapor Mitigation System for Buildings 6, 7, 8A, and 8B for the Community Within the Corridor – West Block project. Commissioning was performed in accordance with the Commissioning Plan that was approved by WDNR on May 23, 2022.

Sub-slab Depressurization System Vacuum Measurements

The sub-slab depressurization system installed in Buildings 6, 7, 8A and 8B was tested on 06/01/2022. A handheld hammer drill was used to install vapor pins beneath the slab of the structure. A digital manometer was utilized to take measurements of vacuum below the slab after the vapor points passed a water dam test. Seventeen locations were chosen to take measurements to get an accurate model of sub-slab depressurization from each suction point.

In accordance with a vapor mitigation system commissioning plan submitted by KSingh on April 21, 2022, a reading of 0.004 inches water was utilized to determine whether the system was adequately operating. Recorded measurements range from 0.006 to 0.680 inches water, all of which are above the minimum measurement.

The locations and results of June 2022 sub-slab depressurization measurements are depicted on Figure 1 and summarized in Table 1. The greatest vacuum measurements are observed in the vicinity of the highest exceedances of vapor risk screening levels (VRSLs). The lowest vacuum readings are observed near the northern and southern ends of building 7 outside the areas of documented exceedances of VRSLs. Based on the known VRSLs exceedances extents and the measured vacuum readings, the subslab depressurization system has exceeded its needed requirements.

Passive Indoor Air Sampling

Following documentation of adequate sub-slab depressurization, passive air sampling was performed in accordance with the approved Commissioning Plan. A total of 38 passive air samplers were set up

and sampled over a 1-week period from June 1, 2022 until June 8, 2022. The locations of the passive air samplers are included in Attachment A.

On June 8, 2022, the passive air samplers were submitted to Eurofins Air Toxics, LLC Folsom, CA for analysis for chlorinated solvents including Trichloroethylene (TCE), Tetrachloroethylene (PCE), cis-1,2-Dichloroethylene (cis-DCE), and trans-1,2-Dichloroethylene (trans-DCE). The results are included in Attachment B and summarized in Table 2.

No samples reported any chlorinated solvent exceeding Residential Indoor Air Vapor Action Levels (VALs) based on the February 2022 Quick Look-Up Table from WDNR. The maximum concentration of TCE detected in indoor air at sample location IA-8B-02D was 0.25 ug/m³ which is 11.9% of the residential indoor air VAL of 2.1 ug/m³. PCE was detected at a median concentration of 1.1 ug/m³ throughout the buildings, which is 2.6% of the residential indoor air VAL of 42 ug/m³. One sample, IA-8A-01B, met but didn't exceed the residential indoor air VAL of 42 ug/m³ for PCE.

Based on the indoor air test results, the building is safe for occupancy.

Exhaust Sampling

Seven fans were installed on the roof of buildings 6, 7, 8A, and 8B as part of the vapor mitigation system. As part of commissioning, 1.4L Summa canisters provided by Synergy Environmental Lab, Inc. (Synergy) were utilized to gather air quality data from three fans on May 9, 2022. Samples were gathered for fifteen minutes via vapor lines extended into the fan system while the fans were operating. System tightness was confirmed with shut in testing, and sample lines were purged between each sample. Upon completion of sampling, cannisters were submitted to Synergy for analysis of TO-15 parameters.

Test results are included in Attachment B. Results from Synergy document concentrations of PCE and TCE in exhaust samples. PCE concentrations in exhaust demonstrate PCE concentrations greater than the Residential Indoor Air VAL. Based on the concentrations of PCE and TCE in the exhaust, some mass reduction is taking place in the subslab.

The results of the May 2022 fan air quality sampling are summarized on Table 3 and the locations of sampled fans are included on Figure 1. The untested exhaust fans will be sampled soon and flow will be measured to establish baseline conditions and estimate the rate of removal of contamination from the subslab area by the vapor mitigation system.

Conclusions and Recommendations

The following conclusions were reached based on the sampling.

- Based on the results of sub-slab vacuum measurements, the vapor mitigation system installed on the subject site adequately creates vacuum beneath the building slab for buildings 6, 7, 8A, and 8B.
- Passive indoor air results show that there are no Residential Indoor Air VALs exceeded in buildings 6, 7, 8A, and 8B and the buildings are suitable for occupancy.
- Fan emissions sampling indicates that PCE and TCE are still present in the subslab and that mass

reduction is taking place.

• Based on the results from the first round of commissioning, the system is operating as intended. The second round of commissioning is scheduled for August 2022. A third round of commissioning is scheduled for November 2022.

Please contact us if you have any questions or seek clarification regarding this information.

Sincerely, K. SINGH & ASSOCIATES, INC.

ustin Bush

Justin P. Bush Staff Geologist

light lik

Pratap N. Singh, Ph.D., P.E. Principal Engineer

cc: Shane LaFave / Roers Companies Que El-Amin / Scott Crawford, Inc.

Attachments:

Figure 1	Sub-slab Depressurization Locations and Results
Table 1	Vacuum Measurement Results
Table 2	Passive Air Sampling Results for Commissioning
Table 3	Exhaust Fan Sampling Results
Attachment A	Indoor Air Sampling Locations
Attachment B	Passive Air Sampling Test Results
Attachment C	Exhaust Fan Sampling Test Results

Robert T. Reineke, P.E Project Manager

FIGURE

• Previous Boring and Temporary Well Locations

- Planned Underground Plumbing
- 3" sch. 40 PVC pipe (may be modified)
- Approximate WI Residential VRSL Exceedance Extents
- Approximate WI Small Commercial VRSL Exceedance Extents

10-15 "GALL" SOIL REMOVED BENEATH SLAB TO ACT AS SUCTION PIT

BALL VALVES FOR EACH EXTRACTION POINT TO REGULATE FLOW MANOMETER AND VELOCITY PORTS FOR EACH EXTRACTION POINT TO MEASURE FLOW

MANOMETER POINT AT EACH FAN INLET FOR NEGATIVE PRESSURE EXHAUST VENTING 2 FT ABOVE ROOF AND/OR 12 FT FROM WINDOWS ELECRICAL DISCONNECT AND OWN CIRCUT FOR EACH FAN PLANS UNDERWAY TO REVISE WD-SV TO SC-1 UNDERLAIN BY 50-MIL SUB-MEMBRANE. KSingh

3636 North 124th Street Wauwatosa, WI 53222 262-821-1171

CONSULTANT

CONSULTAN

SHEET 6

TABLES

TABLE 1 VACUUM MEASUREMENT RESULTS COMMUNITY WITHIN THE CORRIDOR - WEST BLOCK MILWAUKEE, WI PROJECT NUMBER: 40443

Sample	Date	Reading
Location	Date	(inches H2O)
SVP-1	6/1/2022	0.051
SVP-2	6/1/2022	0.400
SVP-3	6/1/2022	0.126
SVP-4	6/1/2022	0.018
SVP-5	6/1/2022	0.167
SVP-6	6/1/2022	0.037
SVP-7	6/1/2022	0.039
SVP-8	6/1/2022	0.680
SVP-9	6/1/2022	0.348
SVP-10	6/1/2022	0.095
SVP-10A	6/1/2022	0.330
SVP-11	6/1/2022	0.006
SVP-12	6/1/2022	0.092
SVP-13	6/1/2022	0.051
SVP-14	6/1/2022	0.024
SVP-15	6/1/2022	0.023
SVP-16	6/1/2022	0.008

*Readings were compared to a threshold value of 0.004 inches H2O.

TABLE 2Passive Air Sampling Results for CommissioningCommunity Within the Corridor - West Block - Building 6, 7, 8A, and 8B

		Residential Indoor																	
Sample ID	Units	Air VAL*	IA-6-01A	IA-6-01B	IA-6-01C	IA-6-02A	IA-6-02B	IA-6-02C	IA-6-Basement	IA-7-01A	IA-7-01B	IA-7-01C	IA-7-01D	IA-7-02A	IA-7-02B	IA-7-02C	IA-8A-01A	IA-8A-01B	IA-8A-01C
Date			6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022
Trichloroethene	ug/m^3	2.1	<0.14	<0.14	0.10	<0.14	<0.14	0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
Tetrachloroethene	ug/m^3	42	<0.17	<0.17	0.44	0.23	0.14	0.25	<0.17	0.11	0.10	0.27	0.40	0.13	0.12	1.1	3.4	42	0.42
cis-1,2-Dichloroethene	ug/m^3		<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16
trans-1,2-Dichloroethene	ug/m^3	42	0.31	2.4	0.78	1.9	2.2	1.4	0.62	1.4	1.1	1.1	0.74	1.7	1.7	1.1	6.2	4.3	3.7

*Based on WDNR Quick Look-Up Table dated February 2022

TABLE 2Passive Air Sampling Results for CommissioningCommunity Within the Corridor - West Block - Building 6, 7, 8A, and 8B

		Residential Indoor															
Sample ID	Units	Air VAL*	IA-8A-01D	IA-8A-02A	IA-8A-02B	IA-8A-02C	IA-8A-02D	IA-8A-03A	IA-8A-03B	IA-8A-03C	IA-8A-03D	IA-8A-03E	IA-8A-03F	IA-8A-BASEMENT	IA-8B-01A	IA-8B-01B	IA-8B-01C
Date			6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022
Trichloroethene	ug/m^3	2.1	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
Tetrachloroethene	ug/m^3	42	2.5	0.44	1.8	4.4	0.28	0.66	0.85	2.1	0.53	0.31	0.48	2.9	0.25	0.30	0.31
cis-1,2-Dichloroethene	ug/m^3		<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16
trans-1,2-Dichloroethene	ug/m^3	42	8.1	1.9	6.2	1.7	2.6	6.6	4.4	4.4	6.0	5.0	23	9.9	2.0	2.1	0.40

*Based on WDNR Quick Look-Up Table dated February 2022

TABLE 2Passive Air Sampling Results for CommissioningCommunity Within the Corridor - West Block - Building 6, 7, 8A, and 8B

		Residential Indoor						
Sample ID	Units	Air VAL*	IA-8B-01D	IA-8B-02A	IA-8B-02B	IA-8B-02C	IA-8B-02D	OA-6/7/8A/8B Background
Date			6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022
Trichloroethene	ug/m^3	2.1	<0.14	<0.14	<0.14	0.25	<0.14	<0.14
Tetrachloroethene	ug/m^3	42	0.41	0.26	0.28	1.1	0.32	<0.17
cis-1,2-Dichloroethene	ug/m^3		<0.16	<0.16	<0.16	<0.16	<0.16	<0.16
trans-1,2-Dichloroethene	ug/m^3	42	2.4	2.8	2.4	1.5	3.0	<0.33

*Based on WDNR Quick Look-Up Table dated February 2022

Sheet 3 of 3

Sheet 1 of 1

TABLE 3 EXHAUST FAN SAMPLING RESULTS COMMUNITY WITHIN THE CORRIDOR - WEST BLOCK MILWAUKEE, WI PROJECT NUMBER: 40443

	SUE	3-SLAB VAPOR V	RSL	EP-1	EP-2	EP-3
	AF = 0.03	AF=0.03	AF = 0.01	PRF-DEVELOPMENT	PRE-DEVELOPMENT	PRE-DEVELOPMENT
			LARGE	5/9/2022	5/9/2022	5/9/2022
CHFMICAL (ua/m ³)	RESIDENTIAL	SMALL COMMERCIAL	COMMERCIAL / INDUSTRIAL	ug/m ³	ug/m ³	ug/m ³
1,1,1-Trichloroethane	170,000	730,000	2,200,000	< 0.249	4.7	1.03
1,1,2,2-Tetrachloroethane	1.6	7	21	< 0.325	< 0.325	< 0.325
1,1,2-Trichloroethane	0.7	2.9	8.8	< 0.258	< 0.258	< 0.258
1,1-Dichloroethane	600	2,600	7,700	< 0.187	< 0.187	< 0.187
1,1-Dichloroethene	7,000	29,000	88,000	< 0.21	< 0.21	< 0.21
	700	2933	8,800	< 0.657	< 0.657	< 0.657
1,2,4- I rimethylbenzene	2,100	8,700	26,000	4.3	5	4.6
1.2-Dichloroethane	36	160	470	< 0.235	< 0.235	< 0.235
1,2-Dichloropropane	14	60	180	< 0.28	< 0.28	< 0.28
1,2-Dichlorotetrafluoroethane				< 0.446	< 0.446	< 0.446
1,3,5-Trimethylbenzene	2,100	8,700	26,000	1.28	2.01	1.57
1,3-Butadiene				< 0.143	< 0.143	< 0.143
1,3-Dichlorobenzene				< 0.302	< 0.302	< 0.302
1,4-Dichlorobenzene	8	37	110	< 0.302	< 0.302	< 0.302
	18	03.3	250	< 0.15/	< 0.10/	< 0.10/
4-Ethvltoluene				0.59 J	1.18	0.74
Acetone	106,667	466,667	1,400,000	195	24.8	126
Benzene	120	530	1,600	2.04	1.47	5.7
Benzyl Chloride	1.9	8	25	< 0.209	< 0.209	< 0.209
Bromodichloromethane	2.53	11	33	< 0.374	0.47 J	1.27
Bromoform	86.6	367	1,100	< 0.414	< 0.414	< 0.414
Bromomethane	17.3	73	220	< 0.2	< 0.2	< 0.2
Carbon Disulfide	2,433	10,333	31,000	0.37 J	0.34 J	0.34 J
Chlorobenzene	173	733	2,000	< 0.251	< 0.251	< 0.251
Chloroethane	33,333	146,667	440,000	< 0.159	< 0.159	< 0.159
Chloroform	3,100	13,000	39,000	1.56	1.12	4.2
Chloromethane	3,100	13,000	39,000	< 0.831	< 0.831	< 0.831
cis-1,2-Dichloroethene				< 0.197	< 0.197	0.277 J
cis-1,3-Dichloropropene				< 0.234	< 0.234	< 0.234
Cyclohexane	3,333	14,667	44,000	7.3	1.69	7.5
Dibromocnioromethane	3 300	 14 667		< 0.376	< 0.376 2.57	< 0.376 2.57
EDB (1.2-Dibromoethane)	0.157	0.67	2	< 0.342	< 0.342	< 0.342
Ethanol				19.3	4.8	8.3
Ethyl Acetate				1.15	< 0.176	< 0.176
Ethylbenzene	370	1,600	4,900	0.52 J	28.4	17.5
Heptane				3.8	1.68	9.9
Hexachlorobutadiene	4.3	19	56	< 0.489	< 0.489	< 0.489
Hexane	1,400	6,000	18,000	5.1	2.5	5.6
men Vulono	3 200	15,000	44.000	9.0 0.17	۱.00 ۵۸	J.4 //
Methyl ethyl ketone (MFK)	17.333	73.333	220.000	33	15.7	58
Methyl isobutyl ketone (MIBK)	10,333	43,333	130,000	2.46	0.37 J	1.02
Methyl Methacrylate				< 0.217	< 0.217	< 0.217
Methyl tert-butyl ether (MTBE)	3,700	16,000	47,000	< 0.16	< 0.16	< 0.16
Methylene chloride	21,000	87,000	260,000	21	18.8	20.8
Naphthalene	28	6,000	360	< 0.675	0.73 J	0.68 J
o-Xylene	3,300	15,000	44,000	1.86	20.6	10.6
Propene				6	4.9	< 0.079
Styrene Totrachloroothone (DCC)	3,333	14,007	44,000	V.101 76	U.43 J	U.200 J
Tetrabydrofuran	7,000	29 333	88.000	10	ت ٦٦ ٦٦	57 183
Toluene	170.000	730,000	2,200,000	4.8	7.6	12.2
trans-1.2-Dichloroethene				2.02	3.2	3.2
trans-1,3-Dichloropropene				< 0.198	< 0.198	< 0.198
Trichloroethene (TCE)	70	290	880	< 0.237	0.86	1.18
Trichlorofluoromethane				1.24	1.24	1.29
Trichlorotrifluoroethane				0.54 J	0.54 J	0.54
	700	2933	8,800	< 0.203	< 0.203	< 0.203
Vinyl Chloride	57	930	2,800	< 0.148	< 0.148	< 0.148

Comments

All results in micrograms per cubic meter (ug/m³)

"J" Flag = Analyte detected between Limit of Detection and Limit of Quantitation

"10" Code = Linear Range of Calibration Curve Exceeded

VRSL = Vapor Risk Screening Levels

Indicates detection is above Residential VRSLs

Indicates detection is above Small Commercial VRSLs

Indicates detection is above Large Commercial / Industrial VRSLs

ATTACHMENTS

ATTACHMENT A

Indoor Air Sampling Locations

NEW WORK PLAN KEY NOTES - 1/ RAL CONDITIONS GENERAL INFORMATION ON SHEET A001W AL	8" PLANS					S.C.
RAL CONDITIONS, GENERAL INFORMATION ON SHEET AUDIW AT ATIONS THAT ARE USED IN ASSOCIATION WITH THESE NOTES.	ND SELECTIVE DEMOLITION, COTTING AND					NERS
Y NOTES APPLY TO ALL 1/8" NEW WORK DRAWINGS AND MAY N PANEL INPITE WALL ASSEMBLY AT EXISTING WINDOW OPENING:	SEE DETAL STAGION.					PLAN
TORIC SLIDING FIRE DOOR ASSEMBLY TO REMAIN. SECURE SL CKETS. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH. TORIC SLIDING FIRE DOOR ASSEMBLY TO REMAIN. SECURE SL	IDING DOOR IN A FULLY OPEN POSITION WITH	\mathbf{S}				CTS +
PREPARE ENTIRE ASSEMBLY FOR NEW PAINTED FINISH. ALVAGED HISTORIC SLIDING FIRE DOOR ASSEMBLY AND HARDV	VARE FROM THIS OPENING TO NEW ORIENTATION	ξ_	Λ			CHITE
						JM AR
TIRE ASSEMBLY FOR PAINTED FINISH. TORIC COILING OVERHEAD DOOR ASSEMBLY TO REMAIN. SEC	URE COILING DOOR IN A FULLY CLOSED POSITION.		T 41	4.220.964	ю	JUNIT
TIRE ASSEMBLY FOR PAINTED FINISH. TORIC OVERHEAD DOOR ASSEMBLY TO REMAIN. REPAIR TRACK	K AND HARDWARE TO RETURN DOOR TO		751 f Suite	N Jefferso e 200	n St.	D, CON
2010111010, PREPARE ENTIRE ASSEMBLT FOR PAINTED FINISH. EL SASH WINDOW ASSEMBLY TO REMAIN. PREPARE ENTIRE A PANES OF GLASS WITH NEW GLASS TO MATCH EXISTING.	SSEMBLY FOR PAINTED FINISH. REPLACE BROKEN		Milw	aukee, W	53202	T 2020
G IN EXISTING CMU WALL. TOOTH IN NEW CMU AND MORTAR TO AZED WALL TILE TO REMAIN. PROTECT DURING CONSTRUCTION) MATCH EXISTING. I.	c		NTS:		- RIGH
ND REPAIR EXISTING CHIMNEY TO MACH EXISTING MATERIALS	. SEE EXTERIOR MASONRY REPORT AND					© COP
IRFACES FOR NEW PAINT. REPLACE MISSING AND/OR BROKEN TY AT ALL PANES. INSTALL NEW INTERIOR STORM WINDOWS. S	GLASS TO MATCH EXISTING AND INSTALL NEW EE DETAIL 13/A510W.					
OF DEMISING WALL WITH EDGE OF HISTORIC MASONRY OPENIN IR OF DEMISING WALL OR PARTITION WITH CENTERLINE OF HIS	IG. TORIC COLUMN, OR BEAM ABOVE.					
OF DEMISING WALL WITH EDGE OF HISTORIC CONCRETE DROP R OF DEMISING WALL PARTITION WITH CENTERLINE OF WINDO DE DEMISING WALL WITH OLITER EDGE OF LIGHT MONITOR VOL	SLAB. W MULLION.					
R OF DEMISING WALL OR PARTITION WITH CENTER OF HISTORI CESS DOOR W/ 3-HR RATING @ WALL TO ABANDONED MECHAN	C SKYLIGHT MULLION ABOVE.					
TE SLAB AT EXISTING STOOP TO MATCH FLOOR HEIGHT AT BU OD STAIR, GUARD AND HANDRAILS TO REMAIN. PREP ALL SURF	LDING 7. SEE STRUCTURAL. ACES FOR NEW PAINT.					
OD STAIR, GUARD AND HANDRAIL TO REMAIN. REPAIRIREPLACI ROM LEVEL 01 TO 1ST LANDING TO MATCH EXISITNG HISTORIC (T EXISITNG CMU WALLS. PREP ALL SURFACES FOR NEW PAINT	E MISSING BEAD BOARD HANDRAIL SUPPORT AND CONDITION PERSENT. PROVIDE NEW STEEL					
NCRETE STAIR, CMU GUARD WALL AND HANDRAIL TO REMAIN. I IN EGRESS BARRIER GATE AT EXISTING STEEL GUARDRAIL EXIS	PREP ALL SURFACES FOR NEW FINISHES. STING CONCRETE STAIR, STEEL GUARDRAIL AND					
REMAIN. PREP ALL SURFACES FOR NEW FINISHES. NK FENCE & GATES W PRIVACY SLATS.						
RETE TORRING 1:20 SLODE MAX TO MEET EXIST WORKNISH LEVE	E. 3-AZ TRANSITIONAREA TO STAKS OR BEDAGEN	\mathcal{A}				
D POLISHED EPOXY FLOOR TOPPING TO TRANSITION FLOOR FI LOPE MAX.	NISH LEVEL CHANGE BETWEEN BULDINGS 6 & 7.	b				
EPAIR DAMAGED AND MISSING EXTERIOR STUDIO TO MATCHA	ADJACENT SWRFACE	1				
ING IS FURTHER SUPPORTED BY INFORMATION CONTAINED IN	THE SPECIFICATION MANUAL					
STRUCTURAL, MECHANICAL, ELECTRICAL, PLUMBING, FIRE PRC ARE SUPPLEMENTARY TO THE ARCHITECTURAL DRAWINGS. IT FOR TO COORDINATE THE INFORMATION CONTAINED IN ALL THE	I LECTION, AUDIO-VISUAL, AND SECURITY I SHALL BE THE RESPONSIBILITY OF THE E DRAWINGS BEFORE THE INSTALLATION OF ALL					
ALE DRAWINGS. CONTRACTOR TO VERIFY ALL CONDITIONS A	ID DIMENSIONS AT THE JOB SITE PRIOR TO					
ING CONSTRUCTION. 2VATIONS ARE TO THE TOP OF THE SUB-FLOOR MATERIAL UNLE 2018S SHALL JOINTLY PROVIDE AND INSTALL ALL STREET FOR S	SS OTHERWISE NOTED.					
ORS STALL JUINTLET PROVIDE AND INSTALLALL STIFFENERS, B NG BRACKETS REQUIRED FOR THE INSTALLATION OF CASEWOP ORK MOUNTED OR SUSPENDED BY ALL TRADES.	K, TOILET ACCESSORIES, PARTITIONS: MILLWORK,					
NEW WORK PLAN LEGEN	0					
EXISTING, TO REMAIN						
MASONRY PARTITION, SEE PARTITION TYPES FOR DET						
METAL STUD PARTITION, SEE PARTITION TYPES FOR D						
NEW WORK KEY NOTE	IHR.A 0.NO.					
NEW WORK NET HOTE						
PATCH AND INFILL LEGEN	U					
CONCRETE FLOOR OPENING INFILL, SEE STRUCTURAL AND LOCATIONS.	. FOR INFILL CONDITIONS. V.I.F. EXACT SIZE					
CONCRETE FLOOR COSMETIC PATCH. V.I.F. EXACT SI	ZE AND LOCATIONS.					
WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL AND LOCATIONS	FOR INFILL CONDITIONS. V.I.F. EXACT SIZE					
						-
			X			
			BLO			
			STE			
			ME			
			- NO			
			RID		68.84	
			SOR		180	
			Ψ			
			ÈZ		18-14	
			ΗH			
			× ≻	RET 53210	-BA8	
			ΪΝ	E, WI	LAN 1	
			MML	N. 33F AUKE	WORK	
			0 C	2758 MILW	NEW	
		R	EVISIONS			1
		1	10/09	9/20 ADDE	NDUM #1	
	[
	<u>ا</u> لّان					
	A 8B	┢				+
	7	S	CALE	VARIES		-
	6	P	KUJECT JUMBER	200102		
	5	S T	ET YPE	CONSTRUCT	CTION TS	
	4	D	ATE	9/25/20		1
			where the first sector is a sector of the			
		۱.	SSUED		4147	-
	KEY PLAN	s s	HEET	A20)1W	
	KEY PLAN	s N	HEET IUMBER	A20)1W	

SEE PROJECT GENERAL CC SEE PROJECT GENERAL CC PATCHING SPECIFICATIONS NEW WORK PLAN EET NOT GENERAL SEARCHESS GENERAL SEARCHESS GENERAL SEARCHESS GENERAL SEARCHESS CONTROL SEAR	NEW WORK PLAN KEY NOTES - 1/8" PLANS NOTIONS GENERAL INFORMATION ON SHEET ADDIVAND SELECTIVE DEMOLITION, CUITIN THAT ARE USED IN ASSOCIATION WITH THE RES NOTES. SAPPLY TO ALL 16" NEW WORK CRAWINGS AND MAY NOT BE USED ON EVERY SHEET, PERMITLA SERVICES IN SOCIATION WITH THE RES NOTES. IS APPLY TO ALL 16" NEW WORK CRAWINGS AND MAY NOT BE USED ON EVERY SHEET, PERMITLA SERVICES IN SOCIATION WITH RESENTIONS. IS APPLY TO ALL 16" NEW WORK CRAWINGS AND MAY NOT BE USED ON EVERY SHEET, PERMITLA SERVICES IN SOCIATION WITH RESOLVED. IS ADDIVIDED TO ASSOCIATION WITH RESOLVED THE SOCIATION OF A FLUCTOPOPORT INERPANE ENTRE ASSOCIATION WITH NET LIKE ARRANGE FROM THIS OPENING TO ASSOCIATION WITH RESULT AND AND ADDIVIDED THESH. IS ADDIVIDED THE DOOR ASSOCIATION WITH INFELL 2 BRANCES. IS ADDIVIDED THE DOOR ASSOCIATION WITH NET LIKE ARRANGES. INFERMENT AND AND ADDIVIDED THESH. IS ADDIVIDED THE DOOR ASSOCIATION WITH RETURE ASSOCIATION ON A FLUCTURE ASSOCIATION OF THE DOOR ASSOCIATION WITH THE LIKE ARRANGES. IS ADDIVIDED TO ASSOCIATION ON THE TO ASSOCIATION ON A FLUCTURE ASSOCIATION OF THE DOOR ASSOCIATION ON A FLUCTURE ASSOCIATION OF THE TO ASSOCIATION ON A FLUCTURE ASSOCIATION OF THE DOOR ASSOCIATION ON A FLUCTURE ASSOCIATION OF THE TO ASSOCIATION OF THE ASSOCIATION OF THE MAIN ASSOCIATION OF THE TOWN ASSOCIATION OF THE TOWN ASSOCIATION OF THE ASSOCIATION OF TH	G AND OK WITH WITH META2 ORIENTATION BUT YOR NEW POSITION R TO LACE BROKEN AND AND IFFOR A TALL NEW UPPORT AND SUPPORT AND GR BETWEEN DINKS 6 & 7.	CONSL	414.220.964 51 N Jefferso Jikvaukee, WI	0 n St. 53202	© COPYRIGHT 2020 CONTINUUM ARCHITECTS + PLANNERS S.C.
	EXISTING TO REMAIN MASORRY PARTITION SEE PARTITION TYPES FOR DETALS METAL STUD PARTITION. SEE PARTITION TYPES FOR DETALS TYPE AB P AB P PACH AND INFILL LEGEND CONCRETE FLOOR OPENING INFILL SEE STRUCTURAL FOR INFILL CONDITIONS. V.LF. EXIND LOCATIONS. WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.LF. EXIND LOCATIONS. WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.LF. EXIND LOCATIONS. WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.LF. EXIND LOCATIONS.	N.O. N.O. ACT SIZE				
DF FINSH MATERIALS) ATE MEETS 1/2-HOUR RATING) ESCENT COATING. DF FINSH MATERIALS) E MEETS 1/2-HOUR RATING) DF FINSH MATERIALS) EF FINSH MATERIALS) E MEETS 1/2-HOUR RATING) E MEETS 1/2-HOUR RATING)	-PINEH FLOORING (SEE FINSH PLANS FOR MATERIALS AND LOCATIONS OF FINSH MATE NEW 1-122 OFFEND COMPARING FOR MATERIALS AND LOCATIONS OF FINSH MATE NEW 1-122 OFFEND COMPARING UNDERSAMMENT - NEW 1-122 OFFEND COMPARING OS 11 DAVIDUATED OWER PAREMENTS 104H - EXISTING STURDER NUMBER AND OS 11 DAVIDUATED OWER PAREMENTS 104H - SASTING STURDER NUMBER AND OS 11 DAVIDUATED OWER PAREMENTS 104H - SASTING STURDER NUMBER AND OS 11 DAVIDUATED OWER PAREMENTS 104H - SASTING STURDER NUMBER AND OS 11 DAVIDUATED OWER PAREMENTS 104H - SASTING STURDER NUMBER AND STURDER AND AND STURDER AND STURDER AND STURDER AND STURDER AND STURDER AND STURDER AND	ERIALS) DUR RATING) HOUR RATING)	COMMUNITY WITHIN THE CORRIDOR - WEST BLOCK	2258 N. 33KD STREET MLWAUKEE, WI 53210	SEET TITE New Work Plan - Level of - Overview all buldings	
] AN	SCALE PROJUNE NUMB SET DATE ISSUE	VARIES CONSTRU CONSTRU CONSTRU CONSTRU D PIZEZO FER ADDE	ENDUM #1	

	00.000	NEW WURK PLAN KEY NOTES - 1/8" PLANS	-				2
CI	HUJECT GENERAL C	UNUTIONS, GENERAL INFORMATION ON SHEET A001W AND SELECTIVE DEMOLITION, OUTTING AND S THAT ARE USED IN ASSOCIATION WITH THESE NOTES.					IERS 5
	NORK PLAN KEY NO	ES APPLY TO ALL 1/8" NEW WORK DRAWINGS AND MAY NOT BE USED ON EVERY SHEET.	{				1 ANN
2	EXISTING HISTORIC METAL Z-BRACKET	SLIDING FIRE DOOR ASSEMBLY TO REMAIN. SECURE SLIDING DOOR IN A FULLY OPEN POSITION WITH S. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH.	R				TS + P
3	EXISTING HISTORIC Z-BRACKETS. PRE	SLIDING FIRE DOOR ASSEMBLY TO REMAIN. SECURE SLIDING DOOR IN A CLOSED POSITION WITH METAZ VARE ENTIRE ASSEMBLY FOR NEW PAINTED FINISH.	K				HITEC'
4	REINSTALL SALVAG	ED HISTORIC SLIDING FIRE DOOR ASSEMBLY AND HARDWARE FROM THIS OPENING TO NEW ORIENTATION & SLIDING DOOR IN A CLOSED POSITION WITH METAL ZERACKETS. PREPARE ENTIRE ASSEMBLY FOR NEW	Þ	/1			ARCH
5-	EXISTING HISTORIC PREPARE ENTIRE /	COLUNG OVERIEAD FOOR ASSEMBLY TO REMAIN. SECORE FOILING DOOR IN A FULLY OPEN POSITION. SSEMBLY FOR PAINTED FINISH.	1		414.220.96	40	MUUI
6	EXISTING HISTORIC PREPARE ENTIRE /	COLLING OVERHEAD DOOR ASSEMBLY TO REMAIN. SECURE COLLING DOOR IN A FULLY CLOSED POSITION. SSEMBLY FOR PAINTED FINISH.	1	<u> </u>	IN 1044	-	NILNC
7	EXISTING HISTORIC OPERATING COND!	OVERHEAD DOOR ASSEMBLY TO REMAIN. REPAIR TRACK AND HARDWARE TO RETURN DOOR TO TION. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH.]	5 Su	ite 200	on St.	20, CC
8	EXISTING STEEL SA OR MISSING PANES	SH WINUUW ASSEMBLY TO REMAIN. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH. REPLACE BROKEN OF GLASS WITH NEW GLASS TO MATCH EXISTING.			waukee, W	1 55202	HT 20
9 0 1	EXISTING GLAZED	VID INTO CAND WALL FOULTH IN NEW CAND AND MORTLAR TO MATCH EXISTING. WALL THE TO REMAIN PROTECT DURING CONSTRUCTION.	1	CONSUL	TANTS:		'YRIGH
1	DRAWINGS. EXISTING WOOD SI	IPAIR EARD I ING CHIMINET TO MACH EXISTING MATERIALS. SEE EXTERIOR MASONRY REPORT AND VGLE HUNG WINDOW FRAME, SASH AND ALL CASING TRIM TO REMAIN. PREPARE EXISTING INTERIOR &					© COP
	EXTERIOR SURFAC	ES FOR NEW PAINT. REPLACE MISSING AND/OR BROKEN GLASS TO MATCH EXISTING AND INSTALL NEW ALL PANES. INSTALL NEW INTERIOR STORM WINDOWS. SEE DETAIL 13/4510W.					ľ
3	ALIGN EDGE OF DE ALIGN CENTER OF	VISING WALL WITH EDGE OF HISTORIC MASONRY OPENING. DEMISING WALL OR PARTITION WITH CENTERLINE OF HISTORIC COLUMN, OR BEAM ABOVE.					1
6	ALIGN EDGE OF DE ALIGN CENTER OF	VISING WALL WITH EDGE OF HISTORIC CONCRETE DROP SLAB.					1
/ B	ALIGN EDGE OF DE	MISING WALL WITH OUTER EDGE OF LIGHT MONITOR VOLUME. DEMISING WALL OR PARTITION WITH CENTER OF HISTORIC SKYLIGHT MULLION ABOVE. DOD MI A DIE TRUCK BWALL TA MANGEMENT FOR UNDER TRUCK	1				1
9 D	NEW 37X3 ACCESS NEW CONCRETE SI EXISTING MICOD	JOUR YW SHYK KATHYS IB WALL TO ABANDONED MECHANICAL TUNNEL AB AT EXISTING STOOP TO MATCH FLOOR HEIGHT AT BUILDING 7. SEE STRUCTURAL. AIR CHIADRI AND HANDRAILS TO REMAN DIRED MI STIGERES END WEMPARINT	1				1
2	EXISTING WOOD ST STAIR RUN FROM	AIR, GUARD AND ANNANGUS TO REIMINIC FREE ALL GURFALES FUR NEW PAINT. AIR, GUARD AND HANDRAIL TO REIMAIN. REPAIRREPLACE MISSING BEAD BOARD HANDRAIL SUPPORT AND EVEL 01 TO 151 LANDING TO MATCH EXISTING HISTORIC CONDITION PREVENT PROVIDE NEW STEEL	1				1
3	HANDRAILS AT EXIS	ITING CMU WALLS. PREP ALL SURFACES FOR NEW PAINT. TE STAIR, CMU GUARD WALL AND HANDRAIL TO REMAIN. PREP ALL SURFACES FOR NEW FINISHES.					1
4	PROVIDE NEW EGR HANDRAIL TO REM	ESS BARRIER GATE AT EXISTING STEEL GUARDRAIL. EXISTING CONCRETE STAIR, STEEL GUARDRAIL AND INI. PREP ALL SURFACES FOR NEW FINISHES.	1				1
6	NEW CHAINLINK FE BUILD TYPE P6 UNF	VICE & GATES W/ PRIVACY SLATS. DEMISTING WALL WITH RESILIENT CHANNEL ON THIS SIDE.	1				1
/	I APER GYPCRETE BUILDINGS.						1
9	TAPER 1:20 SLOPE	INTEGET OWN FLOORE FORFTING TO TRAINSTITUN FLOOR FINISH LEVEL CHANGE BETWEEN BULDINGS 6 & 7. WAX. DAMAGED AND MISSING EXTERIOR STUDCO TO MATCH ADJIACENT SUBFACE	-				1
_		GENERAL ELOR PLAN NOTES TO CONTRACTOR	i				1
1.	THIS DRAWING IS	FURTHER SUPPORTED BY INFORMATION CONTAINED IN THE SPECIFICATION MANUAL.					1
4	THE CIVIL, STRUE DRAWINGS ARE CONTRACTOR TO	JIDHAL, NEUHANICAL, ELECTRICAL, PLUMBING, FIRE PROTECTION, AUDIO-VISUAL, AND SECURITY SUPPLEMENTARY TO THE ARCHITECTURAL DRAWINGS. IT SHALL BE THE RESPONSIBILITY OF THE COORDINATE THE INFORMATION CONTAINED IN ALL THE DRAWING'S REFORE THE INSTALLATION OF ALL					1
3.	WORK. DO NOT SCALE [RAWINGS. CONTRACTOR TO VERIFY ALL CONDITIONS AND DIMENSIONS AT THE JOB SITE PRIOR TO					1
٤.	COMMENCING CO FLOOR ELEVATION	INSTRUCTION. INS ARE TO THE TOP OF THE SUB-FLOOR MATERIAL UNLESS OTHERWISE NOTED.					1
5.	CONTRACTORS SUPPORTING BR	HALL JOINTLY PROVIDE AND INSTALL ALL STIFFENERS, BRACING, BACKING PLATES, WALL BLOCKING AND ACKETS REQUIRED FOR THE INSTALLATION OF CASEWORK, TOLET ACCESSORIES, PARTITIONS, MILLWORK, (01) INTED OR SUSPENDER DY AUT TRANS-					1
	ANU ALL WORK I	NEW WORK PI AN LEGEND	Ì				1
		EXISTING, TO REMAIN	1				1
	 xxxxxx	MASONRY PARTITION, SEE PARTITION TYPES FOR DETAILS					1
		METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE					1
		METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE					1
	$\langle x \rangle$	NEW WORK KEY NOTE					1
_			L I				1
	(1)	PATUR AND INFILL LEGENU					1
		CONCRETE FLOOR OPENING INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.I.F. EXACT SIZE AND LOCATIONS.					1
		CONCRETE FLOOR COSMETIC PATCH. V.LF. EXACT SIZE AND LOCATIONS.					1
		WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.I.F. EXACT SIZE					1
		AND LOCATIONS.					1
							1
							1
							1
				ğ			1
				BLC			1
				EST			1
				- WE			1
				В			1
				ВЪ		8	1
				ЮК		84 & E	1
				ЧС		DING	1
				Ē		BUIL	1
				H H		101-	1
				M	210 210		1
				È	STRE WI 53:	LAN-	1
				NU V	33RD KEE,	iii ji	1
				Ŵ	58 N. LWAU	EET III	1
				Ŭ	27£ MIL	¥ 9	1
				REVISION	וג: 09/20 ∆חח	ENDUM #1	1
					UJIZU AUU		1
		۲. ۲.					
				SCAI F	VARIES		
		A 88		SCALE	VARIES		
		A 88		SCALE PROJEC NUMBE	VARIES 7 200102		-
				SCALE PROJEC NUMBEI SET TYPE	VARIES T 200102 CONSTRI DOCUME	ICTION	-
				SCALE PROJEC NUMBEI SET TYPE DATE	VARIES 200102 CONSTRU DOCUME 9/25/20	ICTION NTS	
			0	SCALE PROJEC NUMBEI SET TYPE DATE ISSUED	VARES 200102 CONSTRU DOCUME 9/25/20	UCTION NTS	
				SCALE PROJEC NUMBEI TYPE DATE ISSUED SHEET NUMBEI	VARIES T 200102 CONSTRI DOCUME 9/25/20 R A2'	ACTION NTS 13W	
				SCALE PROJECT NUMEEI DATE ISSUED DATE ISSUED SHEET NUMBEI	VARIES T 200102 CONSTRI DOCUME 9/25/20 R A2'	ACTION NTS 13W	

SEE P PATCU 052 053 054 056 056 057 058 059 060 061 067 068 066 066 066 066 066 066 066 067 070 072 073 074 077 077 077 077 077 077 077 077 077	RUECT GENERAL CC. RUECT GENERAL CC. NORK FLAN KEY NOT NEW NAME NAME NEW NAME NAME NEW NAME NAME NEW NAME NAME NEW NAME NAME NEW NAME	NEW WORK PLAN KEY NOTES - 18" PLANS WORK DATA KEY NOTES - 18" PLANS WORK DATA RE USB NASOLATION ON SHEET ADDIVER WORK DEMANDED AND SELECTIVE DEMANDING AUTIMA AND INTER ARE USB NASOLATION ON THE VERSIONES. SAPPLY TO ALL 16 "NEW WORK DEMANDING AND MAY NOT BE USED ON EVERY SHEET "PERVICE DATABASES IN TIO SEMILING SAND MAY NOT BE USED ON EVERY SHEET "PERVICE DATABASES IN TO SEMILING SAND MAY NOT BE USED ON EVERY SHEET "PERVICE DATABASES INTO TO SEMILING SAND MAY NOT BE USED ON EVERY SHEET "PERVICE DATABASES INTO TO SEMILING SCURE SURVE DOOR IN A CLUSE DEPOSITION WITH HERZ. BENNER SESSING YO REINING SCURE SURVE DOOR IN A CLUSE DEPOSITION WITH HERZ. BENNER SESSING YO REINING SCURE SURVE DOOR IN A CLUSE DEPOSITION WITH HERZ. BENNER SESSING YO REINING SCURE SURVE DOOR IN A CLUSE DEPOSITION WITH HERZ. BUNK TO REPARE TO REINING SCURE SURVE DOOR IN A CLUSE DEPOSITION WITH HERZ. BUNK TO REPARE TO REINING SCURE SURVE DOOR IN A CLUSE DEPOSITION WITH HERZ. BUNK TO REPARED DOOR ASSEMILY TO REMAIN SECURE SURVE DOOR IN A RULLY CLOSED POSITION WITH HERZ SAND, TO REMAIN REPARE TRACK AND HARDWARE FOR THE DORENNE TO REVOLUCE DEPOSITION WITH HERZ SAND, TO REMAIN REPARE TRACK AND HARDWARE TO RETURN DOOR TO ON REPERED DOOR ASSEMILY TO REMAIN REPARE TRACK AND HARDWARE TO RETURN DOOR TO ON REPARED DOOR ASSEMILY TO REMAIN REPARE TRACK AND HARDWARE TO RETURN DOOR TO ON REPARED DOOR ASSEMILY TO REMAIN REPARE TRACK AND HARDWARE TO RETURN DOOR TO ON REPARED TO REST ON ADDIO REPART TO MATCH EXISTING UNIT TO THE NEE ASSIMAL AND CLASSITION OTHER OR TABLE EXISTING ADDIO REST ON ADDIO REPART DO ATCH. UNIT DOOR AND REPART TRACK AND HARDWARE TRACK AND HARDWARE TRACK EXISTING ADDIO REST ON ADDIO REPART DO ATCH. UNIT DO AN AND AND AND AND THE DOOR TO AND	T 411 T 51 N Suite Milw	4.220.9644 J Jeffersor 200 aukee, WI TTS:	0 1 St. 53202	© COPYRIGHT 2020, CONTINUUM ARCHITECTS + PLANNERS S.C.
	× × × × × × × × × × × × × × × × × × ×	EXISTING, TO REMAIN EXISTING, TO REMAIN EXISTING, TO REMAIN METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE A A O NETAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE A O NETAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE A O NEW WORK KEY NOTE PATCH AND INFILL LEGEND CONCRETE FLOOR OFENING INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. VLF. EXACT SIZE AND LOCATIONS. WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. VLF. EXACT SIZE AND LOCATIONS. LEVEL 03				
FINISH E MEET GENT FINISH MEETS MEETS MEETS	MATERIALS) TS 12240UR RATING) DATING, MATERIALS) 12240UR RATING) 12240UR RATING) 12240UR RATING) 12240UR RATING)	- FINISH FLOORING (SEE FINISH PLANS FOR MATERIALS AND LOCATIONS OF FINISH MATERIALS) - FINISH CONSUMCEMENT WARDER-AMAINT - REW 1-02 OFFENDING THE MORE AMAINT - SUSTING STWEED SHIP CONSUMPTIONS OF IS OUTCOMENTE OWNE RATE WEETS 1/24-HOUR RATING) - SUSTING STWEED SHIP CONSUMPTIONS OF IS OUTCOMENTE OWNE RATE WEETS 1/24-HOUR RATING) - SUSTING STWEED SHIP CONSUMPTIONS OF IS OUTCOMENT - SUSTING STWEET SHIP CONSUMPTIONS OF IS OUTCOMENT - SUSTING STWEET SHIP CONSUMPTIONS OF IS OUTCOMENT - SUSTING STORET ES AND - SUS	COMMUNITY WITHIN THE CORRIDOR - WEST BLOCK	2756 M 33RD STREET ML/MAUKEE, W133210	SEETTITE NEW WORK FLAN-LEVEL 02-OVERVIEW ALL BULLDINGS	
		KEY PLAN	SCALE PROJECT VUMBER SET TYPE DATE SSUED SHEET NUMBER	VARIES 200102 CONSTRUC DOCUMENT 9/25/20 A222	TION 8 OW	

E ETAIL 7/A510W

	NEW WORK PLAN KEY NOTES - 1/8" PLANS					
E P TCi	ROJECT GENERAL CONDITIONS, GENERAL INFORMATION ON SHEET A001W AND SELECTIVE DEMOLITION, CUTTING AND ING SPECIFICATIONS THAT ARE USED IN ASSOCIATION WITH THESE NOTES.					RS S.O
W١	NORK PLAN KEY NOTES APPLY TO ALL 1/8" NEW WORK DRAWINGS AND MAY NOT BE USED ON EVERY SHEET.					ANNE
12	INEW MAZACH/WALL MANEMBLY AN AXMEMBLY AN AXMEMBLY AN AXMEMBLY DO REMAIN: SEE DETAIL, ARAFINIX. Y Y Y Y Y Y Y Y EXISTING HISTORIC SLOING FIRE DOCA ASSEMBLY TO REMAIN. SECURE SLOING DOOR IN A FULLY OPEN POSITION WITH MICTAL 7 REACHESTS. PREPARE ENTITIE ASSEMBLY FOR PAINTED FINISH.	h				1d + 5
3	MILTINE EXMINISTICS IN THE PARE LINITIES ASSEMILT OF PHILIPS INVESTIGATION FOR A CLOSED POSITION WITH METAZ EXISTING HINGTORY. SULTING FIRE DOOR ASSEMILY TO REMAIN. SECURE SULDING DOOR IN A CLOSED POSITION WITH METAZ Z BRACKETS. PREPARE ENTIRE ASSEMILY FOR NEW PAINTED FINISH.	K				ITECT
4	REINSTALL SALVAGED HISTORIC SLIDING FIRE DOOR ASSEMBLY AND HARDWARE FROM THIS OPENING TO NEW ORIENTATION AS SHOWN. SECURE SLIDING DOOR IN A CLOSED POSITION WITH METAL Z-BRACKETS. PREPARE ENTIRE ASSEMBLY FOR NEW PAINTER INFORMATION.	Þ	1			ARCH
5	EXISTING THEFTORIC COLLING OVERVIEWE BOD OF ASSEMBLY TO REMARK. SECORE COLLING DEGRTIN A FULLY OPEN POSITION. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH.		T 4	14.220.964	с	MUUM
6	EXISTING HISTORIC COLLING GVERHEAD DOOR ASSEMBLY TO REMAIN. SECURE COLLING DOOR IN A FULLY CLOSED POSITION. PREPARE ENTRE ASSEMBLY FOR PAINTED FINISH.		751	N Jeffersor	st.	ENOS
17	EASTING HIS UNIT, OVERHEAD DOR ASSEMBLT TO REMAIN REPAIR I RACK AND HANDWARE TO RETURN DOOR TO OPERATING CONTION. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH. EXISTING STEEL SASH WINDOW ASSEMBLY TO REMAIN. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH. REPLACE BROKEN		Suit Mi l v	e 200 vaukee, W	53202	2020, (
9	OR NISSING PARES OF GLASS WITH NEW GLASS TO MATCH EXISTING. NEW OPENING IN EXISTING CMU WALL TOOTH IN NEW CMU AND MORTAR TO MATCH EXISTING.					RIGHT
1	EASTING GOALED YINGE HEE. TO NEWWINF HOTEOF DOWING CONSTRUCTION. TUCKPOINT AND REPAIR EXISTING CHIMNEY TO MACH EXISTING MATERIALS. SEE EXTERIOR MASONRY REPORT AND DRAWINGS.		CONSULTA	NTS:		COPYF
2	EXISTING WOOD SINGLE HUNG WINDOW FRAME. SASH AND ALL CASING/TRIM TO REMAIN. PREPARE EXISTING INTERIOR & EXTERIOR SURFACES FOR NEW PAINT. REPLACE MISSING AND/OR BROKEIN GLASS TO MATCH EXISTING AND INSTALL NEW (If ATING PITTY AT ALL PARKET, INSTALL I NEW INTERIOR STORM WINDOWS SEE DETAIL 134510W					ē
i3 i4	ALIGN EDGE OF DEMISING WALL WITH EDGE OF HISTORIC MASONRY OPENING. ALIGN CENTER OF DEMISING WALL OR PARTITION WITH CENTERLINE OF HISTORIC COLUMN, OR BEAM ABOVE.					
6	ALIGN EDGE OF DEMISING WALL WITH EDGE OF HISTORIC CONCRETE DROP SLAB. ALIGN EDRITER OF DEMISING WALL PARTITION WITH CENTERLINE OF WINDOW MULLION.					
8	ALIGN EDGE OF DEMISING WALL WITH OUTER EDGE OF LIGHT MONITOR VOLUME. ALIGN CENTER OF DEMISING WALL OR PARTITION WITH CENTER OF HISTORIC SKYLIGHT MULLION ABOVE. NPW 3XX ACCESS DOOR WILL ARE RATING ON WALL TO ARANDONED MECHANICAL TUNNEL					
'0 '1	NEW CONCRETE SLAB AT EXISTING STOOP TO MATCH FLOOR HEIGHT AT BUILDING 7. SEE STRUCTURAL. EXISTING WOOD STAIR, GUARD AND HANDRAILS TO REMAIN. PREP ALL SURFACES FOR NEW PAINT.					
2	EXISTING WOOD STAIR, GUARD AND HANDRAIL TO REMAIN. REPAIRREPLACE MISSING BEAD BOARD HANDRAIL SUPPORT AND STAIR RUN FROM LEVEL 01 TO IST LANDING TO MATCH EXISTING HISTORIC CONDITION PERSENT. PROVIDE NEW STEEL HANDRAILS A EXISTING CINU WALLS, PREP ALL SURFACES FOR NEW PAINT.					
'3 '4	EXISTING CONCRETE STAIR, CMU GUARD WALL AND HANDRAIL TO REMAIN. PREP ALL SURFACES FOR NEW FINISHES. PROVIDE NEW EGRESS BARRIER GATE AT EXISTING STEEL GUARDRAIL. EXISTING CONCRETE STAIR, STEEL GUARDRAIL AND					
5	HANDRAL TO REMAIN PREPAIL SURFACES FOR NEW FINISHES. NEW CHANLINK FENCE & GATES W/ PRIVACY SLATS. BILID TYPE RE INIT DEMISSION WALL WITH PERIJENT CHANNEL ON THIS SIDE					
7	BOILD THE FOOT HE CONTROL WITH CONTROL OF THE CONTROL OF THIS SIDE. TAPER GYPORETE COPPING 120 SLOPE MAX TO MEET EXISTING FINISH LEVEL AT TRANSITION AREA TO STAIRS OR BETWEEN BUILDINGS.					
8	NEW TAPERED POLISHED EPOXY FLOOR TOPPING TO TRANSITION FLOOR FINISH LEVEL CHANGE BETWEEN BULDINGS 6 & 7. TAPER 120 SLOPE MAX. PATCH AND BEPAIR DAMAGED AND MISSING EXTERIOR STLICCO TO MATCH AD LACENT SUBFACE.					
5	GENERAL FLOOR PLAN NOTES TO CONTRACTOR					
1. 2.	THIS DRAWING IS FURTHER SUPPORTED BY INFORMATION CONTAINED IN THE SPECIFICATION MANUAL. THE CIVIL STRUCTURAL MECHANICAL ELECTRICAL PLUMBING FIRE PROTECTION AUDIO-VISUAL AND SECURITY					
-	DRAWINGS ARE SUPPLEMENTARY TO THE ARCHITECTURAL DRAWINGS. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO COORDINATE THE INFORMATION CONTAINED IN ALL THE DRAWINGS BEFORE THE INSTALLATION OF ALL WORK					
3.	DO NOT SCALE DRAWINGS. CONTRACTOR TO VERIFY ALL CONDITIONS AND DIMENSIONS AT THE JOB SITE PRIOR TO COMMENCING CONSTRUCTION.					
4. 5.	FLOOR ELEVATIONS ARE TO THE TOP OF THE SUB-FLOOR MATERIAL UNLESS OTHERWISE NOTED. CONTRACTORS SHALL JOINTLY PROVIDE AND INSTALLALL STIFFENERS, BRACING, BACKING PLATES, WALL BLOCKING AND SUPPORTANCE DE REASYSTEMENT FOR DUE INSTALLATION OF LADSINGER, SUPERFORMED, DURINGER, AND UNDER					
	SUPPORTING BROKETS REQUIRED FOR THE INSTALLATION OF GRSEWORK, TOLET ACCESSURES, PARTITIONS, MILWORK, AND ALL WORK MOUNTED OR SUSPENDED BY ALL TRADES.					
	NEW WORK PLAN LEGEND					
	AMAGENER PARTITION, SEE PARTITION TYPES FOR DETAILS					
	METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE A3					
	METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE P6 U.N.O.					
	X NEW WORK KEY NOTE					
	PATCH AND INFILL LEGEND	1				
	CONCRETE FLOOR OPENING INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.I.F. EXACT SIZE AND LOCATIONS.					
	CONCRETE FLOOR COSMETIC PATCH. V.I.F. EXACT SIZE AND LOCATIONS.					
	WOOD FLOOR STRUCTURAL INFILL SEE STRUCTURAL FOR INFILL CONDITIONS. V.I.F. EXACT SIZE					
	CYCYCYC AND LOCATIONS.					
			ğ			
			BLO			
			EST			
			N -			
			DOR			
			RRII		A & 8B	
			8		NGS 8	
			Ӗ			
			NH		8	
			MIT	210 210		
			≧	STREI WI 532	Š	
			MUM	33RD JKEE,	SRK P	
			MO	758 N. IILWAU	E W W	
			REVISIONS	5 M	ज ट	
						-
			1 10/0	9/20 ADDE	NDUM #1	
			1 10/0	9/20 ADDE	NDUM #1	
			1 10/0	9/20 ADDE	NDUM #1	
			1 10/0	9/20 ADDE	NDUM #1	
			1 10/0	9/20 ADDE	NDUM #1	
			1 10/0	9/20 ADDE	NDUM #1	
			1 10/0	9/20 ADDE	NDUM #1	
	Γ Γ Α.		1 10/0	9/20 ADDE	NDOW #1	
			1 10/0	9/20 ADDE	NDUM #1	
			1 10/0 SCALE	VARIES	NDUM #1	
	6A 68 7		SCALE PROJECT	9/20 ADDE	NDUM #1	
			SCALE PROJECT NUMBER	VARIES 200102 CONSTRUCT	NDUM #1	
			SCALE PROJECT NUMBER TYPE DATE	VARIES 200102 CONSTRUC DOCUMENT 200520	TION 8	
		9	SCALE PROJECT PROJECT SET TYPE DATE ISSUED	VARIES 200102 CONSTRUC DOCUMENT 9/25/20	TION 8	
			1 10/0 SCALE PROJECT NUMBER SET TYPE ISSUED SHEET NUMBER	VARIES 200102 CONSTRUC DOCUMENT 9/25/20 A222		

NEW WORK PLAN KEY NOTES - 1/8" PLANS					ci -
ERAL CONDITIONS, GENERAL INFORMATION ON SHEET A001W AND SELECTIVE DEMOLITION, CL ATIONS THAT ARE USED IN ASSOCIATION WITH THESE NOTES.	JTTING AND				ERS S.
EY NOTES APPLY TO ALL 1/8" NEW WORK DRAWINGS AND MAY NOT BE USED ON EVERY SHEET FANEL INFILY WALL ASSEMBLY AT GRISPING WINDOW/OFENINGS SEE DETAIL BRATION.					PLANN
STORIC SLIDING FIRE DOOR ASSEMBLY TO REMAIN. SECURE SLIDING DOOR IN A FULLY OPEN I OXETS. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH. TOPIC SLIDING EIDE DOOR ASSEMBLY TO DEMANN. SECURE SLIDING DOOR IN A CLOSED BOS	POSITION WITH				CTS + I
REPARE ENTITE ASSEMBLY FOR NEW PAINTED FINISH. REPARE ENTITE ASSEMBLY FOR NEW PAINTED FINISH.					CHITE
SECURE SLIDING DOOR IN A CLOSED POSITION WITH METAL Z-BRACKETS. PREPARE ENTIRE A ISH. J. J. J	SSEMBLY FOR NEW				UM AR
ITIRE ASSEMBLY FOR PAINTED FINISH. STORIC COLLING OVERHEAD DOOR ASSEMBLY TO REMAIN. SECURE COLLING DOOR IN A FULLY INTER ASSEMBLY FOR DAMATED FUNDL.	CLOSED POSITION.	T 414.	220.9640		NTINU
TINE ASSEMBLY FOR PAIN IED FINISH. STORIC OVERHEAD DOOR ASSEMBLY TO REMAIN, REPAIR TRACK AND HARDWARE TO RETURN CONDITION. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH.	DOOR TO	751 N Suite 2	Jefferson 200	St.	50, COI
EEL SASH WINDOW ASSEMBLY TO REMAIN. FREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH PANES OF GLASS WITH NEW GLASS TO MATCH EXISTING. IGIN EVISTING CAN UMUL TO TOTULI IN NEW CAUL AND NOT TO MATCH EXISTING.	REPLACE BROKEN	Milwau	ikee, WI	53202	HT 202
IGINE ASTING GMO WALE. I COTHINNEW GMO AND MORTAR TO MATCH EXISTING. AZED WALL TILE TO REMAIN. PROTECT DURING CONSTRUCTION. AND REPAIR EXISTING CHIINNEY TO MACH EXISTING MATERIALS. SEE EXTERIOR MASONRY REI	PORT AND	ONSULTANTS			PYRIG
DOD SINGLE HUNG WINDOW FRAME, SASH AND ALL CASING/TRIM TO REMAIN. PREPARE EXISTI IRFACES FOR NEW PAINT. REPLACE MISSING AND/OR BROKEN GLASS TO MATCH EXISTING AN	NG INTERIOR &				© CC
TY AT ALL PANES. INSTALL NEW INTERIOR STORM WINDOWS. SEE DETAIL 13/A510W. OF DEMISING WALL WITH EDGE OF HISTORIC MASONRY OPENING.	D HOME NEW				
ER OF DEMISING WALL OR PARTITION WITH CENTERLINE OF HISTORIC COLUMN, OR BEAM ABO OF DEMISING WALL WITH EDGE OF HISTORIC CONCRETE DROP SLAB. 35 OF DEMISSION WALL BATTITION WITH CENTERLINE OF MUNDOWN WILL ION	VE.				
CF DEMISSING WALL WITH OUTER EDGE OF LIGHT MONITOR VOLUME. CF DEMISSING WALL WITH OUTER EDGE OF LIGHT MONITOR VOLUME. CF OF DEMISSING WALL OR PARTITION WITH CENTER OF HISTORIC SKYLIGHT MULLION ABOVE.					
CESS DOOR W/ 3-HR RATING @ WALL TO ABANDONED MECHANICAL TUNNEL. ETE SLAB AT EXISTING STOOP TO MATCH FLOOR HEIGHT AT BUILDING 7. SEE STRUCTURAL.					
JOU STAIR, GUARD AND HANDRAILS TO REMAIN, PHEP ALL SURFACES FOR NEW PAINT. DOO STAIR, GUARD AND HANDRAIL TO REMAIN, REPARIREPLACE MISSING BEAD BOARD HANDI ROM LEVEL OF TO 1ST LANDING TO MATCH EXISTING HISTORIC CONDITION PERSENT. PROVIDE AT EXISTING CMU WALLS, PREP ALL SURFACES FOR NEW PAINT.	AIL SUPPORT AND NEW STEEL				
NUCRETE STAIN, CHILO SOURD WILL AND HANDRALL TO REMAIN. PREP ALL SOUR ALSE FOR NEW W EGRESS BARRIER GATE AT EXISTING STELL GLARARALL SUSTING CONCRETE STAIR, STEEL D REMAIN. PREP ALL SURFACES FOR NEW FINISHES.	L GUARDRAIL AND				
INK FENCE & GATES W/ PRIVACY SLATS. 69 UNIT DEMISING WALL WITH RESILIENT CHANNEL ON THIS SIDE. 2017 TOPONIC 420 STORE MAY TO MEET EXISTING FINISH DUE AT TRANSITION APEA TO PT					
RETE TOPPING 120 SLOPE MAX TO MEET EXISTING FINISH LEVEL AT TRANSITION AREA TO ST. ED POLISHED EPOXY FLOOR TOPPING TO TRANSITION FLOOR FINISH LEVEL CHANGE BETWEEN	NBULDINGS 6 & 7.				
LOPE MAX. REPAIR DAMAGED AND MISSING EXTERIOR STUCCO TO MATCH ADJACENT SURFACE.					
GENERAL FLOOR PLAN NOTES TO CONTRACTOR					
VING IS FURTHER SUPPORTED BY INFORMATION CONTAINED IN THE SPECIFICATION MANUAL. STRUCTURAL, MECHANICAL, ELECTRICAL, PLUMBING, FIRE POTECTION, AUDIO-VISUAL, AND SARF SILPPI MEINTARY TO THE ARCHITECTURAL DRAWINGS. IT SNALL BE THE RESPONSIBIL	SECURITY TY OF THE				
FOR TO COORDINATE THE INFORMATION CONTAINED IN ALL THE DRAWINGS BEFORE THE INST	ALLATION OF ALL				
ALE DRAWINGS. CONTRACTOR TO VERIFY ALL CONDITIONS AND DIMENSIONS AT THE JOB SIT ING CONSTRUCTION. VATIONS ARE TO THE TOP OF THE SUB-FLOOR MATERIAL UNLESS OTHERWISE NOTED.	'E PRIOR TO				
TORS SHALL JOINTLY PROVIDE AND INSTALL ALL STIFFENERS, BRACING, BACKING PLATES, WA NO BRACKETS REQUIRED FOR THE INSTALLATION OF CASEWORK, TOILET ACCESSORIES, PAR	LL BLOCKING AND TITIONS. MILLWORK,				
NEW WORK PLAN LEGEND					
EXISTING, TO REMAIN					
MASONRY PARTITION, SEE PARTITION TYPES FOR DETAILS					
METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE	• U.N.O.				
METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE	• U.N.O.				
NEW WORK REY NOTE					
PATCH AND INFILL LEGEND					
CONCRETE FLOOR OPENING INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.I. AND LOCATIONS.	F. EXACT SIZE				
CONCRETE FLOOR COSMETIC PATCH, V.I.F. EXACT SIZE AND LOCATIONS.					
WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.I.F	- EXACT SIZE				
LEVEL 03					
		Š			
		Ē			
		VES'			
		2 - -		8	
		OQ			
IATING)		ORR		ALLB	
		О Ш		WIEW	
 FINISH FLOORING (SEE FINISH PLANS FOR MATERIALS AND LOCATIONS OF FINISH – NEW 1-1/2" GYPSUM CEMENT UNDERLAYMENT – NEW 400USTIC SOUND MAT INT NON-CARPETED AREAS ONLY) 	MATERIALS)	≟ z		OVE	
 ING) - EXISTING 3' TIMBER SUBFLOORING (NDS CH. 16 CALCULATED CHAR RATE MEETS - EXISTING 6X14 TIMBER FLOOR JOIST (NDS CH. 16 CALCULATED CHAR RATE MEETS - ASSEMBLY FIDER RATING: 1/2 Hour 	1/2-HOUR RATING) S 1/2-HOUR RATING)	ΗĽ		EL 03	
- FSTC: 46-49 FIIC 45-47		≥	REET 53210	N-LE	
- EXISTING 10° CLAY THE INFILL - ASSEMBLY FIRE RATING: 1 HOUR		LINN	RD ST EE, WI	X PLA	
		MMC	B.N. 33 WAUKI	V WOR	
ING) TING)		8	2758 MIL	NEV	
	RE 1	EVISIONS: 10/09/2	0 ADDEN	IDUM #1	
I	——' ['	. 5, 55/2			
— –					
L.L.					
84 88	L				
7	s	CALE	/ARIES		
6	PF N	ROJECT UMBER	200102		
5	SE	ET YPE	CONSTRUCT	TION S	
4					
	D/	ATE	/25/20		
		ATE SUED	9/25/20		
<u>KEY P</u>		HEET	A23	0W	

NEW WORK PLAN KEY NOTES - 1/8" PLANS				
CONDITIONS, GENERAL INFORMATION ON SHEET A001W AND SELECTIVE DEMOLITION, CUTTING AN NS THAT ARE USED IN ASSOCIATION WITH THESE NOTES	D			
TES APPLY TO ALL 1/8" NEW WORK DRAWINGS AND MAY NOT BE USED ON EVERY SHEET.	_			
LINPLEVIALL ASSEMPLY AT BASTANG WINDOW OPENING SEE DETAIL ARATOW. C SLIDING FIRE DOOR ASSEMPLY TO REMAIN. SECURE SLIDING DOOR IN A FULLY OPEN PORTION				
3. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH. C SLIDING FIRE DOOR ASSEMBLY TO REMAIN, SECURE SLIDING DOOR IN A CLOSED POSITION WITH	HMETAZ			
PARE ENTIRE ASSEMBLY FOR NEW PAINTED FINISH. GED HISTORIC SUDING FIRE DOOR ASSEMBLY AND HARDWARE FROM THIS OPENING TO NEW ORIE IFS UINING FOOD IN A CLOBED DOSITION WITH METAL 7 DRAFFERS DREPARE FAILURE FAREFURST.		3442	1	
CODEMO OVERIBADEOOR ASSEMELY TO REMARK. SECDRE COLLING DAGAR IN A FILTH A PAPEN PRI	SITION NEW	1		
ASSEMBLY FOR PAINTED FINISH. C COILING OVERHEAD DOOR ASSEMBLY TO REMAIN. SECURE COILING DOOR IN A FULLY CLOSED F	POSITION.	Т	414.220.964	10
ASSEMBLY FOR PAINTED FINISH. C OVERHEAD DOOR ASSEMBLY TO REMAIN. REPAIR TRACK AND HARDWARE TO RETURN DOOR TO		75	51 N Jefferso	n St.
ITION. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH. ASH WINDOW ASSEMBLY TO REMAIN. PREPARE ENTIRE ASSEMBLY FOR PAINTED FINISH. REPLACE S AC GLASS METH NEW CLASS TO MATCH CONTINUE	BROKEN	M	li l waukee, W	53202
5 UF DENSO WITH NEW GLASS TO MATCH EXISTING. EXISTING CMU WALL TOOTH IN NEW CMU AND MORTAR TO MATCH EXISTING.				
VINEL THE TO REMAIN: PROTECT DURING CONSTRUCTION. EPAIR EXISTING CHIMNEY TO MACH EXISTING MATERIALS. SEE EXTERIOR MASONRY REPORT AND		CONSU	ILTANTS:	
INGLE HUNG WINDOW FRAME, SASH AND ALL CASING/TRIM TO REMAIN. PREPARE EXISTING INTERI CES FOR NEW PAINT. REPLACE MISSING AND/OR BROKEN GLASS TO MATCH EXISTING AND INSTALL	OR & L NEW			
FALL PANES. INSTALL NEW INTERIOR STORM WINDOWS. SEE DETAIL 13/A510W. EMISING WALL WITH EDGE OF HISTORIC MASONRY OPENING.				
DEMISING WALL OR PARTITION WITH CENTERLINE OF HISTORIC COLUMN, OR BEAM ABOVE. MISING WALL WITH EDGE OF HISTORIC CONCRETE DROP SLAB.		1		
DEMISING WALL PARTITION WITH CENTERLINE OF WINDOW MULLION. EMISING WALL WITH OUTER EDGE OF LIGHT MONITOR VOLUME.				
DEMISING WALL OR PARTITION WITH CENTER OF HISTORIC SKYLIGHT MULLION ABOVE. DOOR WI 3-HR RATING @ WALL TO ABANDONED MECHANICAL TUNNEL.				
LAB AT EXISTING STOOP TO MATCH FLOOR HEIGHT AT BUILDING 7. SEE STRUCTURAL. TAIR, GUARD AND HANDRAILS TO REMAIN. PREP ALL SURFACES FOR NEW PAINT.				
TAIR, GUARD AND HANDRAIL TO REMAIN. REPAIR REPLACE MISSING BEAD BOARD HANDRAIL SUPP LEVEL OI TO 1ST LANDING TO MATCH EXISTING HISTORIC CONDITION PERSENT. PROVIDE NEW STE ISTING CIMILING LS PREPAIR LI SIRFACES FOR MEM PAINT.	ORT AND			
GITTED UNITY MALLS, THEF ALL SURFALES FUR NEW PAINT. TE STAIR, CMU GUARD WALL AND HANDRAIL TO REMAIN, PREP ALL SURFACES FOR NEW FINISHES RESS RARRIER GATE AT EXISTING STEFT GUARDRAIL EXISTING COMPORTS STAID STEPT.				
ALCO BARGER AND AND AN AND AND AND AND AND AND AND	USE AND			
IT DEMISING WALL WITH RESILIENT CHANNEL ON THIS SIDE. TOPPING 1/20 SLOPE MAX TO MEET EXISTING FINISH LEVEL AT TRANSITION AREA TO STAIRS OF R	ETWEEN			
LISHED EPOXY FLOOR TOPPING TO TRANSITION FLOOR FINISH LEVEL CHANGE BETWEEN BULDING	IS 6 & 7.			
. MAX. R DAMAGED AND MISSING EXTERIOR STUCCO TO MATCH ADJACENT SURFACE.				
GENERAL FLOOR PLAN NOTES TO CONTRACTOR	\neg			
S FURTHER SUPPORTED BY INFORMATION CONTAINED IN THE SPECIATION MANUAL.	,			
SUPPLEMENTARY TO THE ARCHITECTURAL DRAWINGS, IT SHALL BE THE RESPONSIBILITY OF THE O COORDINATE THE INFORMATION CONTAINED IN ALL THE DRAWINGS BEFORE THE INSTALLATION	OF ALL			
DRAWINGS. CONTRACTOR TO VERIFY ALL CONDITIONS AND DIMENSIONS AT THE JOB SITE PRIOR 1	то			
ONSTRUCTION. ONS ARE TO THE TOP OF THE SUB-FLOOR MATERIAL UNLESS OTHERWISE NOTED.				
SHALL JOINTLY PROVIDE AND INSTALL ALL STIFFENERS, BRACING, BACKING PLATES, WALL BLOCK VACKETS REQUIRED FOR THE INSTALLATION OF CASEWORK, TOILET ACCESSORIES, PARTITIONS. IN MUINTED IN SUSPENIED BY ALL TEACH	ING AND AILLWORK,			
NUTITED OR SUSPENDED BY ALL TRADES.	$ \rightarrow $			
EXISTING, TO REMAIN	-+			
MASONRY PARTITION, SEE PARTITION TYPES FOR DETAILS				
METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE				
METAL STUD PARTITION, SEE PARTITION TYPES FOR DETAILS TYPE				
NEW WORK KEY NOTE				
PATCH AND INFILL LEGEND				
CONCRETE FLOOR OPENING INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. V.I.F. EXACT: AND LOCATIONS.	SIZE			
CONCRETE FLOOR COSMETIC PATCH, VLE, EXACT SIZE AND LOCATIONS				
CONVINCI E FLOOR COMMETIC PATCH, V.I.F. EARCI SIZE AND LOGATIONS.				
WOOD FLOOR STRUCTURAL INFILL, SEE STRUCTURAL FOR INFILL CONDITIONS. VILF. EXACT S AND LOCATIONS.	SIZE	1		
	I			
		×		
		ЦЙ		
		II BI		
		VES		
		~~~		
		Ö		
		RRII		1 & 8B
		8		<b>GS 8</b>
		١		ILDIN
		I Z		3-BU
		Ë		EL 02
		≯	REET 53210	-F
		I I	D STF	FLAN
		¶¶0	J. 33R Unkee	VORK
		No.	2758 N AILWA	HEET 1
		REVIE	~ ≥ 0NS:	ø z
		1 10	)/09/20 ADD	ENDUM #1
		-		
۲. R				
		SCAL	E VARIES	
6A 88		SCALE PRO 15	VARIES	
ал ав 7 т		SCALE PROJE NUMB	E VARIES ECT 200102	
		SCALE PROJE NUMB SET TYPE	E VARIES ER 200102 CONSTRU DOCUMEN	CTION
		SCALE PROJE NUMB SET TYPE DATE	EVARIES ECT 200102 CONSTRU DOCUMEN	CTION IT8
		SCALE PROJE NUMB SET TYPE DATE ISSUE	E         VARIES           ECT ER         200102           CONSTRU         DOCUMEN           D         9/25/20	CTION ITS
	1	SCALE PROJE NUMB SET TYPE DATE ISSUE	VARIES           CT ER         200102           CONSTRU         DOCUMEN           D         92520           T         A252	ction Its 31W









# ATTACHMENT B

Passive Air Sampling Test Results





6/17/2022 Mr. Robert Reineke K Singh & Associates

Project Name: CWC-West Block Project #: 40443 Workorder #: 2206224

Dear Mr. Robert Reineke

The following report includes the data for the above referenced project for sample(s) received on 6/10/2022 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Jade White at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Jade White Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-351-8279 www.airtoxics.com



## WORK ORDER #: 2206224

#### Work Order Summary

CLIENT:	Mr. Robert Reineke K Singh & Associates	BILL TO:	Mr. Robert Reineke K Singh & Associates
PHONE:		P.O. #	
FAX:		<b>PROJECT #</b>	40443 CWC-West Block
DATE RECEIVEI	<b>D:</b> 06/10/2022	CONTACT	Inda White
DATE COMPLET	<b>ED:</b> 06/17/2022	contact.	Jade white
FRACTION #	NAME	<b>TEST</b>	
01A	IA-8B-02D	Passive S.E. R	AD130/SKC
02A	IA-8B-02C	Passive S.E. R	AD130/SKC
03A	IA-8B-02A	Passive S.E. R	AD130/SKC
04A	IA-8B-02B	Passive S.E. R	AD130/SKC
05A	IA-8B-01A	Passive S.E. R	AD130/SKC
06A	IA-8B-01C	Passive S.E. R	AD130/SKC
07A	IA-8B-01B	Passive S.E. R	AD130/SKC
08A	IA-8B-01D	Passive S.E. R	AD130/SKC
09A	IA-8A-01C	Passive S.E. R	AD130/SKC
10A	IA-8A-01B	Passive S.E. R	AD130/SKC
11A	IA-8A-01A	Passive S.E. R	AD130/SKC
12A	IA-8A-01D	Passive S.E. R	AD130/SKC
13A	IA-8A-BASEMENT	Passive S.E. R	AD130/SKC
14A	IA-8A-02B	Passive S.E. R	AD130/SKC
15A	Lab Blank	Passive S.E. R	AD130/SKC
16A	CCV	Passive S.E. R	AD130/SKC
17A	LCS	Passive S.E. R	AD130/SKC
17AA	LCSD	Passive S.E. R	AD130/SKC

CERTIFIED BY:

layes

DATE: 06/17/22

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP – CA009332021-13, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

🛟 eurofins

#### LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 K Singh & Associates Workorder# 2206224

Fourteen Radiello 130 (Solvent) samples were received on June 10, 2022. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

## **Receiving Notes**

There were no receiving discrepancies.

## **Analytical Notes**

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

If validated uptake rates were not available, rates were estimated using the chemical's diffusion coefficient in air and the geometric constant of the sampler. Chemicals that are poorly retained by the sorbent over the sampling duration may exhibit a low bias. All concentrations calculated using estimated rates are qualified with a "C" flag.

To calculate ug/m3 concentrations in the Lab Blank, a sampling duration of 10189 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

## **Definition of Data Qualifying Flags**

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

🛟 eurofins

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- C Estimated concentration due to calculated sampling rate
- CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue



# Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

#### Client Sample ID: IA-8B-02D

#### Lab ID#: 2206224-01A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.19	0.32
trans-1,2-Dichloroethene	0.20	0.33	1.8 C	3.0 C

#### Client Sample ID: IA-8B-02C

#### Lab ID#: 2206224-02A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.17	0.25
Tetrachloroethene	0.10	0.17	0.65	1.1
trans-1,2-Dichloroethene	0.20	0.33	0.93 C	1.5 C

#### Client Sample ID: IA-8B-02A

#### Lab ID#: 2206224-03A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.17	0.15	0.26
trans-1,2-Dichloroethene	0.20	0.33	1.7 C	2.8 C

#### Client Sample ID: IA-8B-02B

#### Lab ID#: 2206224-04A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.17	0.28
trans-1,2-Dichloroethene	0.20	0.33	1.4 C	2.4 C

#### Client Sample ID: IA-8B-01A

#### Lab ID#: 2206224-05A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.15	0.25
trans-1,2-Dichloroethene	0.20	0.33	1.2 C	2.0 C



# Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

#### Client Sample ID: IA-8B-01C

#### Lab ID#: 2206224-06A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.18	0.31
trans-1,2-Dichloroethene	0.20	0.33	0.24 C	0.40 C

#### Client Sample ID: IA-8B-01B

#### Lab ID#: 2206224-07A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.17	0.18	0.30
trans-1,2-Dichloroethene	0.20	0.33	1.3 C	2.1 C

#### Client Sample ID: IA-8B-01D

#### Lab ID#: 2206224-08A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.24	0.41
trans-1,2-Dichloroethene	0.20	0.33	1.4 C	2.4 C

#### **Client Sample ID: IA-8A-01C**

#### Lab ID#: 2206224-09A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.25	0.42
trans-1,2-Dichloroethene	0.20	0.33	2.2 C	3.7 C

#### Client Sample ID: IA-8A-01B

#### Lab ID#: 2206224-10A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	25	42
trans-1,2-Dichloroethene	0.20	0.33	2.6 C	4.3 C



# Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

#### **Client Sample ID: IA-8A-01A**

#### Lab ID#: 2206224-11A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	2.0	3.4
trans-1,2-Dichloroethene	0.20	0.33	3.7 C	6.2 C

#### **Client Sample ID: IA-8A-01D**

#### Lab ID#: 2206224-12A

Compound	Rpt. Limit (ug)	Rpt. Limit (ua/m3)	Amount (ug)	Amount (ua/m3)
Tetrachloroethene	0.10	0.17	1.5	2.5
trans-1,2-Dichloroethene	0.20	0.33	5.0 C	8.1 C

#### **Client Sample ID: IA-8A-BASEMENT**

#### Lab ID#: 2206224-13A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	1.7	2.9
trans-1,2-Dichloroethene	0.20	0.33	6.0 C	9.9 C

## Client Sample ID: IA-8A-02B

## Lab ID#: 2206224-14A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	1.1	1.8
trans-1,2-Dichloroethene	0.20	0.33	3.8 C	6.2 C



## Client Sample ID: IA-8B-02D Lab ID#: 2206224-01A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061510sim 1.00	Date of Collection: 6/8/22 3:00:00 PM Date of Analysis: 6/15/22 12:22 PM Date of Extraction: 6/15/22		22 3:00:00 PM 22 12:22 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.19	0.32
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.8 C	3.0 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10150 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	



## Client Sample ID: IA-8B-02C Lab ID#: 2206224-02A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061511sim 1.00	Date of Collection: 6/8/22 3:44:00 PM Date of Analysis: 6/15/22 12:49 PM Date of Extraction: 6/15/22		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.17	0.25
Tetrachloroethene	0.10	0.17	0.65	1.1
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.93 C	1.5 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10189 minutes. Container Type: Radiello 130 (Solvent)

		Method
Surrogates	%Recovery	Limits
Toluene-d8	83	70-130



## Client Sample ID: IA-8B-02A Lab ID#: 2206224-03A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061512sim 1.00	Date of Collection: 6/8/22 3:45:00 PM Date of Analysis: 6/15/22 01:15 PM Date of Extraction: 6/15/22		22 3:45:00 PM 22 01:15 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.15	0.26
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.7 C	2.8 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10188 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	



## Client Sample ID: IA-8B-02B Lab ID#: 2206224-04A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061513sim 1.00	Date of Collection: 6/8/22 3:44:00 PM Date of Analysis: 6/15/22 01:42 PM Date of Extraction: 6/15/22		22 3:44:00 PM 22 01:42 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.17	0.28
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.4 C	2.4 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10184 minutes. Container Type: Radiello 130 (Solvent)

	%Recovery	Method Limits
Surrogates		
Toluene-d8	83	70-130


## Client Sample ID: IA-8B-01A Lab ID#: 2206224-05A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061514sim 1.00	Date of Collection: 6/8/22 3:36:00 PM Date of Analysis: 6/15/22 02:08 PM Date of Extraction: 6/15/22		22 3:36:00 PM 22 02:08 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.15	0.25
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.2 C	2.0 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10171 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	84	70-130	



## Client Sample ID: IA-8B-01C Lab ID#: 2206224-06A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061515sim 1.00	Date of Collection: 6/8/22 3:40:00 PM Date of Analysis: 6/15/22 02:35 PM Date of Extraction: 6/15/22		22 3:40:00 PM 22 02:35 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.18	0.31
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.24 C	0.40 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10172 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	82	70-130	



## Client Sample ID: IA-8B-01B Lab ID#: 2206224-07A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061516sim 1.00	Date of Collection: 6/8/22 3:41:00 PM Date of Analysis: 6/15/22 03:01 PM Date of Extraction: 6/15/22		22 3:41:00 PM 22 03:01 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.18	0.30
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.3 C	2.1 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10170 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	84	70-130	



## Client Sample ID: IA-8B-01D Lab ID#: 2206224-08A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061517sim 1.00	Date of Collection: 6/8/22 3:05:00 PM Date of Analysis: 6/15/22 03:28 PM Date of Extraction: 6/15/22		22 3:05:00 PM 22 03:28 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.24	0.41
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.4 C	2.4 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10131 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



## Client Sample ID: IA-8A-01C Lab ID#: 2206224-09A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061518sim 1.00	Date of Collection: 6/8/22 3:43:00 PM Date of Analysis: 6/15/22 03:55 PM Date of Extraction: 6/15/22		22 3:43:00 PM 22 03:55 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.25	0.42
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	2.2 C	3.7 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10160 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



## Client Sample ID: IA-8A-01B Lab ID#: 2206224-10A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061519sim 1.00	Date of Collection: 6/8/22 3:38:00 PM Date of Analysis: 6/15/22 04:21 PM Date of Extraction: 6/15/22		22 3:38:00 PM 22 04:21 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	25	42
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	2.6 C	4.3 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10152 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



## Client Sample ID: IA-8A-01A Lab ID#: 2206224-11A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061520sim 1.00		Date of Collection: 6/8/22 3:00:00 PM Date of Analysis: 6/15/22 04:48 PM Date of Extraction: 6/15/22	
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	2.0	3.4
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	3.7 C	6.2 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10112 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



## Client Sample ID: IA-8A-01D Lab ID#: 2206224-12A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061521sim 1.00		Date of Collection: 6/8/22 3:44:00 PM Date of Analysis: 6/15/22 05:14 PM Date of Extraction: 6/15/22	
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	1.5	2.5
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	5.0 C	8.1 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10154 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	82	70-130	



## Client Sample ID: IA-8A-BASEMENT Lab ID#: 2206224-13A VOCS BY PASSIVE SAMPLER - GC/MS

T

File Name: Dil. Factor:	18061522sim 1.00	Date of Collection: 6/8/22 2:51:00 PM Date of Analysis: 6/15/22 05:41 PM Date of Extraction: 6/15/22		522sim Date of 1.00 Date of Da		22 2:51:00 PM 22 05:41 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)		
Trichloroethene	0.10	0.14	Not Detected	Not Detected		
Tetrachloroethene	0.10	0.17	1.7	2.9		
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C		
trans-1,2-Dichloroethene	0.20	0.33	6.0 C	9.9 C		

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10098 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	84	70-130	



## Client Sample ID: IA-8A-02B Lab ID#: 2206224-14A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061523sim 1.00	Date of Collection: 6/8/22 3:49:00 PM Date of Analysis: 6/15/22 06:07 PM Date of Extraction: 6/15/22		sim Date 1.00 Date Date		22 3:49:00 PM 22 06:07 PM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)		
Trichloroethene	0.10	0.14	Not Detected	Not Detected		
Tetrachloroethene	0.10	0.17	1.1	1.8		
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C		
trans-1,2-Dichloroethene	0.20	0.33	3.8 C	6.2 C		

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10152 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	84	70-130	



## Client Sample ID: Lab Blank Lab ID#: 2206224-15A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061505sim 1.00	Date of Collection: NA Date of Analysis: 6/15/22 09:41 AM Date of Extraction: 6/15/22		m Date o 0 Date o Date o		22 09:41 AM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)		
Trichloroethene	0.10	0.14	Not Detected	Not Detected		
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected		
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C		
trans-1,2-Dichloroethene	0.20	0.33	Not Detected C	Not Detected C		

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10189 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	



#### **Client Sample ID: CCV** Lab ID#: 2206224-16A **VOCS BY PASSIVE SAMPLER - GC/MS** File Name: **Date of Collection: NA** 18061502sim Dil. Factor: 1.00 Date of Analysis: 6/15/22 08:14 AM Date of Extraction: NA Compound %Recovery 97 Trichloroethene 96 Tetrachloroethene 86 cis-1,2-Dichloroethene trans-1,2-Dichloroethene 82 Container Type: NA - Not Applicable Method Surrogates Limits %Recovery

84

70-130

Toluene-d8



## Client Sample ID: LCS Lab ID#: 2206224-17A VOCS BY PASSIVE SAMPLER - GC/MS

Т

File Name: Dil. Factor:	18061503sim 1.00	Date of Collection: NA Date of Analysis: 6/15/22 08:48 AM Date of Extraction: 6/15/22	
Compound		%Recovery	Method Limits
Trichloroethene		98	70-130
Tetrachloroethene		97	70-130
cis-1,2-Dichloroethene		75	70-130
trans-1,2-Dichloroethene		70	70-130
Container Type: NA - Not A	oplicable		
			Method
Surrogates		%Recovery	Limits
Toluene-d8		85	70-130



## Client Sample ID: LCSD Lab ID#: 2206224-17AA VOCS BY PASSIVE SAMPLER - GC/MS

T

File Name: Dil. Factor:	18061504sim 1.00	Date of Collection: NA Date of Analysis: 6/15/22 09:15 AM Date of Extraction: 6/15/22	
Compound		%Recovery	Method Limits
Trichloroethene		102	70-130
Tetrachloroethene		96	70-130
cis-1,2-Dichloroethene		89	70-130
trans-1,2-Dichloroethene		86	70-130
Container Type: NA - Not A	pplicable		
			Method
Surrogates		%Recovery	Limits
Toluene-d8		86	70-130

>MJ-ULO	Passi	ve Sorbent	t Chain of	Custody						
Air Toxics				Case Se	<u>80</u> L #				WO#	2206224
Company: K. Singh & Assecrites	Project #:ੑੑ	0443	P.O. #:		Sai (c	nple N heck	latrix one)		Reporting Units (circle)	Turn Around Time:
Project Manager: Robert Rene Ke	Project Name	Cwc	west	Black	r		oring	)	ppbv kg/m3	Normal
Contact phone/email: rreineke eksmyne	ny in condicional score	Justin Bush	i, N; CK-Badh.	Alex Hene	door Ai		Monito		ppmv mg/m3	Bryshe 6/17122
<b>6</b>	Date of	Time of	Date of	Time of	'Outd	S	ace		gu g <del>u</del>	Specify
I.D. Identification	Deployment (mm/dd/yy)	Deployment (hr:min)	Retrieval (mm/dd/yy)	Retrieval (hr:min)	Indoor	Soil Ga	Workp	Other (	Analysis Requested	Sample Comments:
60/A 15589 TA-83-03	C6/10/22 0	1:50pm	06108122	3:00pm	$\times$				PLETTLE	
10 IT - 813-01 IT - 813-01		wd Fifte		Singen						
SA 5 2 15 5 91 IA - 813-02	A	1:57pm		3:45pm						
24/ LJ592 TA-813-02	B .	Loopm		3:4400						
057 LJ 868 JA-8B-011		2:05-pm		3:36 pm						
16A LJ 869 JA-8B-010		2:08pm		3:40pm						
07A LJ 870 IA-83-011		allom		3:41 pm						
071 LJ 871 TA-813-01	0	2:14pm		3.05pm						
19/ LJ 872 FA-84-01	<u>/ s</u>	aggen		3:43pm						
10A 15873 IA-SA-01	0	みころのろ		3:38 pm						
11A LJ 874 IA-84-01	4	2:28 pm		3:00pm						
WA LJ 875 FA-8A-01	0	2:30pm		3:44pm						
(3/1 LJ 876 FA-SA-BN	Emert	2:33pm		2:51pm						
14A LJ 877 IA-8A-031	3	2:37pm	۴	3:49 pm	F				ę	
Relinquished by: (signature)	blal wr	Time 12:05PM	Received by: (sign	nature)		bate			Time OAN	Notes to Lab:
Relinquished by: (signature)	Date	Time	Royled by:\(sig	nature)		Date			Time	
Relinquishing signature on this document indicates that san indicates agreement to hold harmless, defend, and indemnit	ples are shipped in con y Eurofins Air Toxics aç	npliance with all appl Jainst any claim, den	icable local, State, Fe nand, or action, of an	ederal, and internati y kind, related to the	onal lav e collec	vs, reg tion, ha	ulations Indling,	, and o of ship	ordinances of any kind. R pping of samples.	telinquishing signature also
	-		Lab Use Only							
Shipper Name:	Custody Seals	s Intact?	es NAA No	None	Sam	ple C	ondit (c	ion (	Ipon Receipt:	Good SDR
Eurofins Air Toxics,	Inc. 180 Blue F	Ravine Road, S	uite B Folson	n, CA 95630	(916)	985-	1000	7	ax (916) 351-8279	
		iuviilo i load, o		n, 07 100000	10.0	000				

Page 1 of 3



6/17/2022 Mr. Robert Reineke K Singh & Associates

Project Name: CWC-West Block Project #: 40443 Workorder #: 2206225

Dear Mr. Robert Reineke

The following report includes the data for the above referenced project for sample(s) received on 6/10/2022 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Jade White at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Jade White Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

T 916-985-1000 F 916-351-8279 www.airtoxics.com



22A

23A

IA-8A-03A

IA-8A-03B

**Air Toxics** 

### WORK ORDER #: 2206225

### Work Order Summary

CLIENT:	Mr. Robert Reineke K Singh & Associates	BILL TO:	Mr. Robert Re K Singh & As	eineke sociates	
PHONE:		P.O. #			
FAX:		<b>PROJECT #</b>	40443 CWC-V	West Block	
DATE RECEIVEI	<b>D:</b> 06/10/2022	CONTACT	T. 1. XX71. 4		
DATE COMPLET	<b>TED:</b> 06/17/2022	CONTACT:	Jade white		
				RECEIPT	FINAL
FRACTION #	NAME	TEST		VAC./PRES.	PRESSURE
01A	IA-6-01-B	Passive S.E. R.	AD130/SKC		
02A	IA-6-01-A	Passive S.E. R.	AD130/SKC		
03A	IA-6-01-C	Passive S.E. R.	AD130/SKC		
04A	IA-6-02-B	Passive S.E. R.	AD130/SKC		
05A	IA-6-02A	Passive S.E. R.	AD130/SKC		
06A	IA-6-02C	Passive S.E. R.	AD130/SKC		
07A	IA-6-Basement	Passive S.E. R.	AD130/SKC		
08A	IA-7-01D	Passive S.E. R.	AD130/SKC		
09A	IA-7-01A	Passive S.E. R.	AD130/SKC		
10A	IA-7-01B	Passive S.E. R.	AD130/SKC		
11A	IA-7-01C	Passive S.E. R.	AD130/SKC		
12A	IA-7-02B	Passive S.E. R.	AD130/SKC		
13A	IA-7-02C	Passive S.E. R.	AD130/SKC		
14A	IA-7-02A	Passive S.E. R.	AD130/SKC		
15A	IA-8A-02A	Passive S.E. R.	AD130/SKC		
16A	IA-8A-02C	Passive S.E. R.	AD130/SKC		
17A	IA-8A-02D	Passive S.E. R.	AD130/SKC		
18A	IA-8A-03C	Passive S.E. R.	AD130/SKC		
19A	IA-8A-03F	Passive S.E. R.	AD130/SKC		
20A	IA-8A-03D	Passive S.E. R.	AD130/SKC		
21A	IA-8A-03C	Passive S.E. R.	AD130/SKC		

Continued on next page

Passive S.E. RAD130/SKC

Passive S.E. RAD130/SKC

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279



### WORK ORDER #: 2206225

#### Work Order Summary

CLIENT:	Mr. Robert Reineke K Singh & Associates	BILL TO:	Mr. Robert Reineke K Singh & Associates
PHONE:		<b>P.O.</b> #	
FAX:		<b>PROJECT</b> #	40443 CWC-West Block
DATE RECEIVED:	06/10/2022	CONTACT	Iade White
DATE COMPLETED:	06/17/2022	continen	Jade Wille

			<b>NECEIFI</b>	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	<b>PRESSURE</b>
24A	OA-6/7/8A/8B Background	Passive S.E. RAD130/SKC		
25A	Lab Blank	Passive S.E. RAD130/SKC		
25B	Lab Blank	Passive S.E. RAD130/SKC		
26A	CCV	Passive S.E. RAD130/SKC	NA	NA
26B	CCV	Passive S.E. RAD130/SKC	NA	NA
27A	LCS	Passive S.E. RAD130/SKC	NA	NA
27AA	LCSD	Passive S.E. RAD130/SKC	NA	NA
27B	LCS	Passive S.E. RAD130/SKC	NA	NA
27BB	LCSD	Passive S.E. RAD130/SKC	NA	NA

CERTIFIED BY:

layes

DATE: 06/17/22

DECEIDT

TINIAT

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP – CA009332021-13, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

🛟 eurofins

### LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 K Singh & Associates Workorder# 2206225

Twenty-four Radiello 130 (Solvent) samples were received on June 10, 2022. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

### **Receiving Notes**

There were no receiving discrepancies.

## **Analytical Notes**

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

If validated uptake rates were not available, rates were estimated using the chemical's diffusion coefficient in air and the geometric constant of the sampler. Chemicals that are poorly retained by the sorbent over the sampling duration may exhibit a low bias. All concentrations calculated using estimated rates are qualified with a "C" flag.

To calculate ug/m3 concentrations in the Lab Blanks, a sampling duration of 10294 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

### **Definition of Data Qualifying Flags**

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

🛟 eurofins

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- C Estimated concentration due to calculated sampling rate
- CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue



# **Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS**

### Client Sample ID: IA-6-01-B

#### Lab ID#: 2206225-01A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
trans-1,2-Dichloroethene	0.20	0.33	2.4 C	4.0 C
Client Sample ID: IA-6-01-A				
Lab ID#: 2206225-02A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
trans-1,2-Dichloroethene	0.20	0.32	0.31 C	0.50 C
Client Sample ID: IA-6-01-C				
Lab ID#: 2206225-03A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.10	0.14
Tetrachloroethene	0.10	0.17	0.44	0.74
trans-1,2-Dichloroethene	0.20	0.33	0.78 C	1.3 C
Client Sample ID: IA-6-02-B				
Lab ID#: 2206225-04A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.16	0.14	0.24
trans-1,2-Dichloroethene	0.20	0.32	2.2 C	3.6 C
Client Sample ID: IA-6-02A				
Lab ID#: 2206225-05A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.17	0.23	0.39

### **Client Sample ID: IA-6-02C**

Lab ID#: 2206225-06A

trans-1,2-Dichloroethene

0.20

1.9 C

3.2 C

0.33



# Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

### Client Sample ID: IA-6-02C

### Lab ID#: 2206225-06A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.14	0.14	0.19
Tetrachloroethene	0.10	0.16	0.25	0.41
trans-1,2-Dichloroethene	0.20	0.32	1.4 C	2.3 C

### **Client Sample ID: IA-6-Basement**

Lab ID#: 2206225-07A	
----------------------	--

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
trans-1,2-Dichloroethene	0.20	0.33	0.62 C	1.0 C

### **Client Sample ID: IA-7-01D**

#### Lab ID#: 2206225-08A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.16	0.40	0.65
trans-1,2-Dichloroethene	0.20	0.32	0.74 C	1.2 C

### **Client Sample ID: IA-7-01A**

### Lab ID#: 2206225-09A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.16	0.11	0.18
trans-1,2-Dichloroethene	0.20	0.32	1.4 C	2.2 C

### Client Sample ID: IA-7-01B

#### Lab ID#: 2206225-10A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.16	0.10	0.16
trans-1,2-Dichloroethene	0.20	0.32	1.1 C	1.8 C



# Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

### **Client Sample ID: IA-7-01C**

## Lab ID#: 2206225-11A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.16	0.27	0.45
trans-1,2-Dichloroethene	0.20	0.32	1.1 C	1.7 C
Client Sample ID: IA-7-02B				
Lab ID#: 2206225-12A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.17	0.12	0.19
trans-1,2-Dichloroethene	0.20	0.33	1.7 C	2.7 C
Client Sample ID: IA-7-02C				
Lab ID#: 2206225-13A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.16	1.1	1.8
trans-1,2-Dichloroethene	0.20	0.33	1.1 C	1.9 C
Client Sample ID: IA-7-02A				
Lab ID#: 2206225-14A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.17	0.13	0.21
trans-1,2-Dichloroethene	0.20	0.33	1.7 C	2.8 C
Client Sample ID: IA-8A-02A				
Lab ID#: 2206225-15A				
	Rpt. Limit	Rpt. Limit	Amount	Amount

Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.44	0.74
trans-1,2-Dichloroethene	0.20	0.33	1.9 C	3.1 C



# Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

### Client Sample ID: IA-8A-02C

### Lab ID#: 2206225-16A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	4.4	7.4
trans-1,2-Dichloroethene	0.20	0.33	1.7 C	2.8 C

### Client Sample ID: IA-8A-02D

#### Lab ID#: 2206225-17A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Tetrachloroethene	0.10	0.17	0.28	0.47
trans-1,2-Dichloroethene	0.20	0.33	2.6 C	4.3 C

### Client Sample ID: IA-8A-03C

### Lab ID#: 2206225-18A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.31	0.53
trans-1,2-Dichloroethene	0.20	0.33	5.0 C	8.2 C

### Client Sample ID: IA-8A-03F

### Lab ID#: 2206225-19A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.48	0.80
trans-1,2-Dichloroethene	0.20	0.33	23 C	38 C

### Client Sample ID: IA-8A-03D

#### Lab ID#: 2206225-20A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.53	0.88
trans-1,2-Dichloroethene	0.20	0.33	6.0 C	9.9 C



# Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

### **Client Sample ID: IA-8A-03C**

### Lab ID#: 2206225-21A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	2.1	3.5
trans-1,2-Dichloroethene	0.20	0.33	4.4 C	7.2 C

### Client Sample ID: IA-8A-03A

Lab ID#: 2206225-22A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.66	1.1
trans-1,2-Dichloroethene	0.20	0.33	6.6 C	11 C

### Client Sample ID: IA-8A-03B

### Lab ID#: 2206225-23A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Tetrachloroethene	0.10	0.17	0.85	1.4
trans-1,2-Dichloroethene	0.20	0.33	4.4 C	7.2 C

### Client Sample ID: OA-6/7/8A/8B Background

Lab ID#: 2206225-24A No Detections Were Found.



## Client Sample ID: IA-6-01-B Lab ID#: 2206225-01A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061406sim 1.00	Date of Collection: 6/8/22 1:48:00 PM Date of Analysis: 6/14/22 11:01 AM Date of Extraction: 6/14/22		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	2.4 C	4.0 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10177 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	



## Client Sample ID: IA-6-01-A Lab ID#: 2206225-02A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061407sim 1.00	Date of Collection: 6/8/22 3:55:00 PM Date of Analysis: 6/14/22 11:27 AM Date of Extraction: 6/14/22		22 3:55:00 PM 22 11:27 AM 4/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	0.31 C	0.50 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10294 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



## Client Sample ID: IA-6-01-C Lab ID#: 2206225-03A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061408sim 1.00	Date of Collection: 6/8/22 2:14:00 PM Date of Analysis: 6/14/22 11:53 AM Date of Extraction: 6/14/22		22 2:14:00 PM 22 11:53 AM ¥/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.10	0.14
Tetrachloroethene	0.10	0.17	0.44	0.74
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.78 C	1.3 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10186 minutes. Container Type: Radiello 130 (Solvent)

		Method
Surrogates	%Recovery	Limits
Toluene-d8	83	70-130



## Client Sample ID: IA-6-02-B Lab ID#: 2206225-04A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061409sim 1.00	Date of Collection: 6/8/22 3:50:00 PM Date of Analysis: 6/14/22 12:20 PM Date of Extraction: 6/14/22		22 3:50:00 PM 22 12:20 PM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	0.14	0.24
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	2.2 C	3.6 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10265 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



## Client Sample ID: IA-6-02A Lab ID#: 2206225-05A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061410sim 1.00	Date of Collection: 6/8/22 2:09:00 PM Date of Analysis: 6/14/22 12:46 PM Date of Extraction: 6/14/22		22 2:09:00 PM 22 12:46 PM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.23	0.39
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.9 C	3.2 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10161 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	82	70-130	



## Client Sample ID: IA-6-02C Lab ID#: 2206225-06A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061411sim 1.00	Date of Collection: 6/8/22 3:51:00 PM Date of Analysis: 6/14/22 01:13 PM Date of Extraction: 6/14/22		22 3:51:00 PM 22 01:13 PM ¥/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	0.14	0.19
Tetrachloroethene	0.10	0.16	0.25	0.41
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	1.4 C	2.3 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10262 minutes. Container Type: Radiello 130 (Solvent)

		Method
Surrogates	%Recovery	Limits
Toluene-d8	83	70-130



## Client Sample ID: IA-6-Basement Lab ID#: 2206225-07A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061412sim 1.00	Date of Collection: 6/8/22 2:55:00 PM Date of Analysis: 6/14/22 01:39 PM Date of Extraction: 6/14/22		22 2:55:00 PM 22 01:39 PM W22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	0.62 C	1.0 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10181 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	



## Client Sample ID: IA-7-01D Lab ID#: 2206225-08A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061413sim 1.00	Date of Collection: 6/8/22 4:10:00 PM Date of Analysis: 6/14/22 02:06 PM Date of Extraction: 6/14/22		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	0.40	0.65
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	0.74 C	1.2 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10252 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	



## Client Sample ID: IA-7-01A Lab ID#: 2206225-09A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061414sim 1.00	Date of Collection: 6/8/22 4:15:00 PM Date of Analysis: 6/14/22 02:32 PM Date of Extraction: 6/14/22		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	0.11	0.18
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	1.4 C	2.2 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10254 minutes. Container Type: Radiello 130 (Solvent)

		Method
Surrogates	%Recovery	Limits
Toluene-d8	83	70-130



## Client Sample ID: IA-7-01B Lab ID#: 2206225-10A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061415sim 1.00	Date of Collection: 6/8/22 4:10:00 PM Date of Analysis: 6/14/22 02:59 PM Date of Extraction: 6/14/22		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	0.10	0.16
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	1.1 C	1.8 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10247 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	



## Client Sample ID: IA-7-01C Lab ID#: 2206225-11A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061416sim 1.00	Date of Collection: 6/8/22 4:10:00 PM Date of Analysis: 6/14/22 03:25 PM Date of Extraction: 6/14/22		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	0.27	0.45
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	1.1 C	1.7 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10245 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	


#### Client Sample ID: IA-7-02B Lab ID#: 2206225-12A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061417sim 1.00	Date of Collection: 6/8/22 2:25:00 PM Date of Analysis: 6/14/22 03:51 PM Date of Extraction: 6/14/22		22 2:25:00 PM 22 03:51 PM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.12	0.19
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.7 C	2.7 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10135 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	84	70-130	



#### Client Sample ID: IA-7-02C Lab ID#: 2206225-13A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061418sim 1.00	Date of Collection: 6/8/22 3:50:00 PM Date of Analysis: 6/14/22 04:18 PM Date of Extraction: 6/14/22		22 3:50:00 PM 22 04:18 PM W22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	1.1	1.8
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.1 C	1.9 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10217 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



#### Client Sample ID: IA-7-02A Lab ID#: 2206225-14A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061419sim 1.00	Date of Collection: 6/8/22 2:26:00 PM Date of Analysis: 6/14/22 04:44 PM Date of Extraction: 6/14/22		22 2:26:00 PM 22 04:44 PM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.13	0.21
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.7 C	2.8 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10130 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	84	70-130	



#### Client Sample ID: IA-8A-02A Lab ID#: 2206225-15A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061420sim 1.00	Date of Collection: 6/8/22 3:48:00 PM Date of Analysis: 6/14/22 05:11 PM Date of Extraction: 6/14/22		22 3:48:00 PM 22 05:11 PM W22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.44	0.74
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.9 C	3.1 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10148 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	83	70-130	



#### Client Sample ID: IA-8A-02C Lab ID#: 2206225-16A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061421sim 1.00	Date of Collection: 6/8/22 3:47:00 PM Date of Analysis: 6/14/22 05:37 PM Date of Extraction: 6/14/22		22 3:47:00 PM 22 05:37 PM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	4.4	7.4
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	1.7 C	2.8 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10144 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



#### Client Sample ID: IA-8A-02D Lab ID#: 2206225-17A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061422sim 1.00	Date of Collection: 6/8/22 3:07:00 PM Date of Analysis: 6/14/22 06:03 PM Date of Extraction: 6/14/22		22 3:07:00 PM 22 06:03 PM W22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.28	0.47
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	2.6 C	4.3 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10100 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



#### Client Sample ID: IA-8A-03C Lab ID#: 2206225-18A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061423sim 1.00	Date of Collection: 6/8/22 3:35:00 PM Date of Analysis: 6/14/22 06:30 PM Date of Extraction: 6/14/22		22 3:35:00 PM 22 06:30 PM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.31	0.53
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	5.0 C	8.2 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10119 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



#### Client Sample ID: IA-8A-03F Lab ID#: 2206225-19A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061424sim 1.00	Date of Collection: 6/8/22 4:00:00 PM Date of Analysis: 6/14/22 06:56 PM Date of Extraction: 6/14/22		22 4:00:00 PM 22 06:56 PM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.48	0.80
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	23 C	38 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10142 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



#### Client Sample ID: IA-8A-03D Lab ID#: 2206225-20A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061425sim 1.00	Date of Collection: 6/8/22 4:00:00 PM Date of Analysis: 6/14/22 07:23 PM Date of Extraction: 6/14/22		22 4:00:00 PM 22 07:23 PM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.53	0.88
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	6.0 C	9.9 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10139 minutes. Container Type: Radiello 130 (Solvent)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	85	70-130	



#### Client Sample ID: IA-8A-03C Lab ID#: 2206225-21A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061506sim 1.00	Date of Collection: 6/8/22 3:55:00 PM Date of Analysis: 6/15/22 10:36 AM Date of Extraction: 6/15/22		22 3:55:00 PM 22 10:36 AM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	2.1	3.5
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	4.4 C	7.2 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10131 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	82	70-130	



#### Client Sample ID: IA-8A-03A Lab ID#: 2206225-22A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061507sim 1.00	Date of Collection: 6/8/22 3:55:00 PM Date of Analysis: 6/15/22 11:02 AM Date of Extraction: 6/15/22		22 3:55:00 PM 22 11:02 AM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.66	1.1
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	6.6 C	11 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10129 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	83	70-130	



#### Client Sample ID: IA-8A-03B Lab ID#: 2206225-23A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061508sim 1.00	Date of Collection: 6/8/22 3:46:00 PM Date of Analysis: 6/15/22 11:29 AM Date of Extraction: 6/15/22		22 3:46:00 PM 22 11:29 AM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	0.85	1.4
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	4.4 C	7.2 C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10116 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	84	70-130	



#### Client Sample ID: OA-6/7/8A/8B Background Lab ID#: 2206225-24A VOCS BY PASSIVE SAMPLER - GC/MS

T

File Name: Dil. Factor:	18061509sim 1.00	Date of Collection: 6/8/22 1:55:00 Pl Date of Analysis: 6/15/22 11:56 AM Date of Extraction: 6/15/22		22 1:55:00 PM 22 11:56 AM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.17	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.33	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10190 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery	Limits	
Toluene-d8	85	70-130	



#### Client Sample ID: Lab Blank Lab ID#: 2206225-25A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061405sim 1.00	Date of Collection: NA Date of Analysis: 6/14/22 10:16 AM Date of Extraction: 6/14/22		22 10:16 AM 1/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	Not Detected C	Not Detected C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10294 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery	Limits	
Toluene-d8	83	70-130	



#### Client Sample ID: Lab Blank Lab ID#: 2206225-25B VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18061505sim 1.00	Da Da Da	te of Collection: NA te of Analysis: 6/15/2 te of Extraction: 6/15	22 09:41 AM 5/22
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.14	Not Detected	Not Detected
Tetrachloroethene	0.10	0.16	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.10	0.16	Not Detected C	Not Detected C
trans-1,2-Dichloroethene	0.20	0.32	Not Detected C	Not Detected C

T

C = Estimated concentration due to calculated sampling rate.

Temperature = 77.0F , duration time = 10294 minutes. Container Type: Radiello 130 (Solvent)

		Method Limits	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	



File Name:

## **Air Toxics**

### Client Sample ID: CCV Lab ID#: 2206225-26A <u>VOCS BY PASSIVE SAMPLER - GC/MS</u> 18061402sim Date of Collection: NA

Dil. Factor:	1.00	Date of Analysis Date of Extraction	s: 6/14/22 08:49 AM on: NA
Compound		%Recovery	
Trichloroethene		102	
Tetrachloroethene		94	
cis-1,2-Dichloroethene		100	
trans-1,2-Dichloroethene		95	
Container Type: NA - Not Applica	ble		Mathad

Surrogates	%Recovery	Limits
Toluene-d8	84	70-130



#### **Client Sample ID: CCV** Lab ID#: 2206225-26B **VOCS BY PASSIVE SAMPLER - GC/MS** File Name: 18061502sim **Date of Collection: NA** Dil. Factor: 1.00 Date of Analysis: 6/15/22 08:14 AM Date of Extraction: NA Compound %Recovery 97 Trichloroethene 96 Tetrachloroethene 86 cis-1,2-Dichloroethene trans-1,2-Dichloroethene 82 Container Type: NA - Not Applicable Method Limits Surrogates %Recoverv

ounogates	/uitecovery	Linits
Toluene-d8	84	70-130



### Client Sample ID: LCS Lab ID#: 2206225-27A VOCS BY PASSIVE SAMPLER - GC/MS

Т

File Name: Dil. Factor:	18061403sim 1.00	Date of Collect Date of Analys Date of Extract	Date of Collection: NA Date of Analysis: 6/14/22 09:23 AM Date of Extraction: 6/14/22 Method Limits 70-130	
Compound		%Recovery	Method Limits	
Trichloroethene		96	70-130	
Tetrachloroethene		89	70-130	
cis-1,2-Dichloroethene		88	70-130	
trans-1,2-Dichloroethene		84	70-130	
Container Type: NA - Not Ap	plicable			
			Method	
Surrogates		%Recovery	Limits	
Toluene-d8		83	70-130	



### Client Sample ID: LCSD Lab ID#: 2206225-27AA VOCS BY PASSIVE SAMPLER - GC/MS

Т

File Name: Dil. Factor:	18061404sim 1.00	Date of Collect Date of Analys Date of Extract	tion: NA is:  6/14/22 09:50 AM tion:  6/14/22
Compound		%Recovery	Method Limits
Trichloroethene		98	70-130
Tetrachloroethene		92	70-130
cis-1,2-Dichloroethene		92	70-130
trans-1,2-Dichloroethene		88	70-130
Container Type: NA - Not A	oplicable		
	-		Method
Surrogates		%Recovery	Limits
Toluene-d8		84	70-130



### **Client Sample ID: LCS** Lab ID#: 2206225-27B VOCS BY PASSIVE SAMPLER - GC/MS

Т

File Name: Dil. Factor:	18061503sim 1.00	Date of Collection: NA Date of Analysis: 6/15/22 08:48 AM Date of Extraction: 6/15/22	
Compound		%Recovery	Method Limits
Trichloroethene		98	70-130
Tetrachloroethene		97	70-130
cis-1,2-Dichloroethene		75	70-130
trans-1,2-Dichloroethene		70	70-130
Container Type: NA - Not	Applicable		
			Method
Surrogates		%Recovery	Limits
Toluene-d8		85	70-130



### Client Sample ID: LCSD Lab ID#: 2206225-27BB VOCS BY PASSIVE SAMPLER - GC/MS

T

File Name: Dil. Factor:	18061504sim 1.00	Date of Collect Date of Analys Date of Extract	ion: NA is: 6/15/22 09:15 AM tion: 6/15/22
Compound		%Recovery	Method Limits
Trichloroethene		102	70-130
Tetrachloroethene		96	70-130
cis-1,2-Dichloroethene		89	70-130
trans-1,2-Dichloroethene		86	70-130
Container Type: NA - Not A	pplicable		
			Method
Surrogates		%Recovery	Limits
Toluene-d8		86	70-130

	SDR	6000	pon Receipt:	dition U _l (circle)	ole Conc	Sam	None	No	Z šes	s Intact? (°C)	Custody Seal Temperature	0	per Name: Lewby	Ship Air B
		)	-				Þ	Lab Use Only						
4 - 100y, m	hing signature also	Relinquish	rdinances of any kind ping of samples.	ons, and o ng, of ship	s, regulatic on, handlir	ional law le collect	ederal, and internal vy kind, related to th	able local, State, F nd, or action, of ar	h all applica laim, demai	mpliance wit gainst any c	are shipped in co rofins Air Toxics a	ent indicates that samples , defend, and indemnify Eu	linquishing signature on this docum icates agreement to hold harmless.	Rel
									_					
P			lime		Date		nature	Received by: (sig		Time	Date	•	quished by: (signature)	Relin
	to Lab:	Notes to	11me 0950	2	Date 6/10/		nature)	A T	25/2	$\frac{Time}{\mathcal{V}}$	Date 6/9/2022		quished by bignatural	Relin
			K			5	2:36pm	F	Pm	1:36	¢	FA-7-03A	15 588	NYA
							3:50m		P P	1:33		IA-7-036	LJ 587	۱۶A
							a:25pm		-m	1:30		IA-7-0313	98551	IN
							4:10 pm		3	26:1		IA-7-01C	58557	011
							Hilopm		n Pen	: C:1		IA-7-013	1 2284	10)
							Hilspm		ю. З	1:21		IA-7-01A	1 1 5 8 3	170
-							4:10 pm		FM	1:18		54-7-017	2282	4.80
							2:55 pm		P M	1:14		TA-6-Basement	12 281	R
							3:51pm		19 pm	12:1		IA-6-02C	LJ 280	06A
							2:09pm		epm	12:4		TA-6-02A	1 15 579	Re Be
							3: SOPM		5pm	12:4		FA-6-02-B	17 578	OYA
							Julypon		6 pm	による		IA-6-01-C	17 577	224
							3:55pm		P M	12:21		IA-6-01-A	1-3576	221
		,	ACE ATCE			$\times$	("HE pm	06/08/22	lpm	12:1	06/01/23	IA-6-01-13	LJ 575	OIA
	Sample Comments:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Analysis Requested	Other (_	Soil Gas Workpla	Indoor/(	Retrieval (hr:min)	Retrieval (mm/dd/yy)	yment nin)	Deploy (hr:1	Deployment (mm/dd/yy)	Sampler ID	dentification	.D La
	Specify		bu b <i>r</i> l		ace N	Dutd	Time of	Date of	e of	Tim	Date of			
222	ush Due 6/17/2	N R	ppmv mg/m3		Monito	or Ai	H Wether A.H	e, Jazdin Bri	Reinek	Robert	Collected by	eke @ Ksingh engine	itact phone/email: rrein	Con
1994 - Canada (1994)	ormal		ppbv µg/m3	)	oring	ir		Vest Block	10-1	ч С И	Project Name	Reinek	ject Manager:	Proj
	Turn Around Time:		Reporting Units (circle)	İX	nple Matr	San (c		P.O. #:		0443	Project #: <u></u>	Associates, Inc. 1	npany: K. Singh k	Con
a	C220022					eal #: _	Case S					ت تلكيا الالميان عليكا الأمين من		
			WO#			L	Custody		rbent	ve so	Pass	Nir Trying	eurotins	8
	age 🗙 of J	Pa				_ <b></b>	C::			2				•
	ر ر									1994) 1994				

Eurofins Air Toxics, Inc. 180 Blue Ravine Road, Suite B Folsom, CA 95630 (916) 985-1000 Fax (916) 351-8279

	ax (916) 351-8279	-1000 Fa	6) 985	(91	n, CA 95630	uite B Folsor	lavine Road, Si	5. 180 Blue R	rofins Air Toxics, Inc	Ē.		
Good SDR	pon Receipt:	Condition U (circle)	Imple	ပ္စ	None	NA se	C)	Custody Seals Temperature (°		fall	ber Name: III #:	Shipp Air Bi
					$\mathbf{b}$	Lab Use Only		> - -				
telinquishing signature also	ordinances of any kind. R oping of samples.	gulations, and c andling, of ship	laws, re lection, t	national the col	ederal, and intern ly kind, related to	cable local, State, F and, or action, of ar	pliance with all appli ainst any claim, dem	are shipped in comi irofins Air Toxics aga	ment indicates that samples s, defend, and indemnity Eu	gnature on this docur nent to hold harmless	nquishing sig cates agreen	Reli
	Time		Datè		nature)	Received by: (sig	Time	Dáte		(signature)	uished by:	Relino
Notes to Lab:	Time 0150	10/22	Date	/	nature)	Received by: (sig	Time 12:08PN	Date 6/9/22	1	(stignature)	mished by:	Relino
						7					2013	
											110.070	
											10000	
							-					
	¢			F	135,64	e	12:05 pm	¢	OA-61718A18B	574	5	AHC
	F			4	3:4600	-<	1	~	FA-84-0318	988	G	7.7k
				5	3:55 pt		3:06 pm		FA-8A-03A	585	5	112
					3:55 pm		3:04pm		FA-8A-634	H88	E	212
					4:000		3:01 pm		FH-8A-0317	883	5	20A
			1		4:00 m		2128pm		FA-8A-03F	883	5	Nev
				3	3:350		2:56 pm		IA-84-03C	188	52	18/
					3107 pm		2:47 FM		TA-8A-CAD	088	525	A
					3:4700		2:43 pm	06/0422	IA-84-03C	874	55	(61
	PLETICE			×	3:48 m	060802	2:40pm	06/01/22	IA-84-024	376	52	RN
Sample Comments:	Analysis Requested	Workpl Other (	Soil Ga	Indoor/	Retrieval (hr:min)	Retrieval (mm/dd/yy)	Deployment (hr:min)	Deployment (mm/dd/yy)	Sampler ID	ntification 下	Ider	
Specify	bu brid build build	ace Mon	s	Outdoor	Time of	Date of	Time of	Date of	Nefe @ K Xygrony	he/email: Yrcth	lact phon	- Cont
Normal	ppbv Hormas	itoring		Air	A F	vest Blo	CWC-6	Project Name:	REINCHE	iger: Robert	ect Mana	Proje
Turn Around Time:	Reporting Units (circle)	Matrix ( one)	Sample (checł			P.O. #:	443	Project #: <u>4</u> 0	Associates	, Sinyin R	Ipany: K	Com
222 4023				Seal #	Case							
	WO#				Custon			1 0331	A Toxics			Ş
(					つこうかん		io Corhoni	Dacch		)	) ×	9 0 0 0

Page 3 of 3

### ATTACHMENT C

Exhaust Fan Sampling Test Results



# Synergy Environmental Lab, LLC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

ROBERT REINEKE K SINGH & ASSOCIATES 3636 N. 124TH STREET MILWAUKEE. WI 53222

#### **Report Date** 20-May-22

Project Name Project #	CWC WEST 40443	BLOCK					Invo	<b>ice</b> # E409	020		
Lab Code Sample ID Sample Matri Sample Date	5040920A EP-1 <b>x</b> Air 5/9/2022										
		Result	Unit	LOD I	LOQ D	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic											
Air Samples											
Acetone		195	ug/m3	0.299	0.95	1	TO-15		5/13/2022	CJR	1
Benzene		2.04	ug/m3	0.136	0.433	1	TO-15		5/13/2022	CJR	1
Benzyl Chloride		< 0.209	ug/m3	0.209	0.665	1	TO-15		5/13/2022	CJR	1
Bromodichlorome	ethane	< 0.374	ug/m3	0.374	1.19	1	TO-15		5/13/2022	CJR	1
Bromoform		< 0.414	ug/m3	0.414	1.32	1	TO-15		5/13/2022	CJR	1
Bromomethane		< 0.2	ug/m3	0.2	0.637	1	TO-15		5/13/2022	CJR	1
1,3-Butadiene		< 0.143	ug/m3	0.143	0.454	1	TO-15		5/13/2022	CJR	1
Carbon Disulfide		0.37 "J"	ug/m3	0.138	0.44	1	TO-15		5/13/2022	CJR	1
Carbon Tetrachlo	ride	0.50 "J"	ug/m3	0.307	0.978	1	TO-15		5/13/2022	CJR	1
Chlorobenzene		< 0.251	ug/m3	0.251	0.798	1	TO-15		5/13/2022	CJR	1
Chloroethane		< 0.159	ug/m3	0.159	0.507	1	TO-15		5/13/2022	CJR	1
Chloroform		1.56	ug/m3	0.3	0.953	1	TO-15		5/13/2022	CJR	1
Chloromethane		< 0.831	ug/m3	0.831	2.64	1	TO-15		5/13/2022	CJR	1
Cyclohexane		7.3	ug/m3	0.212	0.674	1	TO-15		5/13/2022	CJR	1
Dibromochloromo	ethane	< 0.376	ug/m3	0.376	1.2	1	TO-15		5/13/2022	CJR	1
1,4-Dichlorobenz	ene	< 0.302	ug/m3	0.302	0.96	1	TO-15		5/13/2022	CJR	1
1,3-Dichlorobenz	ene	< 0.302	ug/m3	0.302	0.96	1	TO-15		5/13/2022	CJR	1
1,2-Dichlorobenz	ene	< 0.235	ug/m3	0.235	0.749	1	TO-15		5/13/2022	CJR	1
Dichlorodifluoror	nethane	2.62	ug/m3	0.263	0.836	1	TO-15		5/13/2022	CJR	1
1,2-Dichloroethar	ne	< 0.24	ug/m3	0.24	0.763	1	TO-15		5/13/2022	CJR	1
1,1-Dichloroethar	ne	< 0.187	ug/m3	0.187	0.596	1	TO-15		5/13/2022	CJR	1
1,1-Dichloroether	ne	< 0.21	ug/m3	0.21	0.668	1	TO-15		5/13/2022	CJR	1
cis-1,2-Dichloroe	thene	< 0.197	ug/m3	0.197	0.626	1	TO-15		5/13/2022	CJR	1
trans-1,2-Dichlore	oethene	2.02	ug/m3	0.231	0.734	1	TO-15		5/13/2022	CJR	1
1,2-Dichloroprop	ane	< 0.28	ug/m3	0.28	0.89	1	TO-15		5/13/2022	CJR	1
			-								

## Project Name CWC WEST BLOCK

**Project #** 40443

Lab Code 5040920A

Sample ID EP-1

Sample Date 5/9/2022

	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
trans-1,3-Dichloropropene	< 0.198	ug/m3	0.198	0.63	1	TO-15		5/13/2022	CJR	1
cis-1,3-Dichloropropene	< 0.234	ug/m3	0.234	0.745	1	TO-15		5/13/2022	CJR	1
1,2-Dichlorotetrafluoroethane	< 0.446	ug/m3	0.446	1.42	1	TO-15		5/13/2022	CJR	1
1,4-Dioxane	< 0.157	ug/m3	0.157	0.5	1	TO-15		5/13/2022	CJR	1
EDB (1,2-Dibromoethane)	< 0.342	ug/m3	0.342	1.09	1	TO-15		5/13/2022	CJR	1
Ethanol	19.3	ug/m3	0.152	0.482	1	TO-15		5/13/2022	CJR	1
Ethyl Acetate	1.15	ug/m3	0.176	0.559	1	TO-15		5/13/2022	CJR	1
Ethylbenzene	0.52 "J"	ug/m3	0.203	0.645	1	TO-15		5/13/2022	CJR	1
4-Ethyltoluene	0.59 "J"	ug/m3	0.214	0.681	1	TO-15		5/13/2022	CJR	1
Heptane	3.8	ug/m3	0.265	0.845	1	TO-15		5/13/2022	CJR	1
Hexachlorobutadiene	< 0.489	ug/m3	0.489	1.56	1	TO-15		5/13/2022	CJR	1
Hexane	5.1	ug/m3	0.235	0.748	1	TO-15		5/13/2022	CJR	1
2-Hexanone	< 0.222	ug/m3	0.222	0.707	1	TO-15		5/13/2022	CJR	1
Isopropyl Alcohol	9.6	ug/m3	0.109	0.347	1	TO-15		5/13/2022	CJR	1
Methyl ethyl ketone (MEK)	33	ug/m3	0.178	0.567	1	TO-15		5/13/2022	CJR	1
Methyl isobutyl ketone (MIBK)	2.46	ug/m3	0.168	0.536	1	TO-15		5/13/2022	CJR	1
Methyl Methacrylate	< 0.217	ug/m3	0.217	0.69	1	TO-15		5/13/2022	CJR	1
Methylene chloride	21	ug/m3	0.159	0.506	1	TO-15		5/13/2022	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.16	ug/m3	0.16	0.509	1	TO-15		5/13/2022	CJR	1
Naphthalene	< 0.675	ug/m3	0.675	2.15	1	TO-15		5/13/2022	CJR	1
Propene	6.0	ug/m3	0.079	0.251	1	TO-15		5/13/2022	CJR	1
Styrene	< 0.181	ug/m3	0.181	0.577	1	TO-15		5/13/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.325	ug/m3	0.325	1.03	1	TO-15		5/13/2022	CJR	1
Tetrachloroethene	76	ug/m3	0.278	0.884	1	TO-15		5/13/2022	CJR	1
Tetrahydrofuran	181	ug/m3	0.131	0.417	1	TO-15		5/13/2022	CJR	1
Toluene	4.8	ug/m3	0.184	0.585	1	TO-15		5/13/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.657	ug/m3	0.657	2.09	1	TO-15		5/13/2022	CJR	1
1,1,1-Trichloroethane	< 0.249	ug/m3	0.249	0.793	1	TO-15		5/13/2022	CJR	1
1,1,2-Trichloroethane	< 0.258	ug/m3	0.258	0.822	1	TO-15		5/13/2022	CJR	1
Trichloroethene (TCE)	< 0.237	ug/m3	0.237	0.754	1	TO-15		5/13/2022	CJR	1
Trichlorofluoromethane	1.24	ug/m3	0.337	1.07	1	TO-15		5/13/2022	CJR	1
Trichlorotrifluoroethane	0.54 "J"	ug/m3	0.402	1.28	1	TO-15		5/13/2022	CJR	1
1,2,4-Trimethylbenzene	4.3	ug/m3	0.283	0.899	1	TO-15		5/13/2022	CJR	1
1,3,5-Trimethylbenzene	1.28	ug/m3	0.232	0.739	1	TO-15		5/13/2022	CJR	1
Vinyl acetate	< 0.203	ug/m3	0.203	0.645	1	TO-15		5/13/2022	CJR	1
Vinyl Chloride	< 0.148	ug/m3	0.148	0.472	1	TO-15		5/13/2022	CJR	1
m&p-Xylene	2.17	ug/m3	0.377	1.2	1	TO-15		5/13/2022	CJR	1
o-Xylene	1.86	ug/m3	0.218	0.695	1	TO-15		5/13/2022	CJR	1

Project Name C Proiect # 4	CWC WEST 0443	BLOCK					Invo	<b>ice</b> # E409	020		
Lab Code Sample ID Sample Matrix Sample Date	5040920B EP-2 Air 5/9/2022	Decult	Unit	LOD	100	Dil	Mathod	Ext Data	Run Data	Analyst	Code
o :		Kesuit	Unit	LOD	LUQ	DI	Methou	Ext Date	Kun Date	Anaryst	Coue
Organic Air Samples											
Acetone		24.8	ug/m3	0.299	0.95	1	TO-15		5/13/2022	CJR	1
Benzene		1.47	ug/m3	0.136	0.433	1	TO-15		5/13/2022	CJR	1
Benzyl Chloride		< 0.209	ug/m3	0.209	0.665	1	TO-15		5/13/2022	CJR	1
Bromodichlorometha	ane	0.47 "J"	ug/m3	0.374	1.19	1	TO-15		5/13/2022	CJR	1
Bromoform		< 0.414	ug/m3	0.414	1.32	1	TO-15		5/13/2022	CJR	1
Bromomethane		< 0.2	ug/m3	0.2	0.637	1	TO-15		5/13/2022	CJR	1
1,3-Butadiene		< 0.143	ug/m3	0.143	0.454	1	TO-15		5/13/2022	CJR	1
Carbon Disulfide		0.34 "J"	ug/m3	0.138	0.44	1	TO-15		5/13/2022	CJR	1
Carbon Tetrachloride	e	0.63 "J"	ug/m3	0.307	0.978	1	TO-15		5/13/2022	CJR	1
Chlorobenzene		< 0.251	ug/m3	0.251	0.798	1	TO-15		5/13/2022	CJR	1
Chloroethane		< 0.159	ug/m3	0.159	0.507	1	TO-15		5/13/2022	CJR	1
Chloroform		1.12	ug/m3	0.3	0.953	1	TO-15		5/13/2022	CJR	1
Chloromethane		< 0.831	ug/m3	0.831	2.64	. 1	TO-15		5/13/2022	CJR	1
Cyclohexane		1.69	11g/m3	0.212	0.674	1	TO-15		5/13/2022	CIR	1
Dibromochlorometh	ane	< 0.376	11g/m3	0.376	1.2	1	TO-15		5/13/2022	CIR	1
1 4-Dichlorobenzene		< 0.302	ug/m3	0.302	0.96	1	TO-15		5/13/2022	CIR	1
1 3-Dichlorobenzene	•	< 0.302	ug/m3	0.302	0.96	1	TO-15		5/13/2022	CIR	1
1 2-Dichlorobenzene	•	< 0.235	ug/m3	0.235	0 749	1	TO-15		5/13/2022	CIR	1
Dichlorodifluoromet	hane	2 57	ug/m3	0.255	0.745	1	TO-15		5/13/2022	CIR	1
1.2-Dichloroethane	nane	< 0.24	ug/m3	0.205	0.763	1	TO-15		5/13/2022	CIR	1
1,2-Dichloroethane		< 0.187	ug/m3	0.187	0.703	1	TO 15		5/13/2022	CIP	1
1,1-Dichloroethane		< 0.21	ug/m3	0.187	0.590	1	TO 15		5/12/2022	CIR	1
r,1-Dichloroethere		< 0.107	ug/m3	0.21	0.000	1	TO 15		5/12/2022	CIR	1
trans 1.2 Dichlorosti	hono	< 0.197	ug/m3	0.197	0.020	1	TO 15		5/13/2022	CIR	1
1.2 Dishlarana	nene	5.2	ug/1115	0.231	0.754		TO-15		5/15/2022	CIR	1
1,2-Dichloropropane		< 0.28	ug/m5	0.28	0.89	1	TO-15		5/13/2022	CIR	1
trans-1,3-Dichloropr	opene	< 0.198	ug/m3	0.198	0.63	1	TO-15		5/13/2022	CJR	1
cis-1,3-Dichloroprop	bene	< 0.234	ug/m3	0.234	0.745	1	TO-15		5/13/2022	CJR	1
1,2-Dichlorotetrafluo	oroethane	< 0.446	ug/m3	0.446	1.42		TO-15		5/13/2022	CJR	1
1,4-Dioxane		< 0.157	ug/m3	0.157	0.5	1	TO-15		5/13/2022	CJR	1
EDB (1,2-Dibromoe	thane)	< 0.342	ug/m3	0.342	1.09		10-15		5/13/2022	CJR	1
Ethanol		4.8	ug/m3	0.152	0.482	1	TO-15		5/13/2022	CJR	1
Ethyl Acetate		< 0.176	ug/m3	0.176	0.559	1	TO-15		5/13/2022	CJR	1
Ethylbenzene		28.4	ug/m3	0.203	0.645	1	TO-15		5/13/2022	CJR	1
4-Ethyltoluene		1.18	ug/m3	0.214	0.681	1	TO-15		5/13/2022	CJR	1
Heptane		1.68	ug/m3	0.265	0.845	1	TO-15		5/13/2022	CJR	1
Hexachlorobutadiene	e	< 0.489	ug/m3	0.489	1.56	1	TO-15		5/13/2022	CJR	1
Hexane		2.5	ug/m3	0.235	0.748	1	TO-15		5/13/2022	CJR	1
2-Hexanone		< 0.222	ug/m3	0.222	0.707	1	TO-15		5/13/2022	CJR	1
Isopropyl Alcohol		1.33	ug/m3	0.109	0.347	1	TO-15		5/13/2022	CJR	1
Methyl ethyl ketone	(MEK)	15.7	ug/m3	0.178	0.567	1	TO-15		5/13/2022	CJR	1
Methyl isobutyl keto	ne (MIBK)	0.37 "J"	ug/m3	0.168	0.536	1	TO-15		5/13/2022	CJR	1
Methyl Methacrylate	e	< 0.217	ug/m3	0.217	0.69	1	TO-15		5/13/2022	CJR	1
Methylene chloride		18.8	ug/m3	0.159	0.506	1	TO-15		5/13/2022	CJR	1
Methyl tert-butyl eth	er (MTBE)	< 0.16	ug/m3	0.16	0.509	1	TO-15		5/13/2022	CJR	1

Project Name	CWC WEST BLOCK
Project #	40443

Lab Code5040920BSample IDEP-2Sample MatrixAirSample Date5/9/2022

Ext Date         Run Date Analyst         Comparison           5/13/2022         CJR         1           5/13/2022         CIR         1	de
5/13/2022 CJR 1 5/13/2022 CJR 1	
5/13/2022 CIR 1	
5/15/2022 CSK 1	
5/13/2022 CJR 1	
	5/13/2022       CJR       1         5/13/2022       CJR       1

Project Name Proiect #	CWC WEST 40443	BLOCK					Invo	<b>bice</b> # E409	920		
Lab Code Sample ID Sample Matrix Sample Date	5040920C EP-3 Air 5/9/2022	<b>D V</b>			100	<b>D</b> !!		E ( D (			
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic Air Samples											
Acetone		126	ug/m3	0.299	0.95	1	TO-15		5/13/2022	CJR	1
Benzene		5.7	ug/m3	0.136	0.433	1	TO-15		5/13/2022	CJR	1
Benzyl Chloride		< 0.209	ug/m3	0.209	0.665	1	TO-15		5/13/2022	CJR	1
Bromodichloromet	hane	1.27	ug/m3	0.374	1.19	1	TO-15		5/13/2022	CJR	1
Bromoform		< 0.414	ug/m3	0.414	1.32	1	TO-15		5/13/2022	CJR	1
Bromomethane		< 0.2	ug/m3	0.2	0.637	1	TO-15		5/13/2022	CJR	1
1,3-Butadiene		< 0.143	ug/m3	0.143	0.454	1	TO-15		5/13/2022	CJR	1
Carbon Disulfide		0.34 "J"	ug/m3	0.138	0.44	1	TO-15		5/13/2022	CJR	1
Carbon Tetrachlori	ide	0.57 "J"	ug/m3	0.307	0.978	1	TO-15		5/13/2022	CJR	1
Chlorobenzene		< 0.251	ug/m3	0.251	0.798	1	TO-15		5/13/2022	CJR	1
Chloroethane		< 0.159	ug/m3	0.159	0.507	1	TO-15		5/13/2022	CJR	1
Chloroform		4.2	ug/m3	0.3	0.953	1	TO-15		5/13/2022	CJR	1
Chloromethane		< 0.831	ug/m3	0.831	2.64	1	TO-15		5/13/2022	CJR	1
Cyclohexane		7.5	ug/m3	0.212	0.674	1	TO-15		5/13/2022	CJR	1
Dibromochloromet	hane	< 0.376	ug/m3	0.376	1.2	1	TO-15		5/13/2022	CJR	1
1,4-Dichlorobenzer	ne	< 0.302	ug/m3	0.302	0.96	1	TO-15		5/13/2022	CJR	1
1,3-Dichlorobenzer	ne	< 0.302	ug/m3	0.302	0.96	1	TO-15		5/13/2022	CJR	1
1,2-Dichlorobenzer	ne	< 0.235	ug/m3	0.235	0.749	1	TO-15		5/13/2022	CJR	1
Dichlorodifluorom	ethane	2.57	ug/m3	0.263	0.836	1	TO-15		5/13/2022	CJR	1
1,2-Dichloroethane	e	< 0.24	ug/m3	0.24	0.763	1	TO-15		5/13/2022	CJR	1
1,1-Dichloroethane	e	< 0.187	ug/m3	0.187	0.596	1	TO-15		5/13/2022	CJR	1
1,1-Dichloroethene	e	< 0.21	ug/m3	0.21	0.668	1	TO-15		5/13/2022	CJR	1
cis-1.2-Dichloroeth	nene	0.277 "J"	ug/m3	0.197	0.626	1	TO-15		5/13/2022	CJR	1
trans-1.2-Dichloro	ethene	3.2	ug/m3	0.231	0.734	1	TO-15		5/13/2022	CJR	1
1.2-Dichloropropa	ne	< 0.28	ug/m3	0.28	0.89	1	TO-15		5/13/2022	CJR	1
trans-1.3-Dichloro	propene	< 0.198	ug/m3	0.198	0.63	1	TO-15		5/13/2022	CJR	1
cis-1.3-Dichloropro	opene	< 0.234	11g/m3	0.234	0.745	1	TO-15		5/13/2022	CIR	1
1.2-Dichlorotetraf	uoroethane	< 0.446	ug/m3	0.446	1.42	1	TO-15		5/13/2022	CJR	1
1.4-Dioxane		< 0.157	ug/m3	0.157	0.5	1	TO-15		5/13/2022	CJR	1
EDB (1.2-Dibrom	oethane)	< 0.342	ug/m3	0.342	1.09	1	TO-15		5/13/2022	CJR	1
Ethanol	)	83	11g/m3	0.152	0.482	1	TO-15		5/13/2022	CIR	1
Ethyl Acetate		< 0.176	ug/m3	0.176	0.102	1	TO-15		5/13/2022	CIR	1
Ethylbenzene		17.5	ug/m3	0.203	0.645	1	TO-15		5/13/2022	CIR	1
4-Ethyltoluene		0.74	ug/m3	0.214	0.681	1	TO-15		5/13/2022	CIR	1
Hentane		99	ug/m3	0.265	0.845	1	TO-15		5/13/2022	CIR	1
Hexachlorobutadie	ne	< 0.489	ug/m3	0.489	1 56	. 1	TO-15		5/13/2022	CIR	1
Hexane	inc .	56	ug/m3	0.235	0 748	1	TO-15		5/13/2022	CIR	1
2-Hexanone		< 0.222	ug/m3	0.233	0.740	1	TO-15		5/13/2022	CIR	1
Isopropyl Alcohol		3.4	ug/m3	0.109	0.767	1	TO-15		5/13/2022	CIR	1
Methyl ethyl keton	e (MEK)	58	110/m3	0.109	0.547	1	TO-15		5/13/2022	CJR	1
Methyl isobutyl ke	tone (MIRK)	1.02	ug/m3	0.168	0.507	1	TO-15		5/13/2022	CIR	1
Methyl Methacryla	ite	< 0.217	ug/m3	0.217	0.550	1	TO-15		5/13/2022	CIR	1
Methylene chloride		20.8	110/m3	0.150	0.506	1	TO-15		5/13/2022	CIR	1
Methyl tert-butyl e	ther (MTRF)	< 0.16	110/m3	0.16	0.500	1	TO-15		5/13/2022	CIR	1
meany i wit-buryl e		< 0.10	ug/115	0.10	0.509	1	10-15		5/15/2022	Car	

Project Name Project #	CWC WEST BLOCK 40443
Lab Code	5040920C
Sample ID	EP-3

**Invoice #** E40920

Sample Matrix Air Sample Date 5/9/2022

Sample Date 5/9/2022										
	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Naphthalene	0.68 "J"	ug/m3	0.675	2.15	1	TO-15		5/13/2022	CJR	1
Propene	< 0.079	ug/m3	0.079	0.251	1	TO-15		5/13/2022	CJR	1
Styrene	0.255 "J"	ug/m3	0.181	0.577	1	TO-15		5/13/2022	CJR	1
1,1,2,2-Tetrachloroethane	< 0.325	ug/m3	0.325	1.03	1	TO-15		5/13/2022	CJR	1
Tetrachloroethene	57	ug/m3	0.278	0.884	1	TO-15		5/13/2022	CJR	1
Tetrahydrofuran	183	ug/m3	0.131	0.417	1	TO-15		5/13/2022	CJR	1
Toluene	12.2	ug/m3	0.184	0.585	1	TO-15		5/13/2022	CJR	1
1,2,4-Trichlorobenzene	< 0.657	ug/m3	0.657	2.09	1	TO-15		5/13/2022	CJR	1
1,1,1-Trichloroethane	1.03	ug/m3	0.249	0.793	1	TO-15		5/13/2022	CJR	1
1,1,2-Trichloroethane	< 0.258	ug/m3	0.258	0.822	1	TO-15		5/13/2022	CJR	1
Trichloroethene (TCE)	1.18	ug/m3	0.237	0.754	1	TO-15		5/13/2022	CJR	1
Trichlorofluoromethane	1.29	ug/m3	0.337	1.07	1	TO-15		5/13/2022	CJR	1
Trichlorotrifluoroethane	0.54 "J"	ug/m3	0.402	1.28	1	TO-15		5/13/2022	CJR	1
1,2,4-Trimethylbenzene	4.6	ug/m3	0.283	0.899	1	TO-15		5/13/2022	CJR	1
1,3,5-Trimethylbenzene	1.57	ug/m3	0.232	0.739	1	TO-15		5/13/2022	CJR	1
Vinyl acetate	< 0.203	ug/m3	0.203	0.645	1	TO-15		5/13/2022	CJR	1
Vinyl Chloride	< 0.148	ug/m3	0.148	0.472	1	TO-15		5/13/2022	CJR	1
m&p-Xylene	44	ug/m3	0.377	1.2	1	TO-15		5/13/2022	CJR	1
o-Xylene	10.6	ug/m3	0.218	0.695	1	TO-15		5/13/2022	CJR	1

"J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

Code Comment

1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

**Authorized Signature** 

Michaelplul

	Q
	ĸ
	ö
	ш
	R
	≿
	5
	Ĕ
1	5
١	6
	Ч
	z
	◄
	Ξ.

	ab. Inc.
<b>Wherd</b>	nmental La
	Enviro

	WI 5491	twchc.co
www.synergy-lab.net	1990 Prospect Ct. • Appleton,	20-830-2455 • mrsvnerov@wi

QUOTE # : Lab I.D. #

geof	Sample Handling Request	h Analysis Date Required:	s accepted only with prior authorization)	mal Turn Around
Page	Sar	Rush Ar	(Rushes acc	V Normal

Chain # 44281

Project #: 404 Sampler: (signature)	143 Gul				1990 P 920-830	rospect Ct. -2455 • mrs	<ul> <li>Appleton, V</li> <li>Ynergy @ wi.tr</li> </ul>	VI 549 vcbc.	114 com			7	No	es aco	Turn	Arol	und	prior a	utho	rizati	(u
Project (Name / Loi	ation): CLUC LUG	t Block	1			10			Ana	lysis	Requ	leste	_					Oth	er Ar	alys	s
Reports To: Ro	zert Remere		Invo	ice To:	Polaert +	Peineke				_		-		-			-	-		_	
Company ESING	in and Associates		Con	pany	csingly an	of Assacia	trs			_	11		_	SC	-						
Address 7636	N 124 Phospert		Add	ress	236N 12	4th st		(9					Э	סרונ	-					-	
City State Zip	mundosa, WT ?	53222	City	State Zip	licuation	Den WIE	23222	96 de 96 de					VEN	S OB	(2:+	3					
Phone 2.228			Pho	ne 2.C	HE111282			S OF		BITE BITE	(02	(1208	ИТН	END	(09)	(St -	SIA			-	
Email Freme	Le Q Ksinghenginee	which com	Emi	ail Fre	inete Ol	singh ong	man fullion	IO Do		TIN/3	28 A	8 A 9	AAP E	SUSP	(EP)	OT) 8	MET			-	DI di di di
Lab I.D.	Sample I.D.	Colle	ection	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	M) ORD M) ORD	DABJ	OIL & GI	PAH (EP	PVOC (E	PVOC +	S JATOT	AOC (EE	VOC AIF	ARDR-8	-			
Sotono A	1-12	ed 5/9	2:35	2	1	A	NIA									7		-			
B	5-2	11	3:32	2	1	*	NA						-			7					
2	EP-3	4	3:13	2	1	4	NA	-		-			-		-	7					
										-		-	-		-						
										-					-			$\vdash$		$\vdash$	
										-						-					
										-			_				_				
									_	-											
												-			-		_	-		-	
										_			-		-			-		-	_
Comments/Spec	ial Instructions (*Specify g	groundwat	er "GW", I	Drinking '	Nater "DW", V	Vaste Water '	"WW", Soil "S"	. Air "/	1. 0	, Slu	ige, e	etc.)									

	Relinquished By: (sign)	Time Da	te Received By: (sign)	A Time Date
Sample Integrity - To be completed by receiving lab.	100 -	4:35 66/	Hi man Moresk	5-01-5 20-5
Method of Shipment: CS	A.b.		and hadnas	
Temp. of Temp. Blank: °C On Ice:				
Cooler seal intact upon receipt: X Yes No	Received in Laboratory By:	1. Pucc	Time: 🕅 > 🔘 🔿	Date: S/11/77