

Ms. Alyssa Sellwood, P.E.
Complex Sites Project Manager – Remediation and Redevelopment Program
Wisconsin Department of Natural Resources
101 South Webster Street
PO Box 7921
Madison, WI 53707

Date: June 18, 2021 BRRTS #: 02-38-580694

Subject: Collected Foam Cause and Significance Evaluation, Tyco Fire

Technology Center PFAS

2700 Industrial Parkway South, Marinette, Wisconsin

Arcadis U.S., Inc. 126 North Jefferson Street Suite 400 Milwaukee Wisconsin 53202 Phone: 414 276 7742

Fax: 414 276 7603 www.arcadis.com

Dear Ms. Sellwood,

On behalf of Tyco Fire Products LP (Tyco), Arcadis is providing this cause and significance evaluation of foam collected in the study area ditches as part of the sample results notification for waste characterization and disposal activities related to the Tyco Fire Technology Center (FTC) per- or polyfluoroalkyl substances (PFAS) site located at 2700 Industrial Parkway South in Marinette, Wisconsin (Site).

Consistent with the Revised Foam Monitoring Work Plan submitted in April 2021, Tyco monitored area ditches beginning in March to observe the cessation of freezing conditions in the ditches, at which point Tyco installed booms to capture foam on the water surface of ditches. Each boom is monitored for foam collection daily and when foam is observed, it is documented and removed. In 2021, a boom was deployed in Ditch B on March 19 and booms were deployed in the ditches A, C, D, and E on April 1. Tyco will continue maintaining and monitoring booms in ditches daily during the calendar year to capture and remove foam until the ditches begin to freeze in winter at which time the booms will be removed. Booms will be re-deployed in 2022 following the cessation of freezing conditions.

Between March 19, 2021 and May 19, 2021, a total of approximately 57 gallons of uncollapsed foam was skimmed from the surface water using a pool skimmer at the booms located in Ditch B and Ditch C. That foam was stored on Tyco property in a leak proof, 55-gallon drum where it collapsed to approximately 4.5 gallons of liquid. Waste characterization samples were analyzed for PFAS and the liquid from collapsed foam was sent off site for disposal at a permitted facility outside the state of Wisconsin on June 15, 2021. Final documentation of disposal will be provided to the Wisconsin Department of Natural Resources (WDNR) when available.

Ms. Alyssa Sellwood, P.E. Wisconsin Department of Natural Resources June 18, 2021

Foam observed and collected from Ditch B 5/13/2021

The cause of some PFAS in the collected foam is attributable to Tyco's historic operations at the FTC and the remainder is due to PFAS that is ubiquitous in the environment ^{1,2}. Investigation and modeling data demonstrate that PFAS is migrating through groundwater from the FTC to the east where it can upwell to surface water resulting in detectable concentrations within the surface water. Tyco has been monitoring the surface water in area ditches since 2018 as part of the site investigation process. The PFAS concentrations in foam are predictably higher than the concentrations in groundwater or surface water due to the physical properties of PFAS at the molecular level as discussed in more detail below.

PFAS and Foam

When leaves, twigs, or other organic substances in water begin to decay, they release organic compounds that reduce the surface tension of the water. When that water is agitated by flow patterns, wind, waves, or other influences, air is introduced to the system which allows bubbles to form and congregate as a naturally occurring foam. Naturally occurring foam frequently collects on the surface of ditches, streams, rivers and lakes³. The presence and concentration of PFAS in foam is impossible to detect with the naked eye. In

instances where PFAS are present in the water, the foam has been found to accumulate PFAS at higher concentrations than is present in the water. This effect has been demonstrated within the State of Wisconsin at Starkweather Creek and in the City of Peshtigo at a dam within the Peshtigo River where WDNR collected simultaneous samples of foam and surface water for PFAS analyses. The table below demonstrates some of the results posted by WDNR related to those analyses^{3,4}:

www.arcadis.com 2/5

¹ https://www.epa.gov/sciencematters/understanding-pfas-environment

² Rankin, K., Mabury, S.A., Jenkins, T.M. and Washington, J.W., 2016. A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere, 161, pp.333-341

³ <u>DNR Confirms PFAS-Containing Foam Found at the Mouth of Starkweather Creek and Lake Monona News</u> Release - Wisconsin DNR

⁴ DNR Confirms PFAS-Containing Foam Found in Peshtigo Area Waterways News Release - Wisconsin DNR

Location Date	Media	PFOA (parts per trillion)	PFOS (parts per trillion)
Olbrich Boat Launch 10/25/2019	Surface Water	9.5-10	400
Olbrich Boat Launch 10/25/2019	Foam	460-610	80,000-92,000*
Below City of Peshtigo Dam 9/18/2019	Surface Water	2.1	6.2
Below City of Peshtigo Dam 9/18/2019	Foam	230	17,000

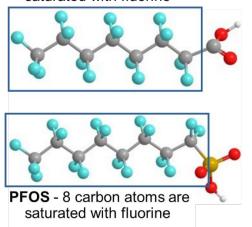
^{*} Approximate values

In all instances, the concentration of PFAS in foam was amplified as compared to the concentrations of PFAS in the underlying surface water. However, the concentration of PFAS in surface water cannot be used to accurately estimate the concentration of PFAS in foam. As an example, PFOS concentrations were amplified by between 200 and 2,700 times in these reported samples compared to the concentrations of PFOS in the underlying surface water. As summarized in the table below, the increase in concentrations has been observed to be even greater in similar studies conducted by the State of Michigan where the observed PFAS concentrations in surface water were compared to PFAS concentrations in foam⁵.

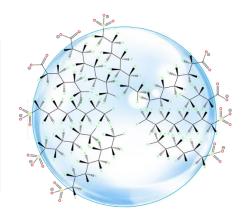
Location Date	Media	PFOA (parts per trillion)	PFOS (parts per trillion)
Rogue River 06 12/3/2019	Surface Water	4.3	29.8
Rogue River 06 12/3/2019	Foam	1,630	97,000
Thornapple River 09 1/3/2020	Surface Water	Not Detected	0.82
Thornapple River 09 1/3/2020	Foam	645	9,590
Huron River 05 11/22/2019	Surface Water	4.54	78.4
Huron River 05 11/22/2019	Foam	439	121,000

www.arcadis.com 3/5

⁵ Surface Water Foam Study Report (michigan.gov)


Ms. Alyssa Sellwood, P.E. Wisconsin Department of Natural Resources June 18, 2021

The composition of PFAS varies from surface water to foam. In the WDNR samples listed above, there were approximately 8.3 parts per trillion (ppt) of PFOA and PFOS in the surface water at the Peshtigo River Dam. That represents a composition of approximately 25% PFOA and 75% PFOS. The foam at the same location contained approximately 17,230 ppt of PFOA and PFOS and a composition of 1% PFOA and 99% PFOS. The variance is less significant at the Olbrich Boat Launch location where the amount of PFOA in the surface water is 2% of the total volume of PFOA and PFOS while it drops to less than 1% PFOA and more than 99% PFOS in the foam. Samples collected in the State of Michigan demonstrated similar changes in composition from surface water results to foam results. In the samples collected from surface water at the influent of the Ditch B treatment system on May 4, 2021, PFOA represented 94% of the total of PFOA and PFOS. In the waste characterization sample from collapsed foam collected from Ditches B and C, PFOA represented only 26%. Due to the physical properties of PFAS molecules as described below, the ratio of PFAS compounds within foam varies compared to that of the ratio of PFAS compounds within underlying surface water.


The average concentration of PFOA in Ditch B is currently approximately 2,000 parts per trillion (ppt) while the average concentration of PFOS is approximately 130 ppt. The concentrations of PFOA and PFOS in the collapsed foam were 23,000 ppt for PFOA and 64,000 ppt for PFOS (**Table 1** and **Attachment 1**). As WDNR has previously observed in other locations within the state, PFAS concentrations in the foam have been measured to be 2,700 times higher than PFAS concentrations in surface water demonstrating the accumulation of PFAS in foam^{3,4}.

At a molecular level, PFAS collect at the air-water interface of bubbles^{3,4} with PFAS suspended partially inside and partially outside the bubble. The figure below illustrates the molecular structure of PFOA and PFOS. PFAS molecules have two portions, one portion is water soluble with carbon atoms saturated with fluorine (the boxed portion in the figure below) while the smaller portion, which can be referred to as the "tail" is considered insoluble. When bubbles are created in water containing PFAS, the PFAS accumulates in the film of the bubble. The soluble portion of PFAS resides in the water portion in the film of the bubble, while the tail remains just outside the film.

PFOA – 7 carbon atoms are saturated with fluorine

PFOA and PFOS have unique properties which cause them to collect in the surface of bubbles. PFOS has more fluorine and concentrates more than PFOA

www.arcadis.com 4/5

Ms. Alyssa Sellwood, P.E. Wisconsin Department of Natural Resources June 18, 2021

The significance of the results includes:

- 1. Foam is naturally occurring in the environment
- 2. Some PFAS in the collected foam comes from historic FTC operations, the remainder is ubiquitous in the environment^{1,2}
- 3. PFAS concentrations amplify in foam
- 4. Collecting and properly disposing of foams also removes PFAS from the environment because PFAS aggregates in foam

ADVISORY

Possible Chemical Exposure Hazard

This water contains PFAS (per- and poly-fluoroalkyl substance)

The Wisconsin Department of Health Services recommends that to best protect you, your family, and your pets from potential PFAS exposure:

- Avoid drinking or accidentally swallowing the water or foam.
- Wash your hands after wading or playing in the water or foam.
- Rinse pets after contact with water or foam to avoid swallowing surface water that may be on their fur.

Touching the water or foam is not a health concern.

This surface water is currently being investigated and cleaned up in accordance with Wisconsin laws.

For more information:

- WI Dept of Natural Resources website: http://dnr.wi.gov/topic/contaminants/marinette.html
- WI Dept of Natural Resources and Dept of Health Services: (888) 626-3244

Advisory sign posted in Marinette, WI

The results reported here and other results referenced demonstrate the science underpinning some emerging PFAS remediation approaches. Specifically, recognizing the strong affinity of PFAS for foam, research groups and private industry are developing techniques to introduce bubbles and foaming agents to PFAS-impacted waters as a means of capturing and removing PFAS. This technology works due to the physical properties of PFAS as explained above, therefore the results presented indicating elevated concentrations of PFAS in foam are expected.

The Groundwater Extraction and Treatment System (GETS) is being constructed and implemented to improve surface water concentrations of PFAS in Ditch B and foam that is collected will continue to be monitored over time.

Tyco posted signs advising the public not to drink, play, or swim in the foam at multiple locations in the City of Marinette. Tyco also offered signs to homeowners with private ponds and select private property owners along area ditches. Tyco will work with WDNR to identify additional locations to augment the existing advisory sign network installed along the ditches as necessary.

Sincerely,

Arcadis U.S., Inc.

Scott T. Potter, PhD Chief Hydrogeologist

Copies:

Bridget Kelly Jeff Danko Scott Wahl

Enclosures: Table 1 Foam Sample Results; Attachment 1 Laboratory Reports

www.arcadis.com 5/5

	Location	DRUM 1
		DRUM 1 (051921)
	Sample Date	5/19/2021
	Sample Type	N
Lab EDD Chemical Name	Units	
Perfluorobutanoic acid (PFBA)	ng/l	< 5000 U
Perfluoropentanoic acid (PFPeA)	ng/l	540 J
Perfluoro-n-hexadecanoic acid (PFHxDA)	ng/l	< 2000 U
Perfluoroheptanoic acid (PFHpA)	ng/l	1300 J
Perfluorooctanoic acid (PFOA)	ng/l	23000
Perfluorononanoic acid (PFNA)	ng/l	
Perfluorodecanoic acid (PFDA)		15000
, ,	ng/l	4200
Perfluoroundecanoic acid (PFUnA)	ng/l	2100
Perfluorododecanoic acid (PFDoA)	ng/l	< 2000 U
Perfluorotridecanoic acid (PFTriA)	ng/l	< 2000 U
Perfluorotetradecanoic acid (PFTeA)	ng/l	< 2000 U
Perfluorohexanoic acid (PFHxA)	ng/l	3400
Perfluoro-n-octadecanoic acid (PFODA)	ng/l	< 2000 U
Perfluorobutanesulfonic acid (PFBS)	ng/l	< 2000 U
Perfluoropentanesulfonic acid (PFPeS)	ng/l	< 2000 U
Perfluorohexanesulfonic acid (PFHxS)	ng/l	< 2000 U
Perfluoroheptanesulfonic Acid (PFHpS)	ng/l	240 J
Perfluorooctanesulfonic acid (PFOS)	ng/l	64000
Perfluorononanesulfonic acid (PFNS)	ng/l	< 2000 U
Perfluorodecanesulfonic acid (PFDS)	ng/l	< 2000 U
Perfluorododecanesulfonic acid (PFDoS)	ng/l	< 2000 U
Perfluorooctanesulfonamide (FOSA)	ng/l	7900
NEtFOSA	ng/l	< 2000 U
NMeFOSA	ng/l	< 2000 U
NMeFOSAA	ng/l	< 5000 U
NEtFOSAA	ng/l	4500 J
NMeFOSE	ng/l	< 4000 U
NEtFOSE	ng/l	< 2000 U
4:2 FTS	ng/l	< 2000 U
6:2 FTS	ng/l	47000
8:2 FTS	ng/l	45000 J-
10:2 FTS	ng/l	< 2000 U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ng/l	< 2000 U
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA		< 4000 U
F-53B Major	ng/l	< 2000 U
F-53B Minor	ng/l	< 2000 U
Arsenic	- "	19
Barium	ug/l ug/l	450
Cadmium	ug/l	< 2.5 U
		14 J
Chromium	ug/l	3.6
Lead	ug/l	
Selenium	ug/l	< 13 U
Silver	ug/l	< 2.5 U
Mercury	ug/l	< 0.20 U

Notes:

- < = Compound not detected at reporting detection limit.
- -- = No standard
- N = Normal sample
- ng/l = nanograms per liter
- ug/l = micrograms per liter

Data Qualifier:

- U = The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J- = The result is an estimated quantity. The associated numerical value is expected to have a negative or low bias.

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-199411-1

Client Project/Site: Marinette, WI 30015296.00016 Collapsed

Foam

For:

eurofins :

ARCADIS U.S., Inc. 126 North Jefferson Street Suite 400 Milwaukee, Wisconsin 53202

Attn: Lisa Rutkowski

Authorized for release by: 5/28/2021 10:56:36 AM

Sandie Fredrick, Project Manager II (920)261-1660

sandra.fredrick@eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

_

3

4

5

7

Ö

10

. .

13

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	9
QC Sample Results	10
Chronicle	16
Certification Summary	17
Chain of Custody	18
Receipt Checklists	21
Field Data Sheets	23
sotope Dilution Summary	24

Case Narrative

Client: ARCADIS U.S., Inc.

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Job ID: 500-199411-1

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-199411-1

Comments

No additional comments.

Receipt

The sample was received on 5/20/2021 9:20 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.6° C.

Metals

Method 6020A: The following sample was diluted due to the nature of the sample matrix: Drum 1 (500-199411-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

LCMS

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-8:2 FTS in the following sample: Drum 1 (500-199411-1). The sample was re-analyzed with concurring results. As a result, the data may be potentially low biased for 8:2 FTS. The client was contacted and gave permission to report.

Method 537 (modified): Results for sample Drum 1 (500-199411-1) was reported from the analysis of a diluted extract due to high concentration of target analytes. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-492294. 3535-PFC Aqueous

Method 3535: Due to the matrix, the initial volume used for the following sample deviated from the standard procedure: Drum 1 (500-199411-1). A 10x dilution was made on the sample, then fortified with IDA and extracted. The reporting limits (RLs) have been adjusted proportionately, preparation batch 320-492294 3535 PFC 28D Aqueous

Method 3535: Sample is Brown in color and opaque. Sample has a moderate amount of sediment. Drum 1 (500-199411-1) preparation batch 320-492294 3535 PFC 28D Aqueous

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 500-199411-1

3

А

6

7

8

10

13

14

Detection Summary

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Client Sample ID: Drum 1

Lab Sample ID: 500-199411-1

· toouit	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
540	J	2000	490	ng/L	100	537 (modified)	Total/NA
3400		2000	580	ng/L	100	537 (modified)	Total/NA
1300	J	2000	250	ng/L	100	537 (modified)	Total/NA
23000		2000	850	ng/L	100	537 (modified)	Total/NA
15000		2000	270	ng/L	100	537 (modified)	Total/NA
4200		2000	310	ng/L	100	537 (modified)	Total/NA
2100		2000	1100	ng/L	100	537 (modified)	Total/NA
240	J	2000	190	ng/L	100	537 (modified)	Total/NA
64000		2000	540	ng/L	100	537 (modified)	Total/NA
7900		2000	980	ng/L	100	537 (modified)	Total/NA
4500	J	5000	1300	ng/L	100	537 (modified)	Total/NA
47000		5000	2500	ng/L	100	537 (modified)	Total/NA
45000		2000	460	ng/L	100	537 (modified)	Total/NA
19		5.0	1.2	ug/L	5	6020A	Total
							Recoverab
450		13	3.7	ug/L	5	6020A	Total
							Recoverab
14	J	25	5.7	ug/L	5	6020A	Total
0.0		0.5	0.00	,	_	00004	Recoverab
3.6		2.5	0.93	ug/L	5	6020A	Total Recoverab
	3400 1300 23000 15000 4200 2100 240 64000 7900 4500 47000 45000 19	1300 J 23000 15000 4200 2100 240 J 64000 7900 45000 19 450 14 J	3400 2000 1300 J 2000 23000 2000 15000 2000 4200 2000 240 J 2000 64000 2000 7900 2000 4500 J 5000 47000 5000 45000 19 5.0 450 13	3400 2000 580 1300 J 2000 250 23000 2000 850 15000 2000 270 4200 2000 310 2100 2000 1100 240 J 2000 190 64000 2000 540 7900 2000 980 4500 J 5000 2500 45000 2000 460 19 5.0 1.2 450 13 3.7 14 J 25 5.7	3400 2000 580 ng/L 1300 J 2000 250 ng/L 23000 2000 850 ng/L 15000 2000 270 ng/L 4200 2000 310 ng/L 2100 2000 1100 ng/L 240 J 2000 190 ng/L 64000 2000 540 ng/L 7900 2000 980 ng/L 4500 J 5000 1300 ng/L 45000 2000 460 ng/L 19 5.0 1.2 ug/L 450 13 3.7 ug/L 14 J 25 5.7 ug/L	3400 2000 580 ng/L 100 1300 J 2000 250 ng/L 100 23000 2000 850 ng/L 100 15000 2000 270 ng/L 100 4200 2000 310 ng/L 100 2100 2000 1100 ng/L 100 240 J 2000 190 ng/L 100 64000 2000 540 ng/L 100 7900 2000 980 ng/L 100 4500 J 5000 2500 ng/L 100 45000 2000 460 ng/L 100 4500 2000 460 ng/L 100 19 5.0 1.2 ug/L 5 450 13 3.7 ug/L 5 14 J 25 5.7 ug/L 5	3400 2000 580 ng/L 100 537 (modified) 1300 J 2000 250 ng/L 100 537 (modified) 23000 2000 850 ng/L 100 537 (modified) 15000 2000 270 ng/L 100 537 (modified) 4200 2000 310 ng/L 100 537 (modified) 2100 2000 1100 ng/L 100 537 (modified) 240 J 2000 190 ng/L 100 537 (modified) 64000 2000 540 ng/L 100 537 (modified) 7900 2000 980 ng/L 100 537 (modified) 4500 J 5000 2500 ng/L 100 537 (modified) 47000 5000 2500 ng/L 100 537 (modified) 45000 2000 460 ng/L 100 537 (modified) 450 13 3.7 ug/L 5 6020A 14 J 25 5.7 ug/L 5 6020A

5

7

10

4.0

13

Method Summary

Client: ARCADIS U.S., Inc.

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Method **Method Description** Protocol Laboratory Fluorinated Alkyl Substances TAL SAC 537 (modified) EPA Metals (ICP/MS) 6020A SW846 TAL CHI 7470A Mercury (CVAA) SW846 TAL CHI 3005A Preparation, Total Recoverable or Dissolved Metals SW846 TAL CHI 3535 Solid-Phase Extraction (SPE) SW846 TAL SAC 7470A Preparation, Mercury SW846 TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 500-199411-1

2

1

F

6

9

. .

12

10

Sample Summary

Client: ARCADIS U.S., Inc.

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Job ID: 500-199411-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
500-199411-1	Drum 1	Water	05/19/21 13:05	05/20/21 09:20	

3

4

6

0

9

10

12

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Client Sample ID: Drum 1 Lab Sample ID: 500-199411-1

Date Collected: 05/19/21 13:05

Date Received: 05/20/21 09:20

Matrix: Water

Method: 537 (modified) - Fluo Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	<5000		5000	2400	na/L		05/24/21 21:46	05/25/21 22:32	100
Perfluoropentanoic acid (PFPeA)	540	J	2000		ng/L			05/25/21 22:32	100
Perfluorohexanoic acid (PFHxA)	3400		2000		ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluoroheptanoic acid (PFHpA)	1300		2000	250	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorooctanoic acid (PFOA)	23000		2000		ng/L			05/25/21 22:32	100
Perfluorononanoic acid (PFNA)	15000		2000		ng/L			05/25/21 22:32	100
Perfluorodecanoic acid (PFDA)	4200		2000		ng/L			05/25/21 22:32	100
Perfluoroundecanoic acid	2100		2000	1100	Ū			05/25/21 22:32	100
(PFUnA)					J.				
Perfluorododecanoic acid (PFDoA)	<2000		2000	550	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorotridecanoic acid (PFTriA)	<2000		2000	1300	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorotetradecanoic acid (PFTeA)	<2000		2000	730	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluoro-n-hexadecanoic acid (PFHxDA)	<2000		2000	890	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluoro-n-octadecanoic acid (PFODA)	<2000		2000	940	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorobutanesulfonic acid (PFBS)	<2000		2000	200	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluoropentanesulfonic acid (PFPeS)	<2000		2000	300	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorohexanesulfonic acid (PFHxS)	<2000		2000	570	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluoroheptanesulfonic Acid (PFHpS)	240	J	2000	190	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorooctanesulfonic acid (PFOS)	64000		2000	540	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorononanesulfonic acid (PFNS)	<2000		2000	370	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorodecanesulfonic acid (PFDS)	<2000		2000	320	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorododecanesulfonic acid (PFDoS)	<2000		2000	970	ng/L		05/24/21 21:46	05/25/21 22:32	100
Perfluorooctanesulfonamide (FOSA)	7900		2000		ng/L			05/25/21 22:32	100
NEtFOSA	<2000		2000		ng/L			05/25/21 22:32	100
NMeFOSA	<2000		2000		ng/L			05/25/21 22:32	100
NMeFOSAA	<5000		5000	1200	-		05/24/21 21:46	05/25/21 22:32	100
NEtFOSAA	4500	J	5000	1300	•		05/24/21 21:46	05/25/21 22:32	100
NMeFOSE	<4000		4000	1400	ng/L		05/24/21 21:46	05/25/21 22:32	100
NEtFOSE	<2000		2000	850	ng/L		05/24/21 21:46	05/25/21 22:32	100
4:2 FTS	<2000		2000	240	ng/L			05/25/21 22:32	100
6:2 FTS	47000		5000	2500	ng/L		05/24/21 21:46	05/25/21 22:32	100
8:2 FTS	45000		2000	460	ng/L		05/24/21 21:46	05/25/21 22:32	100
10:2 FTS	<2000		2000	670	ng/L		05/24/21 21:46	05/25/21 22:32	100
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	<2000		2000	400	ng/L		05/24/21 21:46	05/25/21 22:32	100
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	<4000		4000	1500	ng/L		05/24/21 21:46	05/25/21 22:32	100
F-53B Major	<2000		2000	240	ng/L		05/24/21 21:46	05/25/21 22:32	100
F-53B Minor	<2000		2000	320	ng/L		05/24/21 21:46	05/25/21 22:32	100
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	92		25 - 150					05/25/21 22:32	100
13C5 PFPeA	89		25 - 150					05/25/21 22:32	100
13C2 PFHxA	91		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C4 PFHpA	66		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C4 PFOA	105		25 - 150				05/24/21 21:46	05/25/21 22:32	100

Eurofins TestAmerica, Chicago

Page 7 of 25 5/28/2021

3

5

7

a

11

Client Sample Results

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Method: 7470A - Mercury (CVAA)

Analyte

Mercury

Client Sample ID: Drum 1 Lab Sample ID: 500-199411-1

Date Collected: 05/19/21 13:05

Date Received: 05/20/21 09:20

Matrix: Water

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C5 PFNA	90		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C2 PFDA	71		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C2 PFUnA	79		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C2 PFDoA	69		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C2 PFTeDA	56		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C2 PFHxDA	50		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C3 PFBS	87		25 - 150				05/24/21 21:46	05/25/21 22:32	100
1802 PFHxS	76		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C4 PFOS	79		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C8 FOSA	92		10 - 150				05/24/21 21:46	05/25/21 22:32	100
d3-NMeFOSAA	105		25 - 150				05/24/21 21:46	05/25/21 22:32	100
d5-NEtFOSAA	89		25 - 150				05/24/21 21:46	05/25/21 22:32	100
d-N-MeFOSA-M	47		10 - 150				05/24/21 21:46	05/25/21 22:32	100
d-N-EtFOSA-M	60		10 - 150				05/24/21 21:46	05/25/21 22:32	100
d7-N-MeFOSE-M	54		10 - 150				05/24/21 21:46	05/25/21 22:32	100
d9-N-EtFOSE-M	57		10 - 150				05/24/21 21:46	05/25/21 22:32	100
M2-4:2 FTS	97		25 - 150				05/24/21 21:46	05/25/21 22:32	100
M2-6:2 FTS	86		25 - 150				05/24/21 21:46	05/25/21 22:32	100
M2-8:2 FTS	238	*5+	25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C3 HFPO-DA	75		25 - 150				05/24/21 21:46	05/25/21 22:32	100
13C2 10:2 FTS	90		25 - 150				05/24/21 21:46	05/25/21 22:32	100
Method: 6020A - Metal	ls (ICP/MS) - Total R	Recoverab	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	19		5.0	1.2	ug/L		05/20/21 18:19	05/26/21 00:23	5
Barium	450		13	3.7	ug/L		05/20/21 18:19	05/25/21 18:43	5
Cadmium	<2.5		2.5	0.84	ug/L		05/20/21 18:19	05/25/21 18:43	5
Chromium	14	J	25	5.7	ug/L		05/20/21 18:19	05/25/21 18:43	5
Lead	3.6		2.5		ug/L		05/20/21 18:19	05/26/21 00:23	5
Selenium	<13		13		ug/L		05/20/21 18:19	05/26/21 00:23	5
Silver	<2.5		2.5		ug/L		05/20/21 18:10	05/25/21 18:43	5

RL

0.20

MDL Unit

0.098 ug/L

Result Qualifier

<0.20

5/28/2021

Analyzed

05/21/21 09:25 05/24/21 08:20

Prepared

Dil Fac

Definitions/Glossary

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Qualifier Description

Qualifiers

LCMS
Qualifier

*5+ Isotope dilution analyte is outside acceptance limits, high biased.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

Metals

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

n Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sam	ple ID:	MB 320	0-492294/1-	.Δ
---------	---------	--------	-------------	----

Matrix: Water

13C4 PFBA

13C5 PFPeA

13C2 PFHxA

13C4 PFHpA

13C4 PFOA

Analysis Batch: 492608

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 492294

Analysis Batch: 492608	MB	MB						Prep Batch:	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	<5.0		5.0	2.4	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluoropentanoic acid (PFPeA)	<2.0		2.0	0.49	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorohexanoic acid (PFHxA)	<2.0		2.0	0.58	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluoroheptanoic acid (PFHpA)	<2.0		2.0	0.25	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorooctanoic acid (PFOA)	<2.0		2.0	0.85	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorononanoic acid (PFNA)	<2.0		2.0	0.27	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorodecanoic acid (PFDA)	<2.0		2.0	0.31	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluoroundecanoic acid (PFUnA)	<2.0		2.0	1.1	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorododecanoic acid (PFDoA)	<2.0		2.0	0.55	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorotridecanoic acid (PFTriA)	<2.0		2.0	1.3	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorotetradecanoic acid (PFTeA)	<2.0		2.0	0.73	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluoro-n-hexadecanoic acid (PFHxDA)	<2.0		2.0	0.89	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluoro-n-octadecanoic acid (PFODA)	<2.0		2.0	0.94	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorobutanesulfonic acid (PFBS)	<2.0		2.0	0.20	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluoropentanesulfonic acid (PFPeS)	<2.0		2.0	0.30	ng/L		05/24/21 21:46	05/25/21 22:04	1
Perfluorohexanesulfonic acid (PFHxS)	<2.0		2.0		ng/L			05/25/21 22:04	1
Perfluoroheptanesulfonic Acid (PFHpS)	<2.0		2.0		ng/L			05/25/21 22:04	1
Perfluorooctanesulfonic acid (PFOS)	<2.0		2.0		ng/L			05/25/21 22:04	1
Perfluorononanesulfonic acid (PFNS)	<2.0		2.0		ng/L			05/25/21 22:04	1
Perfluorodecanesulfonic acid (PFDS)	<2.0		2.0		ng/L			05/25/21 22:04	1
Perfluorododecanesulfonic acid (PFDoS)	<2.0		2.0		ng/L			05/25/21 22:04	
Perfluorooctanesulfonamide (FOSA)	<2.0		2.0	0.98	Ū		05/24/21 21:46	05/25/21 22:04	1
NEtFOSA	<2.0		2.0	0.87	ng/L		05/24/21 21:46	05/25/21 22:04	1
NMeFOSA	<2.0		2.0	0.43	ng/L		05/24/21 21:46	05/25/21 22:04	1
NMeFOSAA	<5.0		5.0	1.2	ng/L		05/24/21 21:46	05/25/21 22:04	1
NEtFOSAA	<5.0		5.0	1.3	ng/L		05/24/21 21:46	05/25/21 22:04	1
NMeFOSE	<4.0		4.0		ng/L		05/24/21 21:46	05/25/21 22:04	1
NEtFOSE	<2.0		2.0	0.85	ng/L		05/24/21 21:46	05/25/21 22:04	1
4:2 FTS	<2.0		2.0	0.24	ng/L		05/24/21 21:46	05/25/21 22:04	1
6:2 FTS	<5.0		5.0	2.5	ng/L		05/24/21 21:46	05/25/21 22:04	1
8:2 FTS	<2.0		2.0	0.46	ng/L		05/24/21 21:46	05/25/21 22:04	1
10:2 FTS	<2.0		2.0	0.67	ng/L		05/24/21 21:46	05/25/21 22:04	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	<2.0		2.0	0.40	ng/L		05/24/21 21:46	05/25/21 22:04	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	<4.0		4.0		ng/L			05/25/21 22:04	1
F-53B Major	<2.0		2.0		ng/L			05/25/21 22:04	1
F-53B Minor	<2.0 <i>MB</i>	MB	2.0	0.32	ng/L		05/24/21 21:46	05/25/21 22:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Chicago

05/24/21 21:46 05/25/21 22:04

Page 10 of 25

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

91

86

84

90

96

9

3

4

7

9

11

13

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-492294/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA **Matrix: Water** Prep Batch: 492294 **Analysis Batch: 492608**

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C5 PFNA	91		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C2 PFDA	92		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C2 PFUnA	84		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C2 PFDoA	91		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C2 PFTeDA	88		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C2 PFHxDA	100		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C3 PFBS	82		25 - 150	05/24/21 21:46	05/25/21 22:04	
18O2 PFHxS	90		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C4 PFOS	85		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C8 FOSA	95		10 - 150	05/24/21 21:46	05/25/21 22:04	
d3-NMeFOSAA	90		25 - 150	05/24/21 21:46	05/25/21 22:04	
d5-NEtFOSAA	90		25 - 150	05/24/21 21:46	05/25/21 22:04	
d-N-MeFOSA-M	79		10 - 150	05/24/21 21:46	05/25/21 22:04	
d-N-EtFOSA-M	76		10 - 150	05/24/21 21:46	05/25/21 22:04	
d7-N-MeFOSE-M	85		10 - 150	05/24/21 21:46	05/25/21 22:04	
d9-N-EtFOSE-M	75		10 - 150	05/24/21 21:46	05/25/21 22:04	
M2-4:2 FTS	99		25 - 150	05/24/21 21:46	05/25/21 22:04	
M2-6:2 FTS	104		25 - 150	05/24/21 21:46	05/25/21 22:04	
M2-8:2 FTS	99		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C3 HFPO-DA	85		25 - 150	05/24/21 21:46	05/25/21 22:04	
13C2 10:2 FTS	101		25 - 150	05/24/21 21:46	05/25/21 22:04	

Lab Sample ID: LCS 320-492294/2-A

Matrix: Water

Analysis Batch: 492608

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 492294**

7 maryolo Batom 402000							1 10p Batom 402204
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	40.0	41.4		ng/L		104	60 - 135
Perfluoropentanoic acid (PFPeA)	40.0	40.7		ng/L		102	60 - 135
Perfluorohexanoic acid (PFHxA)	40.0	44.6		ng/L		112	60 - 135
Perfluoroheptanoic acid (PFHpA)	40.0	44.6		ng/L		112	60 - 135
Perfluorooctanoic acid (PFOA)	40.0	39.6		ng/L		99	60 - 135
Perfluorononanoic acid (PFNA)	40.0	43.8		ng/L		110	60 - 135
Perfluorodecanoic acid (PFDA)	40.0	41.1		ng/L		103	60 - 135
Perfluoroundecanoic acid	40.0	43.3		ng/L		108	60 - 135
(PFUnA)							
Perfluorododecanoic acid	40.0	43.1		ng/L		108	60 - 135
(PFDoA)							
Perfluorotridecanoic acid	40.0	47.4		ng/L		119	60 - 135
(PFTriA)							
Perfluorotetradecanoic acid	40.0	43.1		ng/L		108	60 - 135
(PFTeA)							
Perfluoro-n-hexadecanoic acid	40.0	42.1		ng/L		105	60 - 135
(PFHxDA)							
Perfluoro-n-octadecanoic acid	40.0	43.5		ng/L		109	60 ₋ 135
(PFODA)							
Perfluorobutanesulfonic acid	35.4	39.3		ng/L		111	60 - 135
(PFBS)							
Perfluoropentanesulfonic acid	37.5	47.9		ng/L		128	60 - 135
(PFPeS)							

Page 11 of 25

QC Sample Results

Client: ARCADIS U.S., Inc.

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Job ID: 500-199411-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab	Sample	ID: LCS	320-492294/2-A

Matrix: Water

Analysis Batch: 492608

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 492294

Analysis Baton. 402000		Spike	LCS	LCS				%Rec.
Analyte		Added		Qualifier	Unit	D	%Rec	Limits
Perfluorohexanesulfonic acid (PFHxS)		36.4	41.2		ng/L	_	113	60 - 135
Perfluoroheptanesulfonic Acid (PFHpS)		38.1	38.5		ng/L		101	60 - 135
Perfluorooctanesulfonic acid (PFOS)		37.1	38.9		ng/L		105	60 - 135
Perfluorononanesulfonic acid (PFNS)		38.4	43.1		ng/L		112	60 - 135
Perfluorodecanesulfonic acid (PFDS)		38.6	38.3		ng/L		99	60 - 135
Perfluorododecanesulfonic acid (PFDoS)		38.7	41.1		ng/L		106	60 - 135
Perfluorooctanesulfonamide (FOSA)		40.0	39.1		ng/L		98	60 - 135
NEtFOSA		40.0	44.8		ng/L		112	60 - 135
NMeFOSA		40.0	41.2		ng/L		103	60 - 135
NMeFOSAA		40.0	44.5		ng/L		111	60 - 135
NEtFOSAA		40.0	42.9		ng/L		107	60 - 135
NMeFOSE		40.0	40.6		ng/L		102	60 - 135
NEtFOSE		40.0	44.3		ng/L		111	60 - 135
4:2 FTS		37.4	39.3		ng/L		105	60 - 135
6:2 FTS		37.9	37.9		ng/L		100	60 - 135
8:2 FTS		38.3	42.7		ng/L		111	60 - 135
10:2 FTS		38.6	36.0		ng/L		93	60 - 135
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)		37.7	40.2		ng/L		107	60 - 135
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)		40.0	47.3		ng/L		118	60 - 135
F-53B Major		37.3	44.7		ng/L		120	60 - 135
F-53B Minor		37.7	38.6		ng/L		103	60 - 135
	LCS LCS							
Isotope Dilution	%Recovery Qualifier	Limits						

	LUS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	90		25 - 150
13C5 PFPeA	88		25 - 150
13C2 PFHxA	89		25 - 150
13C4 PFHpA	90		25 - 150
13C4 PFOA	94		25 - 150
13C5 PFNA	89		25 - 150
13C2 PFDA	93		25 - 150
13C2 PFUnA	85		25 - 150
13C2 PFDoA	87		25 - 150
13C2 PFTeDA	88		25 - 150
13C2 PFHxDA	100		25 - 150
13C3 PFBS	85		25 - 150
1802 PFHxS	87		25 - 150
13C4 PFOS	90		25 - 150
13C8 FOSA	94		10 - 150
d3-NMeFOSAA	87		25 - 150
d5-NEtFOSAA	86		25 - 150
d-N-MeFOSA-M	79		10 - 150
d-N-EtFOSA-M	76		10 - 150

Eurofins TestAmerica, Chicago

6

8

J

11

13

QC Sample Results

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-492294/2-A

Matrix: Water

Analysis Batch: 492608

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 492294

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
d7-N-MeFOSE-M	77		10 - 150
d9-N-EtFOSE-M	75		10 - 150
M2-4:2 FTS	85		25 - 150
M2-6:2 FTS	95		25 - 150
M2-8:2 FTS	86		25 - 150
13C3 HFPO-DA	88		25 - 150
13C2 10:2 FTS	98		25 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 492294

Lab Sample ID: LCSD 320-492294/3-A **Matrix: Water**

Analysis Batch: 492608

Analy 313 Daten. 402000	Conillos	LCSD	1.000					%Rec. RPD		
Analyte	Spike Added	_	Qualifier	Unit	D	%Rec	%Rec.	RPD	Limit	
Perfluorobutanoic acid (PFBA)	40.0	41.6	Qualifier	ng/L	_ =	104	60 - 135	0	30	
Perfluoropentanoic acid (PFPeA)	40.0	41.8		ng/L		104	60 - 135	3	30	
Perfluorohexanoic acid (PFHxA)	40.0	41.8		ng/L		104	60 - 135	7	30	
Perfluoroheptanoic acid (PFHpA)	40.0	42.2		ng/L		105	60 - 135	6	30	
Perfluorooctanoic acid (PFOA)	40.0	41.3		ng/L		103	60 - 135	4	30	
Perfluorononanoic acid (PFNA)	40.0	41.9		ng/L		105	60 - 135	4	30	
Perfluorodecanoic acid (PFDA)	40.0	42.2		ng/L		105	60 - 135	2	30	
Perfluoroundecanoic acid (PPDA) (PFUnA)	40.0	47.6		ng/L		119	60 - 135	10	30	
Perfluorododecanoic acid (PFDoA)	40.0	44.8		ng/L		112	60 - 135	4	30	
Perfluorotridecanoic acid (PFTriA)	40.0	43.9		ng/L		110	60 - 135	8	30	
Perfluorotetradecanoic acid (PFTeA)	40.0	45.4		ng/L		114	60 - 135	5	30	
Perfluoro-n-hexadecanoic acid (PFHxDA)	40.0	40.0		ng/L		100	60 - 135	5	30	
Perfluoro-n-octadecanoic acid (PFODA)	40.0	42.2		ng/L		105	60 - 135	3	30	
Perfluorobutanesulfonic acid (PFBS)	35.4	39.5		ng/L		112	60 - 135	1	30	
Perfluoropentanesulfonic acid (PFPeS)	37.5	41.2		ng/L		110	60 - 135	15	30	
Perfluorohexanesulfonic acid (PFHxS)	36.4	37.6		ng/L		103	60 - 135	9	30	
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	43.8		ng/L		115	60 - 135	13	30	
Perfluorooctanesulfonic acid (PFOS)	37.1	43.5		ng/L		117	60 - 135	11	30	
Perfluorononanesulfonic acid (PFNS)	38.4	44.7		ng/L		116	60 - 135	4	30	
Perfluorodecanesulfonic acid (PFDS)	38.6	43.3		ng/L		112	60 - 135	12	30	
Perfluorododecanesulfonic acid (PFDoS)	38.7	40.8		ng/L		105	60 - 135	1	30	
Perfluorooctanesulfonamide (FOSA)	40.0	37.4		ng/L		94	60 - 135	4	30	
NEtFOSA	40.0	44.7		ng/L		112	60 - 135	0	30	
NMeFOSA	40.0	41.5		ng/L		104	60 - 135	1	30	
NMeFOSAA	40.0	41.9							30	

Eurofins TestAmerica, Chicago

Page 13 of 25

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320-492294/3-A

Matrix: Water

Analysis Batch: 492608

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 492294** %Rec

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
NEtFOSAA	40.0	47.1		ng/L		118	60 - 135	9	30
NMeFOSE	40.0	38.7		ng/L		97	60 - 135	5	30
NEtFOSE	40.0	46.1		ng/L		115	60 - 135	4	30
4:2 FTS	37.4	38.4		ng/L		103	60 - 135	2	30
6:2 FTS	37.9	35.4		ng/L		93	60 - 135	7	30
8:2 FTS	38.3	43.7		ng/L		114	60 - 135	2	30
10:2 FTS	38.6	40.7		ng/L		106	60 - 135	12	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	44.6		ng/L		118	60 - 135	10	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	38.2		ng/L		96	60 - 135	21	30
F-53B Major	37.3	45.9		ng/L		123	60 - 135	3	30
F-53B Minor	37.7	44.2		ng/L		117	60 - 135	13	30

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	96		25 - 150
13C5 PFPeA	96		25 - 150
13C2 PFHxA	98		25 - 150
13C4 PFHpA	90		25 - 150
13C4 PFOA	95		25 - 150
13C5 PFNA	89		25 - 150
13C2 PFDA	91		25 - 150
13C2 PFUnA	81		25 - 150
13C2 PFDoA	86		25 - 150
13C2 PFTeDA	83		25 - 150
13C2 PFHxDA	95		25 - 150
13C3 PFBS	91		25 - 150
1802 PFHxS	89		25 - 150
13C4 PFOS	84		25 - 150
13C8 FOSA	95		10 - 150
d3-NMeFOSAA	98		25 - 150
d5-NEtFOSAA	87		25 - 150
d-N-MeFOSA-M	82		10 - 150
d-N-EtFOSA-M	71		10 - 150
d7-N-MeFOSE-M	77		10 - 150
d9-N-EtFOSE-M	74		10 - 150
M2-4:2 FTS	92		25 - 150
M2-6:2 FTS	103		25 - 150
M2-8:2 FTS	97		25 - 150
13C3 HFPO-DA	101		25 - 150

91

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 500-600086/1-A

Matrix: Water

13C2 10:2 FTS

Analysis Batch: 600816

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 600086

MB MB Analyte Result Qualifier RL MDL Unit D **Prepared** Analyzed 2.5 05/20/21 18:19 05/25/21 18:36 <2.5 Barium 0.73 ug/L

25 - 150

Eurofins TestAmerica, Chicago

Page 14 of 25

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Method: 6020A - Metals (ICP/MS) (Continued)

Matrix: Water

Analysis Batch: 600816

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 600086 MB MB

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 600086

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cadmium <0.50 0.50 0.17 ug/L 05/20/21 18:19 05/25/21 18:36 1.1 Chromium < 5.0 5.0 ug/L 05/20/21 18:19 05/25/21 18:36 < 0.50 0.50 05/20/21 18:19 05/25/21 18:36 Silver 0.12 ug/L

Lab Sample ID: MB 500-600086/1-A

Lab Sample ID: MB 500-600086/1-A

Matrix: Water

Analysis Batch: 600933

·	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<1.0		1.0	0.23	ug/L		05/20/21 18:19	05/26/21 00:16	1
Lead	<0.50		0.50	0.19	ug/L		05/20/21 18:19	05/26/21 00:16	1
Selenium	<2.5		2.5	0.98	ug/L		05/20/21 18:19	05/26/21 00:16	1

Lab Sample ID: LCS 500-600086/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 600816 Prep Batch: 600086 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Barium 2000 2000 80 - 120 ug/L 100 Cadmium 50.0 49.7 ug/L 99 80 - 120 200 204 102 Chromium ug/L 80 - 120ug/L Silver 50.0 51.3 103 80 - 120

Lab Sample ID: LCS 500-600086/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 600933** Prep Batch: 600086 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Arsenic 100 94.8 ug/L 95 80 - 120 Lead 100 107 ug/L 107 80 - 120 Selenium 100 96.7 ug/L 97 80 - 120

Method: 7470A - Mercury (CVAA)

Mercury

Lab Sample ID: MB 500-600211/12-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 600524 Prep Batch: 600211 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.20 05/21/21 09:25 05/24/21 08:16 Mercury < 0.20 0.098 ug/L

Lab Sample ID: LCS 500-600211/13-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 600524 **Prep Batch: 600211** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits

2.09

ug/L

2.00

80 - 120

Eurofins TestAmerica, Chicago

5/28/2021

Lab Chronicle

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Client Sample ID: Drum 1

Date Received: 05/20/21 09:20

Lab Sample ID: 500-199411-1 Date Collected: 05/19/21 13:05

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			492294	05/24/21 21:46	JER	TAL SAC
Total/NA	Analysis	537 (modified)		100	492608	05/25/21 22:32	RS1	TAL SAC
Total Recoverable	Prep	3005A			600086	05/20/21 18:19	LMN	TAL CHI
Total Recoverable	Analysis	6020A		5	600816	05/25/21 18:43	FXG	TAL CHI
Total Recoverable	Prep	3005A			600086	05/20/21 18:19	LMN	TAL CHI
Total Recoverable	Analysis	6020A		5	600933	05/26/21 00:23	FXG	TAL CHI
Total/NA	Prep	7470A			600211	05/21/21 09:25	MJG	TAL CHI
Total/NA	Analysis	7470A		1	600524	05/24/21 08:20	MJG	TAL CHI

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

5/28/2021

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc.

Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Laboratory: Eurofins TestAmerica, Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999580010	08-31-21

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	998204680	08-31-21

3

4

5

7

8

4 4

4.0

13

14

Eurofins TestAmerica, Chicago

2417 Bond Street

Chain of Custody Record

6 4.			٠.	
	PII	rot	1	ns
0.0	A- 60			

Form No. CA-C-WI-002, Rev. 4.23, dated 4/16/

University Park, IL 60484-3101 phone 708 534 5200 fax 708 534 5211 Regulatory Program: Dw DNPDES RCRA Other: TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica Project Manager: Lisa Rutkowski Email: COC No Client Contact N/A Date: 3~/0/~2 Sampler: Jucch Kaminaer Arcadis U.S., Inc. COCs Tel/Fax: N/A Lab Contact: Sandie Fredrick Carrier: FedEx 126 North Jefferson Street, Suite 400 **Analysis Turnaround Time** WORKING DAYS Milwaukee, WI 53202 CALENDAR DAYS For Lab Use Only: RCRA Metals (6020A, 7470A) 500-199411 COC Walk-in Client. Phor TAT if different from Below FAX \Box Lab Sampling 2 weeks Project Name Marinette, WI V 1 week Site Marinette, WI Lab Project Number 2 days P O # 30015296 00016 (Collapsed Foam) П 1 day 50018970 Sample Type Sample Sample (C=Comp. # of Sample Identification Date Time G≠Grab) Matrix Cont. Sample Specific Notes Drum 1 5-19-21 G W 3 Х Х Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample Flammable Poison B Unknown Return to Client Disposal by Lab Archive for Months Special Instructions/QC Requirements & Comments: **Custody Seals Intact** Cooler Temp (°C) Obs'd Corr'd Therm ID No Yes ☐ No Custody Seal No Date/Time 5~19~21/1316 Relinguished by Company Barley Excavating Received by Date/Time Company Relinquished by Date/Time Date/Time Company Received by Company. Relinquished by: Received in Lapparators by Company Date/Time

6

2

4

6

8

11

12

1 /

MENOMINEE, MI 49656 UNITED STATES US

TO

EUROFINS TESTAMERICA CHICAGO 2417 BOND STREET

UNIVERSITY PARK IL 604843101 (708) 534-5200 REF: \$500-90001

RMA: || ||| |||

60484 ORD

Chain of Custody Record

Eurofins TestAmerica, Chicago

eurofins Environment Testing America 2417 Bond Street University Park, IL 60484 Phone: 708-534-5200 Fax: 708-534-5211

Client Information (Sub Contract Lab)				Fredr	Fredrick, Sandie					500-148838.1	
Client Contact: Shipping/Receiving	Phone:			E-Mail:	a.fredrick@	E-Mail: sandra.fredrick@eurofinset.com	Stat	State of Origin: Wisconsin		Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditations	Accreditations Required (See note):	. Wiscor	ig		Job #:	
Address	Postson Date Design				State - vvist	Unsini, State Flog	I alli - vvisco			500-199411-1	
880 Riverside Parkway,	5/27/2021					Analy	Analysis Requested	sted		Preservation Codes	odes:
City: West Sacramento State, Zip:	TAT Requested (days):	;;			1 List (36					B - NaOH C - Zn Acetate D - Nitric Acid	M - Nexalle N - None O - AsNaO2 P - Na2O4S
CA, 95605 Phone: Phone: Act 372 ACENTAL	PO#:									E - NaHSO4 F - MeOH G - Amchlor	Q - Na2SO3 R - Na2S2O3 S - H2SO4
	WO#:				(0)						
Project Name: Marinette, WI 30015296.00016 Collapsed Foam	Project #: 50018970				4 10 E8					K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				SD (Y					of con	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=waste/oil,	Field Filtered Serform MS/M PFC_IDA_WI/35 Analytes)					otal Number	Special Instructions Make.
	X	1	7 (7)	-	X						man de constitución.
Drum 1 (500-199411-1)	5/19/21	13:05 Central		Water	×					2 REPORT ALL DILUTIONS	ILUTIONS
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not current maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	America places the ownershir matrix being analyzed, the sai ent to date, return the signed	of method, a mples must b Chain of Cus	analyte & accrive shipped bac	editation compli ck to the Eurofin to said complic	ance upon our s TestAmerica ance to Eurofi	subcontract laborato laboratory or other ir ns TestAmerica.	ries. This sampl istructions will be	e shipment is fo provided. Any	inwarded under changes to acc	chain-of-custody. If the reditation status shoul	e laboratory does not current Id be brought to Eurofins
Possible Hazard Identification Unconfirmed					Sample	le Disposal (A fee	may be asse	e assessed if sam	ples are reta	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverab	rable Rank: 2			Special	Special Instructions/QC Requirements:	equirements:	and for more			Months
Empty Kit Relinquished by:	1	Date:			Time:			Method of Shipment:	pment:		
Kein defined by:	5/20/2/	161	20	Charles of the same of the sam	Receive	Received by: My	1	Da	Date/Time: 5.1.2	10935	Company SAC
Relinquished by:	Date/Time:		<u> </u>	Company	Recei	Received by:	=	Da	Date/Time:		Company
Relinquished by:	Date/Time:			Company	Recei	Received by:		O	Date/Time:		Company
Custody Seals Intact: Custody Seal No.: 1+51-	723				Coole	Cooler Temperature(s) °C and Other Remarks:	ind Other Remai	-	7		
											Ver: 11/01/2020

Client: ARCADIS U.S., Inc.

Job Number: 500-199411-1

Login Number: 199411

List Source: Eurofins TestAmerica, Chicago

List Number: 1

Creator: Scott, Sherri L

orcator. Ocott, orient L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.6
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: ARCADIS U.S., Inc.

Job Number: 500-199411-1

Login Number: 199411

List Number: 2

Creator: Cahill, Nicholas P

List Source: Eurofins TestAmerica, Sacramento

List Creation: 05/21/21 06:05 PM

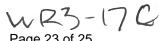
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1451723
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

	500-199411 Field Sheet	
Job:		

Tracking #: 1893 4452 0099


SO / PO / FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations

File in the job folder with the COC.				The state of the observations.
Therm. ID: Corr. Factor lce Wet Gel Cooler Custody Seal: 1451 723 Cooler ID:	_ Oth	er		Notes:
Opening/Processing The Shipment Cooler compromised/tampered with? Cooler Temperature is acceptable? Frozen samples show signs of thaw? Initials: Date:	ם		NA D	
Unpacking/Labeling The Samples CoC is complete w/o discrepancies? Samples compromised/tampered with? Sample containers have legible labels? Sample custody seal?	Yes	No 0 0 0	<u>NA</u>	
Containers are not broken or leaking? Sample date/times are provided? Appropriate containers are used? Sample bottles are completely filled?	N N N N	0 0 0		Trizma Lot #(s):
Sample preservatives verified? Samples w/o discrepancies? Zero headspace?* Alkalinity has no headspace? Perchlorate has headspace?		0 0 0	K D X X	Login Completion Receipt Temperature on COC? Samples received within hold time?
(Methods 314, 331, 6850) Multiphasic samples are not present? *Containers requiring zero headspace have no headspace Initials: Date:	p, or bubble	D e < 6 mm	<u>1</u> 20 (1/4")	NCM Filed? Log Release checked in TALS? Initials: Date:

\\TACORP\CORP\QA\QA_FACILITIES\SACRAMENTO-QA\DOCUMENT-MANAGEMENT\FORMS\QA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 MBB 11/06/2020

Client: ARCADIS U.S., Inc. Job ID: 500-199411-1

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
500-199411-1	Drum 1	92	89	91	66	105	90	71	79
LCS 320-492294/2-A	Lab Control Sample	90	88	89	90	94	89	93	85
LCSD 320-492294/3-A	Lab Control Sample Dup	96	96	98	90	95	89	91	81
MB 320-492294/1-A	Method Blank	91	86	84	90	96	91	92	84
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFDoA	PFTDA	PFHxDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(10-150)	(25-150)
500-199411-1	Drum 1	69	56	50	87	76	79	92	105
LCS 320-492294/2-A	Lab Control Sample	87	88	100	85	87	90	94	87
LCSD 320-492294/3-A	Lab Control Sample Dup	86	83	95	91	89	84	95	98
MB 320-492294/1-A	Method Blank	91	88	100	82	90	85	95	90
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		d5NEFOS	dMeFOSA	dEtFOSA	NMFM	NEFM	M242FTS	M262FTS	M282FTS
Lab Sample ID	Client Sample ID	(25-150)	(10-150)	(10-150)	(10-150)	(10-150)	(25-150)	(25-150)	(25-150)
500-199411-1	Drum 1	89	47	60	54	57	97	86	238 *5+
LCS 320-492294/2-A	Lab Control Sample	86	79	76	77	75	85	95	86
LCSD 320-492294/3-A	Lab Control Sample Dup	87	82	71	77	74	92	103	97
MB 320-492294/1-A	Method Blank	90	79	76	85	75	99	104	99
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		HFPODA	M102FTS						
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
500-199411-1	Drum 1	75	90						-
LCS 320-492294/2-A	Lab Control Sample	88	98						
LCSD 320-492294/3-A	Lab Control Sample Dup	101	91						
MB 320-492294/1-A	Method Blank	85	101						

Surrogate	Legend
-----------	--------

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA

PFHxDA = 13C2 PFHxDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

dMeFOSA = d-N-MeFOSA-M

dEtFOSA = d-N-EtFOSA-M

NMFM = d7-N-MeFOSE-M NEFM = d9-N-EtFOSE-M

M242FTS = M2-4:2 FTS

Page 24 of 25

Isotope Dilution Summary

Client: ARCADIS U.S., Inc.

Project/Site: Marinette, WI 30015296.00016 Collapsed Foam

M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS HFPODA = 13C3 HFPO-DA M102FTS = 13C2 10:2 FTS Job ID: 500-199411-1

3

Δ

5

7

9

10

12

13