

# Site Investigation Report Characterization of Sediments in the North End District and Clough Island St. Louis River and Bay Area of Concern, Superior, Wisconsin

Prepared for

State of Wisconsin Department of Natural Resources Remediation & Redevelopment Program 101 S. Webster Street P.O. Box 7921 Madison, Wisconsin 53707-7921



Prepared by

EA Engineering, Science, and Technology, Inc., PBC 225 Schilling Circle, Suite 400 Hunt Valley, Maryland 21031

> June 2021 Version: Revision 00 EA Project No. 15982.01 State of Wisconsin DNR Contract Number 37000-0000012861 GLRI Grant ID GL-00E02392

This page left intentionally blank

# CONTENTS

|        |                   |                                  | Pa                                                                                           | ge         |
|--------|-------------------|----------------------------------|----------------------------------------------------------------------------------------------|------------|
| LIST O | F FIGU            | URES                             |                                                                                              | vi         |
| LIST O | F TAB             | LES                              |                                                                                              | . x        |
| LIST O | F ACR             | ONYN                             | IS AND ABBREVIATIONS                                                                         | xii        |
| 1.     | INTRO             | INTRODUCTION1-                   |                                                                                              |            |
|        | 1.1               | SITE I                           | DESCRIPTION AND BACKGROUND1                                                                  | -1         |
|        |                   | 1.1.1                            | Assessment Areas of the Site Characterization                                                | -2         |
|        | 1.2               | PURP                             | OSE AND OBJECTIVES1                                                                          | -5         |
|        |                   | 1.2.1<br>1.2.2                   | Project Objectives                                                                           |            |
|        | 1.3               |                                  | RT ORGANIZATION                                                                              |            |
| 2.     | SEDIN             |                                  | CHARACTERIZATION SITE INVESTIGATION                                                          |            |
|        | 2.1<br>2.2        | GEOP                             | HYSICAL SURVEYING EFFORT                                                                     | 2-1        |
|        |                   | 2.2.1<br>2.2.2                   | Surface Samples                                                                              |            |
|        | 2.3<br>2.4<br>2.5 | ANAL                             | LE PROCESSING                                                                                | 2-5        |
|        |                   | 2.5.1<br>2.5.2<br>2.5.3<br>2.5.4 | Sample Vessel2Surface Grab Sample Collection2Core Collection2Sample Processing and Analysis2 | 2-6<br>2-6 |
|        | 2.6               | SUPPI                            | LEMENTAL DATA                                                                                | 2-7        |
|        |                   | 2.6.1<br>2.6.2                   | Sediment                                                                                     |            |
| 3.     | GEOP              | HYSIC                            | AL SURVEY                                                                                    | 5-1        |
|        | 3.1               | HALL                             | ET DOCK 8 SLIP                                                                               | 5-1        |
|        |                   | 3.1.1<br>3.1.2                   | Bathymetry                                                                                   |            |
|        | 3.2               | OIL B                            | ARGE SLIP                                                                                    | -1         |
|        |                   | 3.2.1<br>3.2.2<br>3.2.3          | Bathymetry                                                                                   | 8-1        |
|        | 3.3               |                                  | RAL MILLS SLIP                                                                               |            |

|    |     | 3.3.1          | Bathymetry                                                                                                     | 3-2 |
|----|-----|----------------|----------------------------------------------------------------------------------------------------------------|-----|
|    |     | 3.3.2          | Sub-bottom Profiling                                                                                           |     |
|    | 3.4 | TOW            | ER AVENUE SLIP                                                                                                 | 3-3 |
|    |     | 3.4.1          | Bathymetry                                                                                                     | 3-3 |
|    |     | 3.4.2          | Sub-bottom Profiling                                                                                           |     |
|    |     | 3.4.3          | Acoustic Wall Survey                                                                                           | 3-3 |
| 4. | ANA | LTICAI         | RESULTS FOR SEDIMENT                                                                                           | 4-1 |
|    | 4.1 | DATA           | A EVALUATION                                                                                                   | 4-1 |
|    |     | 4.1.1          | Data Validation                                                                                                |     |
|    |     | 4.1.2          | Comparison to Sediment Quality Guidelines (SQGs)                                                               |     |
|    |     | 4.1.3          | Comparison to Non-industrial and Industrial Direct Contact and Soil<br>Groundwater Residual Contaminant Levels |     |
|    |     | 4.1.4          | Calculation of Totals for Polycyclic Aromatic Hydrocarbons and                                                 | 1 2 |
|    |     |                | Polychlorinated Biphenyls                                                                                      |     |
|    |     | 4.1.5          | Calculation of Toxicity Equivalency Quotients (TEQs)                                                           |     |
|    |     | 4.1.6          | Overlap in PAH and SVOC Results                                                                                |     |
|    |     | 4.1.7          | Limitations in Detection Limits                                                                                |     |
|    |     | 4.1.8          | Volatile Organic Compounds                                                                                     | 4-4 |
|    | 4.2 | HALL           | ET DOCK 8 SLIP                                                                                                 | 4-5 |
|    |     | 4.2.1          | Lithology                                                                                                      |     |
|    |     | 4.2.2          | Grain Size, Total Organic Carbon, and Coal                                                                     |     |
|    |     | 4.2.3          | Volatile Organic Compounds                                                                                     |     |
|    |     | 4.2.4          | Semivolatile Organic Compounds                                                                                 |     |
|    |     | 4.2.5          | Polychlorinated Biphenyl Aroclors                                                                              |     |
|    |     | 4.2.6          | Metals                                                                                                         |     |
|    |     | 4.2.7<br>4.2.8 | Dioxins/Furans<br>Organotins                                                                                   |     |
|    |     |                | C                                                                                                              |     |
|    | 4.3 |                | ARGE DOCK SLIP                                                                                                 |     |
|    |     |                | Lithology                                                                                                      |     |
|    |     | 4.3.2          | Grain Size, Total Organic Carbon, and Coal                                                                     |     |
|    |     | 4.3.3<br>4.3.4 | Volatile Organic Compounds<br>Semivolatile Organic Compounds                                                   |     |
|    |     | 4.3.4          | Polychlorinated Biphenyl Aroclors                                                                              |     |
|    |     | 4.3.6          | Metals                                                                                                         |     |
|    |     | 4.3.7          | Dioxins/Furans                                                                                                 |     |
|    |     | 4.3.8          | Organotins                                                                                                     |     |
|    | 4.4 |                | ERAL MILLS SLIP                                                                                                |     |
|    |     | 4.4.1          | Lithology                                                                                                      |     |
|    |     | 4.4.1          | Grain Size, Total Organic Carbon, and Coal                                                                     |     |
|    |     | 4.4.2          | Volatile Organic Compounds                                                                                     |     |
|    |     | 4.4.4          | Semivolatile Organic Compounds                                                                                 |     |
|    |     |                | Senie Stanie Siguine Compounds                                                                                 |     |

|                   | 4.4.5<br>4.4.6<br>4.4.7<br>4.4.8                                                           | Polychlorinated Biphenyl Aroclors<br>Metals<br>Dioxins/Furans<br>Organotins                                                                                                                              | 4-14<br>4-15                                 |
|-------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 4.5               | TOW                                                                                        | ER AVENUE SLIP                                                                                                                                                                                           |                                              |
|                   | 4.5.1<br>4.5.2<br>4.5.3<br>4.5.4<br>4.5.5<br>4.5.6<br>4.5.7<br>4.5.8                       | Lithology<br>Grain Size, Total Organic Carbon, and Coal<br>Volatile Organic Compounds<br>Semivolatile Organic Compounds<br>Polychlorinated Biphenyl Aroclors<br>Metals<br>Dioxins/Furans<br>Organotins . | 4-17<br>4-17<br>4-18<br>4-18<br>4-18<br>4-19 |
| 4.6               | ESTU                                                                                       | ARY FLATS                                                                                                                                                                                                | 4-20                                         |
|                   | $\begin{array}{c} 4.6.1 \\ 4.6.2 \\ 4.6.3 \\ 4.6.4 \\ 4.6.5 \\ 4.6.6 \\ 4.6.7 \end{array}$ | Lithology<br>Grain Size and Total Organic Carbon<br>Volatile Organic Compounds<br>Semivolatile Organic Compounds<br>Polychlorinated Biphenyl Aroclors<br>Metals<br>Dioxins/Furans                        | 4-20<br>4-21<br>4-21<br>4-21<br>4-22         |
| 4.7               | CLOU                                                                                       | JGH ISLAND                                                                                                                                                                                               | 4-22                                         |
|                   | 4.7.1<br>4.7.2<br>4.7.3<br>4.7.4<br>4.7.5                                                  | Grain Size and Total Organic Carbon<br>Semivolatile Organic Compounds<br>Polychlorinated Biphenyl Aroclors<br>Metals<br>Dioxins/Furans                                                                   | 4-23<br>4-24<br>4-24                         |
| 4.8               | REFE                                                                                       | RENCE AREAS                                                                                                                                                                                              | 4-25                                         |
|                   | 4.8.1<br>4.8.2<br>4.8.3<br>4.8.4<br>4.8.5<br>4.8.6<br>4.8.7                                | Grain Size and Total Organic Carbon<br>Volatile Organic Compounds<br>Semivolatile Organic Compounds<br>Polychlorinated Biphenyl Aroclors<br>Metals<br>Dioxins/Furans<br>Organotins                       | 4-26<br>4-26<br>4-26<br>4-26<br>4-27         |
| 4.9               | ALIPI                                                                                      | HATIC HYDROCARBON GAS CHROMATOGRAPHY                                                                                                                                                                     |                                              |
|                   |                                                                                            | ND BIOACCUMULATION TESTING RESULTS                                                                                                                                                                       |                                              |
| 5.1<br>5.2<br>5.3 | CHIR<br>HYAL<br>LUME                                                                       | ONOMUS DILUTUS SEDIMENT TOXICITY TEST<br>ELLA AZTECA SEDIMENT TOXICITY TEST<br>BRICULUS VARIEGATUS 28-DAY BIOACCUMULATION TEST                                                                           | 5-2<br>5-3<br>5-4                            |
|                   | 5.3.1                                                                                      | Mercury                                                                                                                                                                                                  |                                              |

5.

|                                                      |                                                                                                                                            | <ul><li>5.3.2 Dioxins/Furans</li><li>5.3.3 Organotins</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                      | 5.4                                                                                                                                        | SEDIMENT TOXICITY AND BIOACCUMULATION TESTING SUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 6.                                                   | SUMN                                                                                                                                       | MARY OF FINDINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-1 |
|                                                      | 6.1                                                                                                                                        | GEOPHYSICAL SURVEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-1 |
|                                                      |                                                                                                                                            | 6.1.1 Hallet Dock 8 Slip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|                                                      |                                                                                                                                            | 6.1.2 Oil Barge Dock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|                                                      |                                                                                                                                            | 6.1.3 General Mills Slip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|                                                      |                                                                                                                                            | 6.1.4 Tower Avenue Slip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6-3 |
|                                                      | 6.2                                                                                                                                        | SEDIMENT INVESTIGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                      | 6.3                                                                                                                                        | TOXICITY AND BIOACCUMULATION TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-5 |
|                                                      |                                                                                                                                            | 6.3.1 Hallet Dock 8 Slip (HD03 and HD04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-7 |
|                                                      |                                                                                                                                            | 6.3.2 Tower Bay (TB01, -03, -07, -10, -06 [growth])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-7 |
|                                                      |                                                                                                                                            | 6.3.3 Clough Island (CL06, -07, -09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-7 |
|                                                      | 6.4                                                                                                                                        | VOLUME ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6-8 |
|                                                      | 6.5                                                                                                                                        | RECOMMEDATIONS FOR FUTURE WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 7.                                                   | REFE                                                                                                                                       | RENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-1 |
| APPE<br>APPE<br>APPE<br>APPE<br>APPE<br>APPE<br>APPE | ATTA<br>ATTA<br>ATTA<br>NDIX F<br>NDIX C<br>NDIX F<br>ATTA<br>ATTA<br>ATTA<br>ATTA<br>ATTA<br>NDIX F<br>NDIX C<br>NDIX F<br>NDIX I<br>ATTA | <ul> <li>LITHOLOGIC CORE LOGS</li> <li>SAMPLING PHOTOGRAPHIC RECORD</li> <li>RESULTS FILES</li> <li>CHMENT 1: RESULTS COMPARISON TO SQGs</li> <li>CHMENT 2: RESULTS COMPARISON TO RCLs</li> <li>CHMENT 3: 34 PAHs RESULTS</li> <li>CHMENT 4: GRAIN SIZE RESULTS</li> <li>CHMENT 5: TISSUE REPLICATE RESULTS</li> <li>CHMENT 6: TISSUE MEANS COMPARISON</li> <li>MICROSCOPIC COAL RESULTS</li> <li>G: PARTICLE SIZE RESULTS</li> <li>F: ANALYTICAL REPORTS</li> <li>: ECOTOXICOLOGY REPORT</li> <li>CHMENT 1: ECOTOXICOLOGY REPORT</li> <li>CHMNET 2: PHOTOGRAPHIC LOG</li> </ul> |     |
|                                                      | NDIX J<br>NDIX F                                                                                                                           | : WASTE MANIFEST<br>K: WORK PLANNING DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| · · · · L                                            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |

#### ATTACHMENT 1: FINAL QUALITY ASSURANCE PROJECT PLAN CHARACTERIZATION OF SEDIMENTS IN THE NORTH END DISTRICT AND CLOUGH ISLAND – SURVEY TASKS ATTACHMENT 2: FINAL QUALITY ASSURANCE PROJECT PLAN CHARACTERIZATION OF SEDIMENTS IN THE NORTH END DISTRICT AND CLOUGH ISLAND ST. LOUIS RIVER AND BAY AREA OF CONCERN

## LIST OF FIGURES

| <u>Number</u> | Title                                             |
|---------------|---------------------------------------------------|
| 1-1           | Site Location Map                                 |
| 1-2           | Site Plan                                         |
| 2-1           | Bathymetry, Hallet Dock 8 Slip and Oil Barge Dock |
| 2-2           | Bathymetry, General Mills Slip                    |
| 2-3           | Bathymetry, Tower Avenue Slip                     |
| 2-4           | Actual Sample Locations Hallet Dock 8 Slip        |
| 2-5           | Actual Sample Locations Oil Barge Dock            |
| 2-6           | Actual Sample Locations General Mills Slip        |
| 2-7           | Actual Sample Locations Tower Avenue Slip         |
| 2-8           | Actual Sample Locations Estuary Flats             |
| 2-9           | Actual Sample Locations Clough Island             |
| 2-10          | Reference Locations                               |
| 3-1           | Lakebed Elevation Hallet Dock 8 Slip              |
| 3-2           | Lakebed Elevation Oil Barge Dock                  |
| 3-3           | Lakebed Elevation General Mills Slip              |
| 3-4           | Lakebed Elevation Tower Avenue Slip               |
| 4-1           | Hallet Dock 8 Slip Results-Organics               |
| 4-2           | Hallet Dock 8 Slip Results-Metals                 |
| 4-3           | Oil Barge Dock Slip-Organics                      |
| 4-4           | Oil Barge Dock Slip-Metals                        |
| 4-5           | General Mills Slip-Organics                       |
| 4-6           | General Mills Slip-Metals                         |

#### LIST OF FIGURES (continued)

| <u>Number</u> | Title                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------|
| 4-7           | Tower Avenue Slip-Organics                                                                                         |
| 4-8           | Tower Avenue Slip-Metals                                                                                           |
| 4-9           | Estuary Flats-Organics                                                                                             |
| 4-10          | Estuary Flats-Metals                                                                                               |
| 4-11          | Clough Island-Organics                                                                                             |
| 4-12          | Clough Island-Metals                                                                                               |
| 4-13          | Reference Sites-Organics                                                                                           |
| 4-14          | Reference Sites-Metals                                                                                             |
| 4-15          | Hallet Dock 8 Slip and Oil Barge Dock Microscopic Coal Results                                                     |
| 4-16          | Tower Avenue and General Mills Slip Microscopic Coal Results                                                       |
| 4-17          | Reference Area Microscopic Coal Results                                                                            |
| 4-18          | Common Petroleum Products And Boiling Point Ranges (TPHCWG 1998)                                                   |
| 5-1           | Sediment Toxicity Testing Survival Results                                                                         |
| 5-2           | Sediment Toxicity Testing Growth Results                                                                           |
| 5-3           | Sediment Toxicity Testing UV Exposure Survival and Fecundity Results                                               |
| 5-4           | Hallet Dock 8 Slip and Oil Barge Dock Slip - Geographical Distribution of Bioassay Results for Survival and Growth |
| 5-5           | General Mills and Tower Avenue Slip - Geographical Distribution of Bioassay<br>Results for Survival and Growth     |
| 5-6           | Clough Island - Geographical Distribution of Bioassay Results for Survival and Growth                              |
| 5-7           | Tissue Results Summary General Mills and Tower Avenue Slip                                                         |
| 5-8           | Tissue Results Summary Clough Island                                                                               |

## LIST OF FIGURES (continued)

| <u>Number</u> | Title                                                                                |
|---------------|--------------------------------------------------------------------------------------|
| 5-9           | Mean Plot for Mercury in Lumbriculus variegatus Tissue                               |
| 5-10          | Mean Plot for 2005 WHO Dioxin TEQ (ND=0) in Lumbriculus variegatus Tissue            |
| 5-11          | Mean Plot for 2005 WHO Dioxin TEQ (ND=1/2DL) in Lumbriculus variegatus Tissue        |
| 5-12          | Mean Plot for Fish Dioxin TEQ (ND=DL) in Lumbriculus variegatus Tissue               |
| 6-1           | Summary of SQG Exceedances for Surface and Subsurface Organics Hallet Dock 8 Slip    |
| 6-2           | Summary of SQG Exceedances for Surface and Subsurface Metals Hallet Dock 8<br>Slip   |
| 6-3           | Summary of SQG Exceedances for Surface and Subsurface Organics Oil Barge Dock Slip   |
| 6-4           | Summary of SQG Exceedances for Surface and Subsurface Metals Oil Barge Dock Slip     |
| 6-5           | Summary of SQG Exceedances for Surface and Subsurface Organics General<br>Mills Slip |
| 6-6           | Summary of SQG Exceedances for Surface and Subsurface Metals General Mills Slip      |
| 6-7           | Summary of SQG Exceedances for Surface and Subsurface Organics Tower Avenue Slip     |
| 6-8           | Summary of SQG Exceedances for Surface and Subsurface Metals Tower Avenue Slip       |
| 6-9           | Summary of SQG Exceedances for Surface and Subsurface Organics Estuary Flats         |
| 6-10          | Summary of SQG Exceedances for Surface and Subsurface Metals Estuary Flats           |
| 6-11          | Summary of SQG Exceedances for Surface and Subsurface Organics Clough Island         |
| 6-12          | Summary of SQG Exceedances for Surface and Subsurface Metals Clough Island           |

#### LIST OF FIGURES (continued)

| <u>Number</u> | Title                                                                          |
|---------------|--------------------------------------------------------------------------------|
| 6-13          | Summary of SQG Exceedances for Surface and Subsurface Organics Reference Sites |
| 6-14          | Summary of SQG Exceedances for Surface and Subsurface Metals Reference Sites   |
| 6-15          | MEC and PEC Volume Estimate Conceptual Site Model                              |

## LIST OF TABLES

| Number | Title                                                                 |
|--------|-----------------------------------------------------------------------|
| 2-1    | Manual Probing Results                                                |
| 2-2    | Surface Sample Collection                                             |
| 2-3    | Vibracore Collection Data                                             |
| 2-4    | Actual Analytical Program – Hallet Dock 8 Slip                        |
| 2-5    | Actual Analytical Program – Oil Barge Dock Slip                       |
| 2-6    | Actual Analytical Program – General Mills Slip                        |
| 2-7    | Actual Analytical Program – Tower Avenue Slip                         |
| 2-8    | Actual Analytical Program – Estuary Flats                             |
| 2-9    | Actual Analytical Program – Clough Island                             |
| 2-10   | Actual Analytical Program – Reference Sites                           |
| 2-11   | Summary Actual Analytical Program                                     |
| 4-1    | Summary of Sediment Results – Hallet Dock 8 Slip                      |
| 4-2    | Summary of Sediment Results - Oil Barge Dock                          |
| 4-3    | Summary of Sediment Results – General Mills Slip                      |
| 4-4    | Summary of Sediment Results – Tower Avenue Slip                       |
| 4-5    | Summary of Sediment Results – Estuary Flats                           |
| 4-6    | Summary of Sediment Results - Clough Island                           |
| 4-7    | Summary of Sediment Results – Reference Locations                     |
| 4-8    | Microscopic Coal Results                                              |
| 4-9    | Aliphatic Hydrocarbon Summary                                         |
| 5-1    | Summary of Survival and Growth Results for Chironomous dilutus        |
| 5-2    | Summary of Survival, Growth and Fecundity Results for Hyalella azteca |

## LIST OF TABLES (continued)

| Number | Title                                                                                              |
|--------|----------------------------------------------------------------------------------------------------|
| 5-3    | Mean Lipid Concentrations (Percent of Total Body Wet Weight) in<br>Lumbriculus Variegatus          |
| 5-4a   | Mean Concentrations in Lumbriculus variegatus Tissues – General Mills Slip                         |
| 5-4b   | Lipid-Normalized Mean Concentrations in <i>Lumbriculus variegatus</i> Tissues – General Mills Slip |
| 5-5a   | Mean Concentrations in Lumbriculus variegatus Tissues – Tower Avenue Slip                          |
| 5-5b   | Lipid-Normalized Mean Concentrations in <i>Lumbriculus variegatus</i> Tissues – Tower Avenue Slip  |
| 5-ба   | Mean Concentrations in Lumbriculus variegatus Tissues – Clough Island                              |
| 5-6b   | Lipid-Normalized Mean Concentrations in Lumbriculus variegatus Tissues – Clough Island             |
| 6-1    | Summary of Findings                                                                                |
| 6-2    | Maximum Depth of PEC and MEC Exceedance Elevations for Volume Calculations                         |

## LIST OF ACRONYMS AND ABBREVIATIONS

| °C                   | Degrees Celsius                                    |
|----------------------|----------------------------------------------------|
| µg/kg                | Microgram(s) per kilogram                          |
| %                    | Percent                                            |
| AOC                  | Area of Concern                                    |
| ASE                  | American Surveying & Engineering, P.C.             |
| BTV                  | Background threshold value                         |
| BUI                  | Beneficial use impairment                          |
| CHS                  | Cenex Harvest State Cooperatives                   |
| CLP                  | Contract Laboratory Program                        |
| DEM                  | Digital elevation model                            |
| DNR                  | Department of Natural Resources                    |
| DUAR                 | Data Usability Assessment Report                   |
| EA                   | EA Engineering, Science, and Technology, Inc., PBC |
| EPA                  | U.S. Environmental Protection Agency               |
| Eurofins TestAmerica | Eurofins TestAmerica Laboratories, Inc.            |
| FD                   | Field duplicate                                    |
| FS                   | Field split                                        |
| FSP                  | Field Sampling Plan                                |
| ft                   | Foot (feet)                                        |
| GC                   | Gas chromatography                                 |
| GIS                  | Geographic information system                      |
| GLNPO                | Great Lakes National Program Office                |
| GNSS                 | Global Navigation Satellite System                 |
| GPS                  | Global positioning system                          |
| IGLD85               | International Great Lakes Datum of 1985            |
| in.                  | Inch(es)                                           |
| LWD                  | Low water datum                                    |
| M/V                  | Motor vessel                                       |
| MDL                  | Method detection limit                             |
| MEC                  | Midpoint effect concentration                      |
| mg                   | Milligram(s)                                       |
| mg/kg                | Milligram(s) per kilogram                          |
| MS                   | Mass spectrometry                                  |

#### LIST OF ACRONYMS AND ABBREVIATIONS (continued)

| ND      | Non-detect                                                 |
|---------|------------------------------------------------------------|
| NELAC   | National Environmental Laboratory Accreditation Conference |
| OSI     | Ocean Surveys, Inc.                                        |
| PAH     | Polycyclic aromatic hydrocarbon                            |
| PCB     | Polychlorinated biphenyl                                   |
| PEC     | Probable effect concentration                              |
| QAPP    | Quality Assurance Project Plan                             |
| R/V     | Research vessel                                            |
| RAP     | Remedial Action Plan                                       |
| RCL     | Residual contaminant level                                 |
| RL      | Reporting limit                                            |
| ROV     | Remotely operated vehicle                                  |
| SIM     | Selected ion monitoring                                    |
| SIR     | Site Investigation Report                                  |
| SQG     | Sediment Quality Guideline                                 |
| SVOC    | Semivolatile organic compound                              |
| TAL     | Target Analyte List                                        |
| TCL     | Target Compound List                                       |
| TEC     | Threshold effect concentration                             |
| TEQ     | Toxicity equivalency quotient                              |
| TOC     | Total organic carbon                                       |
| UV      | Ultraviolet                                                |
| VOC     | Volatile organic compound                                  |
| WHO     | World Health Organization                                  |
| WISCORS | Wisconsin Continuous Observing Reference Station           |

This page left intentionally blank

## 1. INTRODUCTION

EA Engineering, Science, and Technology, Inc., PBC (EA), on behalf of the State of Wisconsin Department of Natural Resources (DNR), has prepared this Site Investigation Report (SIR) to describe the Characterization of Sediments in the North End District and Clough Island 2020. This work was funded through the Great Lakes Restoration Initiative via a cooperative agreement between U.S. Environmental Protection Agency (EPA) Great Lakes National Program Office (GLNPO) and DNR. The study area is located in Superior, Wisconsin (Figure 1-1). The site characterization field effort involved sediment sampling in six assessment areas located within the North End District and Clough Island area: the Hallet Dock 8 Slip, the Oil Barge Dock Slip, the General Mills Slip, the Tower Avenue Slip, the Estuary Flats, and Clough Island (Figure 1-2). This SIR provides: an overview of the sampling event, including geophysical survey activities conducted prior to sampling; the number and location of samples; results of physical and chemical testing; results of toxicity and bioaccumulation testing; data tables and maps, data interpretation, and findings of the investigation.

## 1.1 SITE DESCRIPTION AND BACKGROUND

The St. Louis River, the largest U.S. tributary to Lake Superior, drains 3,634 square miles and enters the southwest corner of the lake at the twin-port cities of Duluth, Minnesota, and Superior, Wisconsin. The river flows 179 miles through three distinct areas: coarse soils, glacial till, and outwash deposits at its headwaters; a deep, narrow gorge at Jay Cooke State Park; and red clay deposits in its lower reaches. As it approaches Duluth and Superior, the river takes on the characteristics of a 12,000-acre freshwater estuary. The upper estuary has some wilderness-like areas while the lower estuary contains urban development, an industrial harbor, and a major port. The St. Louis River and Bay Area of Concern (AOC) is located on the western arm of Lake Superior and includes the twin-port cities of Duluth, Minnesota, and Superior, Wisconsin. The AOC includes the lower 39 miles of the St. Louis River and the lower estuary containing multiple bays and Duluth-Superior Harbor, the Nemadji River, and the western end of Lake Superior.

Under the Great Lakes Water Quality Agreement, a St. Louis River Stage 1 Remedial Action Plan (RAP) was completed in 1992 through the collaborative efforts of DNR, the Minnesota Pollution Control Agency, and local stakeholders. Updates to the RAP have been made periodically with the most recent update in 2019. The RAP identifies the project subareas as requiring additional sediment characterization to determine if remedial action is necessary to address beneficial use impairments (BUIs). Originally, the RAP identified the following BUIs for the St. Louis River and Bay AOC:

- Restrictions on fish and wildlife consumption
- Excessive loading of sediment and nutrients
- Degradation of fish and wildlife populations
- Beach closings
- Fish tumors or other deformities
- Degradation of aesthetics
- Degradation of benthos

- Restriction on dredging activities
- Loss of fish and wildlife habitat.

Management actions have been completed for three of the original nine listed BUIs (fish tumors/other deformities, excessive loading of sediments and nutrients, and degradation of aesthetics) and these BUIs have been formally removed for this AOC. Historical discharges resulted in sediments contaminated with various pollutants, including lead, mercury, dioxins, polychlorinated biphenyls (PCBs), tributyltin, and polycyclic aromatic hydrocarbons (PAHs). The remaining BUIs are linked to contaminated sediment.

The 2019 RAP update outlines the upcoming steps that will lead to the removal of the remaining BUIs and ultimately, the delisting of the St. Louis River and Bay AOC. Identifying locations with contaminated sediments and completing remedial actions in those areas will play a large role in addressing and removing BUIs. RAP management action included the completion of sediment characterization projects to determine if there are other contaminated sediment sites that require remedial action to address BUIs.

#### 1.1.1 Assessment Areas of the Site Characterization

This sediment characterization is focused on the lower estuary of the AOC, specifically portions of the North End of the City of Superior's waterfront district located in St. Louis Bay and Howards Bay as well as a sheltered bay at Clough Island below Spirit Lake. There are six assessment areas located within the North End District and Clough Island area: the Hallet Dock 8 Slip, the Oil Barge Dock Slip, the General Mills Slip, the Tower Avenue Slip, the Estuary Flats, and Clough Island (Figure 1-2).

The project area has been subjected to significant modification over time to streamline and maximize commerce, as well as accommodate changes in industry and site usage since the late 1800s. Based on information provided in a historical records review and related analysis of shoreline changes, the pier or dock features that bound each slip are primarily comprised of fill material (Sigma Group 2019a-c). Considered submerged lands of the state, rights to utilize the beds of lakes were leased to individual riparian owners and municipalities under Section 24.39(4) of the Wisconsin Statutes. Furthermore, these rights included the ability to fill in beds of lakes or navigable streams, when the purpose of the lease is for the improvement of navigation or for the improvement or construction of harbor facilities as defined in Section 30.01. As a result, the docks are primarily constructed of fill material placed over freshwater marsh sediments, while the bedded material within each slip is representative of the native St. Louis Bay and Howards Bay sediments. The sediments comprising these areas of lakebed have been further modified by dredging and impacted by activities associated with the adjacent industries. Each of the areas are described in the subsections below.

## Hallet Dock 8 Slip

The Hallet Dock 8 Slip encompasses a 12-acre area and is adjacent to the Oil Barge Dock Slip. This slip is located within the 40-acre West Waterfront area in St. Louis Bay. Historically the slip was predominately used for coal and petroleum-related shipments and industries. Nearby

manufacturers included a foundry, coal briquet maker, and coke ovens. In the 1930s and 1940s, there were approximately 112 acres of coal storage adjacent to the slip. Industrial uses of the slip continue to this day, with terminals for coal and road salt shipments, and accompanying large stockpiles of each along the shoreline.

#### **Oil Barge Dock Slip**

The Oil Barge Dock Slip encompasses a 6-acre area to the east of the Hallet Dock 8 Slip. The Oil Barge Dock Slip is located within the 40-acre West Waterfront area in St. Louis Bay. Historical uses of the Oil Barge Dock slip included coal and petroleum-related shipments and industries. Nearby manufacturers included a foundry, coal briquet maker, and coke ovens. In the 1930s and 1940s, there were approximately 112 acres of coal storage adjacent to the slip. Petroleum products (i.e., gasoline, diesel, jet fuel, and crude oil) were transferred at the Barge Dock for 103 years (1890 to 1993) and discontinued when the former Amoco Terminal on Winter Street was abandoned (following petroleum pipeline construction). The east shoreline of the slip continues to be used to stockpile coal at the Midwest Energy Resources Company.

Previous sediment investigations indicate impacts from coal and petroleum, as well as sediment toxicity at this slip. There are several active and closed Bureau for Remediation and Redevelopment Tracking System case sites on lands adjacent to the West Waterfront area with extensive plumes of petroleum contaminated groundwater and at least 60,000 gallons of free product remaining to be recovered. The groundwater/sediment/surface water pathway may be of interest for future source characterization and remedial evaluation in the Oil Barge Dock Slip.

#### **General Mills Slip**

The General Mills Slip is a 7-acre inlet off of St. Louis Bay that is immediately east of Midwest Energy Resources Company's large coal stockpile at the West Waterfront. The slip was formally used as a freight warehouse, coal dock, and grain elevator. It is currently used by General Mills for loading grain into ships for transport.

#### **Tower Avenue Slip**

The Tower Avenue Slip is a 13-acre area in Howards Bay, with a number of different surrounding industries, both historical and current, including coke ovens, petroleum tank farms, a foundry, lumber production facilities, chemical warehousing, and bulk transportation warehouses. The slip has six municipal storm sewer outfalls that drain into its waters, transporting historical and current discharges from industrial and residential properties in the Superior area. The slip also received discharges from a former electric power generation plant. The slip is currently used for loading of ships at the Cenex Harvest States Cooperative (CHS) grain terminal and long-term layup of ships.

The Sigma Report for Tower Avenue (The Sigma Group 2019b) cited historical documents that indicate that, prior to the 1880s, the northern section of the Tower Avenue area was marshland surrounding Tower Bay. Significant development within the project area began around 1887.

The inland section of the project area is currently developed with a mix of light manufacturing, auto repair, recovery facilities, and commercial properties.

Based on a review of the available information, Sigma identified 12 sites within the project area, which are potential sources of contamination, including:

- Site No. 1: Globe Elevator Dock Site
- Site No. 2: Barko Hydraulics Dock Site
- Site No. 3: Speakes Company Site
- Site No. 4: Harvest States Cooperative Site
- Site No. 5: Northwestern Oil Site
- Site No. 6: Streetcar Powerhouse Site
- Site No. 7: Northern Engineering Site
- Site No. 8: Evered Foundry Site
- Site No. 9: Power Plant and Waste Oil Site
- Site No. 10: Railyard Site
- Site No. 11: Northwestern Boiler Works Site
- Site No. 12: Railcar Barn Site.

#### Estuary Flats

The Estuary Flats is an approximately 290-acre area that is bounded by St. Louis Bay to the north and the St. Louis River to the west. This area is presently undeveloped land, and historically, development and shoreline changes within this area were minimal. This area contained an iron ore dock from 1917 to 1931 and dredged material was disposed of in the shallow waters of the Estuary Flats. Sigma did not identify any potential source sites within Estuary Flats, though the area has been a documented historical disposal site for dock fill materials and dredge materials, which may have contaminated sediments (The Sigma Group 2019a).

## **Clough Island**

Clough Island is the largest island in the St. Louis River estuary and was the site of former farming activities. Clough Island has been preserved as a DNR-managed property and studies indicate relatively unimpacted conditions around the island, except in one sheltered bay where elevated levels of dioxin have consistently been found in surficial sediments. This bay is included within the study area, it is approximately 20 acres in size, and is located at the southwest corner of the island, immediately downstream of Spirit Lake and the U.S. Steel Superfund site. This bay is located behind a bar, which separates it from the main channel of the St. Louis River.

## **1.2 PURPOSE AND OBJECTIVES**

## **1.2.1 Project Objectives**

The primary objective of the North End District and Clough Island Sediment Characterization is to obtain the data necessary to evaluate the degree and extent of sediment contamination and, where feasible, identify potential sources of contamination in the assessment areas. The results will be used to help identify areas, if any, that may require further investigation or remedial action. Moreover, where action is warranted, a secondary objective is to collect enough information to facilitate the planning and/or completion of remedial action options report(s) under Wisconsin Admin Code Chapter NR 722, and accelerate the development of design plans under Wisconsin Administrative Code Chapter NR 724.

## 1.2.2 Objectives of the Site Investigation Report

The purpose of the SIR is to summarize the findings from the field investigation, including data tables and maps, data interpretation, and conclusions of the investigation with respect to the overall goals of the sediment assessment including identification and mapping of sediment benchmark exceedances and estimating sediment volumes and evaluating toxicity and bioaccumulation data with respect to reference locations to identify site-specific effects/impacts to benchic organisms.

## **1.3 REPORT ORGANIZATION**

This SIR describes the 2020 field efforts to characterize sediments in the North End District and Clough Island 2020, which involved sediment sampling in six assessment areas located within the North End District and Clough Island area: the Hallet Dock 8 Slip, the Oil Barge Dock Slip, the General Mills Slip, the Tower Avenue Slip, the Estuary Flats, and Clough Island.

This document is organized as follows:

- Chapter 1 presents the site description, background, purpose, and objectives of the investigation.
- Chapter 2 presents the narratives of the investigation efforts, deviations from the Quality Assurance Project Plan (QAPP), and introduces supplemental data used to characterize the site.
- Chapter 3 presents the geophysical results from each of the assessment areas.
- Chapter 4 presents the analytical results from each of the assessment areas as well as gas chromatography results.
- Chapter 5 presents the toxicity and bioaccumulation testing methodology and results.
- Chapter 6 presents the summary of findings.

• Chapter 7 presents references used in the SIR.

# 2. SEDIMENT CHARACTERIZATION SITE INVESTIGATION

The North End District and Clough Island Sediment Characterization was conducted in coordination with DNR and the EPA. The investigations, including sampling activities and analytical testing methods, were carried out in accordance with procedures coordinated and approved by DNR and EPA GLNPO as documented in the Survey and Sampling QAPPs with Field Sampling Plan (FSP) attachments (EA 2019 and 2020), respectively. The Survey and Sampling QAPPs with FSP are included in Appendix K.

The first phase of the field effort included a geophysical survey of each slip area, as well as an acoustic dock wall survey within the Oil Barge and Tower Avenue Slips. These activities were conducted from 27 April through 3 May 2020. Survey activities were completed by EA's subcontractor American Surveying & Engineering, P.C. (ASE) with oversight and manual probing activities completed by EA. The remote sensing work was performed aboard ASE's Research Vessel (R/V) *Abraham Lincoln*, a 23-foot (ft)-long aluminum Scully survey platform. Sediment probing and field photography were completed concurrent with the remote sensing work aboard a 20-ft aluminum EA workboat to facilitate COVID-19 (novel coronavirus disease of 2019)-related social distancing requirements.

Sediment sampling was conducted during the second phase of the field effort, from 22 June through 4 July 2020. Samples were collected from the Ocean Surveys, Inc. (OSI) R/V *Candu*, a 35-ft-long aluminum pontoon-type vessel with a 25-ft-tall derrick-mounted pneumatic vibracore, as well as EA's 26-ft motor vessel (M/V) *Chinook*. An EA field team member was present onboard the R/V *Candu* during sampling. DNR was present onsite periodically to observe coring and processing activities and was involved in daily field decision-making throughout the sampling effort. Sample locations and depths below the sediment-water interface were determined prior to the second phase of the field effort based on bathymetry and sub-bottom profiling results and were adjusted in the field to collect samples spatially and to depths capturing the extent of observable impacts at the target locations to meet the sampling objectives defined by DNR. Cores were processed at the Sea Service warehouse in Superior, Wisconsin. All field operations, including sample planning, collection, and processing, were performed in coordination with DNR. The analytical testing methods were carried out in accordance with procedures outlined in the QAPP and FSP (EA 2020). Field modifications from the QAPP/FSP sampling procedures were approved by DNR.

# 2.1 GEOPHYSICAL SURVEYING EFFORT

Geophysical surveying efforts, including precision multibeam bathymetric, sub-bottom profiling, and an acoustic dock wall survey, were conducted prior to sediment sampling (27 April through 3 May 2020) to establish a current basemap of the project area. In addition, the completion of these efforts provided the water depths, bottom elevations, and sediment thickness data necessary for future evaluations of the volumes of sediment that could be removed as part of future remediation efforts. The multibeam bathymetric and sub-bottom profiling surveys were completed in the Hallet Dock 8 Slip, Oil Barge Dock Slip, General Mills Slip, and Tower Avenue Slip. However, the dock wall acoustic surveys were only completed within the Oil

EA Engineering, Science, and Technology, Inc., PBC

Barge Dock and Tower Avenue Slips due to funding limitations and prioritization of slip walls with known or suspected failures (Figure 1-2, 2-1 through 2-3). Additional information on the methodology of the bathymetric survey, sub-bottom profiling, and acoustic survey including documentation during the survey effort is provided in Appendix A. Appendix A Attachment 1 includes copies of the daily logbook and field notes; ASE's report is provided in Appendix A Attachment 2; acoustic imagery produced by the wall surveys is provided in Appendix A Attachment 3.

Prior to the geophysical survey efforts, EA coordinated with Central Marine Logistics to move the M/V *Ryerson* from the Tower Avenue Slip (Figure 1-2) in Superior to the Fraser Shipyard in Superior. The movement of the vessel in early November 2019 provided the opportunity to collect bathymetric soundings, evaluate the condition of the dock wall, and complete sediment sampling activities in a significant portion of the Tower Avenue Slip.

# 2.2 SAMPLE COLLECTION

Mobilization for the sediment sampling field effort commenced on 19 June 2020. Vibracore sampling began aboard the M/V *Candu* provided by subcontractor OSI on 22 June 2020 and continued through 4 July 2020. Surface grab sampling (via ponar grab) began aboard EA's M/V *Chinook* on 24 June 2020 and continued through 4 July 2020.

Coordinates of proposed sediment sample locations were provided to EA by DNR. Prior to the field effort, but after the finalization of the QAPP, proposed target locations were adjusted and sampling intervals were added based on review of historical data, multibeam bathymetry and sub-bottom profiling results, and discussion with DNR. During the field effort, actual sampling locations were adjusted in certain areas based on field observations, field conditions, and coordination with DNR. Actual sample locations are depicted in Figures 2-4 through 2-10. The coordinates for each location sampled and details of sample collection, including penetration and recovery, are included in Tables 2-2 and 2-3 for surface grab samples and core samples, respectively.

Staging for the field effort was conducted at Sea Service's warehouse in Superior, Wisconsin. A temporary core processing area was set up at the warehouse and included a designated area for core logging and sample processing, decontamination of sampling equipment, a refrigeration truck for core and sample storage, and a support area for oversight and data management activities, including electronic sample management and tracking with Scribe software.

The sample naming convention included, as the first field, the general project area and year collected (ND20 includes ND as "North End District" and "20" for the year 2020). The second field in each sample name indicates the assessment area and sample location number. Assessment area designations are as follows:

- Hallet Dock Slip HD
- Oil Barge Dock BP
- General Mills Slip GM

- Tower Avenue Slip TB
- Estuary Flats EF
- Clough Island CL
- Reference location REF
  - KB Kimballs Bay
  - LF Loonsfoot Landing
  - SB Superior Bay
  - SLB St. Louis Bay.

The third field, "0320," indicates the bottom of the sample interval measured in feet below sediment surface. For the 0 to 0.3 ft interval, the third field was designated as "SURF" to indicate a surficial sample. As an example, the analytical sample ND20-HD01-SURF is the surface (ponar grab) sample (0.0 to 0.3 ft) collected from location 01 in the Hallet Dock, and ND20-BP03-2040 is the sediment sample collected from location 03 in the Oil Barge Dock from the 2.0 to 4.0 ft interval.

Logs of sample collection activities, sampling locations, water depths, and core recoveries were recorded in permanently bound logbooks with indelible ink. Personnel names, local weather conditions, and other information that impacted the field sampling program were also recorded. Each page of the logbook was numbered and dated by the personnel entering information. Lithologic logs were completed for each final sampling location describing the full length of the sediment core. Logs were also completed for each surface sample. Copies of the field logbooks and lithologic logs for the cores provided in Appendixes B and C, respectively. A photographic record containing photos of the ponar grabs and cores is presented in Appendix D.

#### 2.2.1 Surface Samples

A total of 89 of the planned 91 surface sediment samples were successfully collected using a ponar grab sampler. Due to heavy woody debris and detritus at the head of the Oil Barge Dock, a surface sample could not be collected using the ponar grab sampler at locations BP01 and BP02. Sampling procedures for those locations are discussed in Section 2.5.

The ponar grab sampler was mechanically deployed and retrieved from the M/V *Chinook* as described in the FSP and EA Standard Operating Procedure 021 (EA 2020). A Trimble SPS461 global positioning system (GPS) paired with a laptop computer running HYPACK marine positioning software was used to navigate to the sampling locations. To enhance the positional accuracy of the Trimble SPS461 GPS receiver, corrections for the satellite positioning data were received in real time through a subscription to the Wisconsin Continuous Observing Reference Station (WISCORS) network. A wireless hotspot allows the Trimble SPS461 GPS receiver to interface directly with the WISCORS network and derive corrections to the satellite positioning information in real time. Following the application of the WISCORS corrections, the positional information generated by the roving Trimble R8 Global Navigation Satellite System (GNSS) receiver unit yielded position fixes with a geodetic accuracy of 5 centimeters in the horizontal plane and 5 centimeters in the vertical plane. Surface sample locations for the North End District

and Clough Island Sediment Characterization are depicted in Figures 2-4 through 2-10. Sample location details are provided in Table 2-2.

The procedure for collecting surface samples via ponar included deploying the sampler off of the edge of the boat, retrieving the sampler to the boat deck, decanting water at the top of the sampler, and transferring the sediment into an appropriate pan. A decontaminated stainless-steel tray was used to capture the sediment as it was transferred from the ponar. A digital photograph of the sediments was captured, and volatile organic compound (VOC) samples were collected (if appropriate). Once the VOC samples were collected (if appropriate), the sediments were homogenized, and transferred to laboratory-approved containers, labeled, and stored on ice in coolers.

# 2.2.2 Sediment Cores

A total of 66 out of the planned 67 locations were successfully sampled (refusal was encountered at GM13 as described in Section 2.5.3) using the vibracoring system onboard the M/V *Candu*. Coordinates and core recovery details are provided in Table 2-3.

The pneumatic vibratory coring system utilized by OSI consisted of a 4-inch (in.)-diameter steel core barrel, fitted with an internal dedicated cellulose acetate butyrate liner (3.75-in. inner diameter) that was driven into the seabed by a top-mounted, air-powered hammer device. An air compressor mounted on the deck of the M/V *Candu* was connected to the vibratory head via supply and exhaust hoses that provide the power necessary to drive the vibratory core barrel into the lakebed. The core barrel was penetrated to the prescribed depth or refusal, and then retrieved using an onboard hydraulic winch and 24-ft-tall derrick. Following core collection, the core liner was removed from the coring unit and excess liner was cut just above the sediment-water interface with a saw.

Following collection, each core was capped at both ends, sealed, and measured. Each core was labeled with the location number and orientation (top and bottom) of core. Sediment cores were stored upright in a cooler onboard the M/V *Candu*, and then transferred to a refrigeration truck (cooled to 4 degrees Celsius [°C]) at the onshore staging area. The cores were stored in a vertical position in a secured refrigeration truck until they were processed.

# 2.3 SAMPLE PROCESSING

Sediment sample processing was performed onboard the M/V *Chinook* and onshore at a temporary staging location at Sea Service's warehouse in Superior, Wisconsin. Ponar grab samples were processed on the M/V *Chinook* at the time of collection. At the processing facility, cores were split, photographed, lithologically logged, and the target depth intervals sampled in accordance with the QAPP and field-based decisions agreed upon by DNR and EA. Summaries of sample quantities submitted for laboratory analysis in each area are provided in Tables 2-4 through 2-10; a total summary of project sample quantities is provided in Table 2-11.

Additional samples were taken from deeper intervals than listed in the QAPP if the sample showed evidence of contamination or when the location was of particular interest to DNR. These deviations from the QAPP are noted in Section 2.5.

Samples were homogenized by removing material collected from the designated depth interval and placing into a dedicated disposable aluminum pan, and then mixing with decontaminated stainless-steel tools until consistency was uniform. Sediment samples were packaged and shipped in accordance with EA standard operating procedures as listed in the QAPP (EA 2020). Lithologic and photographic logs of sediment cores are included in Appendix B and C, respectively. Sampling tools that came in contact with the sediment were decontaminated as described in the FSP (EA 2020). Excess sediments from core processing were be containerized and disposed of appropriately (Appendix J).

# 2.4 ANALYTICAL PROGRAM

Analytical samples were submitted to Eurofins TestAmerica Laboratories, Inc. (Eurofins TestAmerica) in Burlington, Vermont and Pittsburgh, Pennsylvania.

Each sediment sample was analyzed for the following: Target Analyte List (TAL) metals including mercury, Target Compound List (TCL) semivolatile organic compounds (SVOCs) (including 18 PAHs), total organic carbon (TOC), grain size, and moisture content. Selected samples were also analyzed for additional analyte groups, including alkylated PAHs, TCL VOCs, dioxins/furans, organotins, aliphatic hydrocarbons, and microscopic analysis of coal particles. Select sediment samples were identified for toxicity testing based on limited historical data and following consultation with DNR. Acute toxicity bioassays, chronic toxicity bioassays, and bioaccumulation exposures were conducted for these samples, using the 10-day *Chironomus riparius* test, the 28-day + 4-hour ultraviolet (UV) light *Hyalella azteca* test, and the 28-day *Lumbriculus variegates* test, respectively. The analyses performed at each location are summarized in Tables 2-4 through 2-10; Table 2-11 includes a summary of samples collected across all areas.

Samples were shipped in ice-filled coolers via FedEx or UPS with a separate chain-of-custody form and airbill. Field splits (FSs), field duplicates (FDs) and matrix spike/matrix spike duplicate samples were submitted by individual analyte based on the total submitted number of samples for each analyte across the entire project, as indicated in the QAPP (EA 2020).

# 2.5 DEVIATIONS FROM THE QUALITY ASSURANCE PROJECT PLAN

## 2.5.1 Sample Vessel

Due to the Covid-19 Pandemic, the EPA R/V *Mudpuppy* was not available for the sampling effort as described in the QAPP (EA 2020). Surface sample collection was completed by EA aboard the M/V *Chinook* as described in Section 2.2.1. Vibracore samples at all locations were completed by OSI using the M/V *Candu* was described in Section 2.2.2.

#### 2.5.2 Surface Grab Sample Collection

As discussed in Section 2.2, at the head of the Oil Barge Dock Slip there was a substantial number of woody debris, sticks, branches, and other detritus that prevented the successful collection of a surface grab sample using a ponar at locations BP01 and BP02. At location BP01, a surficial sample interval (0.0 to 0.3 ft) was collected from the core that was collected by OSI at that location. As the core did not have enough volume for the full planned analytical suite for the surface sample, priority analyses (alkylated PAHs, SVOCs, metals, VOCs, and TOC) were submitted per discussions with DNR. A decontaminated stainless-steel shovel was used to collect surficial sediments from BP02. Using waders, EA personnel cleared an area of woody debris and detritus from the BP-02 area. The sediments were then scooped from the bottom, and slowly raised through the water column as to prevent the loss of fine-grained material from the sample. Once above the surface of the water, the sample was deposited into a decontaminated stainless-steel pot for homogenization. VOC samples were collected from a single scoop prior to the homogenization of the sediments.

#### 2.5.3 Core Collection

With the exception of GM13, a core was successfully collected at each planned location in accordance with the QAPP (EA 2020). At location GM13, the vibracore hit refusal after 1.1 ft of penetration. The sediments remained in the core cutter and catcher; however, there was not enough penetration that any sediments entered the core liner, making the collection and preservation of an intact core sample unattainable. Per conversations with DNR, additional attempts to achieve greater penetrations and obtain a core sample at location GM-13 were not executed.

Additional samples were taken from deeper intervals than listed in the QAPP if the sample showed evidence of contamination or when the location was of particular interest to DNR.

#### 2.5.4 Sample Processing and Analysis

Sample processing and analysis proceeded in general as planned in the QAPP (EA 2020). Consultation with DNR prior to and during the field sampling effort led to modification in sample core depths and sample intervals. Based on observations in the field (including observations of odor, sheen, staining, elevated PID reading or other indicators of potential impacts), analytes were added to select sample locations and depth intervals. Tables 2-4 through 2-11 provide detail on the actual samples submitted for testing. Modifications from the QAPP were discussed and approved by DNR. The QAPP identified that aliphatic hydrocarbon analysis would be performed by Pace Analytical Services. Prior to execution of the field effort, however, Pace Energy Services changed in name to Microbial Insights due to Pace's divestment of the Knoxville lab that performed the analysis under subcontract to Eurofins TestAmerica. Analyses performed by Microbial Insights were completed consistent with the methods and reporting requirements specified in the QAPP (EA 2020).

#### 2.6 SUPPLEMENTAL DATA

Supplemental sediment and tissue data collected previous to the 2020 field investigation are available and have been included in the report. The supplemental data are described by media in the sections below.

#### 2.6.1 Sediment

Analytical data from recent sediment site characterization efforts conducted in the Superior Waterfront and Upper St Louis River (EA 2016 and EA 2017) and completed in coordination with EPA are available through the GLSED database. These data were used during the work planning stage to inform sample location and interval selection for the 2020 effort, and the results from these recent studies are considered relevant and useful as supplemental data for the 2020 data evaluation effort. The supplemental data were incorporated into the North End database and evaluated with the 2020 sample data. Reports from the 2016 and 2017 investigations include the following sample locations in each investigation areas:

#### **Superior Waterfront (EA 2016)**

Estuary Flats: SW15-SLB01 Hallet Dock 8 Slip: SW15-SLB02 Oil Barge Dock Slip: SW15-SLB03 General Mills Slip: SW15-SLB05, SW15-06, SW15-07 Tower Avenue Slip: SW15-SLB11 through SW15-SLB18

#### Upper St. Louis River (EA 2017)

Clough Island: SLR16-UR29, SLR16-31, SLR16-34, SLR16-35.

Sample locations for the supplemental data are provided on the figures included in Chapters 4 and 6.

## 2.6.2 Tissue

Laboratory bioaccumulation data for *Lumbriculus variegatus* are available from samples collected at four other sites in the SLRAOC: 40th Avenue West, Munger Landing, Mud Lake West, and Reservoirs. The data were collected by the Minnesota Pollution Control Agency, EPA, U.S. Army Corps of Engineers, or U.S. Fish and Wildlife Service (Great Lakes Environmental Center, Inc. 2015; Lake Superior Research Institute 2016; Bay West LLC 2017; Advanced Environmental Management Group 2016). The regional bioaccumulation data will be used to compare to bioaccumulation data collected from the North End District and Clough Island. The available data from each site are summarized below.

| Site                               | Area<br>Description                                                                   | Year | Coordinates<br>Available? | Sediment Samples for<br>Bioaccumulation<br>Testing                                                                                                                                         | Tissue<br>Replicates                                                                                        | Tissue<br>Bioaccumulation<br>Analyses                                                                                                           |
|------------------------------------|---------------------------------------------------------------------------------------|------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 <sup>th</sup><br>Avenue<br>West | Between the<br>North End<br>District and<br>Clough<br>Island on<br>Minnesota<br>shore | 2014 | No                        | <ul><li>19 samples</li><li>2 reference samples</li><li>3 pre-test samples</li></ul>                                                                                                        | 5 replicates<br>per sample                                                                                  | <ul> <li>lipids,</li> <li>moisture,</li> <li>PAHs,</li> <li>metals,</li> <li>PCB Aroclors,</li> <li>dioxins and furans.</li> </ul>              |
| Munger<br>Landing                  | West of<br>Clough<br>Island                                                           | 2016 | No                        | <ul> <li>4 samples</li> <li>1 pre-test sample</li> </ul>                                                                                                                                   | 5 replicates<br>per sample<br>analyzed<br>for metals.<br>Replicates<br>composited<br>for other<br>analyses. | Composite tissue:<br>• dioxins,<br>• PCBs,<br>• Tetrachloro-m-<br>xylene,<br>• Decachlorobipheny<br>l,<br>• Lipids.<br>Replicates:<br>• metals. |
| Mud Lake<br>West                   | Upstream of<br>Clough<br>Island on the<br>Minnesota<br>shore                          | 2016 | Yes                       | <ul> <li>3 samples</li> <li>1 pre-test sample</li> <li>1 lab control sample<br/>from West Bear Skin<br/>Lake</li> </ul>                                                                    | 5 replicates<br>per sample                                                                                  | <ul> <li>nickel,</li> <li>zinc,</li> <li>dioxins and furans,</li> <li>lipids.</li> </ul>                                                        |
| Reservoirs                         | Upstream of<br>the North<br>End District                                              | 2016 | No                        | <ul> <li>2 samples from<br/>Scanlon Reservoir</li> <li>4 samples from<br/>Thomson Reservoir</li> <li>1 sample from Boulder<br/>Reservoir (reference)</li> <li>1 pre-test sample</li> </ul> | 5 replicates<br>per sample.<br>Replicates<br>composited<br>for tissue<br>analyses.                          | <ul> <li>methylmercury,</li> <li>mercury,</li> <li>lipids,</li> <li>dioxins and furans.</li> </ul>                                              |
|                                    |                                                                                       | 2017 | Yes                       | • 5 samples from:<br>-Boulder Reservoir<br>-Scanlon Reservoir<br>-Thomson Reservoir                                                                                                        | 5 replicates<br>per sample                                                                                  | <ul><li>dioxins and furans,</li><li>lipids.</li></ul>                                                                                           |
|                                    |                                                                                       | 2019 | Yes                       | • 5 samples from:<br>-Erie Pier Pond<br>-Boulder Reservoir<br>-Scanlon Reservoir<br>-Thomson Reservoir                                                                                     | 5 replicates<br>per sample                                                                                  | <ul> <li>PCBs and PAHs<br/>(Erie Pier Pond<br/>only)</li> <li>dioxins and furans,</li> <li>lipids.</li> </ul>                                   |

## 3. GEOPHYSICAL SURVEY

## 3.1 HALLET DOCK 8 SLIP

The results of the bathymetric survey and sub-bottom profiling for Hallet Dock 8 Slip are included in Appendix A and are summarized in the subsequent sections.

#### 3.1.1 Bathymetry

Water depths within the slip ranged from 10 ft in the extreme southeastern corner to 37 ft near the northeastern corner of the Hallet Dock 8. An overall average water depth of 29 to 30 ft was found in the majority of the slip. When the survey data were presented as lakebed elevation values, the bottom topography relative to International Great Lakes Datum of 1985 (IGLD85) was derived (Figure 3-1). As would be expected, the lowest elevations (564 ft) corresponded to the north-south oriented trough feature within the Hallet Dock 8 Slip. The highest elevations were documented along a ridge of sediment that exists along the eastern slip wall (590 ft) and a shoal of material at the northern limits of the BP Oil Dock (598 ft).

#### 3.1.2 Sub-bottom Profiling

In general, the data were representative of a disturbed or modified bed with multiple, discontinuous strata visible in the top 15 to 20 ft of penetration. Three principal material types with different acoustic signatures at varying thicknesses comprised the sediment column.

#### 3.2 OIL BARGE SLIP

The results of the bathymetric survey, sub-bottom profiling, and acoustic wall survey for Oil Barge Slip are included in Appendix A and are summarized in the subsequent sections.

## 3.2.1 Bathymetry

Shallow water and debris (timbers associated with a failing bulkhead) prevented access and complete coverage of the water body. Water depths ranged from 3 ft to 25 ft in the slip. When the bathymetric data were presented as lakebed elevation values, the bottom topography relative to IGLD85 was derived (Figure 3-2). In general, a topographic high point of 598 ft was measured in the southeast corner of the Oil Barge Dock Slip. The lowest elevations within the slip (576 ft) were encountered at the mouth of the slip and near its centerline. The bottom elevations at this location may be a relic of prior dredging, while shoaling just north of the slip opening appears to be filling the original access channel along the east and west margins, gradually increasing elevations to 581 and 582 ft.

## 3.2.2 Sub-bottom Profiling

Similar to the Hallet Dock 8 Slip, the sediment column displays evidence of a significantly disturbed or modified bed with several discontinuous strata visible in within 15 to 20 ft of the

sediment-water interface. Three principal material types, each with unique acoustic signatures that were a product of either physical composition and/or degree of disturbance, were detected within sediment column. Recently deposited fine-grained sediments (silts) overlying mixed or chaotic layers of material were noted in the upper sediment column, while bedded, homogenous parent sediments (silty clays) were found at depth within the profile.

# 3.2.3 Acoustic Wall Survey

The west wall of the Oil Barge Dock slip retains a portion of the fill material used to create the BP Oil Barge Dock in 1907. The west wall appears to consist of a robust concrete cap placed on compacted fill material originally used to cover the freshwater marshland and replace the trestle system used to service a platform constructed in deeper water to the north.

The east wall of the Oil Barge Dock Slip retains a portion of the fill material used to expand the Great Lakes Coal and Dock Company Dock (now Midwest Energy Resources Dock) in 1919. The east wall is the product of different construction techniques employed in different timeframes. As a result, the condition of the wall segments at the time of the survey was directly dependent upon the construction technique employed, the material used, and the age of each segment.

# 3.3 GENERAL MILLS SLIP

The results of the bathymetric survey and sub-bottom profiling for General Mills Slip are included in Appendix A and are summarized in the subsequent sections.

# 3.3.1 Bathymetry

When corrected and referenced to the Low water datum (LWD) for Lake Superior, water depths within the confines of the slip ranged from 2 ft to 38 ft. An overall average water depth of 24 ft existed in the majority of the slip, while the waters in South Channel (north of the docks) were considerably deeper. When the survey data were presented as lakebed elevations relative to IGLD85, the bottom features within the General Mills Slip and adjacent areas displayed the same basic morphology but were referenced to a different vertical plane (Figure 3-3). As would be expected, the lowest elevations (560 ft) corresponded to the large trough feature northeast of the Midwest Energy Resources Dock. The highest elevations were documented along a ridge of sediment to the west of the slip that represents the ruins of the Great Northern Dock (599 ft), as well as the shoal of material at the northeastern limits of the survey area.

# 3.3.2 Sub-bottom Profiling

Similar to the other slips surveyed as part of this investigation, the acoustic profiles displayed evidence of multiple, distinct sediment strata within the upper sediment column. In general, fine-grained, lower density sediments (silts) with thicknesses ranging from 1 to 4 ft were found over intervals of mixed or chaotic layers of material. These mixed strata were 2 to 6 ft thick and commonly comprised of intervals of sand or sand mixed with silts and clays. The parent

sediment was determined to be a homogenous, fine sand that resided below the localized disturbances caused by construction activity or repeated dredging to maintain suitable water depths for vessels utilizing the General Mills Dock.

# 3.4 TOWER AVENUE SLIP

The results of the bathymetric survey, sub-bottom profiling, and acoustic wall survey for Tower Avenue Slip are included in Appendix A and are summarized in the subsequent sections.

# 3.4.1 Bathymetry

Similar to the Oil Barge Dock Slip, shallow water and debris (trees and anthropogenic) prevented and complete coverage of the water body at the southwestern limits. When the bathymetric data were presented as lakebed elevation values, the bottom topography relative to IGLD85 was derived (Figure 3-4). In general, the topographic high points of 600 ft were detected at the northern end of the CHS Dock, as well as along the banks at the headwaters of the slip. The lowest elevation within the slip (561 ft) was measured at the entrance to the slip in proximity to the northwestern corner of the CHS Dock. The topographic low was a bottom depression caused by propeller wash of larger, loaded ships entering or leaving the berth. The elevations on the western side of the slip centerline were generally higher due to considerable shoaling and the lack of a need to dredge that side of the slip.

## 3.4.2 Sub-bottom Profiling

In general, the results for the Tower Avenue Slip were comparable to those derived for the General Mills Slip. Deposits of fine-grained material (silts) of varying thickness were detected at the sediment-water interface throughout the survey area. These lower density silts resided over mixed intervals of sand, silt and clay that comprise a layer of sediment that has been periodically disturbed by dredging, vessel movements, and other industrial activities within the slip.

## 3.4.3 Acoustic Wall Survey

The west wall of the Tower Avenue slip retains the fill material used to create the current Paper Calmenson Dock during its original construction in the late 1800s. The west wall appeared to consist of solid concrete above and below the waterline with little textural differences noted along the first 785 ft of the structure. In general, the wall surface residing under the waterline and behind the pilings appears intact, while sections of the wall above the waterline display a considerable amount of deterioration and spalling over its length.

The east wall of the Tower Avenue slip retains the fill material deposited in the late 1880s and used to create the structure now known as the CHS Dock. The entire east wall is comprised of steel sheet pile, and with one exception, appeared to be intact and in good condition.

The southeast wall of the Tower Avenue slip retains the fill material used to the create the base of the CHS Dock where it tied into the original Tower Bay shoreline and was comprised of concrete and timber. Similar to the west wall in the Oil Barge Dock Slip, the southeast wall in the Tower Avenue Slip appears to consist of a deteriorating concrete cap that was cast over the compacted fill material originally used to cover the freshwater marshland.

#### 4. ANALTICAL RESULTS FOR SEDIMENT

Site characterization data from the sampling effort in the North End District and Clough Island assessment areas are presented in Appendix E. Detected concentrations of constituents were compared to threshold, midpoint, and probable effects concentrations (TEC, MEC, and PEC) from DNR's Consensus-Based Sediment Quality Guidelines (SQGs) (Wisconsin DNR 2003), where available, and non-industrial and industrial direct contact and soil to groundwater residual contaminant levels (RCLs) or background threshold values (BTVs) under Wisconsin Administrative Code NR 720<sup>1</sup> as described in the QAPP (EA 2020); results of the data evaluation are summarized in Tables 4-1 through 4-7 and Appendixes E Attachment 1 (SQGs) and 2 (RCLs). Laboratory reports including microscopic coal reports, particle size results, and analytical laboratory reports are included in Appendixes F, G, and H respectively.

The analytical suite for each sample location was determined based on historical information and evaluated by EA in consultation with DNR. Each sediment sample location was analyzed for the following: TAL metals including mercury, TCL SVOCs (including 18 PAHs), TOC, grain size, and moisture content. Selected locations were also analyzed for additional parameters, including alkylated PAHs, TCL VOCs, dioxins/furans, organotins, aliphatic hydrocarbons, and microscopic analysis of coal particles.

#### 4.1 DATA EVALUATION

The overall data quality objective for the project was to provide data of known and documented quality to characterize current site conditions within the North End District and Clough Island assessment areas. Data were validated by evaluating the completeness, correctness, and conformance of the data set against the method, standard operating procedure, or contract requirements documented in the QAPP (EA 2020). The overall data review and validation program attained the project objectives.

The validated data collected under this investigation were compared to Wisconsin DNR's SQGs to address the goals of this assessment (Wisconsin DNR 2003). Contaminant concentrations exceeding the applicable criteria were identified. Figures were prepared to visually present contaminant concentrations and identify potential focus areas within the study areas. The following sections provide detail on data treatment and processing. EA has prepared and submitted a Data Usability Assessment Report (DUAR) to summarize the data review and data validation performed on the data sets collected from the field investigation (EA 2021).

#### 4.1.1 Data Validation

Analytical data were submitted to the Quality Assurance Technical Support Program of EPA's subcontractor, APTIM Federal Services, LLC, for 100% Tier I and 20 percent Tier II data validation as specified in the Great Lakes Legacy Act Data Reporting Standard (Version 5.0,

<sup>1</sup> Default residual contaminant level (RCL) values for the direct contact and groundwater pathways are available in Excel spreadsheet format at https://dnr.wi.gov/topic/brownfields/soil.html (see RCL Spreadsheet; also includes cumulative hazard index and cancer risks) 10 NR 716.09(2)(f)1 and 3.

EA Engineering, Science, and Technology, Inc., PBC

April 2020). Data validation included completeness and compliance checks, data assessment, and validation at Stage 2 following *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (Office of Solid Waste and Emergency Response No. 9200.1-85, EPA 540-R-08-005, 13 January 2009) in conjunction with the EPA *Contract Laboratory Program (CLP) National Functional Guidelines for High Resolution Superfund Methods, Organic, and Inorganic Data Review* (EPA 2016, 2017a, 2017b) to assess compliance with the laboratory Statement of Work.

## 4.1.2 Comparison to Sediment Quality Guidelines (SQGs)

SQGs were developed as informal (non-regulatory) guidelines for use in interpreting chemical data from analyses of sediments. Several biological-effects approaches have been used to assess freshwater sediment quality relative to the potential for adverse effects on benthic organisms, including the TEC/PEC (MacDonald et al. 2000) approach. The TEC and PEC levels were Fderived using concentrations with both effects and no observed effects (MacDonald et al. 2000). TECs typically represent concentrations below which adverse biological effects have been rarely observed, while PECs typically represent concentrations in the middle of the effects range and above which effects have been more frequently observed (MacDonald et al. 2000). Concentrations that are between the TEC and PEC represent incremental increases in toxicity; however, specific numerical values representing the degree of toxicity cannot be derived. The MEC is a concentration midway between the TEC and PEC concentrations.

Sediment concentrations were screened against the TEC, MEC, and PEC as described in the sections below. Supplemental data as described in Section 2.6 were included in data evaluations and summary tables. Data processing was completed in accordance with the considerations described in Sections 4.1.2 through 4.1.5. Given the extensive data set (including supplemental data) and to maintain consistency throughout the data evaluation process, field split and field duplicate samples were not included in tables, figures, summaries, and discussion in Chapter 4. Results for all samples including QA/QC samples are provided in Appendix E.

#### 4.1.3 Comparison to Non-industrial and Industrial Direct Contact and Soil to Groundwater Residual Contaminant Levels

Sediment concentrations were also compared to default RCL non-industrial and industrial direct contact and soil to groundwater values for use in understanding future implications and application of requirements stated in NR 720, Wisconsin Administrative Code. Over 150 of the analytes evaluated were screened against RCL values. Given the extensive number of compounds with RCL values, the results of this screening are described in general in the sections below and detailed results are presented in Appendix E, Attachment 2. The results of this screening may be used in future decision making related to the disposal of contaminated materials. The direct contact and groundwater pathways are available in Excel spreadsheet format at https://dnr.wi.gov/topic/brownfields/soil.html (see RCL Spreadsheet; also includes cumulative hazard index and cancer risks) 10 NR 716.09(2)(f)1 and 3. For 16 metals, the RCL spreadsheet includes surficial soil BTVs in a separate column for use in comparing the metal

concentrations in site soils. BTVs were used for screening site sediments where the BTV was above the RCL, including arsenic, manganese, and nickel.

### 4.1.4 Calculation of Totals for Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls

When calculating total PAHs, results that were J-qualified were calculated using the result value, and results that were U-qualified were calculated using one-half the method detection limit (MDL). Substituting one-half the MDL (not-detect [ND] = ½MDL) for each non-detect provides a conservative estimate of the concentration. This method, however, tends to produce results that are biased high, especially in data sets where many samples are non-detects. This overestimation is important to consider when comparing calculated total values to guidelines. The report text, tables, and figures are based on non-detects treated as one-half the MDL, given that the majority of samples were detects. Totals were also calculated using ND=0 and are included in results tables (Appendix E).

PAH18 totals were calculated summing the concentrations of the following individual PAHs : 2methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(e)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3c,d)pyrene, naphthalene, phenanthrene, and pyrene.

Total PCB Aroclor concentrations were calculated by summing the concentrations of individual PCB Aroclors with NDs treated as 0. The report text, tables, and figures are based on non-detects treated as zero, as the majority of PCB Aroclors were not detected.

### 4.1.5 Calculation of Toxicity Equivalency Quotients (TEQs)

The fish, mammal, and bird toxicity equivalency quotients (TEQs) for dioxin and furan congeners were calculated following the approach recommended by the World Health Organization (WHO) (Van den Berg et al. 1998). Each congener was multiplied by a WHO recommended toxicity equivalency factor for the appropriate receptor and then the congener concentrations were summed. The dioxin TEQs were calculated using ND = reporting limit (RL), ND=½RL, and ND=0. Substituting half the reporting limit (ND=½RL) for each value below the RL provides a conservative estimate of the concentration. This method, however, tends to produce results that are biased high, especially in data sets where the majority of samples are below the RL. The Kaplan-Meier estimation for non-detects was also performed on sediment data. The dioxin fish TEQ (ND=½RL) are used for comparison to the SQGs and RSLs (shown as TCDD TEQ or TCDD on Chapter 4 and 6 figures). Dioxin TEQs for each of the calculation methods are included in Appendix E.

### 4.1.6 Overlap in PAH and SVOC Results

Samples from the project were analyzed for PAH compounds using semivolatile organics SW846 8270; selected samples were analyzed for alkylated PAHs (34) EPA CLP

SOM02.4/SVOCS selected ion monitoring (SIM). The full scan analyses were reported with the full SOM02.4 compound list, which includes the PAH compounds (Appendix E, Attachment 3). For locations where both PAHs and SVOCs were analyzed, two results exist for individual PAH compounds. A comparison of the PAH18 totals from each method are provided in Appendix E, Attachment 3. In general, the difference is slight and does not result in an exceedance into a higher tier guideline (e.g., results do not change from TEC to MEC exceedance). The discussion of PAH18 values in the subsequent sections use the results from the SW846 method which was completed for samples from each location.

## 4.1.7 Limitations in Detection Limits

Screening values like the SQGs are derived based on conservative toxicity and exposure assumptions that do not take into account the analytical ability of standard procedures; consequently, the inability to achieve low values is a common occurrence, most frequently with the lower SQGs such as the TEC and MEC. Tables A-3a through A-3d of the QAPP present the MDLs and RLs for analyses by Eurofins TestAmerica, compared with the sediment screening levels (MacDonald et al. 2000; Wisconsin DNR 2003) and the Wisconsin RCL soil clean-up standards for the direct contact and groundwater pathways. To meet the objectives of the project, the MDL for each analyte for each sample should be less than the screening criteria. The MDLs for antimony and tributyltin are above the TEC sediment screening criteria. The MDLs for 4 SVOCs (2,4-dinitrotoluene, 2,6-dinitrotoluene, atrazine, and pentachlorophenol), 17 SVOCs, 7 metals (antimony, arsenic, cadmium, cobalt, selenium, silver, and thallium), and 2,3,7,8-TCDD are above the Wisconsin groundwater RCL.

The uncertainty in results for these compounds is associated with equipment and laboratory abilities to quantitatively capture the presence of an analyte in a given medium. Factors such as the moisture content of samples, dilution factors, and sample mass considerations impact the ability of laboratory methods to achieve the low concentrations required to compare against certain SQGs. Additional detail on data usability is described in the DUAR (EA 2021).

## 4.1.8 Volatile Organic Compounds

Common VOC laboratory contaminants including acetone, methylene chloride, 2-butanone, and cyclohexane are frequently detected in both method blanks and site samples. These contaminants were detected at concentrations both close to the MDL and at concentrations greater than 10X the MDL in the samples collected under this investigation. Detailed in the DUAR, the following VOCs were detected in trip blanks and method blanks: 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, chloroform, ethylbenzene, isopropylbenzene, methylene chloride, xylenes, and styrene. 1,1,2,2-Tetrachloroethane was only VOC detected in a trip blank. The VOCs detected in the trip blanks or method blanks were also detected in at least one sample. Methylene chloride was the VOC with the highest detected concentration.

## 4.2 HALLET DOCK 8 SLIP

Sediment was collected from six locations in the Hallet Dock 8 Slip area (HD-01 through HD-06). Samples were collected from the surface interval to a maximum of 4 ft below the sediment surface, with the exception of location HD-05 where samples were collected to a depth of 5 ft below the sediment surface based on core lithology and observation of potential contamination in the 3–4 ft interval. Samples were generally collected at 1-ft intervals. Refusal was not encountered at the locations in the Hallet Dock 8 Slip. Sediment recovery by location is provided in Table 2-3. Detailed lithographic descriptions of the cores are presented in Appendix C.

Exceedances of the TEC, MEC, and PEC in the Hallet Dock 8 Slip are summarized in Table 4-1 and Figures 4-1, 4-2, and 4-15 and detailed results are provided in Appendix E. Supplemental data described in Section 2.6 (EA 2016, 2017) are also included in Table 4-1 and Appendix E. Table 4-1 includes the frequency of detection; maximum detected concentrations; the number of samples where the TEC, MEC, or PEC were exceeded; and the number of locations where SQGs were collectively exceeded. RCL exceedances are described in the text below and detailed in Appendix E, Attachment 2.

## 4.2.1 Lithology

The sediment cores collected within the Hallet Dock 8 Slip demonstrate a mixture of core profiles. Most cores were characterized by layers of very fine to medium sand, with some layers of silty sand, sandy silt, and sandy/silty gravel. Petroleum odors were observed in half of the cores within various sediment types and depths. Complete core logs and photographs are included in Appendixes C and D, respectively. A general description of cores collected during the investigation is included in the text that follows.

Cores collected in the Hallet Dock 8 Slip had varying lithology, but the majority of cores had layers of fine to medium sand. Three of the cores consisted of almost entirely sand (ND20-HD01, ND20-HD02, and ND20-HD03). Varying amounts of silt were abundant in three of the cores (ND20-HD04, ND20-HD05, and ND20-HD06) while two of these cores also contained layers of gravel (ND20-HD04 and ND20-HD06).

Petroleum odors were noted in three Hallet Dock 8 Slip cores (ND20-HD03, ND20-HD05 and ND20-HD-06) and a sheen was also observed for ND20-HD03. The core collected at ND20-HD03 contained a solid piece of wood taking up the entire 4-in. cross-section of the core.

## 4.2.2 Grain Size, Total Organic Carbon, and Coal

A total of 31 sediment samples were submitted for TOC analysis in accordance with the Lloyd Kahn Method. Sediment in the Hallet Dock 8 Slip contained organic matter, with TOC ranging from 1,670 milligrams per kilogram (mg/kg) (0.2%) to 319,000 mg/kg (31.9%). TOC was not detected at four locations. TOC results are included on the individual analytical results tables (Appendix E).

Grain size data were collected from the surface interval at the 6 locations sampled in the Hallet Dock 8 Slip. Samples were analyzed in accordance with Method ASTM D422. Grain size results are included in Appendix E. Of 6 submitted surface samples, 5 (83%) were primarily comprised (greater than 50%) of sand and gravel, and the remaining sample (17%) were primarily comprised of silt and clay. Surface grab samples with the highest percentage of sand (91%), silt (41%), clay (14%), and gravel (18%) were collected at locations ND20-HD06-SURF, ND20-HD01-SURF, ND20-HD04-SURF, and ND20-HD03-SURF, respectively. The surface samples within the Hallet Dock 8 Slip generally had decreasing silt/clay content and increasing sand content moving from the southernmost and internal parts of the slip to the northern entrance of the slip.

Microscopic coal results indicated that the 3 surface samples at the Hallet Dock 8 Slip ranged from 11% (ND20-HD01-SURF) to 27% (ND20-HD05-SURF) coal (Table 4-8).

Microscopic coal samples were taken from a depth of 1 to 2 ft below sediment surface at locations ND20-HD01, ND20-HD03, and ND20-HD05. Coal was not detected at ND20-HD01-1020. The layer that was sampled was a medium brown, dense, very fine sand which extended through to the bottom of the core; therefore, there was not likely to be coal below the 2 ft depth. Coal was detected at 32% at ND20-HD03-1020, but below 1.9 ft the lithology showed a medium brown, dense, very fine to medium sand that was unlikely to have coal. At ND20-HD05-1020, coal was measured at 8% (Table 4-8) and according to the lithology observations, the coal may have extended to deeper depths.

## 4.2.3 Volatile Organic Compounds

A total of 16 sediment samples at multiple depths intervals were analyzed for VOCs in accordance with Method EPA SW846 8260D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs. The following VOCs were detected in at least one sample: 1,2-dichloroethane, 2-butanone, acetone, methyl acetate, methylene chloride, and toluene. Toluene is the only detected VOC with SQG values and there were no exceedances (Table 4-1). Methylene chloride and toluene concentrations in at least one sample from the Hallet Dock 8 Slip exceed the groundwater RCL (Appendix E, Attachment 2).

## 4.2.4 Semivolatile Organic Compounds

A total of 36 sediment samples at multiple depth intervals were analyzed for SVOCs (including 18 PAHs), in accordance with Method EPA SW 846 8270D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

SVOC results exceeded the SQGs at 7 of the 7 locations sampled for at least one SVOC. Exceedances of TEC guidelines occurred for 20 analytes, the MEC guideline was exceeded for 15 of the analytes, and the PEC guideline was exceeded for 12 of the analytes. When compared to the RCL values, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and naphthalene exceed the groundwater RCL; benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene exceed the non-industrial RCL; and there were no exceedances of the industrial RCL.

Fifteen (42%) of the 36 samples exceeded the total 18 PAHs (ND=½RL) TEC, 6 (17%) samples exceeded the MEC, and no samples exceeded the PEC. In general, locations HD01, HD03, and HD04 showed more frequent exceedances of the SQGs or RCLs. The number and percentage of samples exceeding SQGs for SVOCs including individual and total PAH compounds are summarized in Table 4-1.

#### 4.2.5 Polychlorinated Biphenyl Aroclors

A total of 6 sediment samples at multiple depth intervals were analyzed for PCB Aroclors in accordance with Method EPA CLP SOM02.4. Total PCB Aroclor concentrations were calculated by summing the concentrations of individual PCB Aroclors with NDs treated as 0. Total PCB Aroclor results were compared to the SQG values: TEC of 60 micrograms per kilogram ( $\mu$ g/kg), MEC of 368  $\mu$ g/kg, and PEC of 676  $\mu$ g/kg and there were no exceedances (Table 4-1). Individual Aroclor concentrations were compared to RCL values and there were no exceedances (Appendix E, Attachment 2).

#### 4.2.6 Metals

A total of 36 sediment samples from multiple depth intervals were analyzed for TAL metals plus mercury (Method EPA CLP ISM02.4). Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

There are 12 metals with SQG values. Metals results showed exceedances of the SQG values at 2 of the 7 locations sampled. Exceedances of the TEC occurred for 7 of 12 analytes, MEC guidelines were exceeded for 3 of 12 analytes, and PEC guidelines were exceeded for 2 of 12 analytes (manganese and nickel). The number and percentage of samples exceeding SQGs for individual metals are summarized in Table 4-1.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 8 metals (aluminum, cadmium, cobalt, lead, mercury, nickel, selenium, and vanadium) (Appendix E, Attachment 2). The most frequent exceedances occurred at locations HD01 and HD06.

#### 4.2.7 Dioxins/Furans

A total of 3 sediment samples were analyzed for dioxin/furans analysis, in accordance with EPA Method 1613B. Dioxin fish TEQs were calculated (ND=½RL) for comparison to the SQG values (TEC, MEC, and PEC) and RCLs. Additional methods for TEQ summation (Section 4.1.3) were completed and are included in Appendix E.

EA Engineering, Science, and Technology, Inc., PBC

Dioxin fish TEQ results showed exceedances of the SQG values at each of the 3 locations sampled. Exceedances of the TEC occurred for all 3 samples but the MEC guidelines and PEC guidelines were not exceeded. The number and percentage of samples exceeding SQGs are summarized in Table 4-1.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 2,3,7,8-TCDD and there were no exceedances of the non-industrial or industrial RCLs (Appendix E, Attachment 2).

### 4.2.8 Organotins

A total of 3 sediment samples were analyzed for organotins in accordance with EPA Method gas chromatography (GC)/mass spectrometry (MS) SIM and there were no detections (Table 4-1, Appendix E).

### 4.3 OIL BARGE DOCK SLIP

Sediment was collected from 17 locations in the Oil Barge Dock Slip area (BP-01 through BP-17). Samples were collected from the surface interval to a maximum of 20 ft below the sediment surface, as detailed in Table 2-5. Samples were generally collected on 2-ft intervals. Refusal was not encountered at the locations in the Oil Barge Dock Slip. Sediment recovery by location is provided in Table 2-3. Detailed lithographic descriptions of the cores are presented in Appendix C.

Exceedances of the TEC, MEC, and PEC in the Oil Barge Dock Slip are summarized in Table 4-2, Figures 4-3, 4-4, 4-15 and detailed results are provided in Appendix E. Supplemental data described in Section 2.6 (EA 2016, 2017) are also included in Table 4-2 and Appendix E. Table 4-2 includes the frequency of detection; maximum detected concentrations; the number of samples where the TEC, MEC, or were exceeded; and the number of locations where SQGs were collectively exceeded. RCL exceedances are described in the text below and detailed in Appendix E, Attachment 2.

## 4.3.1 Lithology

The sediment cores collected within the Oil Barge Dock Slip demonstrate a mixture of core profiles. Most cores were characterized by a combination of sand, silt, and clay with varying amounts of wood and organic material. Petroleum odors were noted in over half of the cores within various sediment types and depths. Complete core logs and photographs are included in Appendixes C and D, respectively. A general description of cores collected during the investigation is included in the text that follows.

Cores collected in the Oil Barge Dock Slip had varying lithology, but the majority of cores had layers of a combination of sand, silt, and clay. Two of the cores consisted of almost entirely sand (ND20-BP06, and ND20-BP15). Deeper layers of 12 of the cores contained clay (ND20-BP-01, ND20-BP02, ND20-BP03, ND20-BP05, ND20-BP07, ND20-BP08, ND20-BP09,

ND20-BP10, ND20-BP11, ND20-BP12, ND20-BP13, and ND20-BP14). Each of the 17 cores contained varying amount of silt. Each of the cores except ND20-BP06 and ND20-BP13 contained at least small amounts of gravel in at least one of the reported layers. Cores with at least one layer with more than trace amounts of gravel include ND20-BP02, ND20-BP05, ND20-BP07, ND20-BP08, ND20-BP09, ND20-BP10, ND20-BP12, ND20-BP14, ND20-BP15, and ND20-BP-16.

Petroleum odors and/or a sheen were present in all but five Oil Barge Dock Slip cores (ND20-HD01, ND20-BP12, ND20-BP13, ND20-BP15, and ND20-BP17). Nine cores contained layers that included wood pieces (ND20-BP01, ND20-BP02, ND20-BP03, ND20-BP10, ND20-BP11, ND20-BP12, ND20-BP14, ND20-BP15, and ND20-BP16).

## 4.3.2 Grain Size, Total Organic Carbon, and Coal

A total of 125 sediment samples were submitted for TOC analysis in accordance with the Lloyd Kahn Method. Sediment in the Oil Barge Dock Slip contained organic matter, with TOC ranging from 5,120 mg/kg (0.5%) to 500,000 mg/kg (50.0%). TOC was not detected at two locations. TOC results are included on the individual analytical results tables (Appendix E).

Grain size data were collected from the surface interval at 16 locations in the Oil Barge Dock Slip (grain size data were not collected at BP01). Surface samples were analyzed in accordance with Method ASTM D422. Grain size results are included in Appendix E. Of 16 submitted surface samples, 5 (31%) were primarily comprised (greater than 50%) of sand and gravel, and the remaining 11 samples (69%) were primarily comprised of silt and clay. Surface grab samples with the highest percentage of sand (89%), silt (56%), clay (55%), and gravel (4.9%) were collected at locations ND20-BP03-SURFTOX, ND20-BP17-SURF, ND20-BP09-SURF, and ND20-BP15-SURF, respectively. The surface samples within the Oil Barge Dock Slip generally had similar grain sizes throughout the slip.

Microscopic coal results indicated that the 11 surface samples at Oil Barge Dock Slip ranged from 3% (ND20-BP07-SURF, ND20-BP11-SURF, and ND20-BP15-SURF) to 88% (ND20-BP03-SURF) coal. Percent coal in the surface samples was very high for ND20-BP02-SURF (85%) and ND20-BP03-SURF (88%) compared to the other 9 surface samples which all had percent coal values less than 9% (Table 4-8).

Twenty-one microscopic coal samples were taken from depths ranging from 0.3 to 18 ft below sediment surface at 10 locations in the Oil Barge Dock Slip. Coal was detected in each sample. At locations ND20-BP12, ND20-BP16, and ND20-BP17, samples were taken only from 0.3 to 2 ft, all of which had coal measured at less than 5%. At locations ND20-BP01 and ND20-BP06 coal values were higher in the sample from 0.3 to 2 ft (72% and 15%, respectively) but dropped to less than 4% in the samples from 2 to 4 ft. Based on lithology, it does not seem likely that coal would be detected or detected at a high percentage at these locations deeper than 4 ft. At locations ND20-BP02 and ND20-BP05 coal was sampled only from 0.3 to 2 ft and 2 to 4 ft. Coal values at both locations and for both depths were high, increasing with depth at location ND20-BP02 (69% to 74%) and decreasing with depth at ND20-BP05 (47% to 23%). At

ND20-BP02 coal and petroleum odors were observed through a depth of 6.4 ft. At ND20-BP05, coal and petroleum odors were observed to 4.6 ft. At locations ND20-BP10, ND20-BP11, and ND20-BP15 coal was only sampled from 0.3 to 2 ft, but values ranged from 17% (ND20-BP15) to 61% (ND20-BP10). Based on the lithology, location ND20-BP10 would likely have minimal coal deeper than 2 ft because a layer of medium brown, dense, fine to medium sand spans from 1.1 to 7.2 ft. Location ND20-BP11 would also not likely have coal at deeper depths as the layer of black material with a sheen and odor only spans to a depth of 1.2 ft. At ND20-BP15, coal was observed through a depth of 2.4 ft. At location ND20-BP03, seven coal samples were taken from 2 to 18 ft in increments of 2 ft. The surface sample (ND20-BP03-SURF) had 88% coal, all of the samples below sediment surface from 2 to 14 ft had between 60% and 80% coal, and the deepest samples (ND20-BP03-1618) had 14% coal (Table 4-8).

### 4.3.3 Volatile Organic Compounds

A total of 131 sediment samples from multiple depths intervals were analyzed for VOCs in accordance with Method EPA SW846 8260D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs. The following VOCs were detected in at least one sample: 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2,4-trichlorobenzene, 1,2-dibromoethane, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2-butanone, 2-hexanone, 4-methyl-2-pentanone, acetone, benzene, bromoform, carbon disulfide, chlorobenzene, chloroform, cis-1,2-dichloroethene, cyclohexane, ethylbenzene, isopropylbenzene, m,p-xylene, methyl acetate, methylcyclohexane, methylene chloride, o-xylene, styrene, tetrachloroethene, toluene, trans-1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, benzene, toluene, and xylenes (Table 4-2, Appendix E, Attachment 1). Concentrations of 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, and benzene were detected at concentrations exceeding the PEC in 5% of the samples and xylene concentrations were detected at concentrations exceeding the PEC in 13% of the samples.

Exceedances of the SQGs were limited to locations BP01, BP02, BP03, and SW15-SLB03. Results are summarized in Table 4-2; a full set of the validated data is provided in Appendix E.

Concentrations of the following VOCs exceeded the groundwater RCL in at least one sample from the Oil Barge Dock Slip (Appendix E, Attachment 2): 1,1,2,2-tetrachloroethane, 1,2-dibromoethane, 1,2-dichloropropane, 1,4-dichlorobenzene, acetone, benzene, bromoform, chloroform, cis-1,2-dichloroethene, ethylbenzene, methylene chloride, tetrachloroethene, toluene, trichloroethene, and vinyl chloride.

### 4.3.4 Semivolatile Organic Compounds

A total of 132 sediment samples from multiple depth intervals were analyzed for SVOCs (including 18 PAHs), in accordance with Method EPA SW 846 8270D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

SVOC results exceeded the SQGs at 18 of the 18 locations sampled for at least one SVOC. Exceedances of TEC guidelines occurred for 20 analytes, the MEC guideline was exceeded for 16 of the analytes, and the PEC guideline was exceeded for 16 of the analytes.

When compared to the RCL values, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and naphthalene exceeded the groundwater RCL; benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and naphthalene exceeded the non-industrial RCL; and benzo(a)pyrene exceeded the industrial RCL (Appendix E, Attachment 2).

Seventy-two (55%) of the samples exceeded the total 18 PAHs (ND=½MDL) TEC, 30 (23%) exceeded the MEC, and 19 (14%) exceeded the PEC. While exceedances of the PECs for individual SVOCs were observed at each location in the Oil Barge Dock Slip, the PEC was exceeded for 18 PAHs at locations BP01, BP02, BP03, BP04, BP06, BP10, BP11, and SW15-SLB03. The number and percentage of samples exceeding SQGs for SVOCs including individual and total PAH compounds are summarized in Table 4-2.

### 4.3.5 Polychlorinated Biphenyl Aroclors

A total of 13 sediment samples from multiple depth intervals were analyzed for PCB Aroclors in accordance with Method EPA CLP SOM02.4. Total PCB Aroclor concentrations were calculated by summing the concentrations of individual PCB Aroclors with NDs treated as 0. Total PCB Aroclor results were compared to the SQG values: TEC of 60  $\mu$ g/kg, MEC of 368  $\mu$ g/kg, and PEC of 676  $\mu$ g/kg. There were two exceedances of the TEC (Table 4-2). Individual Aroclor concentrations were compared to RCL values and there were no exceedances (Appendix E, Attachment 2).

### 4.3.6 Metals

A total of 132 sediment samples from multiple depth intervals were analyzed for TAL metals plus mercury (Method EPA CLP ISM02.4). Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

Metals results indicated exceedances of the SQGs at 16 of the 18 locations sampled. Exceedances of TEC occurred for 10 of 12 analytes, MEC guidelines were exceeded for 5 of 12 analytes, and PEC guidelines were exceeded for 4 of 12 analytes (arsenic, iron, lead, and manganese). The number and percentage of samples exceeding SQGs for individual metals are summarized in Table 4-2.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 11 metals (aluminum, antimony, arsenic, cadmium, cobalt, copper, lead, mercury, nickel, selenium, and vanadium), the non-industrial RCL was exceed for 3 metals (arsenic, iron, and lead), and the industrial RCL was exceeded for 2 metals (arsenic and lead) (Appendix E Attachment 2).

## 4.3.7 Dioxins/Furans

A total of 4 sediment samples were analyzed for dioxin/furans analysis, in accordance with EPA Method 1613B. Dioxin fish TEQs were calculated (ND=½RL) for comparison to the SQG values (TEC, MEC, and PEC) and RCLs. Additional methods for TEQ summation (Section 4.1.3) were completed and are included in Appendix E.

Dioxin fish TEQ results showed exceedances of the SQG values at each of the 4 locations sampled. Exceedances of the TEC occurred for 4 samples, exceedance of the MEC guidelines occurred for 2 samples, and the PEC guideline was not exceeded. The number and percentage of samples exceeding SQGs are summarized in Table 4-2.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 2,3,7,8-TCDD and there were no exceedances of the non-industrial or industrial RCLs (Appendix E, Attachment 2).

### 4.3.8 Organotins

A total of 4 sediment samples were analyzed for organotins in accordance with EPA Method GC/MS SIM and there were no detections (Table 4-2, Appendix E).

### 4.4 GENERAL MILLS SLIP

Sediment was collected from 14 locations in the General Mills Slip area (GM-01 through GM-14). Samples were collected from the surface interval to a maximum of 10 ft below the sediment surface, as detailed in Table 2-6. Samples were generally collected on 2-ft intervals. Refusal was encountered at 4 locations (GM-01, GM-05, GM-12 and GM-13) in the General Mills Slip. Sediment recovery by location is provided in Table 2-3. Detailed lithographic descriptions of the cores are presented in Appendix C.

Exceedances of the TEC, MEC, and PEC in the General Mills Slip are summarized in Table 4-3, and detailed results are provided in Appendix E. Supplemental data described in Section 2.6 (EA 2016, 2017) are also included in Table 4-3, Figures 4-5, 4-6, 4-16 and Appendix E. Table 4-3 includes the frequency of detection; maximum detected concentrations; the number of samples where the TEC, MEC, or PEC were exceeded; and the number of locations where SQGs were collectively exceeded. RCL exceedances are described in the text below and detailed in Appendix E, Attachment 2.

### 4.4.1 Lithology

The sediment cores collected within the General Mills Slip demonstrate a mixture of core profiles. Most cores were characterized by a combination of silt and clay near the top with fine and very fine sand at deeper depths. Petroleum odors were observed in only one core. Complete core logs and photographs are included in Appendixes C and D, respectively. A general description of cores collected during the investigation is included in the text that follows.

Cores collected in the General Mills Slip had varying lithology, but most cores had some combination of silt and clay near the top and fine to very fine sand at deeper depths. One core consisted of almost entirely sand (ND20-GM10). A brown fine to very fine sand exists in the deepest layer of 10 of the 13 cores (ND20-GM02, ND20-GM04, ND20-GM05, ND20-GM07, ND20-GM08, ND20-GM09, ND20-GM10, ND20-GM11, ND20-GM12, and ND20-GM14). The other 3 cores were dominated by silt and organics (ND20-GM01, ND20-GM03, and ND20-GM06). Core ND20-GM03 is the only core that exhibited a layer of gravel, although the layer only measured 1 in. in thickness.

In the General Mills Slip cores, a petroleum odor was noted in only ND20-GM01. Four cores contained layers that included wood pieces (ND20-GM01, ND20-GM02, ND20-GM04, and ND20-GM06).

## 4.4.2 Grain Size, Total Organic Carbon, and Coal

A total of 67 sediment samples were submitted for TOC analysis in accordance with the Lloyd Kahn Method. Sediment in the General Mills Slip contained organic matter, with TOC ranging from 1,760 mg/kg (0.2%) to 100,000 mg/kg (10.0%). TOC was not detected at 3 locations. TOC results are included on the individual analytical results tables (Appendix E).

Grain size data were collected from the surface interval at 14 locations in the General Mills Slip. Samples were analyzed in accordance with Method ASTM D422. Grain size results are included in Appendix E. Of 14 submitted surface samples, 2 (14%) were primarily comprised (greater than 50%) of sand and gravel, 11 samples (79%) were primarily comprised of silt and clay, and one (ND20-GM12-SURF) was comprised of equal parts sand and gravel, and silt and clay. Surface grab samples with the highest percentage of sand (80%), silt (51%), clay (43%), and gravel (1.7%) were collected at locations ND20-GM14-SURF, ND20-GM08-SURF, ND20-GM01-SURF, and ND20-GM12-SURF, respectively. The surface samples within the General Mills Slip generally had decreasing silt/clay contents and increasing sand content moving from the southernmost and internal part of the slip to the northern entrance of the slip.

Microscopic coal results indicated that the eight surface samples at the General Mills Slip ranged from 2% (ND20-GM14-SURF) to 12% (ND20-GM07-SURF) coal (Table 4-8).

Ten microscopic coal samples were taken from a depth of 0.3 to 4 ft at 6 locations in the General Mills Slip. Coal was detected in all samples and ranged from 1% at ND20-GM07-2040 to 8% at ND20-GM01-0320. For the four locations that had samples taken at both 0.3 to 2 ft and 2 to 4 ft (ND20-GM01, ND20-GM02, ND20-GM05, and ND20-GM07) the two layers had similar coal percentages. At ND20-GM12 and ND20-GM14 coal samples were only taken from 0.3 to 2 ft, both of which had 2% coal (Table 4-8).

### 4.4.3 Volatile Organic Compounds

A total of 3 sediment samples were analyzed for VOCs in accordance with Method EPA SW846 8260D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs. The only detected VOCs were 2-butanone and acetone, which do not have SQG values. There were no RCL exceedances observed for VOCs in the General Mills Slip. Results are summarized in Table 4-3; detailed results are provided in Appendix E.

### 4.4.4 Semivolatile Organic Compounds

A total of 67 sediment samples from multiple depths were analyzed for SVOCs (including 18 PAHs), in accordance with Method EPA SW 846 8270D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

SVOC results exceeded the SQGs at 14 of the 14 locations sampled for at least one SVOC. Exceedances of TEC guidelines occurred for 19 analytes, the MEC guideline was exceeded for 18 of the analytes, and the PEC guideline was exceeded for 17 of the analytes.

When compared to the RCL values, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and naphthalene exceeded the groundwater RCL; benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-c,d)pyrene exceeded the non-industrial RCL; and benzo(a)pyrene exceeds the industrial RCL (Appendix E, Attachment 2).

Fifty-three (79%) of the samples exceeded the total 18 PAHs (ND=½RL) TEC, 28 (42%) exceeded the MEC, and 18 (27%) exceeded the PEC. While exceedances of individual SVOCs were observed at each location in the General Mills Slip, the sediment PEC value was exceeded for 18 PAHs at locations GM01, GM02, GM03, GM04, GM06, GM07, GM10, and GM12. The number and percentage of samples exceeding SQGs for SVOCs including individual and total PAH compounds are summarized in Table 4-3.

## 4.4.5 Polychlorinated Biphenyl Aroclors

A total of 22 sediment samples at multiple depth intervals were analyzed for PCB Aroclors in accordance with Method EPA CLP SOM02.4. Total PCB Aroclor concentrations were calculated by summing the concentrations of individual PCB Aroclors with NDs treated as 0. Total PCB Aroclor results were compared to the SQG values: TEC of 60  $\mu$ g/kg, MEC of 368  $\mu$ g/kg, and PEC of 676  $\mu$ g/kg. There were 3 exceedances of the TEC and 1 exceedance of the MEC (Table 4-3). Individual Aroclor concentrations were compared to RCL values and Aroclor 1248 exceeds the non-industrial RCL (Appendix E, Attachment 2).

### 4.4.6 Metals

A total of 77 sediment samples from multiple depth intervals were analyzed for TAL metals plus mercury (Method EPA CLP ISM02.4). Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

Metals results showed exceedances of the SQGs at 16 of the 17 locations sampled. Exceedances of the TEC occurred for 9 of 12 analytes, MEC guidelines were exceeded for 5 of 12 analytes, and PEC guidelines were exceeded for 2 of 12 analytes (lead and manganese). The number and percentage of samples exceeding SQGs for individual metals are summarized in Table 4-3.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 11 metals (aluminum, antimony, cadmium, cobalt, copper, lead, mercury, nickel, selenium, silver, and vanadium); the non-industrial and industrial RCLs were not exceeded (Appendix E, Attachment 2).

The most frequent exceedances occurred for copper, iron, lead, and manganese. In general, locations GM01, GM02, GM03, and GM605 showed more frequent exceedances of the SQGs and RCLs.

## 4.4.7 Dioxins/Furans

A total of 3 sediment samples were analyzed for dioxin/furans analysis, in accordance with EPA Method 1613B. Dioxin fish TEQs were calculated (ND=½RL) for comparison to the SQG values (TEC, MEC, and PEC) and RCLs. Additional methods for TEQ summation (Section 4.1.3) were completed and are included in Appendix E.

Dioxin fish TEQ results showed exceedances of the SQG values at each of the 3 locations sampled. Exceedances of the TEC occurred for 3 samples and exceedance of the MEC and the PEC guidelines occurred for 2 samples. The number and percentage of samples exceeding SQGs are summarized in Table 4-3.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 2,3,7,8-TCDD; the non-industrial RCLs were exceeded for 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD, 1,2,3,4,7,8-HxCDF, and 1,2,3,4,6,7,8-HpCDF; and industrial RCLs were exceeded for 1,2,3,4,6,7,8-HpCDD and OCDD (Appendix E, Attachment 2).

## 4.4.8 Organotins

A total of 39 sediment samples were analyzed for organotins in accordance with EPA Method GC/MS SIM. Tributyltin is the only organotin with SQG values or RCLs.

Concentrations were compared to the TEC, MEC, and PEC of 0.52, 1.73, and 2.94  $\mu$ g/kg, respectively (Wisconsin DNR 2003). Organotin (tributyltin) results showed exceedances at 5 of the 11 locations sampled. The TEC was exceeded in 9 samples, the MEC in 8 samples, and the PEC in 7 samples. PEC exceedances were observed at sample locations GM09, GM11, and GM13. The number and percentage of samples exceeding SQGs for tributyltin are summarized in Table 4-3.

Tributyltin did not exceed RCL values (soil to groundwater RCL of 350,000  $\mu$ g/kg, non-industrial RCL of 23,500  $\mu$ g/kg, and industrial RCL of 350,000  $\mu$ g/kg) (Appendix E, Attachment 2).

# 4.5 TOWER AVENUE SLIP

Sediment was collected from 22 locations in the Tower Avenue Slip area (TB-01 through TB-22). Samples were collected from the surface interval to a maximum of 20 ft below the sediment surface, as detailed in Table 2-7. Samples were generally collected on 2-ft intervals. Refusal was encountered at seven locations (TB-07, TB-13 through 17, and TB-21). Sediment recovery by location is provided in Table 2-3. Detailed lithographic descriptions of the cores are presented in Appendix C.

Exceedances of the TEC, MEC, and PEC in the Tower Avenue Slip are summarized in Table 4-4, and results are provided by sample and by location in Appendix E. Supplemental data described in Section 2.6 (EA 2016, 2017) are also included in Table 4-4, Figures 4-7, 4-8, 4-16 and Appendix E. Table 4-4 includes the frequency of detection; maximum detected concentrations; the number of samples where the TEC, MEC, or PEC were exceeded; and the number of locations where SQGs were collectively exceeded. RCL exceedances are described in the text below and detailed in Appendix E, Attachment 2.

## 4.5.1 Lithology

The sediment cores collected within the Tower Avenue Slip demonstrate a mixture of core profiles. Most cores were characterized by a combination of silt and clay near the top with reddish brown very fine sand or fat clay at the bottom. Petroleum odors were noted in 7 of the 22 cores and a sheen was observed in only one. Complete core logs and photographs are included in Appendixes C and D, respectively. A general description of cores collected during the investigation is included in the text that follows.

Cores collected in the Tower Avenue Slip had varying lithology, but most cores had a combination of silt and clay near the top and reddish brown very fine sand or fat clay at the bottom. Reddish brown, high plasticity clay was observed at the bottom of six cores (ND20-TB09, ND20-TB13, ND20-TB14, ND20-TB15, ND20-TB19, and ND20-TB22). Medium brown or reddish brown, dense, very fine sand was observed at the bottom of 10 cores (ND20-TB01, ND20-TB02, ND20-TB03, ND20-TB04, ND20-TB07, ND20-TB10, ND20-TB11, ND20-TB17, ND20-TB18, and ND20-TB21).

In the Tower Avenue Slip cores, a sheen was present in only the core from ND20-TB01. In 7 cores a petroleum odor was noted (ND20-TB01, ND20-TB02, ND20-TB03, ND20-TB05, ND20-TB06, ND20-TB07, and ND20-TB11). Twelve cores contained layers that included wood pieces (ND20-TB01, ND20-TB02, ND20-TB04, ND20-TB06, ND20-TB07, ND20-TB08, ND20-TB10, ND20-TB12, ND20-TB13, ND20-TB20, ND20-TB21, and ND20-TB22).

## 4.5.2 Grain Size, Total Organic Carbon, and Coal

A total of 102 sediment samples were submitted for TOC analysis in accordance with the Lloyd Kahn Method. Sediment in the Tower Avenue Slip contained organic matter, with TOC ranging from 1,510 mg/kg (0.2%) to 183,000 mg/kg (18.3%). TOC was not detected at one location. TOC results are included on the individual analytical results tables (Appendix E).

Grain size data were collected from the surface interval at 22 locations in the Tower Avenue Slip. Samples were analyzed in accordance with Method ASTM D422. Grain size results are included in Appendix E. Of 22 submitted surface samples, 1 (5%) was primarily comprised (greater than 50%) of sand and gravel, and the remaining 21 samples (95%) were primarily comprised of silt and clay. Surface grab samples with the highest percentage of sand (65%), silt (52%), clay (61%), and gravel (6.9%) were collected at locations ND20-TB02-SURF, ND20-TB09-SURF, and ND20-TB14-SURF, respectively. The surface samples within the Tower Avenue Slip generally had a higher silt/clay contents near the southern portion of the slip where the slip is lined on each side by land, than the rest of the area.

Microscopic coal results show that the twelve surface samples at the Tower Avenue Slip ranged from 1% (ND20-TB10-SURF) to 9% (ND20-TB02-SURF) coal. Seven of the surface samples (ND20-TB01-SURF, ND20-TB03-SURF, ND20-TB04, ND20-TB05-SURF, ND20-TB10-SURF, ND20-TB15-SURF, and ND20-TB20-SURF) had 2% coal or less (Table 4-8).

Eight microscopic coal samples were taken from a depth of 2 to 4 ft. Coal was detected in each of the eight samples and ranged from 1% (ND20-TB05 and ND20-TB10) to 7% (ND20-TB04). Two coal samples were taken at a depth of 8 to 10 ft and ranged from 5% (ND20-TB03) to 9% (ND20-TB02). For locations ND20-TB08, ND20-TB09, and ND20-TB10, percent coal was low (< 4%) from 2 to 4 ft and would be expected to be low at deeper depths based on lithology. For locations ND20-TB01, ND20-TB04, ND20-TB05, ND20-TB06, and ND20-TB07, percent coal was low (< 7%) from 2 to 4 ft but might be expected to increase with depth before decreasing again with depth based on lithology. Deeper layers at locations ND20-TB02 and ND20-TB03 would be expected to have low to not detectable levels of coal starting at a depth of 17.1 ft and 10.6 ft, respectively (Table 4-8).

## 4.5.3 Volatile Organic Compounds

A total of 131 sediment samples from multiple depths intervals were analyzed for VOCs in accordance with Method EPA SW846 8260D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

The following VOCs were detected in at least one sample: 1,1,2,2-tetrachloroethane, 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 2-butanone, acetone, cyclohexane, isopropylbenzene, methyl acetate, methylcyclohexane, methylene chloride, o-xylene, tetrachloroethene, and toluene. SQG values are only available for: 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, benzene, toluene, and xylenes (Table 4-4, Appendix E, Attachment 1). There were no SQG exceedances observed for VOCs in the Tower

Avenue Slip. Concentrations of 1,1,2,2-tetrachloroethane and methylene chloride exceed the groundwater RCL in at least one sample from the Tower Avenue Slip (Appendix E, Attachment 2). Results are summarized in Table 4-4, a full set of the results are provided in Appendix E.

#### 4.5.4 Semivolatile Organic Compounds

A total of 116 sediment samples from multiple depths were analyzed for SVOCs (including 18 PAHs), in accordance with Method EPA SW 846 8270D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

SVOC results exceeded the SQGs at each of the 25 locations sampled for at least one SVOC. Exceedances of TEC guidelines occurred for 19 analytes, the MEC guideline was exceeded for 18 of the analytes, and the PEC guideline was exceeded for 18 of the analytes.

When compared to the RCL values, benzo(a)pyrene, benzo(b)fluoranthene, bis(2-ethylhexyl) phthalate, chrysene, fluoranthene, naphthalene, and pyrene exceed the groundwater RCL; benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a, h)anthracene, and indeno(1,2,3-c,d)pyrene exceeded the non-industrial RCL; and benzo(a)pyrene and dibenz(a,h)anthracene exceeded the industrial RCL (Appendix E, Attachment 2).

Ninety-two (79%) of the samples exceeded the total 18 PAHs (ND=½MDL) TEC, 45 (39%) exceeded the MEC, and 31 (27%) exceeded the PEC. While exceedances of individual SVOCs were observed at each location in the Tower Avenue Slip, the sediment PEC value was exceeded for 18 PAHs at locations TB01, TB02, TB03, TB04, TB05, TB06, TB07, TB08, TB09, SW15-SLB11, and SW15-SLB13. The number and percentage of samples exceeding SQGs for SVOCs including individual and total PAH compounds are summarized in Table 4-4.

### 4.5.5 Polychlorinated Biphenyl Aroclors

A total of 72 sediment samples from multiple depth intervals were analyzed for PCB Aroclors in accordance with Method EPA CLP SOM02.4. Total PCB Aroclor concentrations were calculated by summing the concentrations of individual PCB Aroclors with NDs treated as 0. Total PCB Aroclor results were compared to the SQG values: TEC of 60  $\mu$ g/kg, MEC of 368  $\mu$ g/kg, and PEC of 676  $\mu$ g/kg. There were 39 exceedances of the TEC and 1 exceedance of the MEC and PEC at TB03 (Table 4-4). Individual Aroclor concentrations were compared to RCL values and Aroclor 1254 exceeds the non-industrial RCL at TB02 and TB03 (Appendix E, Attachment 2).

### 4.5.6 Metals

A total of 133 sediment samples from multiple depth intervals were analyzed for TAL metals plus mercury (Method EPA CLP ISM02.4). Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

Metals results showed exceedances of the SQGs at each of the 30 locations sampled. Exceedances of TEC occurred for 12 of 12 analytes, MEC guidelines were exceeded for 9 of 12 analytes, and PEC guidelines were exceeded for 7 of 12 analytes (copper, iron, lead, manganese, mercury, silver, and zinc). PEC exceedances were observed at the following locations: TB01, TB02, TB03, TB04, TB05, TB06, TB07, TB08, TB09, TB19, TB20, TB22, SW15-SLB11, SW15-SLB13, and SW15-SLB15. The number and percentage of samples exceeding SQGs for individual metals are summarized in Table 4-4.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 13 metals (aluminum, antimony, arsenic, cadmium, cobalt, copper, lead, mercury, nickel, selenium, silver, thallium, and vanadium) and the non-industrial and industrial RCLs were exceeded for 3 metals (arsenic, lead, and mercury) (Appendix E, Attachment 2).

### 4.5.7 Dioxins/Furans

A total of 11 sediment samples were analyzed or dioxin/furans analysis, in accordance with EPA Method 1613B. Dioxin fish TEQs were calculated (ND=½RL) for comparison to the SQG values (TEC, MEC, and PEC) and RCLs. Additional methods for TEQ summation (Section 4.1.3) were completed and are included in Appendix E.

Dioxin fish TEQ results showed exceedances of the SQG values at each of the 7 locations sampled. Exceedances of the TEC occurred for 11 samples, exceedance of the MEC occurred for 7 samples, and the PEC guidelines were not exceeded. The number and percentage of samples exceeding SQGs are summarized in Table 4-4.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 2,3,7,8-TCDD; the non-industrial RCL was exceeded for 1,2,3,7,8-PeCDD; and industrial RCLs were not exceeded (Appendix E, Attachment 2).

### 4.5.8 Organotins

A total of 54 sediment samples were analyzed for organotins in accordance with EPA Method GC/MS SIM. Tributyltin is the only organotin with SQG values or RCLs.

Concentrations were compared to TEC, MEC, and PEC of 0.52, 1.73, and 2.94 µg/kg, respectively (Wisconsin DNR 2003). Organotin (tributyltin) results showed exceedances at 10 of the 18 locations sampled. The TEC was exceeded in 17 samples, the MEC in 14 samples, and the PEC in 12 samples. PEC exceedances were observed at sample locations TB16, TB19, TB20, TB21, TB22, SW15-SLB13, and SW15-SLB14. The number and percentage of samples exceeding SQGs for tributyltin are summarized in Table 4-4.

Tributyltin did not exceed RCL values (soil to groundwater RCL 350,000  $\mu$ g/kg, non-industrial RCL 23,500  $\mu$ g/kg and industrial RCL of 350,000  $\mu$ g/kg) (Appendix E, Attachment 2).

## 4.6 ESTUARY FLATS

Sediment was collected from 18 locations in the Estuary Flats area (EF-01 through EF-18). Samples were collected from the surface interval to a maximum of 6 ft below the sediment surface, as detailed in Table 2-8. Samples were generally collected on 2-ft intervals. Refusal was not encountered in the Estuary Flats area. Sediment recovery by location is provided in Table 2-3. Detailed lithographic descriptions of the cores are presented in Appendix C.

Exceedances of the TEC, MEC, and PEC in the Estuary Flats are summarized in Table 4-5, Figures 4-9 and 4-10 and results are provided in Appendix E. Supplemental data described in Section 2.6 (EA 2016, 2017) are also included in Table 4-5 and Appendix E. Table 4-5 includes the frequency of detection; maximum detected concentrations; the number of samples where the TEC, MEC, or PEC were exceeded; and the number of locations where SQGs were collectively exceeded. RCL exceedances are described in the text below and detailed in Appendix E, Attachment 2.

## 4.6.1 Lithology

The sediment cores collected within the Estuary Flats demonstrate a mixture of core profiles. Layers of sand were present in each of the eight cores with some cores also containing layers of silt, clay, and/or organics. No odor or sheen was present in any of the cores. Complete core logs and photographs are included in Appendixes C and D, respectively. A general description of cores collected during the investigation is included in the text that follows.

Cores collected in the Estuary Flats had varying lithology, but most cores had mostly sand near the top and either wood and other organics, or a mixture of some combination of clay, silt, and sand at the bottom. Cores with deeper layers containing wood and other organics include ND20-EF04, ND20-EF05, and ND2-EF06. Core ND20-EF08 contained almost entirely sand. Cores with deeper layers of silty clay or clayey sand included ND20-EF01, ND20-EF02, and ND20-EF07.

In the Estuary Flats, no sheen or odor was present in any of the cores. Five of the eight cores contained layers that included wood pieces (ND20-EF03, ND20-EF04, ND20-EF05, ND20-EF06, and ND20-EF08).

## 4.6.2 Grain Size and Total Organic Carbon

A total of 43 sediment samples were submitted for TOC analysis in accordance with the Lloyd Kahn Method. Sediment in the Estuary Flats contained organic matter, with TOC ranging from 1,190 mg/kg (0.1%) to 461,000 mg/kg (46.1%). TOC was not detected at six locations. TOC results are included on the individual analytical results tables (Appendix E).

Grain size data were collected from the surface interval at the 18 locations sampled in the Estuary Flats area. Samples were analyzed in accordance with Method ASTM D422. Grain size results are included in Appendix E.

Of 20 submitted surface samples, 13 (65%) were primarily comprised (greater than 50%) of sand and gravel, and the remaining 7 samples (35%) were primarily comprised of silt and clay. Surface grab samples with the highest percentage of sand (99%), silt (67%), clay (30%), and gravel (39%) were collected at locations ND20-EF06-SURF, ND20-EF10-SURFFD, ND20-EF15-SURF, and ND20-EF04-SURF, respectively. The surface samples within the Estuary Flats generally had varying grain sizes throughout the whole area.

## 4.6.3 Volatile Organic Compounds

A total of 34 sediment samples at multiple depths intervals were analyzed for VOCs in accordance with Method EPA SW846 8260D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs. The following VOCs were detected in at least one sample: 2-butanone, acetone, methylene chloride, and vinyl chloride. None of the detected VOCs have SQG values, but each of the detected VOCs have RCLs for comparison. Methylene chloride and vinyl chloride concentrations in at least one sample from Estuary Flats exceeded the groundwater RCL (Appendix E, Attachment 2).

## 4.6.4 Semivolatile Organic Compounds

A total of 43 sediment samples at multiple depth intervals were analyzed for SVOCs (including 18 PAHs), in accordance with Method EPA SW 846 8270D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

SVOC results showed exceedances of the SQGs or RCLs at 12 of the 18 locations sampled. Exceedances of the TEC occurred for 18 analytes, the MEC was exceeded for 9 of the analytes, and the PEC was exceeded for 5 of the analytes.

When compared to the RCL values, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and naphthalene exceed the groundwater RCL; benzo(a)pyrene and dibenz(a,h)anthracene exceeded the non-industrial RCL; and there were no exceedances of the industrial RCL (Appendix E, Attachment 2).

Twelve (28%) of the 36 samples exceeded the total 18 PAHs (ND=  $\frac{1}{2}$  the MDL) TEC and no samples exceeded the MEC or PEC. The number and percentage of samples exceeding SQGs for SVOCs including individual and total PAH compounds are summarized in Table 4-5.

## 4.6.5 Polychlorinated Biphenyl Aroclors

A total of 35 sediment samples at multiple depth intervals were analyzed for PCB Aroclors in accordance with Method EPA CLP SOM02.4. Total PCB Aroclor concentrations were calculated by summing the concentrations of individual PCB Aroclors with NDs treated as 0. Total PCB Aroclor results were compared to the SQG values: TEC of 60  $\mu$ g/kg, MEC of 368  $\mu$ g/kg, and PEC of 676  $\mu$ g/kg and there was one exceedance of the TEC at EF03 (Table 4-5).

Individual Aroclor concentrations were compared to RCL values and there were no exceedances (Appendix E, Attachment 2).

## 4.6.6 Metals

A total of 50 sediment samples from multiple depth intervals were analyzed for TAL metals plus mercury (Method EPA CLP ISM02.4). Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

Metals results showed exceedances of the SQGs at 9 of the 19 locations sampled. Exceedances of TEC guidelines occurred for 9 of 12 analytes, MEC guidelines were exceeded for 3 of 12 analytes (copper, iron, and manganese), and PEC guidelines were exceeded for 1 of 12 analytes (copper). The single PEC exceedance was observed at EF03. The number and percentage of samples exceeding SQGs for individual metals are summarized in Table 4-5.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 11 metals (aluminum, antimony, arsenic, cadmium, cobalt, copper, lead, mercury, nickel, selenium, and vanadium) and the non-industrial and industrial RCLs were exceeded for arsenic (Appendix E, Attachment 2).

### 4.6.7 Dioxins/Furans

A total of 7 sediment samples were analyzed or dioxin/furans analysis, in accordance with EPA Method 1613B. Dioxin fish TEQs were calculated (ND=½RL) for comparison to the SQG values (TEC, MEC, and PEC) and RCLs. Additional methods for TEQ summation (Section 4.1.3) were completed and are included in Appendix E.

Dioxin fish TEQ results showed exceedances of the SQG values at 5 of the 7 locations sampled. Exceedances of the TEC occurred for 5 samples, exceedance of the MEC occurred for 2 samples, and the PEC guidelines were not exceeded. The number and percentage of samples exceeding SQGs are summarized in Table 4-5.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 2,3,7,8-TCDD; the non-industrial RCL was exceeded for 1,2,3,4,6,7,8-HpCDF; and industrial RCLs were not exceeded (Appendix E, Attachment 2).

## 4.7 CLOUGH ISLAND

Surface sediment was collected from 10 locations in the Clough Island area (CL-01 through CL-10). Samples were collected from the surface interval as detailed in Table 2-9. Refusal was not encountered in the Clough Island area. Sediment recovery and surface sample descriptions are provided in Table 2-2.

Exceedances of the TEC, MEC, and PEC in the Clough Island Area are summarized in Table 4-6, and results are provided in Appendix E. Supplemental data described in Section 2.6

(EA 2016, 2017) are also included in Table 4-6, Figures 4-11 and 4-12 and Appendix E. Table 4-6 includes the frequency of detection; maximum detected concentrations; the number of samples where the TEC, MEC, or PEC were exceeded; and the number of locations where SQGs were collectively exceeded. RCL exceedances are described in the text below and detailed in Appendix E, Attachment 2.

## 4.7.1 Grain Size and Total Organic Carbon

Grain size data were collected from the surface interval at the 10 locations sampled in the Estuary Flats area. Samples were analyzed in accordance with Method ASTM D422. Grain size results are included in Appendix E. Of 10 submitted surface samples, 2 (20%) were primarily comprised (greater than 50%) of sand and gravel, and the remaining 8 samples (80%) were primarily comprised of silt and clay. Surface grab samples with the highest percentage of sand (87%), silt (66%), clay (25%), and gravel (4.6%) were collected at locations ND20-CL10-SURF, ND20-CL09-SURF, ND20-CL05-SURF, and ND20-CL06-SURF, respectively. The surface samples within the Clough Island area generally had varying grain sizes throughout the whole area.

A total of 10 sediment samples were submitted for TOC analysis in accordance with the Lloyd Kahn Method and ranged from 0.2% to 31.2% (1,800 mg/kg to 312,000). TOC results are included in Appendix E.

## 4.7.2 Semivolatile Organic Compounds

A total of 10 surface sediment samples were analyzed for SVOCs (including 18 PAHs), in accordance with Method EPA SW 846 8270D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

SVOC results indicated exceedances of the SQGs or RCLs at 8 of the 10 locations sampled. Exceedances of the TEC occurred for 17 analytes, the MEC was exceeded for 8 of the analytes, and the PEC was exceeded for 5 of the analytes.

When compared to the RCL values, benzo(a)pyrene, benzo(b)fluoranthene, and chrysene exceeded the groundwater RCL; benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene exceeded the non-industrial RCL; and there were no exceedances of the industrial RCL (Appendix E, Attachment 2).

Seven (70%) of the 10 samples exceeded the total 18 PAHs (ND=½MDL) TEC, 1 sample (10%) exceeded the MEC, and there were no samples that exceeded the PEC for total 18 PAHs. The number and percentage of samples exceeding SQGs for SVOCs including individual and total PAH compounds are summarized in Table 4-6.

### 4.7.3 Polychlorinated Biphenyl Aroclors

A total of 19 sediment samples at multiple depth intervals were analyzed for PCB Aroclors in accordance with Method EPA CLP SOM02.4. Total PCB Aroclor concentrations were calculated by summing the concentrations of individual PCB Aroclors with NDs treated as 0. Total PCB Aroclor results were compared to the SQG values: TEC of 60  $\mu$ g/kg, MEC of 368  $\mu$ g/kg, and PEC of 676  $\mu$ g/kg and there was one exceedance of the TEC at UR34 (Table 4-6). Individual Aroclor concentrations were compared to RCL values and there were no exceedances (Appendix E, Attachment 2).

### 4.7.4 Metals

A total of 24 sediment samples from multiple depth intervals were analyzed for TAL metals plus mercury (Method EPA CLP ISM02.4). Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

Metals results showed exceedances of the SQGs at 12 of the 14 locations sampled. Exceedances of the TEC occurred for 10 of 12 analytes, MEC guidelines were exceeded for 5 of 12 analytes (chromium, iron, manganese, mercury, and nickel), and PEC guidelines were exceeded for 2 of 12 analytes (manganese and nickel). The number and percentage of samples exceeding SQGs for individual metals are summarized in Table 4-6.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 11 metals (aluminum, antimony, arsenic, cadmium, cobalt, copper, lead, mercury, nickel, selenium, and vanadium) and the non-industrial and industrial RCLs was exceeded for arsenic. (Appendix E, Attachment 2).

### 4.7.5 Dioxins/Furans

A total of 19 sediment samples were analyzed or dioxin/furans analysis, in accordance with EPA Method 1613B. Dioxin fish TEQs were calculated (ND=½RL) for comparison to the SQG values (TEC, MEC, and PEC) and RCLs. Additional methods for TEQ summation (Section 4.1.3) were completed and are included in Appendix E.

Dioxin fish TEQ results showed exceedances of the SQG values at 14 of the 14 locations sampled. Exceedances of the TEC occurred for 18 samples, exceedance of the MEC occurred for 7 samples, and exceedances of the PEC occurred for 4 samples. The number and percentage of samples exceeding SQGs are summarized in Table 4-6.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 2,3,7,8-TCDD; the non-industrial RCL was exceeded for 1,2,3,7,8-PeCDD, 1,2,3,6,7,8-HxCDF, and 1,2,3,4,6,7,8-HpCDF; and industrial RCLs were not exceeded (Appendix E, Attachment 2).

### 4.8 **REFERENCE AREAS**

Surface sediment was collected from 4 reference locations (SLBREF1, KBREF2, LFREF3, SBREF4). Samples were collected from the surface interval as detailed in Table 2-10. Refusal was not encountered in the reference areas. Sediment recovery and surface sample descriptions are provided in Table 2-2.

Exceedances of the TEC, MEC, and PEC in the Reference area samples are summarized in Table 4-7 and Figures 4-13, 4-14, 4-17 and results are provided in Appendix E. Table 4-7 includes the frequency of detection; maximum detected concentrations; the number of samples where the TEC, MEC, or PEC were exceeded; and the number of locations where SQGs were collectively exceeded. RCL exceedances are described in the text below and detailed in Appendix E, Attachment 2.

As shown in Table 4-7, a majority of the compounds analyzed in the Reference Areas were detected at concentrations exceeding the sediment TEC values. Far fewer compounds were observed exceeding the MEC value, these compounds included acenaphthene, dibenz(a,h)anthracene, iron, manganese, nickel. Only manganese was detected at one of the four Reference Area locations at concentration exceeding the PEC value.

When comparing Reference Area samples to the RCL values (Appendix E, Attachment 2), the soil to groundwater RCL was exceeded for methylene chloride, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, aluminum, cadmium, cobalt, lead, mercury, nickel, selenium, vanadium, and 2,3,7,8-TCDD. The non-industrial RCL was exceeded for benzo[a]pyrene, dibenz(a,h)anthracene, 1,2,3,7,8-PeCDD, 1,2,3,4,6,7,8-HpCDF (Appendix E, Attachment 2).

## 4.8.1 Grain Size and Total Organic Carbon

Grain size data were collected from the surface interval at the 4 reference area locations. Samples were analyzed in accordance with Method ASTM D422. Grain size results are included in Appendix E. Of 4 submitted surface samples, all 4 (100%) were primarily comprised (greater than 50%) of silt and clay. Surface grab samples with the highest percentage of sand (33%), silt (72%), and clay (43%) were collected at locations ND20-SBREF4-SURF, ND20-LFREF3-SURF, and ND20-SLBREF1-SURF, respectively. There was 0% gravel comprising each of the four reference location surface samples.

A total of 4 sediment samples were submitted for TOC analysis in accordance with the Lloyd Kahn Method and ranged from 2.8% to 5.5% (28,300 to 54,900). TOC results are included in Appendix E.

Microscopic coal results are reported for the four surface samples at the reference areas. Coal was not detected at ND20-SLBREF1, ND20-KBREF2, and ND20-SBREF4. Reference location ND20-LFREF3 had 1% microscopic coal (Table 4-8).

### 4.8.2 Volatile Organic Compounds

A total of 4 surface sediment samples were analyzed for VOCs in accordance with Method EPA SW846 8260D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

The following VOCs were detected in at least one sample: 2-butanone, acetone, and methylene chloride. SQG values are not available for the detected analytes. When compared to RCL values, methylene chloride exceeds the groundwater RCL (Appendix E, Attachment 2). Results are summarized in Table 4-7, and a full set of the validated data is provided in Appendix E.

#### 4.8.3 Semivolatile Organic Compounds

A total of 4 surface sediment samples were analyzed for SVOCs (including 18 PAHs), in accordance with Method EPA SW 846 8270D. Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

SVOC results showed exceedances of the SQGs or RCLs at each of the 4 locations sampled. Exceedances of TEC guidelines occurred for 16 analytes, as well as the MEC for 2 of the analytes.

When compared to the RCL values, benzo(a)pyrene, benzo(b)fluoranthene, and chrysene exceeded the groundwater RCL; benzo(a)pyrene and dibenz(a, h)anthracene exceeded the non-industrial RCL; and none of the analytes exceeded the industrial RCL (Appendix E, Attachment 2).

Two samples exceeded the total 18 PAHs (ND=½MDL) TEC, and there were no samples that exceeded the MEC or PEC for 18 PAHs. The number and percentage of samples exceeding SQGs or RCLs for SVOCs including individual and total PAH compounds are summarized in Table 4-7.

### 4.8.4 Polychlorinated Biphenyl Aroclors

A total of 4 surface sediment samples were submitted for PCB Aroclor analysis in accordance with Method EPA CLP SOM02.4. Total PCB Aroclor concentrations were calculated by summing the concentrations of individual PCB Aroclors with NDs treated as 0. Total PCB Aroclor results were compared to the TEC of 60  $\mu$ g/kg, MEC of 368  $\mu$ g/kg, and PEC of 676  $\mu$ g/kg and there were no exceedances (Table 4-7). Individual Aroclor concentrations were compared to RCL values and there were no exceedances (Appendix E, Attachment 2).

### 4.8.5 Metals

A total of 4 surface sediment samples were analyzed for TAL metals plus mercury (Method EPA CLP ISM02.4). Validated results were compared to the SQG values (TEC, MEC, and PEC) and RCLs.

Metals results showed exceedances of the SQGs at 3 of the 4 locations sampled. Exceedances of TEC guidelines occurred for 8 of 12 analytes, MEC guidelines were exceeded for 3 of 12 analytes (iron, manganese, and nickel), and PEC guidelines were exceeded for 1 of 12 analytes (manganese). The single PEC exceedance was observed at SLBREF1. The number and percentage of samples exceeding SQGs for individual metals are summarized in Table 4-7.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 8 metals (aluminum, cadmium, cobalt, lead, mercury, nickel, selenium, and vanadium) (Appendix E, Attachment 2).

## 4.8.6 Dioxins/Furans

A total of 4 sediment samples were analyzed or dioxin/furans analysis, in accordance with EPA Method 1613B. Dioxin fish TEQs were calculated (ND=½RL) for comparison to the SQG values (TEC, MEC, and PEC) and RCLs. Additional methods for TEQ summation (Section 4.1.3) were completed and are included in Appendix E.

Dioxin fish TEQ results showed exceedances of the SQG values at each of the 4 locations sampled. Exceedances of the TEC occurred for 4 samples and exceedance of the MEC and PEC occurred for 1 sample. The number and percentage of samples exceeding SQGs are summarized in Table 4-7.

When compared to the RCL values, the soil to groundwater RCL was exceeded for 2,3,7,8-TCDD; the non-industrial RCL was exceeded for 1,2,3,7,8-PeCDD and 1,2,3,4,6,7,8-HpCDF; and industrial RCLs were not exceeded (Appendix E, Attachment 2).

## 4.8.7 Organotins

A total of 4 sediment samples were analyzed for organotins in accordance with EPA Method GC/MS SIM and there were no detections (Table 4-7, Appendix E).

## 4.9 ALIPHATIC HYDROCARBON GAS CHROMATOGRAPHY

Samples collected in the St. Louis AOC in 2015 had high concentrations of PAHs (EA 2016 and 2017). In a 28 July 2017 Closure Not Recommended Letter, DNR requested that BP assess whether the Oil Barge Dock may have contributed to sediment contamination in the area. BP performed forensic analysis to determine the source of sediment contamination and concluded that the Dock was not a source (Antea Group 2017). DNR reviewed the analysis and independently evaluated the PAH results (Inman 2018). DNR found that there may be multiple sources and pathways (surface and subsurface) to the sediment contamination in the slip, but the Dock cannot be dismissed definitively based on the current information and analysis. Based on the PAH forensic analysis, historical transfer of petroleum products (gasoline, diesel, jet fuel, or crude oil) at the Dock, and the 100-year operational history at the Dock that mostly occurred prior to environmental law, the products transferred at the Dock are the most likely sources of

PAHs in the sediment. DNR recommended a detailed full scan GC/MS analysis for aliphatic hydrocarbons as well as microscopic analysis to detect coal particle, as suggested by Pace (Antea 2017). Therefore, a subset of the sediment samples collected in 2020 was submitted for GC/MS and microscopic coal analysis. The results of the microscopic coal analysis are presented in Table 4-8, and the discussed in the sections above for each area. The results of the full scan GC/MS analysis are discussed below.

Petroleum hydrocarbons are organic compounds consisting of carbon and hydrogen atoms. The hydrogen and carbon atoms in aliphatic hydrocarbons are usually linked together in chains that are straight, whereas aromatic hydrocarbons have ring structures with alternating single and double bonds. Crude oil contains hydrocarbons, other organic compounds that may contain sulfur, nitrogen, or oxygen; and inorganic compounds. The exact composition varies depending on the source of the crude oil as well as the refining process. During the refining process, crude oil is separated into fractions of different boiling point ranges such as naphtha, gasoline, jet fuel, diesel fuel, and heavier fuel oils (Figure 4-18) (TPHCWG 1998).

A total of 44 samples (51 including field splits and field duplicates) were submitted to Microbial for full scan GC/MS analysis. At least one sample from the following sample locations was submitted for analysis: BP01, BP02, BP03, BP05, BP07, BP10, BP12, BP15, TB01, TB03, TB05, TB06, TB07, TB10, TB15, TB17, TB20, SLBREF1, KBREF2, LFREF3, and ND20-SBREF4. The full scan GC/MS analysis results are included in Appendix H. Ion 85 and Ion 113 are expected to be useful in the identification of petroleum products. The identified compounds and peaks for Ion 85: n-Alkanes (C8-C40) and Ion 113: Iso-Alkanes and Isoprenoids are summarized in Table 4-9.

Figure 4-18 shows the range of carbon numbers present in common petroleum products (TPHCWG 1998). The range of carbon numbers in a sample can be compared to Figure 4-18 to attempt to identify a source type. It should be noted that source identification is complicated, and this does not definitively identify the source material.

Based on Figure 4-18, the Oil Barge Dock Slip samples generally have a range of carbon numbers that fit the profile of diesel fuel/middle distillates or fuel oils. Several samples have a range that could indicate jet fuel/kerosene since the upper end of the range of carbon numbers does not exceed C18 and two samples indicate only fuel oils since the upper end of the range extends to C27 and C29. Four surface samples were ND for alkanes.

The majority of the Tower Avenue Slip samples have a range of carbon numbers that also fit the profile of diesel fuel/middle distillates or fuel oils. Eight samples indicate fuel oils only since the upper end of the range extends to C26 to C31. One sample has a range that could indicate jet fuel/kerosene in addition to the other sources. Three samples at various depths were ND for alkanes.

The reference area SLBREF1 sample only identified C21, so the sample fits the profile of diesel fuel/middle distillates; fuel oils; and lube oil, motor oil, and grease. KBREF2 and SBREF4 fit the profile for diesel fuel/middle distillates or fuel oils. LFREF3 was ND for alkanes.

It should be noted that if the petroleum products are degraded or consist of mixtures of products, the identified n-alkanes and isoalkanes may not represent the complete carbon range of the products. Calculating hydrocarbon source ratios may be useful to compare if a product in several samples has come from the same source. Petroleum forensics can be quite complex, and a comprehensive interpretive report may provide more insight to definitively determine the source.

This page left intentionally blank

## 5. TOXICITY AND BIOACCUMULATION TESTING RESULTS

Toxicity and bioaccumulation testing was conducted by EA's Ecotoxicology Laboratory located in Hunt Valley, Maryland. The following surface sediment samples were collected for toxicity tests: 4 reference samples (KBREF2, LFREF3, SBREF4, and SLBREF1) and 27 site samples (BP02, BP03, BP05, BP07, CL01, CL02, CL03, CL04, CL05, CL06, CL07, CL08, CL09, CL10, GM02, GM04, GM08, HD01, HD03, HD04, TB01, TB03, TB06, TB07, TB10, TB15, and TB20).

Toxicity testing included 28-day sediment toxicity tests with *Hyalella azteca* (freshwater amphipod) and 10-day *Chironomus dilutus* (freshwater midge), evaluating the effects on survival and growth (determined by dry weight and ash free dry weight for *H. azteca* and *C. dilutus*, respectively) of the test organisms compared to control and/or reference locations. The testing consisted of a 28- or 10-day sediment exposure period, after which the organisms were retrieved from the sediment and survival was recorded. The organisms were processed for dry weight determinations (Methods EPA 100.1 and 100.2) to measure growth. Survival (percent survival) and growth (mean dry weight or mean ash free dry weight) results were statistically compared to reference and control samples. Samples with statistically significant lower survival, fecundity (*H. azteca* only), and growth were identified.

Bioaccumulation testing consisted of 28-day bioaccumulation exposures with Lumbriculus variegatus (freshwater oligochaete worm) (EPA 100.3) on surface sediment samples from the following locations: 4 reference samples (KBREF2, LFREF3, SBREF4, and SLBREF1) and 20 site samples (CL01, CL02, CL03, CL04, CL05, CL06, CL07, CL08, CL09, CL10, GM02, GM04, GM08, TB01, TB03, TB06, TB07, TB10, TB15, and TB20). Following a 28-day sediment exposure period, organisms were retrieved from the sediment and allowed to depurate their digestive tracts for approximately 24 hours. After the depuration period, the organisms were placed into analytical jars and submitted for chemical analysis. The testing produced five replicates per sediment sample and control. Pre-test (control) tissues, which represent the constituent tissue concentrations in the test organisms upon arrival to the testing laboratory and prior to laboratory exposures, were also submitted for chemical analysis. Appendix I includes a complete report of the Toxicity and Bioaccumulation testing completed in EA's Ecotoxicology Laboratory. The tissues were processed and analyzed for mercury (EPA CLP ISM02.4/HG) (all samples), organotins (EPA Method 8323) (General Mills and Tower Avenue Slips, reference, and pre-test samples), dioxin/furans (EPA Method 1613B) (Clough Island, reference, and pre-test samples), and percent lipids (Gravimetric Determination) (all samples).

Tissue concentrations from the organisms exposed to the site samples were compared to reference and control tissue. Samples with statistically higher tissue concentrations when compared to reference and/or control tissue samples were identified.

Survival and growth results from *H. azteca* and *C. dilutus* toxicity testing are presented in Figures 5-1 and 5-2, and Tables 5-1 and 5-2, respectively. Figure 5-3 presents the UV exposure survival and fecundity results Figures 5-4 through 5-6 presents the observed toxicological effects to *H. azteca* and *C. dilutus* noted at the locations that were used for toxicity testing for

Hallet Dock 8 Slip and Oil Barge Dock Slip, General Mills and Tower Avenue Slips, and Clough Island, respectively. Table 5-3 presents the mean lipid concentration in tissue from each location and Tables 5-4 through 5-6 and Figures 5-7 and 5-8 present mean *L. variegatus* tissue concentrations of mercury, organotins, and dioxins/furans, in the Tower Avenue/General Mills Slips and Clough Island Area, respectively. Replicate tissue concentrations for each location are presented in Appendix E, Attachment 5 and the results of the statistical comparison of bioaccumulation tissue data are presented in Appendix E, Attachment 6. Results are discussed further in the following sections.

## 5.1 CHIRONOMUS DILUTUS SEDIMENT TOXICITY TEST

The results of the *C. dilutus* sediment toxicity tests complied with current National Environmental Laboratory Accreditation Conference (NELAC) standards. The survival and growth results of the *C. dilutus* toxicity tests were statistically analyzed according to EPA guidance (2000) to determine if any of the site sediments were significantly different (p=0.05) from the control or reference sediment. If the data were normally distributed, then a t-Test was performed to detect statistically significant differences between test sediments, control sediment, and the reference sediment. If the data distribution was non-normal, then a Wilcoxon Two-Sample Test was used to compare the group means. Shapiro-Wilk's Test was used to determine if the data were normally distributed, and the F-Test was used to test for homogeneity of variance. Samples with statistically significant lower survival and growth when compared to each of the reference samples (KBREF2, LFREF3, SBREF4, and SLBREF1) and the laboratory control sample were identified.

After 10 days of exposure, mean survival in 23 of the 27 sediment samples was significantly less (p=0.05) than the laboratory control. Survival in the reference samples ranged from 74 to 83%. Survival from the Hallet Dock 8 Slip ranged from 26 to 63% and survival in each of the 3 samples was significantly less than at least one of the reference samples. Survival from the Oil Barge Dock Slip ranged from 66 to 80% and survival in 3 of the 4 samples was significantly less than at least one of the reference samples. Survival from 80 to 91% and survival was not significantly different from the reference samples. Survival from the Tower Avenue Slip ranged from 20 to 86% and survival in 6 of the 7 samples was significantly less than at least one of the reference samples. Survival from Clough Island ranged from 64 to 93% and survival in 6 of the 10 samples was significantly less than at least one of the reference samples.

Three sediment samples were collected from the project area for 10-day *Chironomus riparius* toxicity testing in 2015 (EA 2016). Figure 5-4 presents the results for SW15-SLB02 collected from the Hallet Dock 8 Slip and Figure 5-5 presents the results for SW15-SLB05 and SW15-SLB14, collected from the General Mills and Tower Avenue Slips, respectively. Results for each of the three samples indicated that survival was statistically different from the control.

Mean ash-free dry weights (growth) in the sediment samples from each area ranged from 1.229 to 1.125 milligrams (mg) per organism (laboratory control), 0.580 to 0.925 mg per organism (reference), 0.587 to 0.826 mg per organism (Hallet Dock 8 Slip), 1.162 to 1.325 mg

per organism (Oil Barge Dock Slip), 0.773 to 1.268 mg per organism (General Mills Slip), 0.504 to 1.031 mg per organism (Tower Avenue Slip), and 0.689 to 1.218 mg (Clough Island). Growth at four locations (CL06, HD04, TB01, and TB06) was significantly lower than at least one of the reference samples (Table 5-1 and Figure 5-1). Figures 5-4 through 5-6 present the geographical distribution of toxicological effects at the locations with co-located toxicity testing.

# 5.2 HYALELLA AZTECA SEDIMENT TOXICITY TEST

The results of the *H. azteca* sediment toxicity tests complied with current NELAC standards. The survival, fecundity, and growth results of the *H. azteca* toxicity tests were statistically analyzed according to the EPA guidance (2000) to determine if any of the site sediments were significantly different (p=0.05) from the control or reference sediment. If the data were normally distributed, then a t-Test was performed to detect statistically significant differences between test sediments and the reference sediment. If the data distribution was non-normal, then a Wilcoxon Two-Sample Test was used to compare the group means. Shapiro-Wilk's Test was used to determine if the data were normally distributed, and the F-Test was used to test for homogeneity of variance. Samples with statistically significant lower survival, fecundity, and growth when compared to each of the reference samples (KBREF2, LFREF3, SBREF4, and SLBREF1) and the laboratory control sample were identified. After 28 days of exposure, mean survival in 22 of the 27 sediment samples was significantly less (p=0.05) than the laboratory control. Survival from the reference samples ranged from 84 to 89%. Survival from the Hallet Dock 8 Slip ranged from 65 to 85% and survival in 2 of the 3 samples was significantly less than at least one of the reference samples. Survival from the Oil Barge Dock Slip ranged from 83 to 91% and survival in the 4 samples was not significantly different from the reference samples. Survival from the General Mills Slip ranged from 68 to 78% and survival in each of the 3 samples was significantly less than at least one of the reference samples. Survival from the Tower Avenue Slip ranged from 61 to 90% and survival in 4 of the 7 samples was significantly less than at least one of the reference samples. Survival from Clough Island ranged from 71 to 90% and survival in 4 of the 10 samples was significantly less than at least one of the reference samples.

Three sediment samples were collected from the project area for 28-day *H. azteca* toxicity testing in 2015 (EA 2016). Figure 5-4 presents the results for SW15-SLB02 collected from the Hallet Dock 8 Slip and Figure 5-5 presents the results for SW15-SLB05 and SW15-SLB14, collected from the General Mills and Tower Avenue Slips, respectively. Results for each of the three samples indicated toxicological effects for at least one test end point. The end points that were statistically different from the control were: survival (SW15-SLB02), growth (SW15-SLB05), and growth and fecundity (SW15-SLB14).

Following survival determination, the amphipods were exposed to a 7.5 microwatts per square centimeters intensity UV light for 4 hours and assessed for mortality immediately afterward. For most samples, survival after the UV light exposure did not change, with the exception of the following which showed a slight decrease in survival: CL04, TB07, TB10, TB15, and TB20.

Surviving *H. azteca* were observed for the formation of eggs in the oviducts or in the brood pouch. Fecundity from the reference samples ranged from 70 to 76%. Fecundity from the Hallet Dock 8 Slip ranged from 42 to 63% and fecundity in each of the 3 samples was significantly less

than at least one of the reference samples. Fecundity from the Oil Barge Dock Slip ranged from 63 to 72% and fecundity in 1 of the 4 samples was significantly less than at least one of the reference samples. Fecundity from the General Mills Slip ranged from 68 to 71% and fecundity in the 3 samples was not significantly different from the reference samples. Fecundity from the Tower Avenue Slip ranged from 36 to 74% and fecundity in 4 of the 7 samples was significantly less than at least one of the reference samples. Fecundity from Clough Island ranged from 50 to 74% and fecundity in 6 of the 10 samples was significantly less than at least one of the reference samples.

Mean ash-free dry weight (growth) in the sediment samples from the laboratory control was 0.282 mg per organism. The mean ash-free dry weights from each area ranged from 0.278 to 0.301 mg per organism (reference), 0.285 to 0.364 mg per organism (Hallet Dock 8 Slip), 0.258 to 0.449 mg per organism (Oil Barge Dock Slip), 0.305 to 0.398 mg per organism (General Mills Slip), 0.214 to 0.305 mg per organism (Tower Avenue Slip), and 0.252 to 0.464 mg (Clough Island). Growth at eight locations (BP07, CL01, CL02, TB01, TB03, TB06, TB07, TB10, TB15, and TB20) was significantly lower than at least one of the reference samples (Table 5-2 and Figure 5-2). Figures 5-4 through 5-6 present the geographical distribution of toxicological effects at the locations with co-located toxicity testing.

### 5.3 LUMBRICULUS VARIEGATUS 28-DAY BIOACCUMULATION TEST

The results of the *L. variegatus* sediment 28-day bioaccumulation tests complied with current NELAC standards. Organisms were exposed to site sediments and reference sediments. Tissue results were compared between organisms exposed to site sediments and reference sediments as well as pre-test tissue. Pre-test tissue represents organism tissue upon receipt at the ecotoxicology laboratory (prior to test initiation). These tissues originate from organisms that are sacrificed from each shipment and subsequently frozen. These organisms are not exposed to test sediments, but contaminants in their tissues represent baseline contaminants that accumulated in their natural environment. Results are reported as wet weight.

Tissue chemistry results of the 20 site samples were compared to the 4 reference locations and pre-test samples to test the null hypothesis that site sample concentrations are not greater than reference/pre-test concentrations at the 95% significance level ( $\alpha = 5\%$ ). Statistical analyses of dioxins and organotins were conducted on lipid-normalized (wet weight) concentrations. Due to the prevalence of non-detect data with different censoring limits (MDL or RL), comparisons were conducted using the generalized Wilcoxon test (aka, Gehan test) for multiple comparisons of censored data sets (Gehan 1965). Type I errors were controlled by adjusting the significance probabilities for the number of hypothesis tests (*m*) performed using the Benjamini and Hochberg's (1995) linear step-up procedure (BH). The FDR is the expected proportion of Type I (aka, false positive) errors among the significant results (i.e., discoveries). The FDR for a Type I error rate  $\alpha$  using the BH procedure was controlled as follows:

1. The unadjusted right-tailed *p*-values were ordered as  $p_1 \le p_2 \le \cdots \le p_m$ .

- 2. Next the test with the highest rank *j* for which the value  $p_j$  is less than or equal to  $\frac{j}{m} \times \alpha$  was determined.
- 3. Adjusted *p*-values were computed as  $p_j^* = \frac{m \times p_j}{j}$ .
- 4. Adjusted *p*-values  $p_j^* \leq \alpha$  were declared as significant exceedances of reference/pre-test data.

Like all multiple comparison adjustments, the level of adjustment is directly proportional to the number of hypothesis tests performed. Therefore, the number of hypothesis tests was limited to comparing the 20 site samples to the 4 reference locations and pre-test samples. Restricting the comparisons to the site data maximizes the statistical power to discover exceedances of the site data to reference/pre-test data. Statistical computations were conducted with SAS/STAT<sup>®</sup> software version 14.2.

The mercury, dioxin/furans, and organotin mean tissue concentrations from each of the 4 reference samples (KBREF2, LFREF3, SBREF4, and SLBREF1) and the mean pre-test tissue were compared to mean tissue concentrations from all 20 of the site samples for mercury, 10 Clough Island samples for dioxins/furans, and 10 North End District samples (3 General Mills Slip and 7 Tower Avenue Slip samples) for organotins. The results of the comparisons are included in Appendix E, Attachment 6 and a summary of the results with significant differences are included in Table 5-4 for General Mills Slip, Table 5-5 for Tower Avenue Slip, and Table 5-6 for Clough Island samples. Figures 5-7 and 5-8 present results for mercury, tributyltin and Fish Dioxin TEQ (ND=RL) spatially in the General Mills and Tower Avenue Slip and Clough Island Area respectively. The results are described below by analyte.

Regional bioaccumulation data are available for the following sites: 40<sup>th</sup> Avenue West, Munger Landing, Mud Lake West, Erie Pier Pond, Boulder Reservoir, Scanlon Reservoir, and Thomson Reservoir as noted in Section 2.6. Due to the small sample sizes for the Reservoirs, Mud Lake West, and Munger Landing and the lack of available replicate data for 40<sup>th</sup> Avenue West, the regional bioaccumulation data were compared to the North End District and Clough Island bioaccumulation data semi-quantitatively. Regional samples were analyzed for mercury and dioxins/furans but not organotins.

Figure 5-9 through 5-12 present the available data as mean plots of mercury and dioxin concentrations. The means plots are used to analyze the way in which the mean varies between the regional locations and the samples collected in 2020, as such each point is connected by a line. A mean plot can show whether there were any shifts in location, what the magnitude of any shifts might be, and if there are any distinct patterns. They allow us to check assumptions we might make of our data pool staying generally constant—or not—over time and location. Mean plots can be used to show the standard deviation around each mean. Figures 5-9 through 5-12 do not include standard deviation bars as the number of replicates varied by sample location based on recovered tissue mass and study objectives for supplemental data sets. The regional locations are ranked by comparing the mean concentrations of mercury and dioxin TEQ. Figure 5-9 presents the mean plots of mercury for all of the sites. The regional data were analyzed for

dioxins/furans but reporting of the dioxin TEQ varies based on the site. To make appropriate comparisons to the dioxin TEQs from the regional tissue data, the 2020 data were used to calculate the dioxin TEQs in the same manner. Figures 5-10 through 5-12 present the mean plots for 2005 WHO Dioxin TEQ (ND=0), 2005 WHO Dioxin TEQ (ND=1/2RL), and Fish Dioxin TEQ (ND=RL).

### 5.3.1 Mercury

Each of the tissue samples was analyzed for mercury and none of the mercury concentrations in the 20 site tissue samples were significantly different (p < 0.5) from any of the reference or pretest samples.

The mean mercury tissue concentration among regions orders as follows (starting with areas with lowest concentrations): 40<sup>th</sup> Avenue West < Munger Landing < General Mills Slip = SLBREF1 = SBREF4 < Clough Island < LFREF3 < KBREF2 < Thomson Reservoir < Scanlon Reservoir < Boulder Reservoir < Tower Avenue Slip.

### 5.3.2 Dioxins/Furans

The 4 reference samples, pre-test, and 10 Clough Island samples were analyzed for dioxins/furans. Bird (ND=0 and ND= 1/2 RL), fish (ND=0 and ND= 1/2 RL), and mammal (ND=0, ND= 1/2 RL, and ND=RL) dioxin TEQs were calculated. The results of the comparisons are as follows:

- The following samples were statistically different (p < 0.05) from the lipid-normalized bird, fish, and mammal dioxin TEQ (ND=0) pre-test tissue concentrations but not statistically different from reference tissue concentrations: CL08 and CL09.
- The following samples were statistically different (p < 0.05) from the lipid-normalized 1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8-HpCDF tissue concentrations from at least one reference site and the pre-test tissue concentration: CL02 and CL08.
- CL08 was statistically different (p < 0.05) from the lipid-normalized 1,2,3,4,7,8-HxCDF 1,2,3,7,8-PeCDD, and 1,2,3,7,8-PeCDF tissue concentrations from at least one reference site and the pre-test tissue concentration.
- The following samples were statistically different (p < 0.05) from the lipid-normalized 2,3,7,8-TCDD tissue concentrations from at least one reference site and the pre-test tissue concentration: CL06 and CL08.
- CL02 was statistically different (p < 0.05) from the lipid-normalized OCDD tissue concentrations from at least one reference site and the pre-test tissue concentration.

The mean plots vary based on the method of calculation of the dioxin TEQ because the totals are dependent on how non-detects are handled. Therefore, there is high level of uncertainty in the

ranking. The regional ranking based on dioxin TEQ tissue concentrations for the sites (starting with areas with lowest concentrations) is as follows: Mud Lake West < Boulder Reservoir < Erie Pier Pond < 40<sup>th</sup> Avenue West < Thomson Reservoir < SLBREF1 = KBREF2 = LFREF3 = Scanlon Reservoir < Clough Island < SBREF4 < Munger Landing.

#### 5.3.3 Organotins

The 4 reference samples, pre-test, 3 General Mills Slip, and 7 Tower Avenue Slip samples were analyzed for organotins. Organotins analysis included monobutyltin, dibtutyltin, tributyltin, and tetra-n-butyltin. The pre-test data for each of the monobutyltin replicates were rejected during data validation so the comparison of the site data to pre-test data cannot be performed for monobutyltin. The results of the comparisons are as follows:

- The following samples were statistically different (p < 0.05) from the lipid-normalized monbutyltin tissue concentrations from at least one reference site tissue concentration: GM04, GM08, and TB20. The pre-test data for each of the monobutyltin replicates was rejected by data validators so the comparison of the site data to pre-test data was not performed for monobutyltin.
- The following samples were statistically different (p < 0.05) from the lipid-normalized dibutylin tissue concentrations from at least one reference site and the pre-test tissue concentration: GM02, GM04, GM08, and TB20.
- The following samples were statistically different (p < 0.05) from the lipid-normalized tributyltin tissue concentrations from at least one reference site and the pre-test tissue concentration: GM04, GM08, and TB20.
- None of the tetra-n-butyltin concentrations in the 20 site tissue samples was significantly different (p < 0.5) from any of the reference or pre-test samples.

### 5.4 SEDIMENT TOXICITY AND BIOACCUMULATION TESTING SUMMARY

The results of the toxicity and bioaccumulation testing indicated the following:

- Site locations HD01, HD03, HD04, BP02, BP03, BP05, TB01, TB03, TB06, TB07, TB10, TB15, CL03, CL05, CL06, CL07, CL09, and CL10 had an adverse effect on *C. dilutus* survival in the 10-day sediment exposures. Sites CL06, HD04, TB01, and TB06 had an adverse effect on mean ash-free dry weight (growth) of *C. dilutus* (Table 5-1 and Figure 5-1).
- Site locations HD03, HD04, GM02, GM04, GM08, TB01, TB03, TB07, TB10, CL02, CL06, CL07, and CL09 had an adverse effect on *H. azteca* survival in the 28-day sediment exposures. Sites HD01, HD03, HD04, BP07, TB01, TB06, TB07, TB10, CL01, CL02, CL05, CL06, CL09, CL10 had an adverse effect on *H. azteca* fecundity in the 28-day sediment exposures. Sites BP07, CL01, CL02, TB01, TB03, TB06, TB07, TB10,

TB15, and TB20 had an adverse effect on mean dry weight (growth) of *H. azteca* (Table 5-2 and Figure 5-2).

- Overall, significantly inhibited survival when compared to reference samples was observed at nine site locations (HD03, HD04, TB01, TB03, TB07, TB10, CL06, CL07, and CL09) for both *H. azteca* and *C. dilutus*.
- Overall, significantly inhibited growth when compared to reference samples was observed at two site locations (TB01 and TB06) for both *H. azteca* and *C. dilutus*.
- Two sites (CL08 and TB20) were not toxic to either *H. azteca* or *C. dilutus* for either survival (including after UV exposure), fecundity, or growth.
- Mercury concentrations in *L. variegatus* tissue were not statistically different (higher) than the reference site and pre-test tissue concentrations for each tested location.
- Dioxin TEQ concentrations in *L. variegatus* tissue were not statistically different (higher) than the reference site concentrations for each tested location. Individual dioxins/furans tissue concentrations were statistically different (higher) than the reference site and pretest tissue concentrations for CL02, CL06, and CL08.
- At least one of the organotin concentrations (lipid-normalized) in *L. variegatus* tissue was statistically different (higher) than the reference site and pre-test tissue concentrations for GM02, GM04, GM08, and TB20.

The results of the toxicity testing with *H. azteca* and *C. dilutus* indicated that there was no significant impact on the surviving organism's ability to grow during the toxicity test. As a part of the data evaluation, the observed statistical difference for survival was evaluated for both species. The results of that evaluation indicated that the organisms were of adequate quality as evident by an acceptable reference toxicant test conducted on the test species and a performance in the laboratory control that met test acceptability criteria. Additionally, the test data were reviewed for: test condition and procedural errors; within treatment variability; and test sensitivity. Evaluation of test conditions and procedures indicated that the response pattern was not a result of water quality abnormalities in isolated replicates, or procedural errors such as improper randomization, which could adversely impact survival in a specific sample.

The data were further evaluated against the co-located reference sediment chemical data, these findings are described further in the following section.

## 6. SUMMARY OF FINDINGS

The North End District and Clough Island Sediment Characterization was conducted to obtain the data necessary to conduct a screening level assessment of the chemical contamination in the North End District and Clough Island areas of the St. Louis River and Bay AOC. These efforts were conducted in coordination with DNR and EPA. The investigations, including geophysical surveys, sediment sampling activities and sediment, biological and tissue testing methods, were carried out in accordance with procedures outlined in the Sampling and Survey QAPPs (Appendix K) with FSP attachments (EA 2019 and 2020) and as described in this SIR. For each sample, Table 6-1 presents a summary of findings for toxicity test results, surface sample SQG exceedances, bioaccumulation test results, and microscopic coal results.

### 6.1 GEOPHYSICAL SURVEY

Geophysical surveying efforts, including precision multibeam bathymetric, sub-bottom profiling, and an acoustic dock wall survey, were conducted prior to sediment sampling to establish a basemap of the project area. In addition, the completion of these efforts provided the water depths, bottom elevations, and apparent sediment thickness data necessary for evaluations of the volumes of sediment that could be removed as part of future remediation efforts. The multibeam bathymetric and sub-bottom profiling surveys were completed in the Hallet Dock 8 Slip, Oil Barge Dock Slip, General Mills Slip, and Tower Avenue Slip. However, the dock wall acoustic surveys were only completed within the Oil Barge Dock and Tower Avenue Slips.

These evaluations utilized various forms of remote sensing, which in turn produced highresolution base maps of water depth and lakebed elevation for each slip surveyed. In addition, these data were used to develop a digital elevation model (DEM) suitable for the creation of a site model within a GIS environment. Additionally, the geophysical effort included the completion of underwater acoustic imagery surveys of the quay walls within the Oil Barge Dock and Tower Avenue Slips. These images of the submerged components of each wall were merged with corresponding digital photographs of the above water portions of each wall to support a first order assessment of conditions and stability of these structures.

Ultimately, these geophysical data sets data will be used in conjunction with chemical analytical data to evaluate initial extents of sediment contamination as described below. They are sufficiently robust for use as part of future feasibility studies or to serve as the basis of remedial design evaluations. Key findings from each area are summarized below.

### 6.1.1 Hallet Dock 8 Slip

The Hallet Dock 8 slip is currently 140 wide and 2,400 ft long, with the southern limits of the slip corresponding to the relic (1890) shoreline. When corrected and referenced to the LWD for Lake Superior (601.1 ft), water depths within the slip ranged from 10 ft in the extreme southeastern corner to 37 ft near the northeastern corner of the Hallet Dock 8. In general, the sub-bottom data were representative of a disturbed or modified bed with multiple, discontinuous strata visible in the top 15 to 20 ft of penetration.

### 6.1.2 Oil Barge Dock

The Oil Barge Slip is currently an 840-ft-long and 95-ft-wide slip that resides between the BP Oil Dock and Midwest Energy Resources Dock. The Oil Barge Dock Slip survey area was comprised of the 2-acre parcel of submerged lands between the eastern and western walls, as well as 4.8 acres of coverage that extended into St. Louis Bay. Multibeam bathymetry data were collected from the approximate centerline of South Channel to the limits of navigation in the headwaters to the south. Shallow water and debris (timbers associated with a failing bulkhead) prevented access and complete coverage of the water body. Minimum water depths of 3 ft were detected in the southeastern limits of coverage, while a maximum water depth of 25 ft was measured at the entrance to the slip near the centerline.

Sub-bottom profiling data were collected over 10 north-south oriented survey transects within the 95-ft-wide BP Oil Barge Dock Slip. Similar to the Hallet Dock 8 Slip, the sediment column displays evidence of a significantly disturbed or modified bed with several discontinuous strata visible in within 15 to 20 ft of the sediment-water interface. Three principal material types, each with unique acoustic signatures that were a product of either physical composition and/or degree of disturbance, were detected within sediment column. Recently deposited fine-grained sediments (silts) overlying mixed or chaotic layers of material were noted in the upper sediment column, while bedded, homogenous parent sediments (silty clays) were found at depth within the profile. The thickness of each type of material encountered varied significantly based on location within the slip, bathymetry, degree of anthropogenic influence, and structural integrity of the adjacent walls.

In general, the west wall between Stations 0+00 and 1+20 appeared intact but displayed signs of damage and deterioration both above and below the waterline. The east wall is the product of different construction techniques employed in different timeframes. As a result, the condition of the wall segments at the time of the survey was directly dependent upon the construction technique employed, the material used, and the age of each segment.

Additional investigation of stability by means of divers or remotely operated vehicle (ROV) and potential mitigation measures would be recommended during future evaluations of potential remedial actions in this area.

## 6.1.3 General Mills Slip

The General Mill Slip is located at the confluence of St. Louis Bay to the northwest and Howards Bay to the east. The General Mills Slip is approximately 1,800 ft long and extends 500 ft south of the 1880s historical shoreline for this portion of Superior. The General Mills Slip survey area was comprised of the 7.4-acre parcel of submerged lands between the General Mills Dock to the east and ruins of the Great Northern Dock to the west, plus 6.7 acres of coverage that extended into South Channel and St. Louis Bay. When corrected and referenced to the LWD for Lake Superior, water depths within the confines of the slip ranged from 2 ft in the extreme

southeastern corner and southwestern margin of the coverage area to 38 ft at the center of a discrete scour feature near the centerline of the slip.

Sub-bottom profiling data were collected over 10 north-south oriented transects established within the 180-ft-wide General Mills Slip survey area. Similar to the other slips surveyed as part of this investigation, the acoustic profiles displayed evidence of multiple, distinct sediment strata within the upper sediment column. In general, fine-grained, lower density sediments (silts) with thicknesses ranging from 1 to 4 ft were found over intervals of mixed or chaotic layers of material. These mixed strata were 2 to 6 ft thick and commonly comprised of intervals of sand or sand mixed with silts and clays. The parent sediment was determined to be a homogenous, fine sand that resided below the localized disturbances caused by construction activity or repeated dredging to maintain suitable water depths for vessels utilizing the General Mills Dock.

## 6.1.4 Tower Avenue Slip

The Tower Avenue Slip is located in Howards Bay and bounded by the Paper Calmenson to the west and CHS docks to the east. The Tower Avenue Slip survey area covered 16.9 acres of submerged lands within the confines of the slip, as well as 8.7 acres of coverage that extended into Howards Bay. The Tower Avenue Slip extends approximately 2,770 ft from Howards Bay into the headwaters before terminating at an earthen berm and several outfall structures in various states of repair. Access to the slip from Howards Bay appears to be restricted to a relatively narrow, 300-ft-wide passage between a shallow embayment to the west exhibiting depths ranging from 4 to 20 ft and the CHS dock to the east. Once the Paper Calmenson Dock is encountered at the approximate midpoint of the slip, the width tapers to approximately 250 ft, then further constricts to less than 200 ft at the headwaters. A minimum depth of 1 ft was detected along the western and eastern banks within the headwaters of the slip, as well as the northern and eastern limits of the CHS Dock. A maximum water depth of 41 ft was measured along the northwestern margin of the CHS Dock and again within a roughly circular bottom feature 45 ft northwest of the dock.

Sub-bottom profiling data were collected over 10 transects established within the Tower Avenue Slip survey area, each approximately 2,800 ft long and oriented parallel to the long axis of the slip. In general, the results for the Tower Avenue Slip were comparable to those derived for the General Mills Slip. Deposits of fine-grained material (silts) of varying thickness were detected at the sediment-water interface throughout the survey area. These lower density silts resided over mixed intervals of sand, silt and clay that comprise a layer of sediment that has been periodically disturbed by dredging, vessel movements, and other industrial activities within the slip. Due to the shallow water depths in the southwestern extents of the survey area, several artifacts (acoustic multiples) were captured in the acoustic record along with the desired sonar returns. These acoustic multiples limited the value of the sub-bottom data collected in the shallows by obscuring any backscatter deeper than 10 ft below the sediment-water interface.

The west wall of the Tower Avenue slip retains the fill material used to create the current Paper Calmenson Dock during its original construction in the late 1800s. It was imaged using both the multibeam echosounder system system and the side-scan sonar over a distance of approximately

850 ft. In general, the wall surface residing under the waterline and behind the pilings appears intact, while sections of the wall above the waterline display a considerable amount of deterioration and spalling over its length. The east wall of the Tower Avenue slip retains the fill material deposited in the late 1880s and used to create the structure now known as the CHS Dock. The entire east wall is comprised of steel sheet pile that was driven into the Tower Bay sediments. The entire east wall is comprised of steel sheet pile, and with one exception, appeared to be intact and in good condition. The southeast wall of the Tower Avenue slip retains the fill material used to the create the base of the CHS Dock where it tied into the original Tower Bay shoreline. In contrast to the east wall, the southeast wall was comprised of concrete and timber. Similar to the west wall in the Oil Barge Dock Slip, the southeast wall in the Tower Avenue Slip appears to consist of a deteriorating concrete cap that was cast over the compacted fill material originally used to cover the freshwater marshland. Besides the obvious deterioration of the concrete cap between Stations 0+00 and 1+50, there were also some indications of fill material loss into the slip, suggesting existing or prior breaches in the wall. Between Stations 1+50 and 2+40 the concrete cap displayed less evidence of deterioration and the support structure under the waterline appeared to be intact. From Station 2+40 to the limits of sonar coverage the concrete cap and structural components below the waterline appeared relatively intact.

Additional investigation of stability by means of divers or ROV and potential mitigation measures may be recommended in certain areas along the Tower Bay walls during future evaluations of potential remedial actions in this area.

## 6.2 SEDIMENT INVESTIGATION

Sediment sampling was conducted from 22 June through 4 July 2020. Samples were collected from the OSI R/V *Candu*, as well as EA's M/V *Chinook* 26-ft sampling vessel. Surface grab samples were collected using a ponar sampler at the majority of location and a pneumatic vibratory coring system was used to collect samples at depths up to 20 ft. Analytical samples were submitted to Eurofins TestAmerica in Burlington, Vermont, and Pittsburgh, Pennsylvania.

Site characterization data from the sampling effort in the North End District and Clough Island assessment areas are summarized in Chapter 4 presented in detail in Appendix E. Detected concentrations of constituents were compared to threshold, midpoint, and probable effects concentrations (TEC, MEC, and PEC) from DNR's Consensus-Based SQGs (Wisconsin DNR 2003), where available, and non-industrial and industrial direct contact and soil to groundwater RCLs or BTVs under Wisconsin Administrative Code NR 720. Results of the screening evaluation are summarized in Tables 4-1 through 4-7 and Appendix E, Attachment 1, and Appendix E, Attachment 2.

Figures 6-1 through 6-14 identify analytes exceeding the TEC, MEC and PEC values in each area of the site. Locations with samples exceeding PECs were distinguished in the QAPP decision criteria as potential areas to be prioritized and recommended for further investigation or remediation. Exceedances of the PEC values were identified in each area of the site; however,

very limited exceedances were observed in the Hallet Dock 8 Slip and Estuary Flats Areas (Figures 6-1, 6-2, 6-9 and 6-10). In other areas, findings were as follows:

- In the Oil Barge Dock Slip, PEC exceedances were observed for numerous organics (1,2-dichlorobenzene, 1,4-dichlorobenzene, benzene, xylene, PAH18), and metals (including arsenic, iron, lead and manganese) at the head of the slip, and at depth for a limited number of locations and compounds in the middle to outer portions of the slip (Figures 6-3 and 6-4).
- Most locations sampled in the General Mills Slip showed exceedances of the PEC for organic compounds including PAH18, dioxins, and tributyltin (Figure 6-5); concentrations in the surface intervals were generally lower than samples collected at depth. A limited number of locations (Figure 6-6) showed exceedances of the PEC for metals (lead and manganese) between the head and middle portion of the slip.
- In the Tower Avenue Slip, organics (PAH18, PCBs, tributyltin) were detected in subsurface samples at the head through the middle of the slip; metals including copper, iron, lead, mercury, silver, zinc exceeded the PEC in subsurface samples at these locations (Figure 6-8). Locations from approximately the midpoint of the slip to the outer extent showed generally lower concentrations of metals and organics, with the exception of samples located at the mouth of the slip and into Superior Bay. A group of locations in this area including one surface sample and five locations with samples at depth exceeded the PEC for tributyltin.

Data at select locations were collected for informational purposes, and potential application in subsequent source tracking and forensic evaluation in the Oil Barge Dock, General Mills and Tower Avenue slips. Select samples were analyzed for alkylated PAHs, aliphatic hydrocarbons (C8-C40), and coal particles (microscopic coal analysis). Results of this analysis are discussed in Chapter 4 and provided in Appendix E.

# 6.3 TOXICITY AND BIOACCUMULATION TESTING

Toxicity and bioaccumulation testing was conducted by EA's Ecotoxicology Laboratory located in Hunt Valley, Maryland. Surface sediment samples were collected for toxicity tests from 27 locations across the site and at 4 reference stations.

Toxicity testing included 28-day sediment toxicity tests with *Hyalella azteca* (freshwater amphipod) and 10-day *Chironomus dilutus* (freshwater midge), evaluating the effects on survival and growth (determined by dry weight and ash free dry weight for *H. azteca* and *C. dilutus*, respectively) of the test organisms compared to control and/or reference locations. The testing consisted of a 28- or 10-day sediment exposure period, after which the organisms were retrieved from the sediment and survival was recorded. Survival (percent survival) and growth (mean dry weight or mean ash free dry weight) results were statistically compared to reference and control samples. Samples with statistically significant lower survival, fecundity (*H. azteca* only), and growth were identified.

Bioaccumulation testing consisted of 28-day bioaccumulation exposures with *Lumbriculus variegatus* (freshwater oligochaete worm) on surface sediment samples from the 4 reference locations and 20 site samples. The testing produced 5 replicates per sediment sample and control. Pre-test (control) tissues, which represent the constituent tissue concentrations in the test organisms upon arrival to the testing laboratory and prior to laboratory exposures, were also submitted for chemical analysis.

The results of the toxicity and bioaccumulation testing indicated the following:

- Site locations HD01, HD03, HD04, BP02, BP03, BP05, TB01, TB03, TB06, TB07, TB10, TB15, CL03, CL05, CL06, CL07, CL09, and CL10 had an adverse effect on *C. dilutus* survival in the 10-day sediment exposures. Sites CL06, HD04, TB01, and TB06 had an adverse effect on mean ash-free dry weight (growth) of *C. dilutus* (Table 5-1 and Figure 5-1).
- Site locations HD03, HD04, GM02, GM04, GM08, TB01, TB03, TB07, TB10, CL02, CL06, CL07, and CL09 had an adverse effect on *H. azteca* survival in the 28-day sediment exposures. Sites HD01, HD03, HD04, BP07, TB01, TB06, TB07, TB10, CL01, CL02, CL05, CL06, CL09, CL10 had an adverse effect on *H. azteca* fecundity in the 28-day sediment exposures. Sites BP07, CL01, CL02, TB01, TB03, TB06, TB07, TB10, TB15, and TB20 had an adverse effect on mean dry weight (growth) of *H. azteca* (Table 5-2 and Figure 5-2).
- Overall, significantly inhibited survival when compared to reference samples was observed at 9 site locations (HD03, HD04, TB01, TB03, TB07, TB10, CL06, CL07, and CL09) for both *H. azteca* and *C. dilutus*.
- Overall, significantly inhibited growth when compared to reference samples was observed at 2 site locations (TB01 and TB06) for both *H. azteca* and *C. dilutus*.
- Two sites (CL08 and TB20) were not toxic to either *H. azteca* or *C. dilutus* for either survival (including after UV exposure), fecundity, or growth.
- Mercury concentrations in *L. variegatus* tissue were not statistically different (higher) than the reference site and pre-test tissue concentrations for each tested location.
- Dioxin TEQ concentrations in *L. variegatus* tissue were not statistically different (higher) than the reference site concentrations for each tested location. Individual dioxins/furans tissue concentrations were statistically different (higher) than the reference site and pretest tissue concentrations for CL02, CL06, and CL08.

At least one of the organotin concentrations (lipid-normalized) in *L. variegatus* tissue was statistically different (higher) than the reference site and pre-test tissue concentrations for GM02, GM04, GM08, and TB20.

Overall, significantly inhibited survival when compared to reference samples was observed at 9 site locations (HD03, HD04, TB01, TB03, TB07, TB10, CL06, CL07, and CL09) for both *H. azteca and C. dilutus*. Findings at these locations were further evaluated against the co-located reference sediment chemical data and surface sediment characteristics and field observations (Table 6-1).

The following sections summarize the physical and chemical characteristics and visual observations of the sediment at each of the nine site locations where significantly inhibited survival was observed in both *H. azteca* and *C. dilutus*.

# 6.3.1 Hallet Dock 8 Slip (HD03 and HD04)

Surface sediment concentrations at HD03 and HD04 exceeded TEC values for PAH18 and dioxin. Microscopic coal concentrations at HD03 were 25%, but microscopic coal was not analyzed at HD04. The next closet location, HD05, contained coal in the surface interval at 27%. The surface sample at HD03 was described as light brown silts with trace clays and loose cohesion; a high density of coal chunks was observed in the sample. There was no odor and a slight sheen was also observed. At HD04 the surface sediment was described as light brown silts over medium brown silty-clays with loose/medium cohesion. Coal chunks were observed throughout and petroleum odor and sheen was noted.

# 6.3.2 Tower Bay (TB01, -03, -07, -10, -06 [growth])

Tower Bay locations TB01, -03, -07, -10 had surficial sediment concentrations for PAH18, metals, and dioxin exceeding the MEC. At location TB07, the PEC was exceeded for metals, and at TB06, the TEC was exceeded for metals. The microscopic coal results at each of the Tower Bay locations was below 5%.

At location TB01, sediments were described as light brown silty-clays with low/medium cohesion, small sheens, no odor, and vegetative debris. At TB03, similar light brown silty-clays with low/medium cohesion were observed, and no odor or sheen was noted. The sample at TB03 contained woody/vegetative debris. At TB06 there were medium brown silts over medium brown silty-clay with medium cohesion, a slight petroleum odor, and a sheen present. At TB07 and 10, light brown silts over light brown silty-clays with low/medium cohesion were observed. Sheens were observed at TB07, but no odor was observed in TB07 and TB10.

# 6.3.3 Clough Island (CL06, -07, -09)

Surface sediment concentrations at CL06 and CL07 exceeded PEC values for dioxin, and the MEC was exceeded for dioxin at CL09. At CL09 the PEC was exceeded for manganese. CL06 and 07 also had metals TEC and MEC exceedances. Microscopic coal was not analyzed in the

Clough Island Area. Surface sediment at CL06, 07 and 09 was described as medium browns silts over clays with vegetation observed at CL06 and 07. No sheen was observed in either of the three samples, an organic odor was described at CL07, and no other odors were observed at CL06 and 09.

# 6.4 VOLUME ANALYSIS

Volume estimates of contaminated sediments in Hallet Dock 8 Slip, Oil Barge Slip, General Mills Slip, and Tower Avenue Slip were calculated in GIS based on the exceedance of the PEC or MEC for any analyte (metal or organic) and the maximum depth in which that exceedance occurred at each location within its representative slip. To determine the volumes, EA utilized ArcGIS Toolbox to develop surfaces of the exceedances in each slip and calculate the volumes based on the depths from the sediment surface to the exceedance surface. This process involved the development of three DEM surfaces created in GIS using kriging as the interpolation method. The first DEM represented the sediment surface and was developed based on the bathymetric surface elevation of the boring at which the PEC (or MEC) exceedances. The third DEM represented the maximum depth of PEC exceedances. The third DEM represented the maximum depth of PEC exceedances. The third DEM represented the maximum depth of PEC exceedances. The third DEM represented the of the MEC exceedances. Each of the exceedance surfaces were then calculated for contaminated sediment volume by using the cut/fill tool in the ArcGIS Toolbox. The cut/fill tool estimated the volume between the bottom surface (MEC or PEC surface) with the sediment surface.

The first set of volumes included the full slip area (from wall to wall) and a second set of volumes was calculated by narrowing the slip area with a 25-ft buffer inward from each slip wall (Figure 6-15). This was to account for geotechnical considerations related to removals along significant structures. Further consideration will be required during feasibility and design to account for additional offsets and sloping required outside the buffer zone to support the desired depth of dredge cut.

|               | Full Slip Area (CY) |         | 25 ft Buffered Area (CY) |        |
|---------------|---------------------|---------|--------------------------|--------|
| Area          | PEC                 | MEC     | PEC                      | MEC    |
| Hallet Dock   | 3,675               | 7,888   | 3,242                    | 7,055  |
| Oil Barge     | 8,698               | 13,883  | 4,197                    | 6,730  |
| General Mills | 32,740              | 43,288  | 26,393                   | 34,697 |
| Tower Ave     | 91,576              | 115,659 | 68,147                   | 86,587 |

The calculated volumes for each exceedance surface are as follows:

Boring locations in Hallet Dock Slip were focused along the eastern side of the slip (west side recently dredged), the DEM for this slip was developed from the boring locations at the eastern edge of the slip to the approximate centerline of the slip. EA also considered a 25-ft buffer along the edges of each slip to account for geotechnical considerations related to removals along significant structures. Further consideration will be required during feasibility and design to

account for additional offsets and sloping required outside the buffer zone to support the desired depth of dredge cut.

In addition to volume estimates based on the SQGs, EA compared concentrations to Nonindustrial and Industrial Direct Contact and Soil to Groundwater RCLs. At the request of DNR, EA has included the elevations, within each area, where the exceedances occur for each of the RCLs. This information was developed to allow DNR to apply different cut depths for making a determination about and areas contribution to BUIs.

|                    | Elevation of RCL Exceedances (IGLD85 ft) |                    |                |
|--------------------|------------------------------------------|--------------------|----------------|
| Area               | Groundwater<br>RCL                       | Non-Industrial RCL | Industrial RCL |
| Hallet Dock 8 Slip | 568.04                                   | 575.54             | None           |
| Oil Barge Dock     | 568.30                                   | 573.89             | 574.22         |
| General Mills Slip | 564.83                                   | 565.00             | 569.00         |
| Tower Avenue Slip  | 565.38                                   | 567.52             | 575.07         |
| Estuary Flats      | 586.29                                   | 586.29             | 597.68         |
| Clough Island      | None                                     | None               | None           |

EA has also included elevations for each sample interval in the project database allowing DNR to further evaluate exceedances by location using either SQG and/or RCL exceedances.

## 6.5 RECOMMEDATIONS FOR FUTURE WORK

Exceedances of DNR's SQGs, observed toxicological effects, and general BUIs for the area suggest that further evaluation and consideration of potential remedial actions will continue for areas in the North End District and Clough Island study area. The data collected during the site characterization will allow for the development of a site conceptual model to define the site exposure boundaries, chemicals of concern, potential human health and ecological receptors, anticipated source pathways, and fate and transport processes. Site-specific considerations given the location of the project and the broader AOC restoration efforts, and stakeholder goals will aid in the selection of effective remedial options based on the site-specific physical, chemical, biological and waterway use characteristics.

For purposes of remedial action option evaluation or feasibility study level evaluations, the data collected and summarized in this report provide extensive vertical and horizontal delineation both chemically and lithologically, sufficient for remedial options evaluation. The bathymetric and geophysical survey data (inclusive of the dock wall survey, sub bottom profiling and multibeam bathymetry) presented in Section 3 and Appendix A provide full coverage and are likely sufficient for both alternative evaluation and potentially design, contingent on the project schedule and alternative selected. The toxicological data provide an additional line of evidence suggesting potential impacts in multiple locations across the site.

Early identification of site-specific considerations including current and future land and waterway use (navigation, recreation, habitat goals, future development, etc.) will directly

influence the evaluation of remedial alternatives, specifically in the slips within the North End District and with consideration of the overall goals and BUI removal in the AOC.

Additional data collection activities are recommended following the identification and screening of remedial technologies to support remedy design. Certain data needs will be applicable to multiple technologies including:

- Demonstration of source control (including potential groundwater pathway in the Oil Barge Dock Slip)
- Topographic/shoreline survey
- Utility mapping desktop study and in-water survey
- Benthic community assessment or synthesis of available data
- Cultural and archaeological resource evaluation
- Wetland delineation and mapping, where applicable

Based on the physical, chemical and biological data collected to date at the site, it is likely that one or more of the following remedial technologies could be considered in one or more of the areas within the North End District and Clough Island vicinity. Additional key data needs to further support potential technologies are identified below:

- Monitored Natural Recovery or Enhanced Monitored Natural Recovery:
  - Detailed evaluation of surficial sediment concentrations and net sediment deposition to identify the potential for ongoing deposition and mixing to meet project goals.
  - Bioavailability assessment to further evaluate risk, develop clean up levels, and identify areas that may contribute to site risk. This evaluation may include evaluation of sediment geochemical parameters [acid volatile sulfides, redox, additional information on organic carbon] and porewater concentrations.
  - Evaluation of hydrodynamics and sediment mobility including an evaluation of the potential for scour, vessel prop wash, resuspension, and other sediment transport processes.
- Capping
  - Current and future land and waterway uses, including but not limited to water depths required for navigation, potential for cap disturbance, anticipated future uses of slips.
  - Data collection to support cap design including, but not limited to:
    - Porewater concentration data,
    - Groundwater upwelling rates estimated through modeling or direct measurement,
    - Estimated depths of bioturbation,
    - Potential rooting depths for waterfronts with natural shorelines conducive to habitat restoration (rather than structures),
      - Sediment hydrodynamics/potential for erosion and/or scour.
  - Sediment stability and settlement evaluation and collection of geotechnical data as needed.
  - Slope stability evaluation
  - Structure integrity for settlement-induced downdrag loading, if applicable

- Removal
  - Structural evaluation around dock walls and shoreline structures, including baseline structure conditions assessment
  - Slope stability evaluation
  - Structural engineering evaluation for evaluation dredging in proximity to structures
  - Current and future land and waterway use, including water depths for compatibility with navigational uses (and recreational uses where applicable)
  - Sediment geotechnical properties (grain size, bulk density, Atterberg limits, moisture content, organic matter content, etc.)
  - Data for disposal options (paint filter, TCLP, etc.)

Evaluation of the benefits associated with removal in areas with lower contaminant levels at the surface or, areas near structures with contamination at depth that may be infeasible to remove without some form of cap or residuals cover.

#### 7. REFERENCES

- Advanced Environmental Management Group. 2016. 2016 Tissue Analysis Project Plan for Duluth Reservoirs. Draft Report. Contract No. W911XK-16-D-0014-0005. Prepared for U.S. Army Corps of Engineers, Detroit District.
- Antea Group. 2017. Issue Response Report, Superior Harbor Sediment, Former Amoco Oil Barge Dock. Prepared for BP Products North America, Inc. 17 November.
- Bay West LLC. 2017. *Final Mud Lake West Technical Memorandum, Mud Lake West, Duluth, Minnesota*. Prepared for Minnesota Pollution Control Agency. June.
- Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. Royal Stat. Soc.* Series B 57:289–300.
- EA Engineering, Science, and Technology, Inc., PBC (EA). 2016. Site Characterization Report Assessment of Contaminated Sediment Superior Waterfront Characterization, St. Louis River and Bay Area of Concern, Superior, Wisconsin. February.

—. 2017. Site Characterization Report Assessment of Contaminated Sediment Upper St. Louis River and Superior Bay, Upper St. Louis and Superior Bay Site Characterization, St. Louis River and Bay Area of Concern, Superior, Wisconsin. February.

——. 2019. Final Quality Assurance Project Plan Characterization of Sediments in the North End District and Clough Island – Survey Tasks. Superior, Wisconsin. November.

——. 2020. Quality Assurance Project Plan, Characterization of Sediments in the North End District and Clough Island, St. Louis River and Bay Area of Concern, Superior, Wisconsin. May.

——. 2020. Site Sampling Technical Memorandum, Characterization of Sediments in the North End District and Clough Island St. Louis River and Bay Area of Concern, Superior, Wisconsin. Prepared for Wisconsin Department of Natural Resources. September

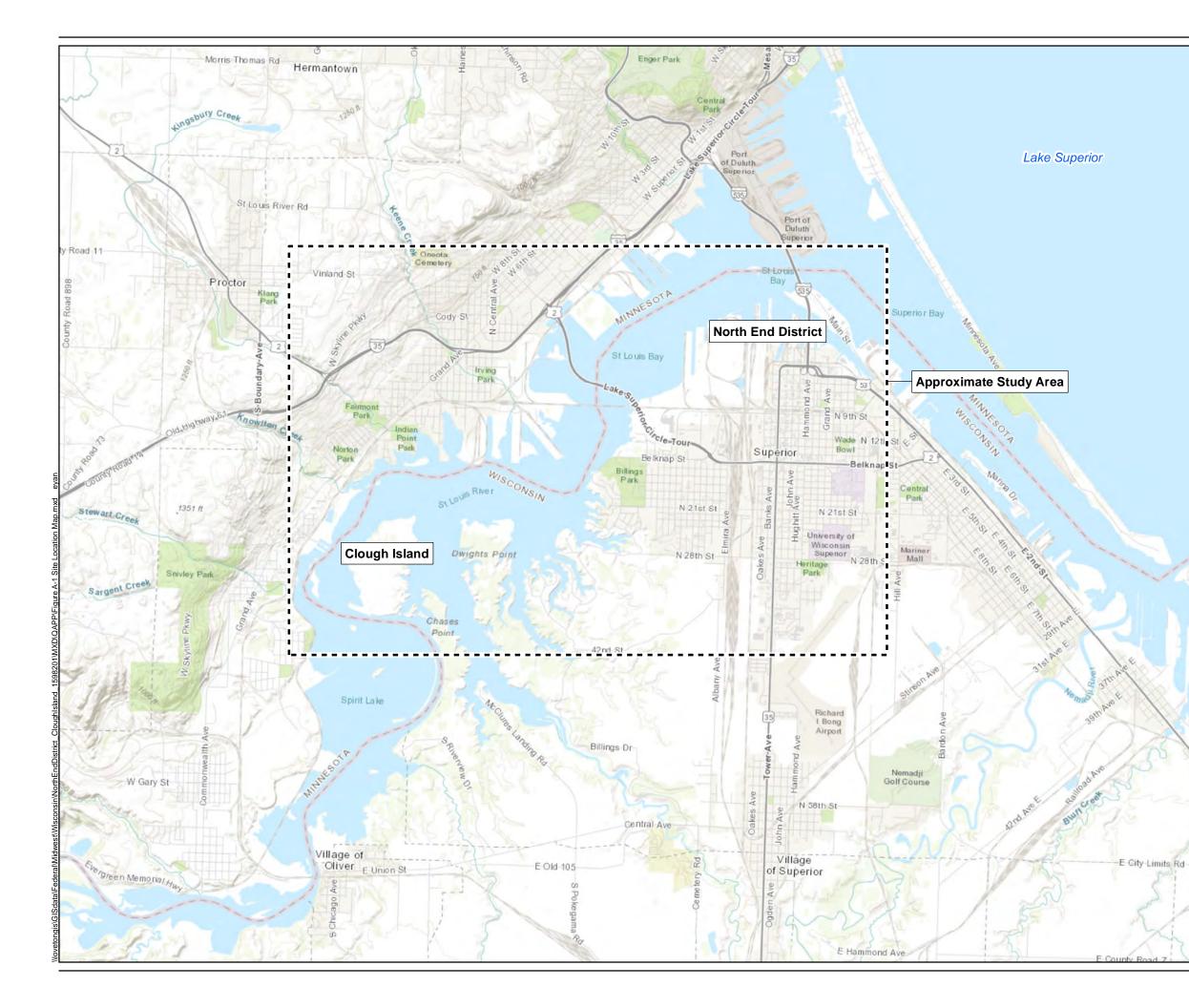
——. 2021. Data Usability Assessment Report North End District and Clough Island Characterization St. Louis River and Bay Area of Concern, Superior, Wisconsin. March.

- Gehan, E. 1965. A Generalized Wilcoxon Test for comparing arbitrarily singly-censored samples. *Biometrika* 52:203–223.
- Great Lakes Environmental Center, Inc. 2015. Final Report: Results for the 10-day Chironomus dilutus, 28-day Hyalella azteca, and 28-day Lumbriculus variegatus Whole Sediment Toxicity Testing and Macroinvertebrate Taxonomy Results. 17 February.

- Inman, S. 2018. Wisconsin Department of Natural Resources. Review Comments regarding Former Amoco Oil Barge Dock Issue Response Report. 14 September.
- Lake Superior Research Institute. 2016. Evaluation of Sediments from Munger Landing for Toxicity to Hyalella azteca, Chironomis dilutus, and Bioaccumulation in Lumbriculus variegatus. University of Wisconsin-Superior. 13 May.
- MacDonald D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. *Arch. Environ. Contam. Toxicol.* 39:20–31.
- Minnesota Pollution Control Agency and Wisconsin Department of Natural Resources (DNR). 1992. *The St. Louis River System Remedial Action Plan: Stage One.*
- St. Louis River Alliance. 2013. St. Louis River Area of Concern Implementation Framework: Roadmap to Delisting, St. Louis River Area of Concern 2013 Progress Report.
- The Sigma Group (Sigma Group). 2019a. *Historic Records Screening Report Winter Street North Task Area. Prepared for Wisconsin Department of Natural Resources. November.*
- ———. 2019b. *Historic Records Screening Report Tower Avenue Task Area*. Prepared for Wisconsin Department of Natural Resources. November.
- ———. 2019c. *Historic Records Screening Report Historical Maps Supplemental Volume*. Prepared for Wisconsin Department of Natural Resources. November.
- TPHCWG. 1998. Total Petroleum Hydrocarbon Criteria Working Group Series, Volume 1: Analysis of Petroleum Hydrocarbons in Environmental Media. Total Petroleum Hydrocarbon Criteria Working Group, Amherst, Massachusetts.
- Van den Berg M., L. Birnbaum L, A.T. Bosveld, B. Brunstrom, P. Cook, M. Feeley, J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X. van Leeuwen, A.K. Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern, and T. Zacharewski. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. *Environ. Health Perspect.* 106(12):775–792.
- U.S. Army Corps of Engineers. 2021. *Duluth-Superior Harbor*. Detroit District Website. https://www.lre.usace.army.mil/Missions/Operations/Duluth-Superior-Harbor-MN-WI/.
- U.S. Environmental Protection Agency (EPA). 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85.
   EPA 540-R-08-005. Office of Solid Waste and Emergency Response, Washington, D.C. 13 January.

EA Engineering, Science, and Technology, Inc., PBC

——. 2016. *National Functional Guidelines for High Resolution Superfund Methods Data Review*. April.


———. 2017a. *National Functional Guidelines for Superfund Organics Method Data Review*. January.

——. 2017b. *National Functional Guidelines for Superfund Inorganics Method Data Review*. January.

Wisconsin Department of Natural Resources (DNR). 2003. Consensus Based Sediment Quality Guidelines, Recommendation for Use and Application. WT-732 2003. December.

——. 2012. Remedial Action Plan Update for the St. Louis River Area of Concern.

Figures





#### Legend

Approximate Study Area



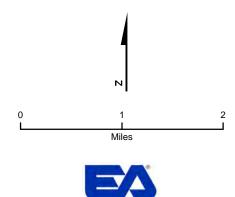
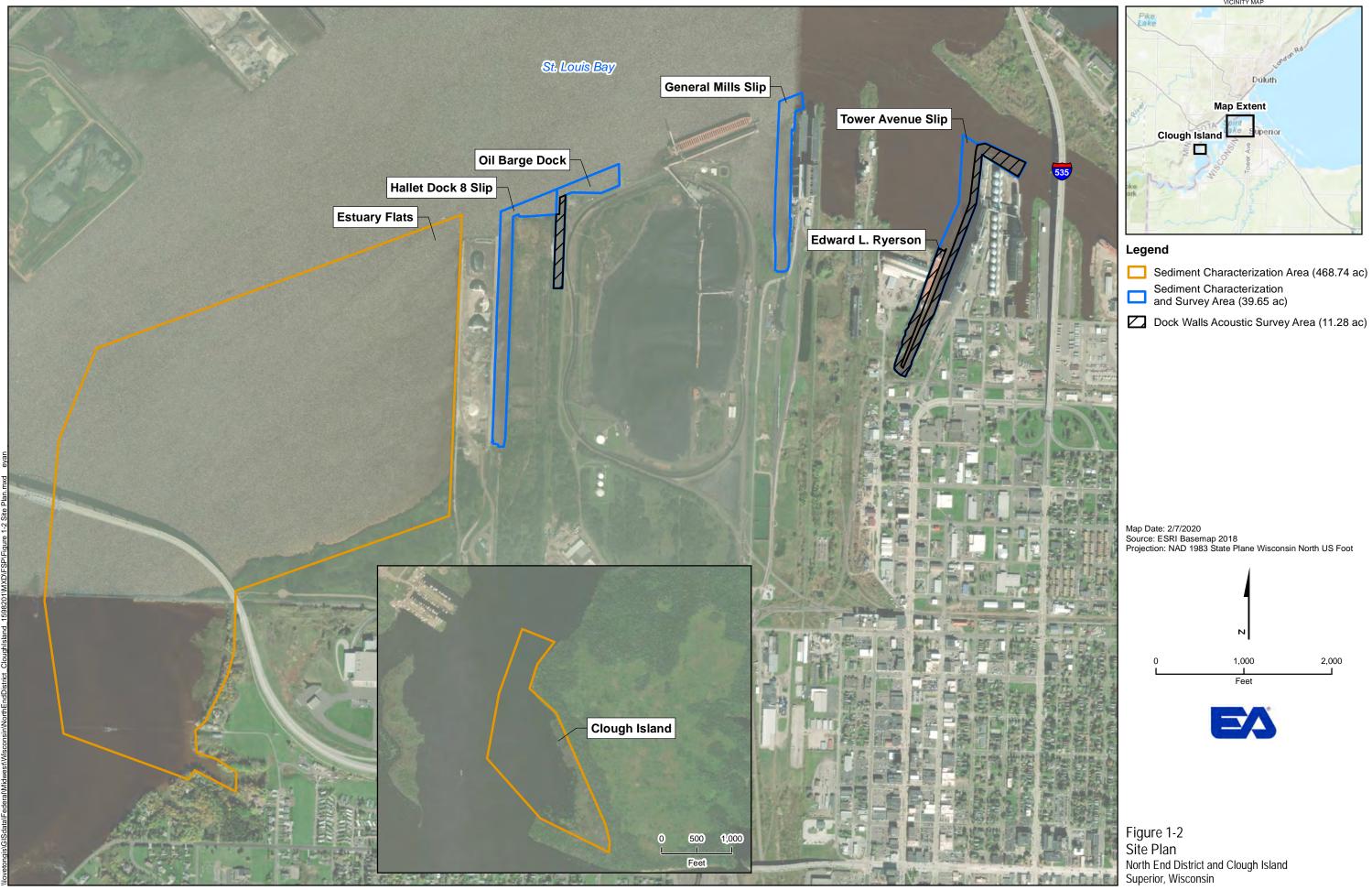
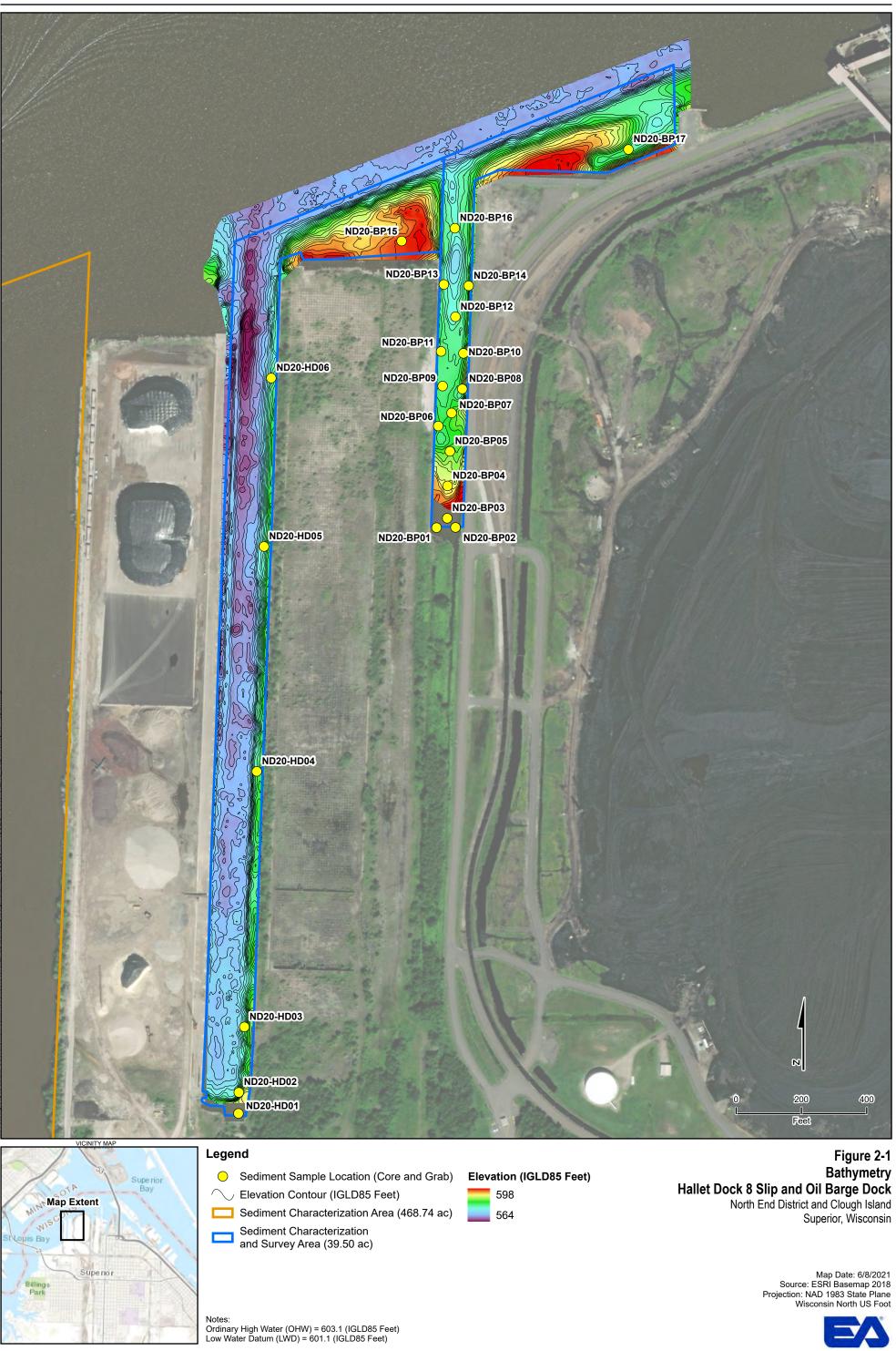
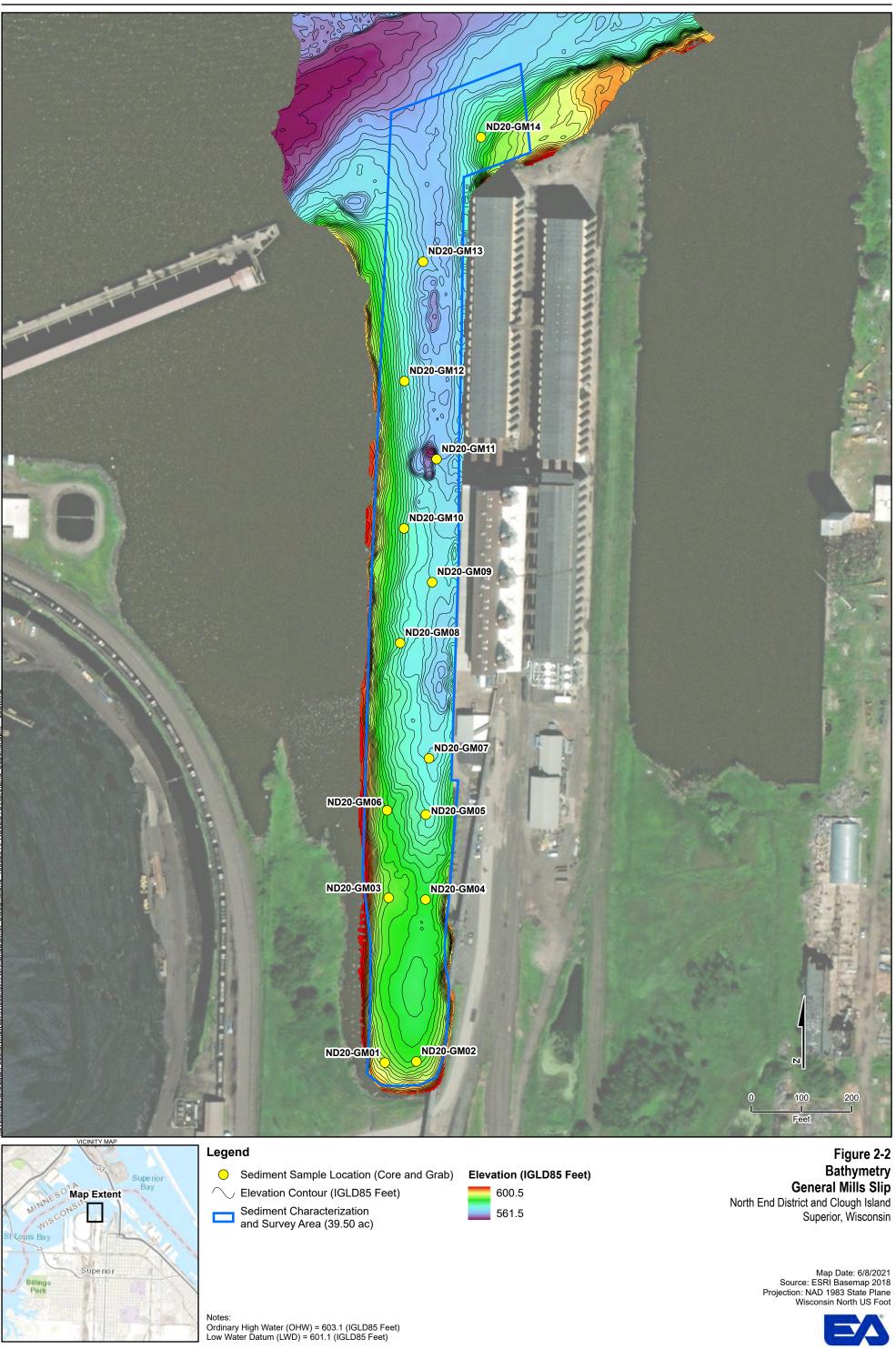
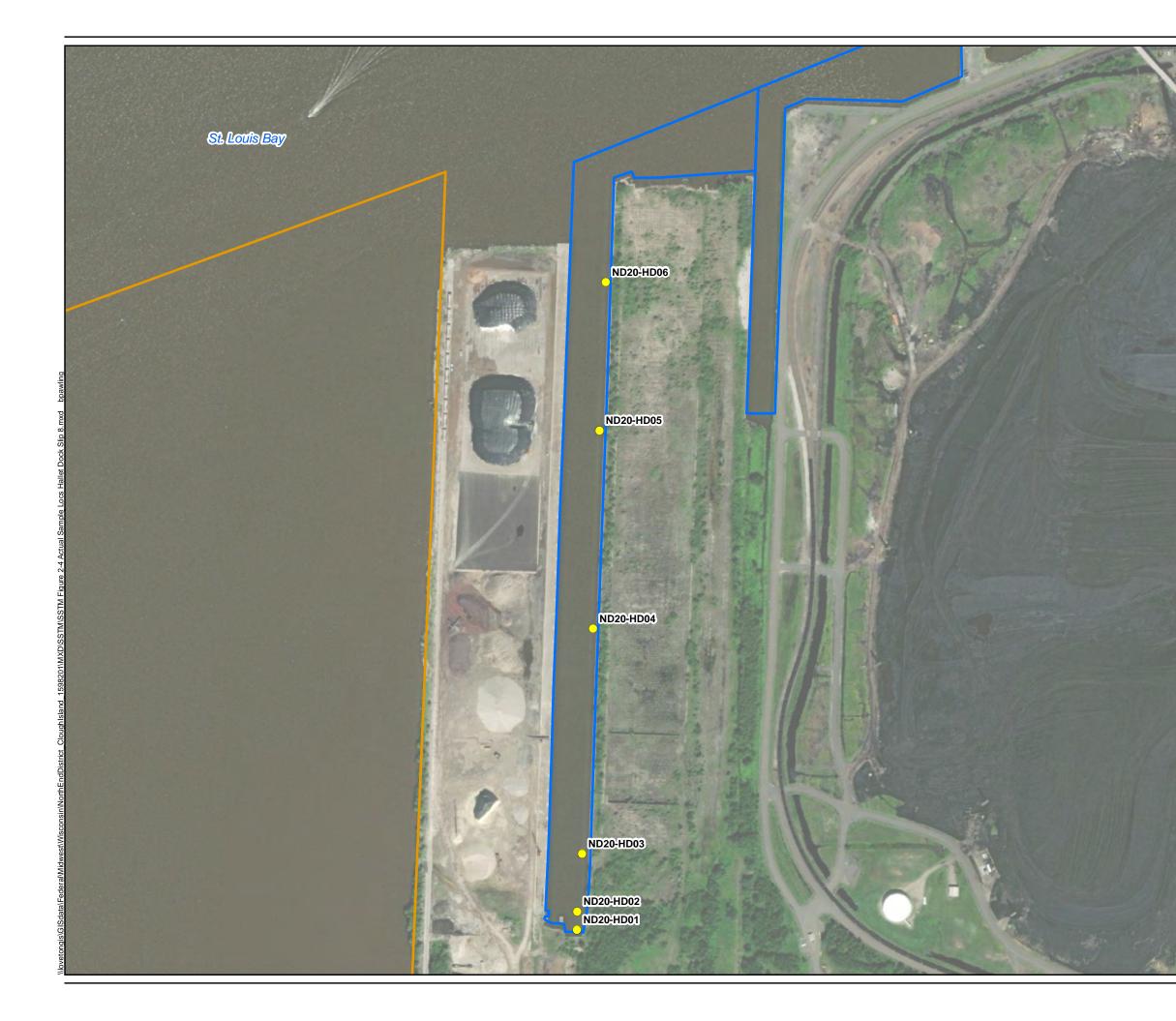
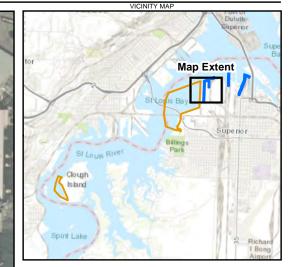






Figure 1-1 Site Location Map North End District and Clough Island Superior, Wisconsin








| 600.5 |
|-------|
| 559   |





### Legend

- Sediment Sample Location (Core and Grab)
- Sediment Characterization Area (468.74 ac)
- Sediment Characterization and Survey Area (39.50 ac)

Map Date: 6/14/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

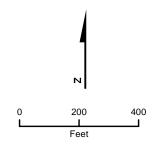
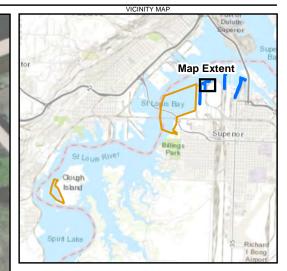






Figure 2-4 Actual Sample Locations Hallet Dock **8** Slip North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin





### Legend

- Sediment Sample Location (Core and Grab)
- Sediment Characterization Area (468.74 ac)
- Sediment Characterization and Survey Area (39.50 ac)



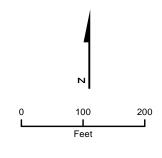





Figure 2-5 Actual Sample Locations Oil Barge Dock North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin





#### Legend

- Sediment Sample Location (Core and Grab)
- Sediment Characterization Area (468.74 ac)
- Sediment Characterization and Survey Area (39.50 ac)



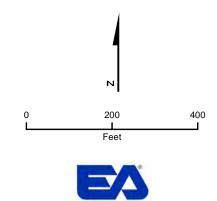
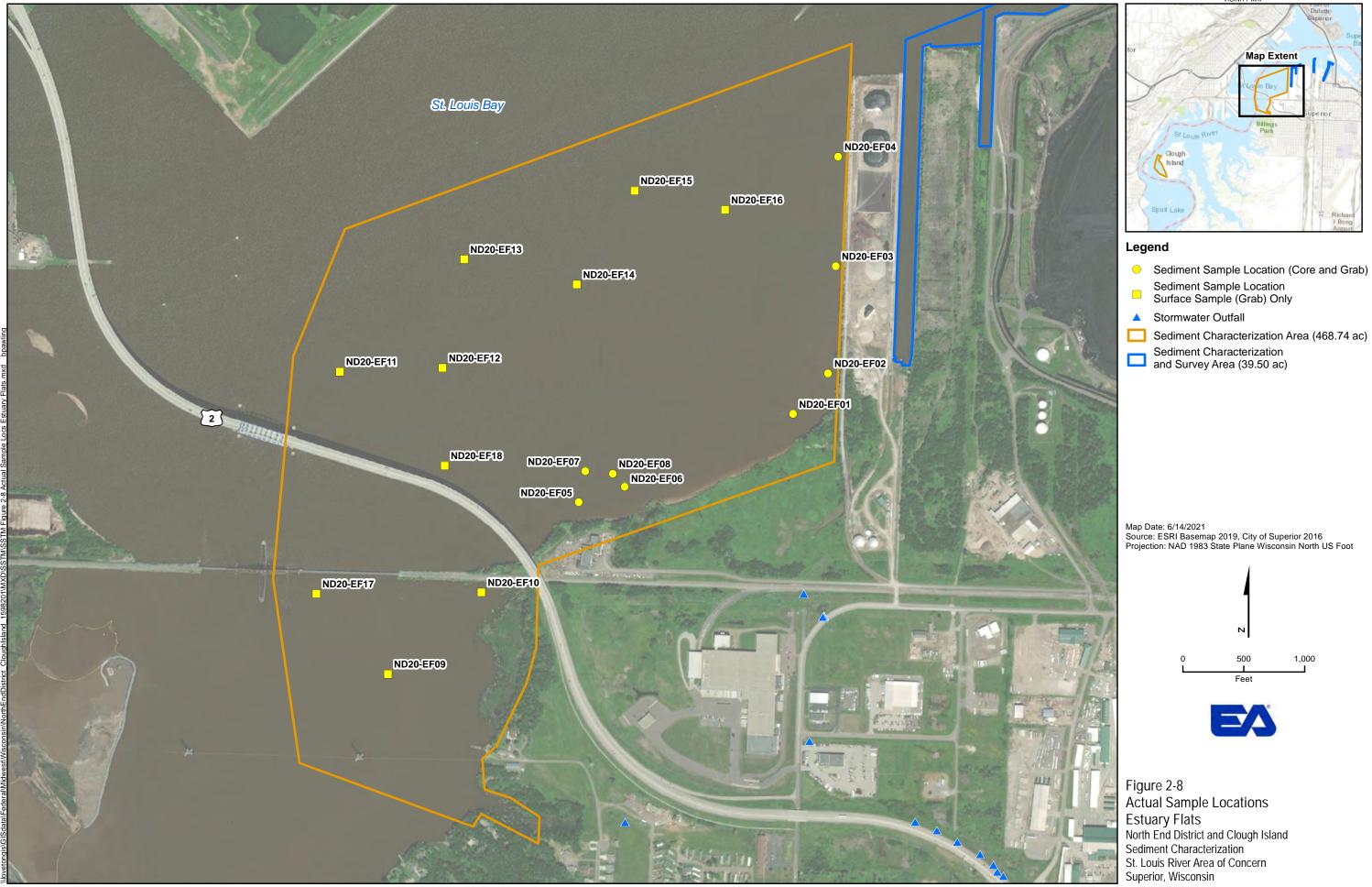
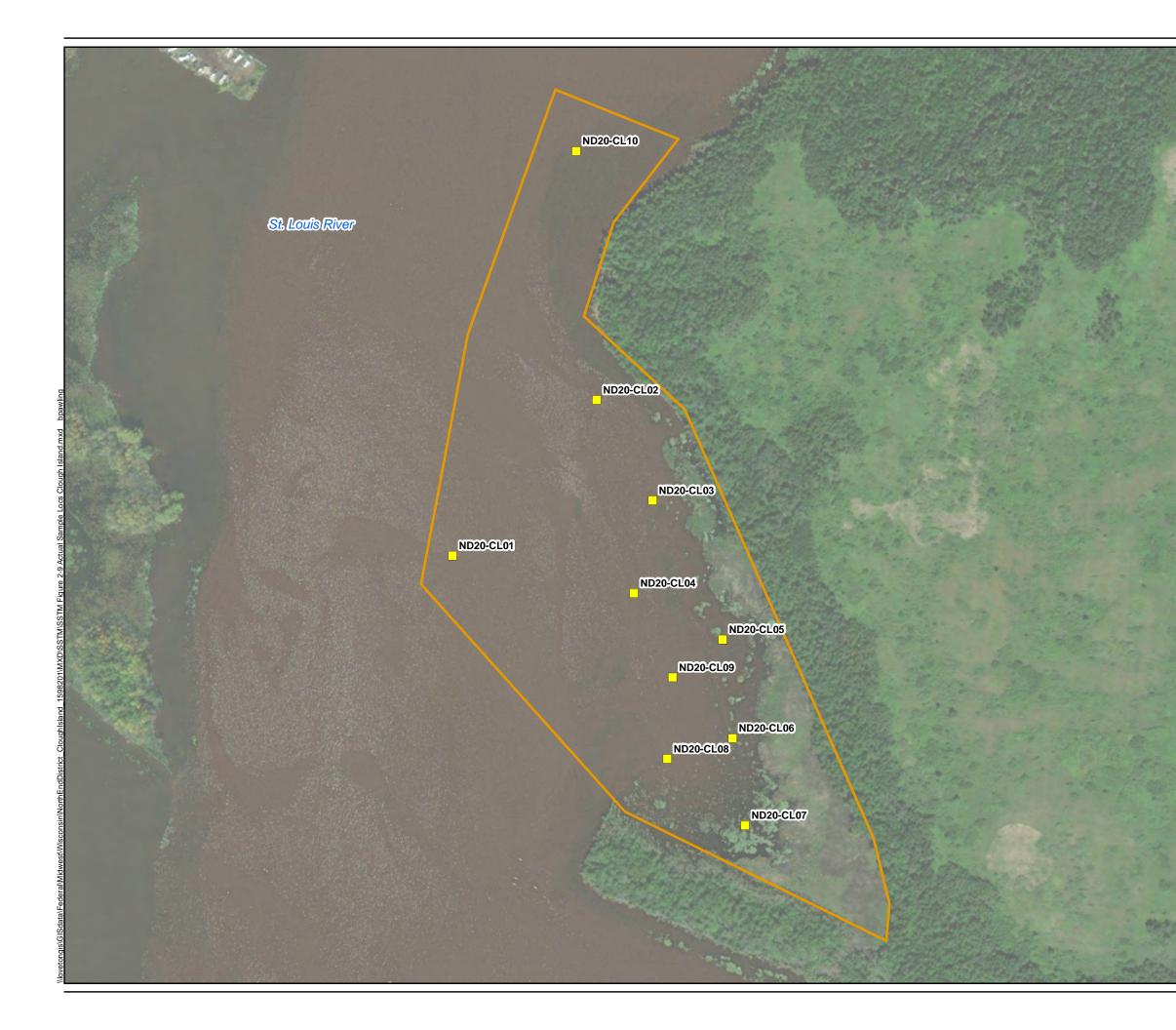





Figure 2-6 Actual Sample Locations General Mills Slip North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin



- Sediment Characterization Area (468.74 ac)

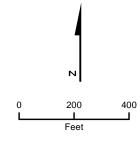






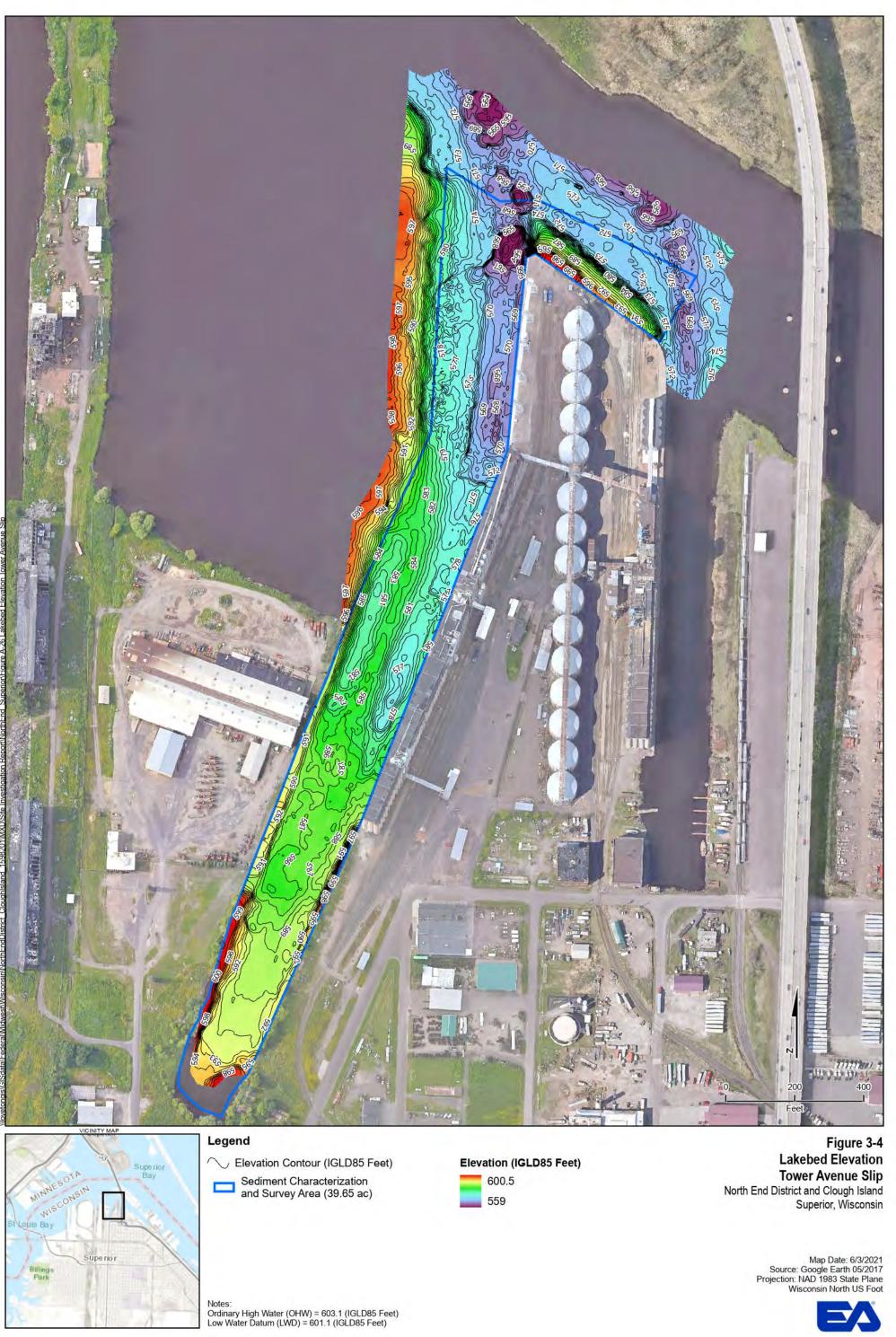
- Sediment Sample Location Surface Sample (Grab) Only
- Sediment Characterization Area (468.74 ac)
- Sediment Characterization and Survey Area (39.50 ac)

Map Date: 6/14/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot








Figure 2-**9** Actual Sample Locations Clough Island North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin





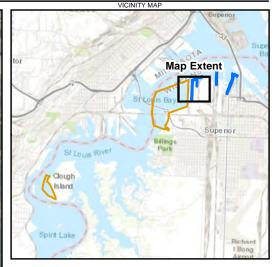






|   | 600. |
|---|------|
| _ | 559  |

|   | 600.5 |
|---|-------|
| _ | 559   |




TCDD TEQ in text boxes calculated as Fish Dioxin TEQ (ND=1/2RL)

| Analyte                | Abbreviation | TEC  | MEC     | PEC   |
|------------------------|--------------|------|---------|-------|
| Analyte                | ADDIEVIATION |      | (ug/kg) |       |
| 1,2,4-Trichlorobenzene | 1,2,4-TCB    | 8    | 13      | 18    |
| 1,2-Dichlorobenzene    | 1,2-DCB      | 23   |         | 23    |
| 1,4-Dichlorobenzene    | 1,4-DCB      | 31   | 60.5    | 90    |
| Benzene                | Benzene      | 57   | 83.5    | 110   |
| Toluene                | Toluene      | 890  | 1345    | 1800  |
| Xylene                 | Xylene       | 25   | 37.5    | 50    |
| Total PAH18 ND=1/2RL   | PAH18        | 1610 | 12205   | 22800 |
| Total PCBs ND=0        | PCBs         | 60   | 368     | 676   |
| FISH TEQ (ND=1/2RL)    | TCDD TEQ     | 0.85 | 11.2    | 21.5  |
| Tributyltin            | TBT          | 0.52 | 1.73    | 2.94  |



|                                        | 0 1                      | Ver                                               | 31                                       | inc<br>5.2                                                 | Hard Contraction         |                   |
|----------------------------------------|--------------------------|---------------------------------------------------|------------------------------------------|------------------------------------------------------------|--------------------------|-------------------|
|                                        | 0.1<br>0.1<br>0.0<br>0.1 | 1 U<br>3 U<br>84 U                                | J 81                                     | 3.2 J<br>4 J<br>3.3 J<br>5.7 J                             |                          |                   |
|                                        | 0.1                      |                                                   |                                          |                                                            |                          |                   |
| el<br>J<br>J<br>J<br>J<br>J            | 0<br>0<br>0              | ilve<br>.091<br>.11<br>.12<br>.14<br>.095<br>.096 | U<br>U<br>U<br>U                         | Zinc<br>26.6<br>50.9<br>90.4<br><b>141</b><br>60 J<br>19.3 | J                        | 1 13              |
|                                        |                          |                                                   |                                          |                                                            |                          |                   |
| kel<br>4 J<br>7 J<br>2 J<br>9 J<br>9 J | (                        | Silv<br>0.11<br>0.12<br>0.09<br>0.1<br>0.09       | U<br>U<br>8 U<br>U                       | Zin<br>57.<br>54.<br>88.<br>84.<br><b>125</b>              | 7 J<br>8 J<br>6 J<br>8 J |                   |
|                                        |                          |                                                   |                                          |                                                            |                          |                   |
| kel<br>4 J<br>3                        |                          | 0.09                                              | ver<br>2 U<br>9 U<br>3 U<br>3 U<br>9 3 U | 43.                                                        | 1 J<br>9<br>4<br>5       | A NOT A REPORT OF |
| kel<br>4<br>9<br>1                     |                          | Silv<br>).12<br>0.05<br>0.05<br>0.06<br>0.06      | er<br>U<br>8 U<br>7 U<br>1 U<br>9 U      | Zin<br>90.<br>27.<br>27.<br>19.<br>15.                     | 3<br>9<br>5<br>1         | in the            |
| kel<br>1<br>5<br>7<br>1                | (                        | Silv<br>).09<br>).1<br>).1<br>).09<br>).07        | 2 U<br>U<br>U                            | Zin<br>42.<br>25.<br>21.<br>19.<br>21.                     | 1<br>1<br>9<br>4         | 1 1 K 1 1 1       |
| kel<br>2 J<br>7<br>4                   | (                        | Silv<br>D.12<br>D.08<br>D.09<br>D.1<br>D.08       | 4 U<br>6 U<br>U                          | Zin<br>54.<br>30.<br>18.<br>22.<br>21.                     | 5 J<br>7<br>5<br>6       | Nil Property      |
|                                        |                          | 1                                                 |                                          | Contraction of the second                                  | - Contraction            |                   |



- Sediment Sample Location
- Historical Sediment Sample Location
- Sediment Characterization Area (468.74 ac)
  - Sediment Characterization
- and Survey Area (39.65 ac)

## Notes:

Sample results are in mg/kg. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in blue exceed the MEC. Concentrations shown in red exceed the PEC.

## Acronyms:

J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. mg/kg - Milligrams per Kilogram

TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration

PEC = Probable Effect Concentration

## Map Date: 6/2/2021

Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Matel     | TEC     | MEC   | PEC   |  |  |  |  |  |
|-----------|---------|-------|-------|--|--|--|--|--|
| Metal     | (mg/kg) |       |       |  |  |  |  |  |
| Antimony  | 2       | 13.5  | 25    |  |  |  |  |  |
| Arsenic   | 9.8     | 21.4  | 33    |  |  |  |  |  |
| Cadmium   | 0.99    | 3     | 5     |  |  |  |  |  |
| Chromium  | 43      | 76.5  | 110   |  |  |  |  |  |
| Copper    | 32      | 91    | 150   |  |  |  |  |  |
| Iron      | 20000   | 30000 | 40000 |  |  |  |  |  |
| Lead      | 36      | 83    | 130   |  |  |  |  |  |
| Manganese | 460     | 780   | 1100  |  |  |  |  |  |
| Mercury   | 0.18    | 0.64  | 1.1   |  |  |  |  |  |
| Nickel    | 23      | 36    | 49    |  |  |  |  |  |
| Silver    | 1.6     | 1.9   | 2.2   |  |  |  |  |  |
| Zinc      | 120     | 290   | 460   |  |  |  |  |  |

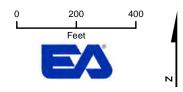
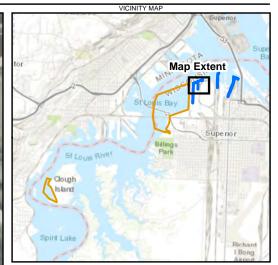




Figure 4-2 Hallet Dock 8 Slip Results - Metals North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

| St. Louis Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND20-BP17       Depth       1,2,4-TCB       1,2-DCB       1,4-DCB       Benzene       Toluene       Xylene       PAH18       PCBs       TCDD TEQ       TBT         0-0.3 ft       9.1 U       4.9 U       2.5 U       4.8 U       4.1 U       11 U       1439.3       NT       NT       NT         0.3-2 ft       6.7 U       3.6 U       1.8 U       3.5 U       7.7 U       1073.0       NT       NT       NT         2-4 ft       6.1 U       3.3 U       1.7 U       3.2 U       2.8 U       7.1 U       1101.0       NT       NT       NT         4-6 ft       6.1 U       3.3 U       1.7 U       3.2 U       2.8 U       7.1 U       1101.0       NT       NT       NT         6-8 ft       4.4 U       2.4 U       1.2 U       2.3 U       2 U       5 U       482.7       NT       NT       NT         8-10 ft       4.3 U       2.3 U       1.2 U       2.3 U       2 U       5 U       482.7       NT       NT       NT                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND20-BP15           Depth         1,2,4-TCB         1,4-DCB         Benzen         Toluene         Xylene         PAH18         PCBs         TCDD TEQ         TBT           0-0.3 fc         7.3 U         3.9 U         2 U         3.8 U         3.3 U         8.4 U         1905.0         NT         NT         NT           0.3-2 fc         5.8 U         3.1 U         1.6 U         3.1 U         2.6 U         6.8 U         5357.0         NT         NT         NT           2-4 fc         5.4 U         2.9 U         2.5 U         6.3 U         9538.0         NT         NT         NT           4-6 ft         5.7 U         3.1 U         1.6 U         3 U         2.6 U         6.6 U         5941.0         NT         NT         NT           6-8 ft         0.8 J         2.5 U         2.2 U         5.6 U         2982.0         NT         NT         NT           8-10 ft         5.5 U         3 U         1.5 U         2.9 U         2.5 U         6.4 U         3097.0         NT         NT         NT                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Deu<br>0 - 0.3 ft 13 U 7.1 U 3.6 U 7 U 6 U 15 U 1824.0 NT NT NT<br>3.2 ft 5.2 U 2.8 U 1.4 U 2.8 U 2.4 U 6 U 15 U 860.0 NT NT NT NT<br>2-4 ft 4.8 U 2.6 U 1.3 U 2.5 U 2.2 U 5.6 U 17.885 NT NT NT<br>4-6 ft 5.1 U 2.8 U 1.4 U 2.7 U 2.3 U 15.9 U 15.6 9 NT NT NT<br>8-0 ft 4.7 U 2.5 U 1.3 U 2.5 U 2.1 U 5.5 U 15.425 NT NT NT<br>8-10 ft 270 U 150 U 75 U 140 U 120 U 320 U 47.35 NT NT NT<br>8-10 ft 270 U 150 U 75 U 140 U 120 U 320 U 47.35 NT NT NT<br>8-10 ft 270 U 150 U 75 U 140 U 120 U 320 U 47.35 NT NT NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND20-BP16           Depth         1,2,4-TCB         1,2-DCB         1,4-DCB         Benzene         Toluene         Xylene         PAH18         PCBs         TCDD TEQ         TBT           0-0.3 ft         7.8 U         4.2 U         2.1 U         4.1 U         3.5 U         9 U         2939.0 NT         NT         NT         NT           0-3.3 ft         6.6 U         3.5 U         1.8 U         3.5 U         3 U         7.6 U         2861.0 NT         NT         NT           2-4 ft         6.6 U         3.6 U         1.8 U         3.5 U         3 U         7.6 U         2351.0 NT         NT         NT           4-6 ft         5.5 U         3 U         1.5 U         2.9 U         2.5 U         6.4 U         6768.0 NT         NT         NT           8-10 ft         4.5 U         2.4 U         1.2 U         2.4 U         5.2 U         27.35         NT         NT         NT                                                                                                                                                                                                                                                                                                                                                                                                |
| VA       0-0.3 ft 10 u       5.5 u       2.8 u       5.4 u       4.6 u       12 u       3137.0 NT       NT       NT         VA       0.3-2 ft 6.7 u       3.6 u       1.8 u       3.5 u       3 u       7.8 u       6468.0 NT       NT       NT       NT         VA       4-6 ft 5.9 u       3.2 u       1.6 u       3.1 u       2.7 u       6.9 u       994.0 NT       NT       NT       NT         8-8 ft 6.1 u       3.3 u       1.7 u       3.2 u       1.6 u       3.1 u       2.7 u       6.8 u       80.9 NT       NT       NT         8-10 ft 5.9 u       3.2 u       1.6 u       3.1 u       2.7 u       6.8 u       80.9 NT       NT       NT         8-10 ft 5.9 u       3.2 u       1.6 u       3.1 u       2.7 u       6.8 u       80.9 NT       NT       NT         8-10 ft 5.9 u       3.2 u       1.6 u       3.1 u       2.7 u       6.8 u       80.9 NT       NT       NT         8-10 ft 5.9 u       3.2 u       1.6 u       3.1 u       2.7 u       6.8 u       80.9 NT       NT       NT                                                                                                                          | ND20-BP14           Depth         1,2,4-TCB         1,2-DCB         1,4-DCB         Benzene         Toluene         Xylene         PAH18         PCBs         TCDD TEQ         TBT           0-0.3 ft         6.3 U         3.4 U         1.7 U         3.3 U         2.9 U         7.3 U         1682.5         NT         NT         NT           0.3-2 ft         4.5 U         2.4 U         1.2 U         2.4 U         2 U         5.2 U         1475.0         NT         NT         NT           2-4 ft         3.9 U         2.1 U         1.1 U         2 U         1.7 U         4.5 U         2155.0         NT         NT         NT           4-6 ft         5.5 U         3 U         1.5 U         2.9 U         2.5 U         6.4 U         153.7         NT         NT           6-8 ft         4.7 U         2.6 U         1.3 U         2.5 U         2.1 U         5.5 U         220.7         NT         NT           8-10 ft         5.1 U         2.7 U         1.4 U         2.7 U         2.3 U         5.9 U         735.0         NT         NT         NT                                                                                                                                                                                                                              |
| 0-0.3 ft       11 U       5.8 U       3 U       5.7 U       4.9 U       12 U       3048.0 NT       NT       NT         0.3-2 ft       6.6 U       3.6 U       1.8 U       3.5 U       3 U       7.7 U       33181.0 NT       NT       NT         2-4 ft       6 U       3.2 U       1.6 U       3.2 U       2.7 U       6.9 U       4.2 3.6 NT       NT       NT         4-6 ft       7.5 U       4 U       2.1 U       4 U       3.4 U       8.7 U       27.1 NT       NT         8-10 ft       5.4 U       2.9 U       1.5 U       2.0 U       1.6 U       1.5 U       2.9 U       1.4 U       2.7 U       2.3 U       6.0 U       16.9 NT       NT       NT         8-10 ft       5.4 U       2.9 U       1.5 U       2.9 U       1.4 U       2.7 U       2.3 U       14.14 NT       NT       NT         NT20-BB09       NT       NT       NT       NT       NT       NT       NT                                                                                                                                                                                                                                                   | ND20-5P10         Depth       1,2,4-TCB       1,4-DCB       Benzene       Toluene       Xylene       PAH18       PCBs       TCDD TEQ       TBT         0-0.3 ft       0.9 J       3.8 U       2 U       3.8 U       3.2 U       8.3 U       3619.0 NT       NT       NT       NT         0.3-2 ft       7 U       3.8 U       1.9 U       3.7 U       3.2 U       8.1 U       24933.5 NT       NT       NT       NT         2-4 ft       4.4 U       2.4 U       1.2 U       2.3 U       2.1 U       1.8 U       4.7 U       12.265 NT       NT       NT       NT         4-6 ft       4.2 U       2.3 U       1.1 U       2.2 U       1.9 U       4.8 U       312.4 NT       NT       NT         6-8 ft       5.8 U       3.1 U       1.6 U       3 U       2.6 U       6.7 U       348.85 NT       NT       NT       NT         NT       5.8 U       3.1 U       1.6 U       3 U       2.6 U       6.7 U       348.85 NT       NT       NT       NT         NT       NT       NT       NT       NT       NT       NT       NT       NT       NT       NT       <                                                                                                                                                                                                                                                  |
| O-0.3 ft       8.4 u       4.5 u       2.3 u       4.4 u       3.8 u       9.8 u       2600.0 NT       NT       NT       NT         0.3 2 ft       7 UJ       3.8 u       1.9 u       3.7 u       3.2 u       1.6 u       3.5 u       3.1 u       5.7 4.0 NT       NT       NT       NT         2-4 ft       6.6 uJ       3.5 u       1.8 u       3.5 u       7.6 u       17850.0 NT       NT       NT       NT         4-6 ft       5.9 uJ       3.2 u       1.6 u       3.1 u       2.7 u       6.8 u       214.85 NT       NT       NT       NT         8-10 ft       6 u       3.2 u       1.7 u       3.2 u       2.7 u       6.8 u       29.9 u       2.5 u       6.3 u       59.8 NT       NT       NT         10-12 ft       0.65 t       2.9 u       2.9 u       2.5 u       6.3 u       59.8 NT       NT       NT       NT         12-14 ft       5.1 ul       2.7 u       1.4 u       2.9 u       2.5 u       5.9 u       7.9 u       7 | Depth         1,2,4-TCB         1,4-DCB         Benzene         Toluene         Xylene         PAHLB         PCBs         TCDD         TEQ         TBT           0-0.3 ft         10 U         5.4 U         2.8 U         5.3 U         4.6 U         12 U         5075.0         NT         NT         NT         NT           0.3-2 ft         12 U         6.5 U         3.3 U         6.4 U         5.5 U         2.9 J         3391.0         NT         NT         NT           2-4 ft         4.2 U         2.2 U         1.1 U         2.2 U         1.9 U         4.8 U         2047.0         NT         NT         NT           4-6 ft         4.4 U         2.3 U         1.2 U         2.3 U         2.0 U         5.1 U         409.1         NT         NT         NT           6-8 ft         5.7 U         3.1 U         1.6 U         3 U         2.6 U         6.7 U         594.1         NT         NT         NT           8-10 ft         5.7 U         3.1 U         1.6 U         3 U         2.6 U         6.2 U         6.1 U         70.7         NT         NT         NT           10-12 ft         5.2 U         2.8 U         1.4 U         2.8 U         2                                                                                                                        |
| Depth 1,2,4-TCB 1,2-DCB 1,4-DCB Benzen Toluene Xylene PAH18 PCBs TCDD TEQ TBT<br>0-0.3 ft 1.3 J 0.48 J 0.44 J 5.3 U 0.43 J 0.64 J 5459.0 NT NT NT<br>0.3-2 ft 6.1 UU 3.3 U 1.7 U 3.2 U 2.7 U 7 U 25925.5 NT NT NT NT<br>2-4 ft 5 UJ 2.7 U 1.4 U 2.7 U 2.3 U 5.8 U 35.485 NT NT NT<br>4-6 ft 4.7 UJ 2.5 U 1.3 U 2.5 U 2.1 U 13 J 47.565 NT NT NT<br>8-10 ft 4.5 UJ 2.7 U 1.4 U 2.6 U 2.3 U 5.8 U 36.985 NT NT NT<br>10-12 ft 4.7 UJ 2.5 U 1.3 U 2.5 U 2.1 U 5.2 U 2.165 NT NT NT<br>10-12 ft 4.7 UJ 2.5 U 1.3 U 2.5 U 2.1 U 5.2 U 2.1 U 13.165 NT NT NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WD20-BPOT         WD20-BPOT         PAPLE         PATTER         PA |
| D by heptin 1,2,4-HTCB 1,2-UCB 1,4-UCB 1,4-UCB Henzele Tolluene Xylene TAHLB PCBS TCDD TEQ TBT<br>0.5-2 ft 120 UJ 320 UJ 330 UJ 310 UJ 740 J 950 8447.5 0 NT NT<br>0.5-2 ft 110 U 84 U 87 U 510 J 810 1790 22132.5 21 NT NT<br>2-4 ft 240 U 180 U 190 U 170 U 640 J 1750 225787.5 15 NT NT<br>4-6 ft 100 U 77 U 79 U 74 U 270 J 780 20286.5 12 NT NT<br>6-8 ft 88 U 66 U 68 U 64 U 180 J 390 11965.5 112 NT NT<br>6-8 ft 79 U 59 U 61 U 57 U 120 J 229 15101.0 0 NT NT<br>WD30 ENGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND20-BPOS           Depth         1,2,4-TCB         1,2-DCB         1,4-DCB         Benzene         Toluene         Xylene         PAH18         PCBs         TCDD TEQ         TBT           0-0.3 ft         9 UJ         4.8 U         2.5 U         4.8 U         4.1 U         10 U         8483.0         20         13.2655         4.5 U           0-3.2 ft         5.4 U         2.9 U         1.5 U         2.8 U         2.4 U         6.2 U         6349.0         NT         NT         NT           2-4 ft         4.8 U         2.6 U         1.3 U         2.5 U         2.2 U         5.5 U         2664.0         NT         NT         NT           4-6 ft         4.2 U         2.3 U         1.2 U         2.2 U         1.9 U         4.9 U         2322.5         NT         NT         NT           6-8 ft         5.7 U         3.1 U         1.6 U         3 U         2.6 U         6.5 U         253.15         NT         NT         NT           8-10 ft         5.2 U         2.4 U         1.2 U         2.4 U         2.1 U         5.2 U         17.805         NT         NT                                                                                                                                                                                                      |
| Depth 1,2,4-TCB 1,2-DCB 1,4-DCB Benzen Toluene Xylene PAH18 PCBs TCDD TEQ TBT<br>0-0.3 ft 280 U J 110 J 100 J 130 J 490 J 770 J 37764.0 NT NT NT<br>0.3-2 ft 380 U J 130 J 120 J 200 U 46 J 76 J 13354.8 NT NT NT NT<br>2-4 ft 5.1 U 2.8 U 1.4 U 2.7 U 2.3 U 6 U 2521.0 NT NT NT NT<br>4-6 ft 330 U J 130 J 120 J 200 U 46 J 200 J 66.0 NT NT NT NT<br>6-8 ft 5.1 U 2.7 U 1.4 U 2.7 U 2.3 U 5.9 U 19.18 NT NT NT<br>8-10 ft 5.3 U J 2.8 U 1.5 U 2.8 U 2.4 U 6.1 U 28.4 NT NT NT<br>10-12 ft 4.6 U 2.5 U 1.3 U 2.4 U 2.1 U 5.3 U 13.62 NT NT NT<br>12-14 ft 350 U J 110 J 120 J 180 U 38 J 400 U 29.23 NT NT NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-14         ft         4.6         U         2.5         U         1.3         U         2.4         U         2.1         U         5.3         U         13.2.7         NT         NT         NT           ND20-BP04         Depth         1,2,4-TCB         1,2-DCB         1,4-DCB         Benzene         Toluene         Xylene         PAH18         PCBs         TCDD TEQ         TBT           0.0.3         ft         12.0         6.6         0         3.4         0         6.5         0         14         16410.0         NT         NT         NT           0.3-2 ft         6         0         3.1         2.7         0         6.9         30543.5         NT         NT         NT           2.4 ft         5.6         0         3.1         2.7         0         6.4         12627.5         NT         NT         NT           4-6         ft         5.6         0         3         1.5         2.9         0         6.5         12627.5         NT         NT         NT           4-6         ft         5.6         0         3         0         7.6         5         0         NT         NT         NT                                                                                                                                                                       |
| ND20-BP03       Depth       1,2,4-TCB       1,2-DCB       Benzene       Toluene       Xylene       PAH18       PCBs       TCDD TEQ       TBT         0-0.3 ft       290 u J       3.3 u       1.7 u       19 J       35 J       7.1 u       4742.0 3       2.7008       2.5 u         0.0.3 ft       290 u J       16 u       81 u       46 J       160 J       190 J       4650.5 NT       NT       NT       NT       NT         2-4 ft       5.7 u       3.1 u       1.6 u       3 u       2.6 u       6.6 u       5.1468.5 NT       NT       NT       NT         4-6 ft       420 u J       230 u       110 u       550 J       770 J       1600 J       3070.0 NT       NT       NT       NT         8-10 ft       480 u J       260 u       130 u       850 J       810 J       2000 J       46975.0 NT       NT       NT       NT         10-12 ft       560 u J       30 u       150 u       79 J       220 J       460 J       39310.0 NT       NT       NT       NT         12-14 ft       440 u J       24 u       120 u       35 J       140 J       35 J       140 J       3931.0 NT       NT       NT       NT      <     | 10-12 ft       6.2 U       3.3 U       1.7 U       3.3 U       2.8 U       7.2 U       44612.0 NT       NT       NT       NT         12-14 ft       4.5 U       2.4 U       1.2 U       2.4 U       2 U       5.2 U       40.72 NT       NT       NT       NT         ND20-BPC2       Depth       1,2,4-TCB       1,2-DCB       1,4-DCB       Benzene       Toluene       Xylene       PAH18 PCBs       TCDD TEQ TET         0-0.3 ft       4,7 U       2.5 U       1.3 U       2.5 U       2.1 U       5.5 U       31278.5 25       4.707       3.1 U         0-3-2 ft       2.1 U       2.7 U       1.4 U J       2.7 U       2.3 U       5.8 U       30106.5 NT       NT       NT       NT         2-4 ft       5.1 U J       2.7 U       1.4 U J       2.7 U       5.8 U       30106.5 NT       NT       NT       NT         6-6 ft       5 U       2.7 U       1.4 U       2.6 U       2.3 U       5.8 U       180.05 NT       NT       NT         6-8 ft       5 U       2.7 U       1.4 U       2.6 U       2.3 U       5.8 U       180.05 NT       NT       NT         10-12 ft       4.5 U       2.4 U       1.2 U       2.4 U<                                                                                                                                                                            |





- Sediment Sample Location
- Historical Sediment Sample Location



- Sediment Characterization Area (468.74 ac)
- Sediment Characterization and Survey Area (39.65 ac)

Notes: Sample results are in ug/kg. Fish TEQ results are in pg/g. Concentrations shown in **BOLD** exceed the TEC.

- Concentrations shown in **blue** exceed the MEC.

Concentrations shown in **red** exceed the PEC. TCDD TEQ in text boxes calculated as Fish Dioxin TEQ (ND=1/2RL)

### Acronyms:

J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected.

- NT = Not tested.

ug/kg - Micrograms per kilogram pg/g - Picograms per gram TEC = Threshold Effect Concentration

- MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

Map Date: 6/3/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Analyte                | Abbreviation | TEC  | MEC     | PEC   |
|------------------------|--------------|------|---------|-------|
| Allalyte               | ADDIEVIATION |      | (ug/kg) |       |
| 1,2,4-Trichlorobenzene | 1,2,4-TCB    | 8    | 13      | 18    |
| 1,2-Dichlorobenzene    | 1,2-DCB      | 23   |         | 23    |
| 1,4-Dichlorobenzene    | 1,4-DCB      | 31   | 60.5    | 90    |
| Benzene                | Benzene      | 57   | 83.5    | 110   |
| Toluene                | Toluene      | 890  | 1345    | 1800  |
| Xylene                 | Xylene       | 25   | 37.5    | 50    |
| Total PAH18 ND=1/2RL   | PAH18        | 1610 | 12205   | 22800 |
| Total PCBs ND=0        | PCBs         | 60   | 368     | 676   |
| FISH TEQ (ND=1/2RL)    | TCDD TEQ     | 0.85 | 11.2    | 21.5  |
| Tributyltin            | TBT          | 0.52 | 1.73    | 2.94  |

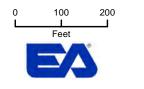
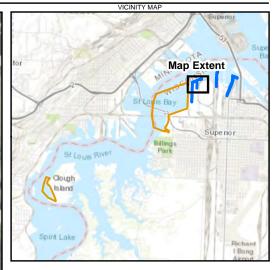




Figure 4-3 Oil Barge Dock Slip - Organics North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-0.3 ft 0.92 U 6.5 0.57 J 34.9 24.5 32300.0 16.8 1500 0.089 J 30.7 0.17<br>0.3-2 ft 0.59 U 3.7 0.28 J 19.4 12.6 18900.0 9.4 573 0.042 U 15.9 0.11<br>2-4 ft 0.58 U 3.9 0.29 J 18.9 11.9 18900.0 11 517 0.041 J 16.4 0.11<br>4-6 ft 0.62 U 4.6 0.47 J 26.5 18.9 24400.0 19.7 537 0.11 J 22.1 0.13<br>6-8 ft 0.42 U 2.2 0.21 J 10.1 11.6 10800.0 7 160 0.047 J 9.9 0.08                                                                                                                     | Ver         Zinc           10         108           10         55           10         58.7           10         34.4           10         34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND20-BP16         Iron         Lead         Manganu           0-0.3 ft         0.99 U         7.0         0.55 J         37.2         27.1         34300.0         20.7         1380           0.3-2 ft         0.69 U         7.0         0.46 J         31.2         20.8         2800.0         16.7         670           2-4 ft         0.65 U         5.0         0.39 J         18.6         20.5         18000.0         16.7         670           4-6 ft         0.52 J         18.03 U         16.3         70         13700.0         25.9         192           6-8 ft         0.62 U         3.2         0.28 J         18.3         10.5         14400.0         5         308           8-10 ft         0.47 U         1.9         0.16 J         15.3         7.5         13000.0         3         264                                                                                                                                                                                                                                                                                                                                     | ese Mercury Nickel Silver Zinc<br>0.14 J 33.1 0.19 U 124<br>0.061 J 25.6 0.13 U 95.2<br>0.073 J 16.7 0.12 U 91.6<br>0.077 J 14.4 0.2 J 109<br>0.032 U 15.7 0.12 U 38.3<br>0.033 U 12.4 0.088 U 30.6                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0-0.3 ft 0.74 U 5.2 0.4 J 27.3 17.1 25700.0 14.6 858<br>0.3-2 ft 0.52 U 5.6 0.51 J 15.8 15.1 7200.0 36.1 275<br>2-4 ft 0.81 J 4.0 0.47 J 17.9 13.4 16000.0 52.1 295<br>4-6 ft 0.59 U 3.4 0.32 J 16.4 12.2 14900.0 13.8 305<br>6-8 ft 0.6 U 3.2 0.33 J 17.1 11.2 16100.0 15.3 348<br>8-10 ft 0.66 U 4.3 0.38 J 20.7 14.4 21300.0 17.7 488<br>ND20-BP13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.13 0 14.3 0.099 0 91.6<br>0.03 0 14.7 0.099 0 92.6<br>0.046 J 14.3 0.11 0 52.4<br>0.055 J 13.7 0.11 0 58.4<br>0.089 J 17.3 0.13 0 68.4<br>6.8 0                                                                                                                                                                                                                                                                                                                                          | - <b>Bp14</b><br>h Antimony Arsenic Cadmium Chromium Copper Iron Lead<br>3 ft 0.62 U 5.2 0.34 J 19.8 19.6 <b>23400.0</b> 14.7 <b>528</b> 0.072 J 16.7 0.12 U 99.7<br>2 ft 0.5 U 5.5 0.33 J 16.5 20.9 19700.0 <b>42.5 1870 J</b> 0.034 U 15.1 0.24 J 135<br>ft 0.49 U 3.1 0.45 J 14.6 <b>45.7</b> 13300. <b>54.1</b> 260 0.036 U 12.6 0.092 U 289<br>ft 0.52 U 3.4 0.32 J 27.5 15.5 <b>20100.0</b> 7.2 <b>56</b> 0.04 U 21.1 0.099 U 59.7<br>ft 0.47 U 2.2 0.14 U 11.6 5.8 9760.0 3.3 137 0.028 U 12.5 0.099 U 31.6<br>ft 0.54 U 2.7 0.24 J 17.5 10.7 14100.0 7.9 255 0.032 U 15.8 0.1 U 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0-0.3 ft 0.85 U 9.5 0.6 J 37 25.6 34200.0 23.6 1100<br>0.3-2 ft 0.72 U 4.0 0.41 J 33.9 18.3 2500.0 13 641<br>2-4 ft 0.49 U 3.3 0.34 J 32.4 18.5 24300.0 6.1 636<br>4-6 ft 0.57 U 3.6 0.36 J 35.1 19.1 24900.0 6.7 636<br>6-8 ft 0.59 U 3.2 0.38 J 31.5 16.3 22100.0 5.8 686<br>8-10 ft 0.52 U 2.8 0.36 J 32.7 16.6 23000.0 5.5 718<br>ND20-BP12<br>Depth Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.034 U 28.9 0.11 U 74.4<br>0.033 U 25.8 0.11 U 76.1<br>0.04 U 25.4 0.099 U 69.9<br>e Mercury Nickel Silver Zinc                                                                                                                                                                                                                                                                                                                                                                           | BP10         Antimony Arsenic         Cadmiu         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           ft         0.69         7.3         0.47         7         20.8         22500.0         36.2         300         0.064         18.2         0.13         142           ft         0.75         13.7         0.67         19         52.4         34300.0         57.6         224         0.082         26.6         0.12         174           t         0.49         2.0         0.15         8         2.8         7380.0         2.1         57.6         0.028         2         0.093         17.1           t         0.42         1.6         0.13         0.6         3.2         626.0         1.9         49.6         0.027         8         0.08         10.7           t         0.42         2.2         0.15         13         6.8         10100.0         3.8         138         0.034         9.7         0.079         27.8           ft         0.54         3.3         0.36         2.9         17.6         21300.0         6.6         452         0.039                                 |
| 0-0.3 ft 0.82 U         6.7         0.62 J         44.4         30.6         40100.0         26         1020           0.3-2 ft 0.91 U         8.1         0.55 J         27.4         23.6         31200.0         28.5         496           2-4 ft         0.86 U         5.9         0.44 J         29.7         18.8         26100.0         28.5         496           4-6 ft         0.73 U         3.7         0.32 J         23.9         15.1         19600.0         9.8         372           6-8 ft         0.69 U         3.7         0.37 J         35.3         20.1         26100.0         6.7         748           8-10 ft         0.54 U         3.9         0.39 J         36.4         27.6         25800.0         6.4         763           ND20-BP11         Depth         Antimony Arsenic         Cadmium         Chromium Copper         Iron         Lead         Manganee           0-0.3 ft         0.96 U         8.2         0.7 J         51.3         33.7         4920.0         28         1200                                                                                                                        | 0.038 U 19.6 0.14 U 52.2 J<br>0.034 U 27.6 0.13 U 70.5 J<br>0.038 U 28.6 0.1 U 78.9 J<br>                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.3-2 ft 0.92 J         11.6         0.96         22.4         53.7         28300.0         95.3         400           2-4 ft 0.65 U         2.9         0.28 J         23.3         14.5         17400.0         5.4         389           4-6 ft 0.84 U         3.4         0.55 J         22.4         21         18900.0         4.8         523           6-8 ft 0.68 U         3.5         0.36 J         29.6         18.4         21400.0         5.6         607           8-10 ft 0.49 U         2.8         0.28 J         26.5         16         1900.0         4.9         502           ND20-BP09           Depth         Antimony Arsenic         Cadmium         Chromium Copper         Iron         Lead         Manganex           0-0.3 ft 1.2 U         12.8         0.64 J         45.5         30.6         46300.0         26.2         1140                                                                                                                                                                                                                                                                                        | 0.17 J 22.8 0.34 J 221<br>0.034 U 20.1 0.12 U 50.8<br>0.063 U 18.1 0.16 U 51.8<br>0.037 U 24.6 0.13 U 52.4<br>0.03 U 22 0.093 U 53.1<br>se Mercury Nickel Silver Zinc<br>0.12 J 35.3 0.22 U 144                                                                                                                                                                                                                                                                                            | Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Mangenese         Merrury         Nickel         Silver         Zinc           8 ft         0.95 U         8.0         0.66 J         41         30.5         40400.0         32.3         1110         0.12 J         32.6         0.22 J         148           2 ft         0.59 U         11.1         0.8         15.2         64.5         19100.0         96.4         230         0.12 J         15.5         0.12 J         189           1c         0.58 U         3.4         0.17 J         8.6         6.2         10500.0         16.9         102         0.03 U         7.6         0.11 U         39.6           tc         0.48 U         3.0         0.14 U         8.8         6.1         10900.0         8.1         104         0.03 U         7.6         0.11 U         39.6           tc         0.56 U         5.7         0.17 U         10.1         7.1         13500.0         11.4         148         0.032 U         8.2         0.11 U         29.7           ft         0.52 U         13.6         0.13 U         7.7.8         14.7         20300.0         5.2         < |
| 0.3-2 ft 1.2 J         8.8         0.75 J         34.7         29.3         33800.0         44.5         637           2-4 ft 0.81 U         9.8         0.91         20.8         39.7         25100.0         71.4         282           4-6 ft 0.62 U         6.2         0.54 J         24.1         39.7         22500.0         101         367           6-8 ft 0.53 U         2.9         0.31 J         21.2         14.2         16100.0         4.7         426           8-10 ft 0.59 U         3.3         0.32 J         25         14.9         18700.0         5.5         486           10-12 ft 0.51 U         3.2         0.34 J         30.5         16.6         24200.0         5.6         991           12-14 ft 0.62 U         2.6         0.3 J         23.6         11.8         17900.0         4.3         592           ND20-BP06         Depth         Antimony Arsenic         Cadmium         Chromium Copper         Iron         Lead         Manganees           0-0.3 ft 1.2 U         8.9         0.95 J         55.6         40.7         5220.0         38.7         1190                                            | 0.18 J 28.8 0.21 J 172<br>0.16 J 18.7 0.19 J 173<br>0.069 J 19.4 0.12 U 122<br>0.033 U 19.9 0.11 U 46.2<br>0.033 U 19.9 0.11 U 55.7<br>0.034 U 18.8 0.12 U 52<br>me Mercury Nickel Silver Zinc                                                                                                                                                                                                                                                                                             | ift 0.45 U 2.9 0.3 J 28.6 13.9 20200.0 5 498 0.031 U 21.6 0.085 U 59.1<br>-вР05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.3-2 ft 0.6 U       10.2       0.55 18.8       51.9       19700.0       121       236         2-4 ft 0.51 U       2.2       0.25 J       23.1       10.6       15700.0       4       282         4-6 ft 0.48 U       2.4       0.21 J       20       10       14800.0       4       245         6-8 ft 0.47 U       2.6       0.18 J       17.6       9       13700.0       3.4       244         8-10 ft 0.44 U       2.6       0.19 J       18       10.2       14900.0       3.7       313         12-14 ft 0.45 U       2.4       0.17 J       16.5       9.3       14100.0       3.1       359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17 17.8 0.11 U 181<br>0.035 U 16.9 0.097 U 46.3<br>0.022 U 15.3 0.092 U 41.3<br>0.022 U 13.4 0.09 U 34.3<br>0.022 U 13.4 0.09 U 34.3<br>0.032 U 14.6 0.083 U 35.9<br>0.032 U 13.2 0.086 U 31.3                                                                                                                                                                                                                                                                                           | 2 ft 0.58 U 2.4 0.2 J 17.7 8.7 13800.0 3.5 265 0.033 U 13.9 0.11 U 34.4 J<br>4 ft 0.43 U 2.3 0.18 J 20.6 9.2 14700.0 3.5 362 0.028 U 15.7 0.082 U 33.3 J<br>D-BP04<br>The Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Zinc<br>3 ft 1.3 U 16.8 1.4 41.8 55 42100.0 86.3 501 0.13 J 33.4 0.24 U 264<br>-2 ft 0.64 U 27.6 0.92 17.9 54.4 25100.0 139 230 0.17 16.9 0.12 U 208 J<br>ft 0.51 U 7.8 0.41 J 10.8 17 15800.0 37.8 187 0.11 J 10.4 0.096 U 97 J<br>ft 0.66 U 7.1 0.44 J 14.8 20.4 15500.0 45.7 152 0.05 J 4 0.12 U 105 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Depth         Antimony Arsenic         Cadmium         Chromium Copper         Tron         Lead         Manganes           0-0.3 ft         0.63 σ         11.5         0.37 σ         5.8         20.7         7560.0         71.2         99.2           0.3-2 ft         0.41 v         7.2         0.17 σ         7.5         10.4         9130.0         39         101           2-4 ft         0.51 v         3.6         0.26 σ         20.4         13.3         15500.0         8.2         269           4-6 ft         0.43 u         2.5         0.23 σ         20.4         13.3         14400.0         5.2         269           8-10 ft         0.51 u         2.4         0.23 σ         22.1         10.7         14700.0         3         192           8-10 ft         0.51 u         2.4         0.23 σ         22.1         10.7         14700.0         3         9252           10-12 ft         0.45 u         2.1         0.22 σ         20.9         10.6         14200.0         4         244           12-14 ft         0.52 u         2.2         0.24 σ         22.4         11.1         14900.0         4.1         259 | 0.092 J7 7.6         0.097 U 65.1         8-10           0.032 U 7.3         0.078 U 44.1         10-1:           0.031 U 16.6         0.095 U 46.5         10-1:           0.035 U 16.1         0.097 U 44.3         10-1:           0.035 U 16.1         0.097 U 44.3         10-1:           0.037 U 17.2         0.099 U 45.1         10-1:                                                                                                                                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead Manganese Mercury Nickel Silver Zinc<br>0 20.7 47.8 0.034 U 16.9 0.11 U 57.6<br>0 75.8 60.9 0.034 J 12.4 0.11 U 52.4<br>0 110 53.5 0.036 U 11.5 0.11 U 52.4<br>0 110 53.5 0.036 U 11.5 0.11 U 95.3<br>0 0 144 68.8 0.046 J 11.3 0.092 U 78.7<br>10 179 105 0.09 J 13.9 0.19 U 116<br>0 169 215 0.16 J 16.2 0.16 U 169<br>1.0 121 155 0.085 J 13.8 0.14 U 126<br>0.0 49 225 0.052 J 15.6 0.10 U 119<br>0.0 20.9 146 0.033 U J2.1 0.092 U 72.4<br>0.0 8.4 196 0.033 U J2.1 0.092 U 72.4 | b. 1.2 J       39.5       1.3       20       35       32200.0       98.3       278       0.13 J       18.2       0.1 U       209         ft       0.33 J       7.8       0.66 J       19.7       20.4       20400.0       61.2       248       0.045 U       16.3       0.081 U       143         0 ft       0.39 J       7.4       0.55 J       17.9       18.4       18000.0       35.2       237       0.047 J       14.6       0.072 U       108             D-BP02       Antimony Arsenic       Cadmium       Chromium Copper       Iron       Lead       Manganese Mercury       Nickel       Silver       Zinc         3 ft       0.8 J       4.7       0.66       9.5       28.6       13200.0       34.8       167       0.029 U       10.3       0.1 U       112         2 ft       0.55 J       6.6       1       9.9       42.4       14000.0       61.5       173       0.027 U       6.4       0.13 J       196         ft       0.57 J       8.4       16.6       783.0       44.9       137       035 U       9.4       0.044 U       52.6         ft       0.57 J       8.4       10.6       78                                                                                                  |



- Sediment Sample Location
- Historical Sediment Sample Location



- Sediment Characterization Area (468.74 ac)
- Sediment Characterization and Survey Area (39.65 ac)

Notes: Sample results are in mg/kg. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in blue exceed the MEC. Concentrations shown in red exceed the PEC.

Acronyms: J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. mg/kg - Milligrams per Kilogram TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

## Map Date: 6/3/2021

Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Matel     | TEC     | MEC   | PEC   |  |  |  |  |  |
|-----------|---------|-------|-------|--|--|--|--|--|
| Metal     | (mg/kg) |       |       |  |  |  |  |  |
| Antimony  | 2       | 13.5  | 25    |  |  |  |  |  |
| Arsenic   | 9.8     | 21.4  | 33    |  |  |  |  |  |
| Cadmium   | 0.99    | 3     | 5     |  |  |  |  |  |
| Chromium  | 43      | 76.5  | 110   |  |  |  |  |  |
| Copper    | 32      | 91    | 150   |  |  |  |  |  |
| Iron      | 20000   | 30000 | 40000 |  |  |  |  |  |
| Lead      | 36      | 83    | 130   |  |  |  |  |  |
| Manganese | 460     | 780   | 1100  |  |  |  |  |  |
| Mercury   | 0.18    | 0.64  | 1.1   |  |  |  |  |  |
| Nickel    | 23      | 36    | 49    |  |  |  |  |  |
| Silver    | 1.6     | 1.9   | 2.2   |  |  |  |  |  |
| Zinc      | 120     | 290   | 460   |  |  |  |  |  |

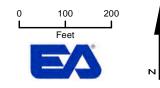
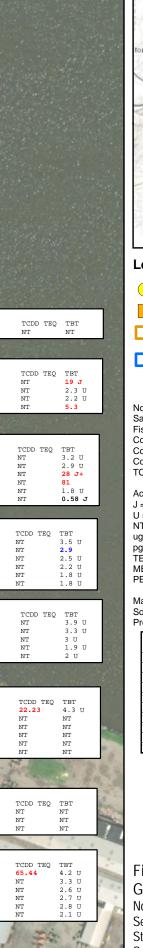




Figure 4-4 Oil Barge Dock Slip - Metals North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

|                                          |                                                                                     |                  |                                                          |                                                        |                                                       |                                               |                                                       |                                                                        |                                |                                                   |                                                      |   |   |                |   |           |                            |                                                                                             |                                              |                                                           |                                                 |                                         | H                                         |                                                      |                                                                                        |                                    |
|------------------------------------------|-------------------------------------------------------------------------------------|------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|------------------------------------------------------|---|---|----------------|---|-----------|----------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------|
|                                          | ND20-GM14<br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft                      | 1,2,4-5          | ICB 1,2-DCF<br>NT<br>NT<br>NT<br>NT<br>NT                | B 1,4-DCH<br>NT<br>NT<br>NT<br>NT<br>NT                | B Benzen<br>NT<br>NT<br>NT<br>NT                      | e Toluen<br>NT<br>NT<br>NT<br>NT<br>NT        | E Xylene<br>NT<br>NT<br>NT<br>NT<br>NT                | PAH18<br>579.4<br><b>14226.0</b><br>16.56<br>15.765                    | PCBs<br>NT<br>NT<br>NT<br>NT   | TCDD<br>NT<br>NT<br>NT<br>NT                      | TEQ TBT<br>2.1<br>2.1<br>2.1<br>2.1                  | 1 |   | F              |   |           |                            | Ĩ                                                                                           | -                                            |                                                           |                                                 |                                         | Second Second                             |                                                      |                                                                                        |                                    |
|                                          | ND20-GM13<br>Depth<br>0-0.3 ft                                                      | 1,2,4-5<br>NT    | TCB 1,2-DCH<br>NT                                        | B 1,4-DCI<br>NT                                        | B Benzen<br>NT                                        | e Toluen<br>NT                                | e Xylene<br>NT                                        | PAH18<br>1289.0                                                        | PCBs<br>NT                     | TCDD NT                                           | TEQ TBT<br>4.5                                       |   |   |                |   |           |                            | minim                                                                                       |                                              |                                                           |                                                 |                                         | 1157                                      |                                                      |                                                                                        |                                    |
| pawiing                                  | ND20-GM1<br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft                       | 1,2,4-'<br>NT    | TCB 1,2-DCI<br>NT<br>NT<br>NT<br>NT                      | B 1,4-DCI<br>NT<br>NT<br>NT<br>NT<br>NT                | B Benzen<br>NT<br>NT<br>NT<br>NT                      | e Toluen<br>NT<br>NT<br>NT<br>NT              | e Xylene<br>NT<br>NT<br>NT<br>NT<br>NT                | PAH18<br>1720.0<br>11160.0<br>1491.4<br>28781.0                        | 26<br>3.7                      | TCDD<br>NT<br>NT<br>NT<br>NT                      | TEQ TBT<br>NT<br>NT<br>NT<br>NT                      |   |   | •              |   | Annunut . |                            | <b>SW15-SLE</b><br>Depth<br>0-0.5 ft                                                        | 1,2,<br>NT                                   | 4-TCB 1,2-DC<br>NT                                        | B 1,4-D0<br>NT                                  | CB Benzer<br>NT                         | e Toluen<br>NT                            | e Xylene<br>NT                                       | PAH18<br>None                                                                          | PCBs<br>6                          |
| s Slip-Organics.mxd b                    | <b>ND20-GM10</b><br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft               | 1,2,4-7          | TCB 1,2-DCE<br>NT<br>NT<br>NT<br>NT<br>NT                | 3 1,4-DCE<br>NT<br>NT<br>NT<br>NT<br>NT                | 3 Benzen<br>NT<br>NT<br>NT<br>NT<br>NT                | e Toluene<br>NT<br>NT<br>NT<br>NT<br>NT       | e Xylene<br>NT<br>NT<br>NT<br>NT<br>NT                | PAH18<br>2901.0<br>30155.0<br>34620.0<br>10693.0                       | NT<br>NT                       | TCDD '<br>NT<br>NT<br>NT<br>NT                    | TEQ TBT<br>NT<br>NT<br>NT<br>NT                      |   |   | •              |   |           |                            | ND20-GM1<br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft                               | 1,2,4<br>NT<br>NT<br>NT<br>NT                | A-TCB 1, 2-DC:<br>NT<br>NT<br>NT<br>NT<br>NT              | NT<br>NT<br>NT<br>NT                            | NT<br>NT<br>NT<br>NT                    | NT<br>NT<br>NT<br>NT                      | NT<br>NT<br>NT<br>NT                                 | 1617.0<br>4921.0<br>12401.<br>7302.0                                                   | NT<br>NT<br>0 NT<br>NT             |
| Report Figure 4-5 General Mil            | ND20-GM08<br>Depth<br>0-0.3 ft<br>2-4 ft<br>4-6 ft<br>6-8 ft<br>8-10 ft             | 1,2,4-5<br>8.4 U | ICB 1,2-DCH<br>4.5 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | B 1,4-DCH<br>2.3 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | B Benzen<br>4.4 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT |                                               | e Xylene<br>9.7 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | PAH18<br>2810.0<br>18335.0<br>17442.0<br>15414.0<br>1251.3<br>12.86    | NT<br>NT<br>NT                 | TCDD<br>8.058<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | TEQ TBT<br>9 2.9<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | J |   | •              |   |           | 0<br>2<br>4<br>8<br>8<br>8 | Depth<br>D-0.3 ft<br>D.3-2 ft<br>2-4 ft<br>4-6 ft<br>5-8 ft<br>3-10 ft<br>D20-GM07<br>Pepth | NT<br>NT<br>NT<br>NT<br>NT                   | -TCB 1,2-DCB<br>NT<br>NT<br>NT<br>NT<br>NT<br>TCB 1,2-DCB | NT<br>NT<br>NT<br>NT<br>NT<br>NT                | NT<br>NT<br>NT<br>NT<br>NT<br>NT        | NT<br>NT<br>NT<br>NT<br>NT<br>NT          | NT<br>NT<br>NT<br>NT<br>NT<br>NT                     | PAH18<br>2398.0<br>5472.0<br>9467.0<br>7589.0<br>15.395<br>13.08<br>PAH18              | NT<br>NT                           |
| vestigation                              | <b>SW15-SLBO</b><br>Depth<br>0-0.5 ft<br>0.5-2 ft<br>2-4 ft                         | 1,2,4-T<br>NT    | CB 1,2-DCB<br>NT<br>NT<br>NT<br>NT                       | 1,4-DCB<br>NT<br>NT<br>NT<br>NT                        | Benzene<br>NT<br>NT<br>NT                             | e Toluene<br>NT<br>NT<br>NT<br>NT             | Xylene<br>NT<br>NT<br>NT<br>NT                        | PAH18<br>None<br>None<br>None                                          | PCBs<br>13<br>50<br><b>198</b> | TCDD T<br>NT<br>NT<br>NT                          | TEQ TBT<br>14<br>23<br>NT                            | 1 |   | -              |   |           | 0<br>2<br>4<br>6<br>8      | -0.3 ft<br>.3-2 ft<br>-4 ft<br>-6 ft<br>-8 ft<br>-10 ft<br>ND20-GM0                         | NT<br>NT<br>NT<br>NT<br>NT<br>NT<br><b>5</b> | NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>L-TCB 1,2-DCI   | NT<br>NT<br>NT<br>NT<br>NT<br>NT                | NT<br>NT<br>NT<br>NT<br>NT<br>NT        | NT<br>NT<br>NT<br>NT<br>NT<br>NT          | NT<br>NT<br>NT<br>NT<br>NT                           | <b>4450.0</b><br><b>11176.0</b><br><b>14947.0</b><br><b>146140.</b><br>15.76<br>13.575 | NT<br>NT<br>NT<br>O NT<br>NT<br>NT |
| CloughIsland 1598201(MXD\Site Inv        | ND20-GM06<br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft<br>6-8 ft<br>8-10 ft | 1,2,4-T<br>NT    | CB 1,2-DCB<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT     | 1,4-DCB<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT            | Benzene<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT           | e Toluene<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | Xylene<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT            | PAH18<br>3369.0<br>5475.0<br>61260.0<br>19372.0<br>47220.0<br>21950.0  | NT<br>NT<br>NT<br>NT<br>NT     | TCDD I<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT        | TEQ TBT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT          |   |   | <del>-</del> - |   |           |                            | 0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft<br>6-8 ft<br>ND20-GM04                             | NT<br>NT<br>NT<br>NT                         | NT<br>NT<br>NT<br>NT<br>NT                                | NT<br>NT<br>NT<br>NT<br>NT                      | NT<br>NT<br>NT<br>NT<br>NT              | NT<br>NT<br>NT<br>NT<br>NT                | NT<br>NT<br>NT<br>NT<br>NT                           | 7603.0<br>4249.0<br>7466.0<br>19.58<br>13.345                                          | 15<br>16<br><b>650</b><br>0<br>0   |
| NorthEndDistrict. Cloug                  | ND20-GM03<br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft<br>6-8 ft<br>8-10 ft | NT               | CB 1,2-DCB<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT     | 1,4-DCB<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT      | Benzene<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT           | Toluene<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT   | Xylene<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT            | PAH18<br>6862.0<br>33870.0<br>38240.0<br>23910.0<br>64440.0<br>26760.0 | NT<br>NT<br>NT<br>NT<br>NT     | TCDD TI<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT       | EQ TBT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT     |   |   | <b>9 G</b>     |   |           |                            | Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft<br>6-8 ft<br>8-10 ft                      | 11 U<br>NT<br>NT<br>NT<br>NT                 | -TCB 1,2-DCE<br>5.9 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | 3 I,4-DC<br>3 U<br>NT<br>NT<br>NT<br>NT<br>NT   |                                         | 4.9 U<br>NT<br>NT<br>NT<br>NT<br>NT       | Xylene<br>13 U<br>NT<br>NT<br>NT<br>NT<br>NT         | PAH18<br>7217.0<br>14095.0<br>38680.0<br>43800.0<br>10893.0<br>13.635                  | 21<br>NT<br>NT<br>NT<br>NT<br>NT   |
| igis/GISdata/FederalMidwes(I/Visconsin/I | ND20-GM01                                                                           |                  |                                                          |                                                        | -                                                     |                                               |                                                       | - A                                                                    |                                |                                                   |                                                      |   |   | 0 0            |   |           | D<br>0<br>2<br>1           | -0.5 ft<br>.5-2 ft<br>-4 ft<br>D20-GM02                                                     | 1,2,4-<br>NT<br>NT<br>NT                     | TCB 1,2-DCB<br>NT<br>NT<br>NT<br>TCB 1,2-DCB              | NT<br>NT<br>NT                                  | NT<br>NT<br>NT                          | NT<br>NT<br>NT                            | NT<br>NT<br>NT                                       | PAH18<br>None<br>None<br>None<br>PAH18                                                 | PCBs<br>17<br>30<br>40<br>PCBs     |
| Movetongis/GISdata/Fede                  | Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft                                             | NT<br>NT         | NT<br>NT                                                 | NT<br>NT                                               | Benzene<br>NT<br>NT<br>NT<br>NT                       | Toluene<br>NT<br>NT<br>NT                     | NT<br>NT                                              | PAH18<br>10663.0<br>54170.0<br>41300.0                                 | 32<br>40                       | TCDD TE<br>NT<br>NT<br>NT                         | Q TBT<br>5 U<br>3.6 U<br>2.9 U                       |   | 6 | Z              | 1 |           | 0<br>0<br>2<br>4<br>6      | -0.3 ft<br>-3-2 ft<br>-4 ft<br>-6 ft<br>-8 ft<br>-10 ft                                     | 11 U                                         | fich f,2-bcb<br>6.1 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | 3.1 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | 6 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | 5.2 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | NY LEILE<br>13 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | 5677.0<br>23000.0<br>12919.0<br>39070.0<br>32100.0<br>8829.0                           | 33<br>NT<br>NT<br>NT<br>NT         |





- Sediment Sample Location
- Historical Sediment Sample Location



- Sediment Characterization Area (468.74 ac)
  - Sediment Characterization
- and Survey Area (39.65 ac)

## Notes:

Sample results are in ug/kg. Fish TEQ results are in pg/g. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in **blue** exceed the MEC. Concentrations shown in **red** exceed the PEC. TCDD TEQ in text boxes calculated as Fish Dioxin TEQ (ND=1/2RL)

## Acronyms:

J = Indicates that the concentration is an estimated value.

- U = Indicates the analyte was analyzed for but not detected.
- NT = Not tested.

- ug/kg Micrograms per kilogram pg/g Picograms per gram TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

Map Date: 6/2/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

|                        |              | TEC  | MEC     | PEC   |
|------------------------|--------------|------|---------|-------|
| Analyte                | Abbreviation | 120  | -       | FEC   |
| Analyte                | Abbreviation |      | (ug/kg) |       |
| 1,2,4-Trichlorobenzene | 1,2,4-TCB    | 8    | 13      | 18    |
| 1,2-Dichlorobenzene    | 1,2-DCB      | 23   |         | 23    |
| 1,4-Dichlorobenzene    | 1,4-DCB      | 31   | 60.5    | 90    |
| Benzene                | Benzene      | 57   | 83.5    | 110   |
| Toluene                | Toluene      | 890  | 1345    | 1800  |
| Xylene                 | Xylene       | 25   | 37.5    | 50    |
| Total PAH18 ND=1/2RL   | PAH18        | 1610 | 12205   | 22800 |
| Total PCBs ND=0        | PCBs         | 60   | 368     | 676   |
| FISH TEQ (ND=1/2RL)    | TCDD TEQ     | 0.85 | 11.2    | 21.5  |
| Tributyltin            | TBT          | 0.52 | 1.73    | 2.94  |

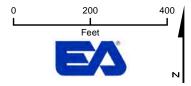
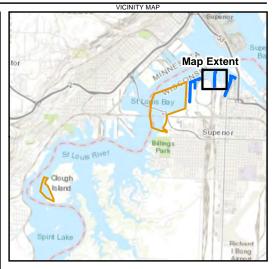




Figure 4-5 General Mills Slip - Organics North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

| ND20-GM14           Depth         Antimony Arsenic         Cadmium         Chromium Copper         Iron         Lea           0-0.3 ft         0.48 U         2.9         0.18 J         14.1         9.4         14000.0         6.5           0.3-2 ft         0.59 U         3.4         0.43 J         18.9         17000.0         70.           2-4 ft         0.52 U         3.6         0.26 J         28.8         25.5         23300.0         7.4           4-6 ft         0.57 U         3.9         0.28 J         32.5         27.3         21200.0         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 461         0.038 U         12         0.091 U         35.2           7         302         0.13 J         17.2         0.12 J         92                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND20-GM13<br>Depth Antimony Arsenic Cadmium Chromium Copper Iron Lead<br>0-0.3 ft 0.54 U 3.0 0.26 J 16.7 16.4 14600.0 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>SW15-SLB07</b><br>Depth Antimony Arsenic Cadmium Chromium Cop<br>0-0.5 ft 0.25 U 3.4 0.35 J 19.7 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND20-GM12         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead           0-0.3 ft         0.57 U         3.1         0.3 J         19 J         16.9         17800.0         12.6           0.3-2 ft         0.66 U         3.9         0.32 J         17.6         16         15600.0         16.6           2-4 ft         0.76 U         2.5         0.25 J         14.2         15.1         10600.0         10.8           4-6 ft         0.51 U         3.0         0.32 J         13.2         40.7         12300.0         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Manganese Mercury Nickel Silver Zinc<br>535 0.04 U 16.3 J 0.11 U 70.5<br>349 0.058 J 15.4 0.13 U 69.9<br>208 0.049 U 12.5 0.14 U 30.1<br>251 0.072 J 13.5 0.23 J 66.8                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND20-GM10           Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead           0-0.3         ft         0.77         U         4.0         0.4         J         26.1         J         22.9         23200.0         14.5           0.3-2         ft         0.52         U         4.0         0.55         J         19.4         41.5         16300.0         44.2           2-4         ft         0.63         U         3.7         0.56         J         18.5         47.3         16700.0         52.8           4-6         ft         0.48         U         3.5         0.4         J         15.8         21.8         13100.0         47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manganese Mercury Nickel         Silver         Zinc           637         0.046 U         27.1 J         0.15 U         82.5           245         0.099 J         16.8         0.16 J         130           244         0.14         16.5         0.12 U         144           216         0.095 J         13.9         0.091 U         94.7                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.4 <b>20800.0</b> 11.2 <b>687</b> 0.048 U 18.7 J 0.12 U 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND20-GM08           Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead           0-0.3 ft         0.71 U         4.6         0.43 J         24.7         31         20800.0         16.8           0.3-2 ft         0.82 J         6.3         0.81         27.6         129         23400.0         111           2-4 ft         0.78 U         4.3         0.78 J         24.8         45.8         21100.0         50.1           4-6 ft         0.56 U         4.6         0.68         23.5         45.2         20600.0         47.5           6-8 ft         0.55 U         2.2         0.21 J         11.2         11.4         10900.0         7.2           8-10 ft         0.42 U         2.0         0.15 J         9.9         6.6         9860.0         2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manganese         Mercury         Nickel         Silver         Zinc           463         0.056 J         20.2         0.13 U         95.1           383         0.08 J         23.2         0.13 U         315           302         0.22         20.7         0.46 J         204           320         0.19         21.5         0.11 U         168           228         0.032 U         10.7         0.1 U         31.3           215         0.029 U         9.6         0.08 U         16.5 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SW15-SLB05         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead           0-0.5         ft         0.51         J         4.5         0.52         J         25.9         28.3         22300.0         28.9           0.5-2         ft         0.52         J         2.9         32.6         19600.0         31.1           2-4         ft         0.52         J         19.5         42.9         16100.0         50.9           4-6         ft         0.2         U         1.9         0.28         7         7.7         7300.0         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Manganese Mercury Nickel         Silver         Zinc           575         0.16 J-         21.9         0.12 U         104           326         0.13 J         17.3         0.074 U         119           255         0.2         16.7         0.14 J         175           218         0.032 UJ 8.5         0.055 U         26.5                                                                                                                                                                 | ND20-GM07           Depth         Antimony Arsenic         Cadmium         Chromium         Cop           0-0.3 ft         0.82 U         4.5         0.42 J         26.2 J         33.           0.3-2 ft         0.78 U         5.1         0.54 J         24.4         36.           2-4 ft         0.68 U         4.9         0.74 L         22         47.           4-6 ft         0.55 U         3.6         0.52 J         15         36.           6-8 ft         0.4 U         2.8         0.18 J         11         10.           8-10 ft         0.45 U         2.6         0.14 J         9.9         7                                                                                                                                                  | 6         23800.0         17.6         603         0.057 J         21.7 J         0.15 U         91.2           8         1900.0         30.5         396         0.091 J         20.4         0.15 U         125           8         1900.0         51.5         277         0.21         19.6         0.13 U         192           2         13600.0         56.1         224         0.16         14.2         0.1 U         144                                                                                                                                                                                                                                                                    |
| ND20-GM06           Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead           0-0.3 ft         0.74 U         4.7         0.43 J         28 J         38.6         24800.0         20           0.3-2 ft         0.91 U         5.3         0.52 J         25.2         34.9         20900.0         29.4 J           2.4 ft         0.66 U         4.8         0.8         23.7 J         53.8         20200.0         162 J           4-6 ft         0.68 J         4.8         0.63 J         18.9         36.9         17200.0         63.7 J           6-8 ft         0.74 J         5.2         0.91         20.7         44.5         19400.0         114 J           8-10 ft         1.1 J         6.0         1.2         23.5         52.2         22000.0         159 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 292         0.22         20.4         0.2 J         196           282         0.23         17.8         0.12 U         162           259         0.27         17.8         0.15 J         215                                                                                                                                                                                                                                                                                                      | ND20-GM05           Depth         Antimony Arsenic         Cadmium         Chromium         Cop           0-0.3         ft         0.9         5.7         0.54         38.5         J         35.           0.3-2         ft         0.82         U         5.4         0.52         J         34           2-4         ft         0.67         U         5.8         0.58         J         28.9         39.           4-6         ft         0.48         U         2.1         0.15         J         8.8         6.3           6-8         ft         0.47         U         2.7         0.19         J         11.7         10                                                                                                                                  | 6       34900.0       21.9       1130       0.065 U       31.4 J       0.16 U       121         25400.0       23 J       592       0.055 U       24.2       0.16 U       118         7       24400.0       37.2 J       484       0.043 U       23.2       0.13 U       136         8440.0       2.3 J       198       0.03 U       9       0.091 U       15.3         11300.0       3.4 J       318       0.031 U       12.3       0.089 U       21.8                                                                                                                                                                                                                                                 |
| The complementation of the second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND20-GM04           Depth         Antimony Arsenic         Cadmium         Chromium         Coppe           0-0.3         ft         1.3         U         6.7         0.66         J         J1.5         47.8           0.3-2         ft         0.59         U         5.0         0.54         J         24.6         43.6           4-4         ft         0.75         U         8.         0.67         J         26.2         45.4           4-6         ft         0.66         U         5.6         0.91         19.6         58.4           6-8         ft         0.46         U         3.2         0.2         J         10.6         27.9           8-10         ft         0.49         U         2.1         0.15         J         5.7         7.8 | Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           36000.0         29.1         1060         0.069 U         32.1         0.24 U         135           20700.0         45         355         0.049 J         20.6         0.11 U         136           22600.0         68.4         408         0.27         21.3         0.14 U         157           16600.0         103         205         0.2         17         0.13 U         254           11700.0         20.3         141         0.023 U         10.3         0.087 U         44.6           9960.0         2.8         158         0.032 U         9.8         0.093 U         16.9 |
| ND20-GM03           Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead           0-0.3         ft         0.96         U         5.8         0.52         34         70         30800.0         24.6           0.3-2         ft         0.64         U         4.9         0.58         J         21.2         45.8         18200.0         57.8         J           2-4         ft         0.7         J         5.2         0.95         31         76.5         24600         66.8         J           4-6         ft         0.73         J         4.6         1.3         21.3         48.6         18900.0         69.6         J           6-8         ft         0.76         J         5.9         1.1         24.5         78.5         21600.0         131         J           8-10         ft         0.52         J         0.86         17.5         106         16400.0         155         J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360 0.048 U 25 0.33 J 216<br>279 0.34 18.4 0.15 J 191<br>267 0.26 19.7 0.15 J 271                                                                                                                                                                                                                                                                                                                                                                                                                  | Sw15-sLE06           Depth         Antimony Arsenic         Cadmium         Chromium         Copper           0-0.5         ft         0.48 U         5.4         0.71 J         37.4         43.7           0.5-2         ft         0.49 J         5.7         1.1         33.3         59.7           2-4         ft         0.75 J         5.0         1         26.4         58           4-6         ft         2.2 J         6.0         1.4         23.7         85.8                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND20-GM01           Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead           0-0.3 ft 1         U         6.0         0.62 J         35.3 J         48.5         30600.0         32.6           0.3-2 ft 0.8 U         5.9         0.74 J         33.4         62.9         25100.0         64.3           2-4 ft 1 J         6.5         1         22         106         20000.0         90.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Manganese Mercury Nickel Silver Zinc<br>516 0.13 J 28.6 J 0.19 U 139<br>363 0.058 U 24 0.16 J 174<br>273 0.41 18.8 0.15 U 243                                                                                                                                                                                                                                                                                                                                                                      | ND20-GM02           Depth         Antimony Arsenic         Cadmium         Chromium         Copper           0-0.3         ft         1.1         U         6.2         0.61         J         40.7         46.4           0.3         2.1         1.2         J         7.0         0.99         32.9         64.5           2.4         ft         0.72         J         4.9         0.85         27.2         53.2           4-6         ft         0.7         J         1.1         23.7         64.5           4-6         ft         0.7         J         1.1         23.7         53.2           4-6         ft         0.54         U         3.6         0.29         J         11.3         26.2                                                         | Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           30500.0         29.8         708         0.07 U         32.2         0.21 U         140           30300.0         78.8         410         0.31         26.4         0.25 J         209           22400.0         61.2         304         0.046 U         22.3         0.2 J         214           22000.0         64.2         302         0.54         21.7         0.14 J         222           20500.0         345         244         0.466         19.9         0.14 J         265           9970.0         23.2         164         0.052 J         10.6         0.1 U         59.3   |



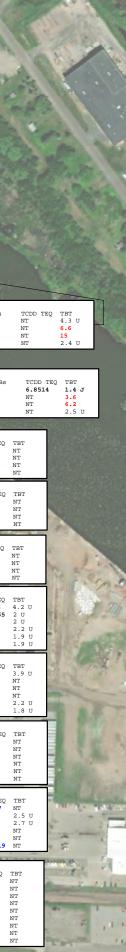
- Sediment Sample Location
- Historical Sediment Sample Location



- Sediment Characterization Area (468.74 ac)
- Sediment Characterization and Survey Area (39.65 ac)

Notes: Sample results are in mg/kg. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in blue exceed the MEC. Concentrations shown in red exceed the PEC.

Acronyms: J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. mg/kg - Milligrams per Kilogram TEC = Threshold Effect Concentration


MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

Map Date: 6/2/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Metal     | TEC   | MEC     | PEC   |
|-----------|-------|---------|-------|
| Metal     |       | (mg/kg) |       |
| Antimony  | 2     | 13.5    | 25    |
| Arsenic   | 9.8   | 21.4    | 33    |
| Cadmium   | 0.99  | 3       | 5     |
| Chromium  | 43    | 76.5    | 110   |
| Copper    | 32    | 91      | 150   |
| Iron      | 20000 | 30000   | 40000 |
| Lead      | 36    | 83      | 130   |
| Manganese | 460   | 780     | 1100  |
| Mercury   | 0.18  | 0.64    | 1.1   |
| Nickel    | 23    | 36      | 49    |
| Silver    | 1.6   | 1.9     | 2.2   |
| Zinc      | 120   | 290     | 460   |
| 0         | 200   | )       | 400   |
|           |       | -       |       |
|           | Fee   | et      |       |
|           |       | - ·     |       |
|           |       |         |       |
|           |       |         |       |
|           |       |         | N     |

Figure 4-6 General Mills Slip - Metals North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

| ND20-TB19<br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft                             | 1,2,4-T<br>NT                                   | CB 1,2-DCE<br>NT<br>NT<br>NT                         | 1,4-dCe<br>NT<br>NT<br>NT                      | Benzene<br>NT<br>NT<br>NT                      | Toluene<br>NT<br>NT<br>NT                       | e Xylene<br>NT<br>NT<br>NT                      | PAH18<br>2376.0<br>15594.0<br>1821.0                                  | NT<br>NT                                 | TCDD TH<br>NT<br>NT<br>NT                     | EQ TBT<br>3.9 U<br>4.4<br>6.1                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | <b>SW15-SLB</b><br>Depth<br>0-0.5 ft<br>0.5-2 ft<br>2-4 ft<br>4-6 ft | 1,2,4-TC<br>NT<br>NT | CB 1,2-DC<br>NT<br>NT<br>NT<br>NT<br>NT | CB 1,4-DCB<br>NT<br>NT<br>NT<br>NT<br>NT | Benzene<br>NT<br>NT<br>NT<br>NT | Toluene<br>NT<br>NT<br>NT<br>NT<br>NT                                          | Xylene<br>NT<br>NT<br>NT<br>NT<br>NT                  | PAH18<br>None<br>None<br>None<br>None             | PCBs<br>13<br>22<br>0<br>0                | TCDD TEQ<br>NT<br>NT<br>NT<br>NT<br>NT  | 2 TBT<br>3.1 U<br>2.5 U<br>NT<br>NT        |                                                 |                                                                        | -                                      |
|----------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------|----------------------|-----------------------------------------|------------------------------------------|---------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------|----------------------------------------|
| 4-6 ft<br>SW15-SLB1                                                              | NT<br>5<br>1,2,4-T<br>NT                        | NT<br>CB 1,2-DCE<br>NT<br>NT<br>NT                   | NT                                             | NT                                             | NT                                              | NT                                              | PAH18<br>None<br>None<br>None                                         |                                          | NT<br>TCDD TH<br>NT<br>NT<br>NT               | 2.1 U                                        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                      |                      | and a                                   | 0-0.3 ft<br>0.3-2 ft<br>2-4 ft           | NT                              | B 1,2-DCB<br>NT<br>NT<br>NT<br>NT<br>NT                                        | l,4-dCB<br>NT<br>NT<br>NT<br>NT                       | NT<br>NT<br>NT                                    | Toluene<br>NT<br>NT<br>NT<br>NT           | Xylene<br>NT<br>NT<br>NT<br>NT          | 2360.0<br>1449.0                           | 29<br>NT<br>NT                                  | 5.8545<br>NT                                                           | TBT<br>1 U<br>3.5<br>5.6<br>1.8 U      |
| 0-0.3 ft<br>0.3-2 ft<br><b>SW15-SLB1</b><br>Depth                                | 1,2,4-T<br>NT<br>NT<br>8<br>1,2,4-T             | NT<br>CB 1,2-DCI                                     | NT<br>NT<br>3 1,4-DC                           | NT<br>NT<br>3 Benzene                          | NT<br>NT                                        | NT<br>NT<br>e Xylene                            | 1121.0<br>320.2<br>PAH18                                              | NT<br>NT<br>PCBs                         | TCDD TI<br>NT<br>NT<br>TCDD T                 | 1.1 J<br>2.6                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                      |                      |                                         |                                          |                                 |                                                                                |                                                       |                                                   |                                           |                                         |                                            |                                                 |                                                                        |                                        |
| D20-TB17                                                                         | 1,2,4-TC<br>NT<br>NT                            | NT<br>B 1,2-DCB<br>NT<br>NT<br>NT                    |                                                |                                                | NT<br>Toluene<br>NT<br>NT<br>NT                 | NT<br>Xylene<br>NT<br>NT<br>NT                  | None<br>PAH18<br>7745.0<br>94.35<br>13.13                             | 25<br>PCBs<br>NT<br>NT<br>NT             | NT<br>TCDD TE<br>NT<br>NT<br>NT               | 3.1 U<br>Q TBT<br>NT<br>NT<br>NT             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                      |                      |                                         |                                          |                                 |                                                                                | 9                                                     | 9                                                 | 7                                         |                                         |                                            |                                                 |                                                                        |                                        |
| -0.3 ft<br>.3-2 ft<br>W15-SLB17                                                  | NT<br>NT                                        | IB 1,2-DCB<br>NT<br>NT<br>IB 1,2-DCB                 | NT<br>NT                                       | NT<br>NT<br>Benzene                            | NT<br>NT                                        | NT<br>NT<br>Xylene                              | <b>2974.0</b><br>24.175                                               | NT                                       | TCDD TE<br>NT<br>NT<br>TCDD TE                | 33<br>64                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                      |                      |                                         |                                          |                                 | 18.0.25                                                                        |                                                       | G                                                 |                                           |                                         |                                            |                                                 |                                                                        |                                        |
| <b>D20-TB15</b><br>epth                                                          | 1,2,4-T0<br>7.9 U                               | NT<br>CB 1,2-DCB<br>4.3 U<br>NT<br>NT                | 1,4-DCB                                        | and the second second                          | NT<br>Toluene<br>3.6 U<br>NT<br>NT              | NT<br>Xylene<br>9.2 U<br>NT<br>NT               | None<br>PAH18<br>3617.0<br>284.4<br>18.18                             | PCBs<br>38<br>NT<br>NT                   | NT<br>TCDD TE<br>8.4535<br>NT<br>NT           |                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                      |                      |                                         |                                          |                                 |                                                                                | ND20-T<br>Depth<br>0-0.3<br>0.3-2<br>2-4 ft<br>4-6 ft | 1,2,4<br>ft NT<br>ft NT<br>NT                     | 4-TCB 1,2<br>NT<br>NT<br>NT<br>NT<br>NT   | NT<br>NT<br>NT                          | I-DCB Ben<br>NT<br>NT<br>NT<br>NT<br>NT    | zene Tol<br>NT<br>NT<br>NT<br>NT                | uene Xylen<br>NT<br>NT<br>NT<br>NT<br>NT                               | e PAH1<br>3321<br>6659<br>3014<br>32.9 |
| -0.3 ft<br>.3-2 ft<br>W15-SLB16<br>mpth                                          | NT<br>NT<br>1,2,4-T0                            | NT<br>CB 1,2-DCB                                     | NT<br>NT<br>1,4-DCB                            | NT<br>NT<br>Benzene                            | NT<br>NT<br>Toluene                             | NT<br>NT<br>Xylene                              | 2291.0<br>14.695<br>PAH18                                             | NT<br>NT<br>PCBs                         | TCDD TE<br>NT<br>NT<br>TCDD TE                | NT<br>NT<br>Q TBT                            | A and |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                      |                      | /                                       |                                          | Î                               |                                                                                | 0-0.3                                                 | 1,2<br>ft 8.1<br>ft NT                            |                                           | .3U 2<br>T N                            | .204.<br>F NI                              | 3 U 3.<br>NT                                    |                                                                        |                                        |
| -0.5 ft                                                                          | NT<br>NT<br>1,2,4-T<br>320 U                    | NT<br>NT<br>CB 1,2-DCB<br>240 U<br>110 U             | 250 U                                          | 230 U                                          | 290 J                                           | 500 U                                           |                                                                       |                                          | NT<br>NT<br>TCDD TH<br>NT<br>NT               | NT<br>NT<br>NT<br>4.3 U<br>6.4               | in    | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                      |                      |                                         |                                          |                                 | ND20-TB1<br>Depth<br>0-0.3 ft<br>0.3-2 ft                                      | 4-6 f<br>3<br>1,2,4-T<br>NT                           |                                                   | N.                                        | r N.                                    | F NI                                       | NT                                              | NT                                                                     | 431<br>PCBs<br>NT                      |
| Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>1-6 ft                                | 1,2,4-T<br>NT                                   | CB 1,2-DCB<br>NT<br>NT<br>NT<br>NT<br>NT             | l,4-dCB<br>NT<br>NT<br>NT<br>NT                | Benzene<br>NT<br>NT<br>NT<br>NT                | Toluene<br>NT<br>NT<br>NT<br>NT                 | Xylene<br>NT<br>NT<br>NT<br>NT<br>NT            | PAH18<br>6073.0<br>15350.0<br>239790.<br>4609.0                       | PCBs<br>NT<br>NT<br>0 NT<br>NT           | TCDD TE<br>NT<br>NT<br>NT<br>NT<br>NT         | Q TBT<br>4.3 U<br>29 U<br>NT<br>11 U         | 4     | The state of the s |        |                                                                      | +                    |                                         |                                          |                                 | 2-3 ft<br>3-3.5 ft<br>ND20-TB1<br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft      | NT<br>2<br>1,2,4-T<br>NT<br>NT                        | NT<br>NT<br>CB 1,2-DCI<br>NT<br>NT<br>NT          | NT<br>NT<br>B 1,4-DC<br>NT<br>NT<br>NT    | NT<br>NT<br>CB Benzer<br>NT<br>NT<br>NT | NT<br>NT<br>NT<br>NT<br>NT<br>NT           | NT<br>NT<br>e Xylene<br>NT<br>NT<br>NT          | 4497.0<br>9857.0                                                       | NT<br>PCBs                             |
| 1-0.3 ft<br>1.3-2 ft<br>2-4 ft                                                   | NT<br>1,2,4-T<br>NT<br>NT<br>NT                 | NT<br>NT<br>CB 1,2-DCB<br>NT<br>NT<br>NT             | NT<br>NT<br>NT                                 | NT<br>NT<br>NT                                 | NT<br>NT<br>NT                                  | NT<br>NT<br>NT                                  | 14.745<br>14.685<br>PAH18<br>8449.0<br>13620.0<br>29200.0             | NT<br>PCBs<br>NT<br>NT<br>NT             | NT<br>TCDD TH<br>NT<br>NT<br>NT               | NT<br>NT<br>NT                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EAST - |                                                                      | <b>-</b> 0           |                                         |                                          |                                 | 4-6 ft<br><b>ND20-TB1</b><br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft           | NT<br>1,2,4-T<br>NT<br>NT<br>NT                       | NT<br>CB 1,2-DCE<br>NT<br>NT<br>NT                | NT<br>3 1,4-DC<br>NT<br>NT<br>NT          | NT<br>IB Benzen<br>NT<br>NT<br>NT       | NT<br>e Toluen<br>NT<br>NT<br>NT           | NT<br>Xylene<br>NT<br>NT<br>NT                  | 32.05<br>PAH18<br>8182.0<br>12578.0<br>11100.0                         | NT<br>PCBs<br>NT<br>NT<br>NT           |
| -6 ft<br>-8 ft<br>-10 ft<br>W15-SLB13<br>epth<br>-0.5 ft<br>.5-2 ft              | 3<br>1,2,4-T<br>200 U                           | NT<br>NT<br>NT<br>CB 1,2-DCB<br>150 U<br>100 U       |                                                | NT<br>NT<br>Benzene<br>150 U<br>100 U          | NT<br>NT<br>Toluene<br>140 U<br>110 J           | NT<br>NT<br>NT<br>Xylene<br>320 U<br>210 U      | 31950.0<br>11415.0<br>23670.0<br>PAH18<br>19532.0<br>19384.0          | NT<br>NT<br>PCBs<br>197                  | NT<br>NT<br>NT<br>TCDD TE<br>NT<br>NT         | NT<br>NT<br>NT<br>3.6 U<br>5.2               |       | They a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                      |                      |                                         | 5                                        | -                               | 4-6 ft<br><b>ND20-TB1</b><br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft | 1,2,4-T<br>10 U                                       | NT<br>CB 1,2-DCH<br>5.6 U<br>NT<br>NT<br>NT       | NT<br>B 1,4-DC<br>2.8 U<br>NT<br>NT<br>NT |                                         | NT<br>te Toluen<br>4.7 U<br>NT<br>NT<br>NT | NT<br>E Xylene<br>12 U<br>NT<br>NT<br>NT        | 9435.0<br>248.65<br>19.645                                             | PCBs<br>120<br>NT                      |
| -4 ft<br>D20-TB05<br>epth<br>-0.3 ft<br>.3-2 ft<br>-4 ft<br>-6 ft                | 8.8 U                                           | 73 U<br>CB 1,2-DCB<br>0.12 J<br>3.9 U<br>3.1 U<br>NT |                                                | 71 U<br>Benzene<br>4.6 U<br>3.9 U<br>3 U<br>NT | 270 J<br>Toluene<br>4 U<br>3.3 U<br>2.6 U<br>NT | 151 U<br>Xylene<br>10 U<br>8.5 U<br>6.6 U<br>NT | PAH18<br>11477.0<br>30230.0<br>30110.0<br>30030.0                     | PCBs<br>140<br>180<br>110                | NT<br>TCDD TH<br>NT<br>NT<br>NT<br>NT         | 2.7 U<br>2.7 U<br>3.1 U<br>NT<br>NT          |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                      |                      |                                         |                                          |                                 | 6-8 ft<br>8-10 ft<br>ND20-TB0<br>Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft       | 1,2,4-T<br>14 U                                       | NT<br>NT<br>CB 1,2-DCH<br>7.4 U<br>3.3 U<br>3.8 U |                                           | 7.3 U<br>3.2 U                          |                                            | NT<br>NT<br>e Xylene<br>16 U<br>7 U<br>1.6 J    | 12.8                                                                   | 92                                     |
| -8 ft<br>-10 ft<br>D20-TB04<br>Depth<br>0-0.3 ft<br>0.3-2 ft                     | NT<br>1,2,4-T<br>7.6 U                          | CB 1,2-DCE<br>4.1 U<br>4 U                           | NT<br>NT                                       | NT<br>NT                                       | NT<br>NT                                        | NT<br>NT                                        | PAH18<br>10974.0                                                      | 62<br>4.4<br>PCBs<br>160                 | NT<br>NT<br>TCDD TI<br>NT<br>NT               | NT<br>2.1 U                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0                                                                    | 1                    | 1                                       |                                          | -                               | 4-6 ft<br>6-8 ft<br>8-10 ft<br>ND20-TB0<br>Depth                               | NT<br>NT<br>NT                                        | NT<br>NT<br>CB 1,2-DC<br>5.3 U                    | NT<br>NT<br>NT<br>B 1,4-DO                | NT<br>NT<br>CB Benzer                   | NT<br>NT<br>NT                             | NT<br>NT<br>NT                                  | <b>39900.0</b><br><b>40050.0</b><br>243.1                              | 90<br>0<br>0<br>PCBs                   |
| 2-4 ft<br>4-6 ft<br>6-8 ft<br>B-10 ft<br>10-12 ft<br>12-14 ft<br>14-16 ft        | NT<br>NT                                        | 3.9 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT            | 2 U<br>NT<br>NT<br>NT<br>NT<br>NT              | 3.8 U<br>NT<br>NT<br>NT<br>NT<br>NT            | 3.3 U<br>NT<br>NT<br>NT<br>NT<br>NT             | 8.4 U<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT       | 107230.<br>48150.0<br>41980.0<br>22232.0<br>4056.0<br>2306.0<br>79.81 | 0<br>0<br>0<br>NT                        | NT<br>NT<br>NT<br>NT<br>NT<br>NT              | NT<br>NT<br>NT<br>NT<br>NT<br>NT             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                      |                      | - Augur                                 |                                          | 100                             | 0.3-2 ft<br>2-4 ft<br>4-6 ft<br>6-8 ft<br>8-10 ft<br>ND20-TB0                  | 7.7 U<br>6.9 U<br>NT<br>NT<br>NT<br>3                 | 4.1 U<br>3.7 U<br>NT<br>NT<br>NT                  | 2.1 U<br>1.9 U<br>NT<br>NT<br>NT          | 4 U<br>3.7 U<br>NT<br>NT<br>NT          | 3.5 U<br>3.1 U<br>NT<br>NT<br>NT           | 8.9 U<br>8 U<br>NT<br>NT<br>NT                  | 15060.0<br>44580.0<br>22060.0<br>21450.0<br>3436.0                     | 65<br>110<br>24<br>0<br>0              |
| 8 <b>W15-SLB1</b><br>Depth<br>D-0.5 ft<br>D.5-2 ft<br>2-4 ft<br>4-6 ft<br>5-8 ft | 1,2,4-T<br>NT                                   | CB 1,2-DCB<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT       | 1,4-DCE<br>NT<br>NT<br>NT<br>NT<br>NT          | Benzene<br>NT<br>NT<br>NT<br>NT<br>NT          | Toluene<br>NT<br>NT<br>NT<br>NT<br>NT           | Yylene<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT      | PAH18<br>None<br>None<br>94903.5<br>153048.                           |                                          | TCDD TH<br>NT<br>NT<br>NT<br>NT<br>NT         | Q TBT<br>NT<br>NT<br>NT<br>NT<br>NT          |       | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                      | A.                   |                                         |                                          | n re-                           | Depth<br>0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft<br>6-8 ft<br>8-10 ft         | 7.8 U                                                 | CB 1,2-DC<br>4.2 U<br>NT<br>NT<br>3.7 UJ<br>4.3 U | 2.2 U<br>NT<br>NT<br>NT<br>1.9 U3         | 4.1 U<br>NT<br>NT<br>J 3.7 U            | 3.6 U<br>NT<br>NT<br>NT<br>3.1 U           | e Xylene<br>9.1 U<br>NT<br>NT<br>7.1 J<br>9.3 U | PAH18<br>15120.0<br>8489.0<br>14529.0<br>40980.0<br>99400.0<br>53690.0 | 4140<br>140<br>170<br>256              |
| D20-TB01<br>Depth<br>D-0.3 ft<br>D.3-2 ft<br>2-4 ft<br>L-6 ft<br>5-8 ft          | 1,2,4-T0<br>7.9 U<br>5.8 U<br>6.3 U<br>NT<br>NT | CB 1,2-DCB<br>4.2 U<br>3.1 U<br>3.4 U<br>NT<br>NT    | 1,4-DCB<br>2.2 U<br>1.6 U<br>1.7 U<br>NT<br>NT | Benzene<br>4.2 U<br>3 U<br>3.3 U<br>NT<br>NT   | Toluene<br>3.6 U<br>2.6 U<br>2.8 U<br>NT<br>NT  | Xylene<br>9.1 U<br>6.7 U<br>7.3 U<br>NT<br>NT   | PAH18<br>10467.0<br>9610.0<br>20580.0<br>137945.<br>93050.0           | PCBs<br>150<br>120<br>130<br>0 193<br>83 | TCDD TE<br>18.741<br>14.122<br>NT<br>NT<br>NT | Q TBT<br>2.9 U<br>2.5 U<br>2.8 U<br>NT<br>NT |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.     |                                                                      | -                    |                                         |                                          | 27                              | 0-0.3 ft<br>0.3-2 ft<br>2-4 ft<br>4-6 ft<br>6-8 ft                             | 1,2,4-TC<br>5.6 U<br>NT<br>NT<br>NT<br>NT<br>NT       | 3 U<br>NT<br>NT<br>NT<br>NT                       | 1.5 U<br>NT<br>NT<br>NT<br>NT             | 2.9 U<br>NT<br>NT<br>NT<br>NT           | 2.5 U<br>NT<br>NT<br>NT<br>NT              | 6.4 U<br>NT<br>NT<br>NT<br>NT                   | 6243.0<br>8680.0<br>5100.0<br>3542.0<br>4702.0                         | 32<br>NT<br>NT<br>NT                   |
| -10 ft<br>0-12 ft<br>2-14 ft<br>4-16 ft                                          | NT                                              | NT<br>NT<br>NT<br>NT                                 | NT<br>NT<br>NT<br>NT                           | NT<br>NT<br>NT<br>NT                           | NT<br>NT<br>NT<br>NT                            | NT<br>NT<br>NT                                  | 91770.0<br>101720.<br>42690.0<br>8441.0                               | 0 0                                      | NT<br>NT<br>NT<br>NT                          | 2.8 U<br>NT<br>NT<br>NT                      | 1 per | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Y                                                                    | -                    |                                         |                                          | Contraction of                  | 8-10 ft<br>10-12 ft<br>12-14 ft<br>14-16 ft                                    | NT<br>5.3 U                                           | 2.9 U<br>NT<br>2.9 U<br>NT                        | 1.5 U<br>NT<br>1.5 U<br>NT                | 2.8 U<br>NT<br>2.8 U<br>NT              | 2.4 U<br>NT<br>2.4 U<br>NT                 | 6.2 U<br>NT<br>1.3 J<br>NT                      | 10754.0<br>45170.0<br>148405.0<br>143070.0                             | 130<br>330                             |





- Sediment Sample Location
- Historical Sediment Sample Location
- Sediment Characterization and Survey Area (39.65 ac)

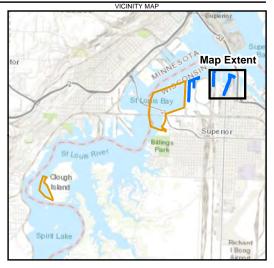
### Notes:

Sample results are in ug/kg. Fish TEQ results are in pg/g. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in **blue** exceed the MEC. Concentrations shown in red exceed the PEC. TCDD TEQ in text boxes calculated as Fish Dioxin TEQ (ND=1/2RL)

Acronyms:

Acronyms: J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. NT = Not tested. ug/kg - Micrograms per kilogram pg/g - Picograms per gram TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

PEC = Probable Effect Concentration


Map Date: 6/2/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Analyte                | Abbreviation | TEC     | MEC   | PEC   |  |
|------------------------|--------------|---------|-------|-------|--|
| Analyte                | Appreviation | (ug/kg) |       |       |  |
| 1,2,4-Trichlorobenzene | 1,2,4-TCB    | 8       | 13    | 18    |  |
| 1,2-Dichlorobenzene    | 1,2-DCB      | 23      |       | 23    |  |
| 1,4-Dichlorobenzene    | 1,4-DCB      | 31      | 60.5  | 90    |  |
| Benzene                | Benzene      | 57      | 83.5  | 110   |  |
| Toluene                | Toluene      | 890     | 1345  | 1800  |  |
| Xylene                 | Xylene       | 25      | 37.5  | 50    |  |
| Total PAH18 ND=1/2RL   | PAH18        | 1610    | 12205 | 22800 |  |
| Total PCBs ND=0        | PCBs         | 60      | 368   | 676   |  |
| FISH TEQ (ND=1/2RL)    | TCDD TEQ     | 0.85    | 11.2  | 21.5  |  |
| Tributyltin            | TBT          | 0.52    | 1.73  | 2.94  |  |



Figure 4-7 Tower Avenue Slip - Organics North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

| ND20-TB20         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         0.68 U         4.2         0.42 J         26.8         23.4         22900.0         25.1 J         522         0.045 U         21.3         0.13 U         93.5           0.3-2 ft         0.44 U         3.9         0.62         23.2         21.9         18800.0         53.2 J         550         0.092 U         107           2-4 ft         0.44 U         3.4         0.52 Z         23.5         27.4         19300.0         44.3 J         265         0.54         20.5         0.12 U         107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW15-SLB12         Depth       Antimony Arsenic       Cadmium       Chromium       Copper       Iron       Lead       Manganese       Mercury       Nickel       Silver       Zinc         D-0.5       ft       0.44       UJ       3.7       0.34       J       21.5       18.7       20400.0       16.9       600       0.087       J       T       0.12       U       75.3         0.5-2       ft       0.72       J       5.7       1.2       33.6       38       31400.0       70       491       0.45       23.6       0.62       2311         2-4       ft       0.29       J       4.1       0.7       25.3       41.7       23200.0       45.8       420       0.29       19.6       0.072       U       138         4-6       ft       0.32       UJ       4.1       0.47       J       2.9       25       20500.0       29.4       407       0.094       J       18.6       0.089       100                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth         Antimony         Arsenic         Cadmium         Chromium         Corper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.5 ft         0.3 U         3.1         0.25 J         25.3         15.4         16800.0         15.5 J         439         0.04 UJ         13.7         0.08 UJ         65.2           0.5-2 ft         0.48 J         4.5         0.5 J         22.7         27.7         1900.0         328 J         323         0.28         17         0.07 UJ         111           2-4 ft         0.33 UJ         4.0         0.58 J         25.8         29         21900.0         48.3 J         383         0.28         19.3         0.09 UJ         126           4-6 ft         0.42 UJ         4.6         0.49 J         39.9         31.3         29400.0         32.2 J         593         0.24         28.8         0.12 UJ         113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3         ft         0.83 U         6.4         0.54 J         35         36         37100.0         38.3         1190         0.066 U         33         0.18 J         138           0.3-2         ft         0.48 U         0.46 J         30.9         34.3         25500.0         30.9 J         315         0.043 U         24.3         0.11 U         99.7           2-4         ft         0.56 U         3.9         0.44 J         28.4         30         24200.0         25.4 J         577         0.14         24.2         0.11 U         89.1           4-6         ft         0.52 U         4.6         0.27 J         39.1         33.9         29900.0         9.4 J         588         0.033 U         36.1         0.098 U         55.6                                                                                                                                                                                                                                                   |
| ND20-TB18         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         0.65 U         4.2         0.33 J         29.4         20.8         21100.0         15 J         680         0.04 U         21         0.12 U         76.9           0.3-2 ft         0.41 U         3.5         0.24 J         20.2         18.1         18200.0         8.6 J         426         0.033 U         19.3         0.077 U         46           SW15-SLE18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND20-TB22           Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3         ft         1.2         U         7.2         0.65         J         39.1         55.4         39500.0         39.9         1180         0.072         J         152           0.3-2         ft         0.62         J         4.4         0.464         J         27.4         27.5         23800.0         30.6         562         0.122         U         106           2-4         ft         0.54         U         3.5         0.37         J         27         29         21400.0         25.7         430         0.063         J         23.7         0.11         86.9                                                                                                                                                                                                                                                                                                                                                                                                    |
| Depth       Antimony Arsenic       Cadmium       Chromium Copper       Iron       Lead       Manganese Mercury Nickel Silver Zinc         0-0.5 ft       0.31 UJ       4.0       0.48 J       26.7       25.8       24100.0       18.3 J       625       0.059 J- 21.8       0.087 UJ 87.2         ND20-TB17       Depth       Antimony Arsenic       Cadmium       Chromium Copper       Iron       Lead       Manganese Mercury Nickel Silver Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-6 ft 0.66 U 3.9 0.3 J 41.2 34.3 2900.0 10.6 336 0.042 U 37.1 0.13 U 66.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0-0.3 ft 0.63 U 4.8 0.37 J 26.7 25 24100.0 21.1 647 J 0.055 J 21 0.12 U 89.8<br>0.3-2 ft 0.44 U 3.5 0.21 J 18.6 16.9 15800.0 6.1 J 328 0.027 U 17.9 0.082 U 33.1<br>2-4 ft 0.41 U 2.3 0.17 J 9.9 7.3 9980.0 2.9 J 211 0.031 U 10.3 0.078 U 18.4<br>ND20-TB16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Depth         Antimony Arsenic         Cadmium         Chromium Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         0.82 U         4.4         0.42 J         30.4 <b>68.4 29100.0</b> 19.9 <b>732 J</b> 0.072 J <b>31.9</b> 0.15 U         105           0.3-2 ft         0.42 U         2.3         0.17 J         11.6         8         11000.0         9.8 J         247         0.028 U         10.7         0.8 U         20.8           ND20-TB14         Depth         Antimony Arsenic         Cadmium         Chromium Copper         Iron         Lead         Manganese Mercury         Nickel         Silver         Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0-0.3 ft 0.87 U 4.8 0.46 J 38.7 32.5 28400.0 28.2 777 J 0.052 U 27.2 0.16 U 106<br>0.3-2 ft 0.57 U 4.5 0.29 J 41.1 36.8 33200.0 10.3 J 576 0.035 U 40.6 0.11 U 62.3<br>SW15-SLB16<br>Depth Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0-0.5 ft 0.35 UJ 4.5         0.88 J 27.7         29.9         24200.0         25.2 J 644         0.063 J - 20.2         0.096 UJ 111           0.5-2 ft 0.39 J 4.5         0.48 J 32.2         37         26900.0         32.7 J 580         0.079 J - 22.6         0.075 UJ 114           2-4 ft 0.22 UJ 4.9         0.2 J 43.2         38.6         34800.0         11.1 J 670         0.036 UJ 32.1         0.062 UJ 60.7           ND20-TB12           Depth         Antimony Arsenic         Cadmium         Chromium Copper         Iron         Lead         Manganese Mercury Nickel         Silver         Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND20-TB21         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3         ft 1         5.5         0.58 J         37.8         30.3         32600.0         30.4 J         1090         0.065 U         29.5         0.19 U         139           0.3-2         ft 0.577 U         3.8         0.34 J         20.2         21.9         17100.0         23.3         451         0.13 J         17.5         0.12 U         71.5           2-4         ft         0.55 U         3.8         0.35 J         20.8         19.9         17500.0         26.5         409         0.13 J         17.5         0.1 U         71.5                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0         0.6.3         ft 1.1         0         6.4         0.6.7         41.6         44.4         3610.0         49.2         965         0         0.16         J         32.5         0.22         U         158           0.3-2         ft 0.73         0         6.1         0.58         J         0.8         40.6         25300.0         47.9         556         0.063         J         25.2         0.22         J         137           2-4         ft 0.57         J         2.3         J         30.8         40.6         25300.0         47.9         556         0.063         J         25.2         0.22         J         137           2-4         ft 0.57         J         4.6         0.57         J         2.3         475         0.11         J         26.2         0.31         J           4-6         ft 0.54         J         J         0.3         J         22         21100.0         6.9         213         0.035         U         J         12         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-6 ft 0.5 U 2.5 0.15 U 9.4 7.2 8920.0 3.2 221 0.026 U 9.4 0.094 U 17.5<br>SW15-SLB17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SW15-SLB14         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.5         ft         0.8         J         6.9         0.61         J         39         50.1         35900.0         53         829         0.13         J         29         0.17         U         166           0.5-2         ft         0.65         J         6.4         0.62         J         33.2         43.6         28900.0         57.4         545         0.15         J         0.09         U         164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth       Antimony Arsenic       Cadmium       Chromium       Copper       Iron       Lead       Manganese       Mercury       Nickel       Silver       Zinc         0-0.5       ft       0.31       UJ       3.5       0.43       J       26.6       22.9       20000.0       52.5       505       0.053       UJ       15.8       0.086       UJ       80         ND20-TBI5         Depth       Antimony Arsenic       Cadmium       Chromium       Copper       Iron       Lead       Manganese       Mercury       Nickel       Silver       Zinc         0-0.3       ft       1.1       6.7       0.61       41.4       41.5       36200.0       33.8       926       0.1       J       33.5       0.19       U       146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND20-TB09         Depth         Antimony Arsenic         Cadmium         Chronium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft l.l. J         8.5         0.82 J         49.5         64.8         43200.0         74.2         909 J         0.078 J         38.9         0.2 U         216           0.3-2 ft 0.74 U         6.1         1.2         39.1         62.7         28100.0         119         443         0.92         27.3         0.93 J         256           2-4 ft 0.65 U         5.4         0.9         31.9         45.5         27100.0         64.1         408         0.47         28.6         0.48 J         211           4-6 ft 0.68 U         4.1         0.4 J         35.1         34.5         27100.0         29.4         479         0.21 30         0.13 U         88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N20-TE13         N20-TE13           Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury Nickel         Silver         Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6-8 ft         0.54 U         4.3         0.23 J         39.5         39         30800.0         8.6         509         0.035 U         36.4         0.1 U         56.6           8-10 ft         0.44 U         4.7         0.19 J         33.5         32.8         25100.0         7.4         450         0.032 U         29.6         0.084 U         46.2           ND20-TB08         Depth         Antimony Arsenic         Cadmium         Chromium Copper         Iron         Lead         Manganese Mercury Nickel         Silver         Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-0.3 ft 0.88 U 6.6 0.6 J 39.8 40.4 36000.0 40.5 1000 J 0.069 J 31.8 0.17 U 149<br>0.3-2 ft 0.83 J 6.1 0.51 J 35.7 40.5 30800.0 36.4 830 0.069 J 29.3 0.17 J 132<br>2-3 ft 0.9 J 6.2 0.58 J 35.9 45.3 33500.0 42.8 J 743 0.05 U 30.6 0.13 U 138<br>ND20-TB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth         Antimony         Arsenic         Cadmium         Chronium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         1.6 J         8.3         0.72 J         43.8         56.5         38300.0         65.4         912 J         0.13 J         34.5         0.19 J         193           0-3.2 ft         0.95 U         8.7         0.85 J         43.8         65.4         36500.0         79.6         798         0.17 J         34.5         0.3 J         207           2-4 ft         0.92 U         7.0         0.81 J         40.1         47.5         31100.0         67.2         699         0.14 J         30.5         0.41 J         178           4-6 ft         0.47 U         2.4         0.23 J         14.1         12.7         13100.0         6.9         307         0.032 U         14.7         0.089 U         33.1                                                                                                                                                                                                                                                                |
| SW15-SLB13         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.5         ft         1.5         J         10.8         0.99         48.6         91.2         42700.0         123         849         0.086         35         0.11         266           0.5-5         ft         1.92         9.1         1         46.8         75.1         37200.0         118         719         0.23         32.9         0.18         244           2-4         ft         1.5         5         6.1         1.1         29.9         65.6         25000.0         152         349         1.1         21.7         1.8         290           4-6         ft         0.29         UJ         2.6         0.38         J         14.7         14.6         12700.0         10.2         202         0.17         12.4         0.081         U         37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND20-TBIO         Depth         Antimory Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3         ft         1.3         J         9.1         0.79         45.7         67         38500.0         78.1         941         0.071         U         36.9         0.17         U         213           0.3-2         ft         0.52         U         2.4         0.2         J         18.9         13.6         14500.0         5.9         206         0.032         U         15.1         0.98         26.3           2-4         ft         0.46         U         2.1         0.14         U         14.5         8.8         11000.0         3.7         112         0.035         11.4         0.088         26.3           4-6         ft         0.48         2.2         0.13         13.7         19.9         1300.0         4         119         0.035         12.9         0.091         37.4           6-8         ft         0.41         2.2         0.13         11.3         10.7         9730.0         3.2         194         0.029                            |
| ND20-TB06         Manganese Mercury         Nickel         Silver         Zinc           Depth         Antimony Arsenic         Cadmium         Chromium         Coper         Iron         Lead         Manganese Mercury         Nickel         Silver         Zinc           D-0.3         ft 1.6 J         9.5         0.88 J         44.4         88.2         42200.0         96.5         749         0.16 J         38.9         0.23 J         247           0.3-2         ft 0.83 J         6.4         0.93         44.6         55.6         31700.0         98.1         550         0.33         32.8         0.28 J         202           2-4 ft 0.9 J         6.7         1.6         36.8         71.7         25700.0         149         354         1.1         26.9         1.6         331           4-6 ft 1.2 J         6.4         0.84         19.3         49.7         20200.0         106         242         1.7         16.1         0.74 J         217           6-8 ft 0.76 J         3.7         0.41 J         16.4         34.3         13700.0         61.2         168         0.94         13.8         0.36 J         127           8-10 ft 0.45 U         2.5         0.19 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND20-TB07         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         1.5 J         10.3         1 J         47.7         97.3         46200.0         99.3         826         0.12 J         42.4         0.23 U         279           0-3.2 ft         0.54 U         4.7         0.72         26.1         43         18200.0         70.1         315         0.34         18.1         0.43 J         166           2-4 ft         0.71 U         6.3         1.4         32.6         73.6         24400.0         161         339         0.79         25         3.1         300           4-6 ft         0.74 U         6.1         1.4         26.6         75.3         21300.0         210         264         2.3         20.2         1.1 J         360           6-8 ft         0.62 U         3.2         0.36 J         14.2         26.5         12500.0         53         172         0.68         12         0.19 J         103           8-10 ft         0.4 U         2.3         0.15 J         10.3         8.4 <t< th=""></t<> |
| ND20-TB04         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         1.2 J         7.6         0.8         45.4         77.1         36200.0         86.4         686 J         0.054 U         36.3         0.13 U         221           0.3-2 ft         1.6 J         9.1         1.5         43.6         103         34100.0         171         656         0.47         33.3         2.4         556           2-4 ft         2 J         9.5         2.3         35.4         133         27900.0         312         333         4         29.8         1.6         664           4-6 ft         1.1 J         6.7         1         24.8         108         20400.0         192         296         2.9         21.8         1.4         428           4-6 ft         2.1 J         0.5 ft         7.7         8.92         21700.0         177         279         3         2.3         1.8         314           9.0 6 ft         0.5 ft         7.7         7.7         7.9         3         2.3         1.8         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B-10 ft         0.4 U         2.3         0.15 J         10.3         8.4         9220.0         3.4         204         0.032 U         9.4         0.076 U         19.1           ND20-TB05         Depth         Antimony Arsenic         Cadmiu         Chronium Copper         Iron         Lead         Manganese Mercury         Nickel         Silver         Zinc           0.3 2 ft         1.1 J         7.7         0.75 J         38.8         69.3         32700.0         82.5         614 J         0.051 U         31.4         0.14 U         194           0.3 - 2 ft         1.1 J         7.4         1.1         41         67.5         27900.0         131         488         0.47         28.9         0.32 J         226           2-4 ft         0.61 U         5         6.0         1.2         316         66         23100.0         124         316         0.66         24         2.8         281                                                                                                                                                                                                                                                                                   |
| 8-10 ft       0.54 J       4.7       0.56       17.3       65.2       19900.0       434       241       1.9       20       0.94 J       187         10-12 ft       0.55 U       3.2       0.46 J       16.9       43.4       15100.0       61.9       186       0.62       15.7       0.78 J       139         12-14 ft       0.49 U       3.2       0.24 J       16.1       20.9       13900.0       16.6       203       0.45       15       0.23 J       46.5         14-16 ft       0.5 U       2.0       0.15 U       10.9       8.5       10900.0       3.3       175       0.027 U       10.9       0.095 U       19         SW15-SLB11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-8         ft         1.5         J         8.0         2.2         34.8         109         21700.0         280         279         2.8         23.2         1.6         514           8-10         ft         0.5         J         2.8         0.41         J         1.9         28.8         10100.0         64.9         121         0.45         10.4         0.24         J           ND20-TBO3         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese Mercury         Nickel         Silver         Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           D-pth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           D-o.5         ft         0.75         J         S.2         0.36         Z         S.8         46.5         22900.0         56.1         542         0.043         UJ         2.1         U.078         U         101           2.4         ft         0.27         UJ         5.6         0.63         J         8         60.4         24600.0         90.3         558         0.16         J         30.5         0.075         U         155           4-6         ft         1.2         J         8.1         2         46.3         122         29600.0         300         502         1.5         28.3         1.9         510           6-8         ft         0.71         J         8.9         2.8         34.2         151         19700.0         456         350         5.8         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-0.3 ft 2.8 J 7.5 0.72 J 40.4 77.2 33400.0 75 594 0.1 J 34 0.15 U 204<br>0.3-2 ft 1.1 J 6.6 0.69 45 55.1 2600.0 77.3 622 0.042 U 26.4 0.12 U 154 J<br>2-4 ft 0.87 J 6.0 0.77 48.2 60.1 3250.0 95.5 660 0.045 U 26.7 0.12 U 155 J<br>4-6 ft 1.5 J 5.9 1.4 48.9 73.8 30200.0 172 551 0.65 32.4 0.98 J 276 J<br>6-8 ft 1.5 J 7.8 2 34.7 112 23500.0 25 539 0.65 32.4 0.98 J 276 J<br>8-10 ft 1.4 J 7.9 2.5 27.7 131 19800.0 313 218 7.7 22.6 1.9 622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND20-TB01         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese Mercury         Nickel         Silver         Zinc           0-0.3 ft         1.3 J         8.3         0.76 J         42.6         82.7         35000.0         87.2         598         0.14 J         34.9         0.15 U         218           0-0.3 ft         1.3 J         6.8         1         48.6         72.5         29500.0         73.8         525         0.038 U         38.1         0.14 U         147 J           2-4 ft         1.3 J         6.8         1.8         30.9         137         20000.0         253         293         1.9         23.6         5.5         393 J           6-8 ft         2.9 J         9.4         2.7         31.8         135         20600.0         386         225         6.2         24.2         681 J           8-10 ft         1.3 J         5.9         1.1         22.3         80.7         16800.0         299         345         11.3         17.2         1.2         433 J           12-14 ft         0.76 J         5.1         0.74 J         23.8         102         20400.0         210 <th>NDUCT FDQ2         NDUCT FDQ2         NDUCT FDQ2         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3         ft         0.58         J         4.9         0.3         J         21.8         32.6         20500.0         36.7         408         J         0.037         U         20.6         0.098         T/2.9           0-1.3         ft         1.55         J         4.9         0.3         J         21.8         32.6         20500.0         36.7         408         J         0.037         U         20.6         0.098         T/2.9           2-4         ft         1.3         5.5         0.41         J         26         34         23000.0         34.4         897         0.032         U         31.9         0.089         T/8.6           2-4         ft         0.67         J         4.7         0.51         J         32.9         0.32         U         31.9         0.10         T/9.6         J           4-6         ft         0.97         4.6         0.47         J&lt;47.7         36.5         24600.0         41.2         539         0.032         U         10.1</th> | NDUCT FDQ2         NDUCT FDQ2         NDUCT FDQ2         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3         ft         0.58         J         4.9         0.3         J         21.8         32.6         20500.0         36.7         408         J         0.037         U         20.6         0.098         T/2.9           0-1.3         ft         1.55         J         4.9         0.3         J         21.8         32.6         20500.0         36.7         408         J         0.037         U         20.6         0.098         T/2.9           2-4         ft         1.3         5.5         0.41         J         26         34         23000.0         34.4         897         0.032         U         31.9         0.089         T/8.6           2-4         ft         0.67         J         4.7         0.51         J         32.9         0.32         U         31.9         0.10         T/9.6         J           4-6         ft         0.97         4.6         0.47         J<47.7         36.5         24600.0         41.2         539         0.032         U         10.1                                  |



- Sediment Sample Location
- Historical Sediment Sample Location
- Sediment Characterization and Survey Area (39.65 ac)

## Notes:

Sample results are in mg/kg. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in blue exceed the MEC. Concentrations shown in red exceed the PEC.

Acronyms: J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. mg/kg - Milligrams per Kilogram TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

Map Date: 6/2/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Metal     | TEC     | MEC   | PEC   |  |  |  |  |
|-----------|---------|-------|-------|--|--|--|--|
| Metal     | (mg/kg) |       |       |  |  |  |  |
| Antimony  | 2       | 13.5  | 25    |  |  |  |  |
| Arsenic   | 9.8     | 21.4  | 33    |  |  |  |  |
| Cadmium   | 0.99    | 3     | 5     |  |  |  |  |
| Chromium  | 43      | 76.5  | 110   |  |  |  |  |
| Copper    | 32      | 91    | 150   |  |  |  |  |
| Iron      | 20000   | 30000 | 40000 |  |  |  |  |
| Lead      | 36      | 83    | 130   |  |  |  |  |
| Manganese | 460     | 780   | 1100  |  |  |  |  |
| Mercury   | 0.18    | 0.64  | 1.1   |  |  |  |  |
| Nickel    | 23      | 36    | 49    |  |  |  |  |
| Silver    | 1.6     | 1.9   | 2.2   |  |  |  |  |
| Zinc      | 120     | 290   | 460   |  |  |  |  |

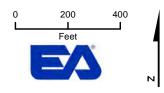
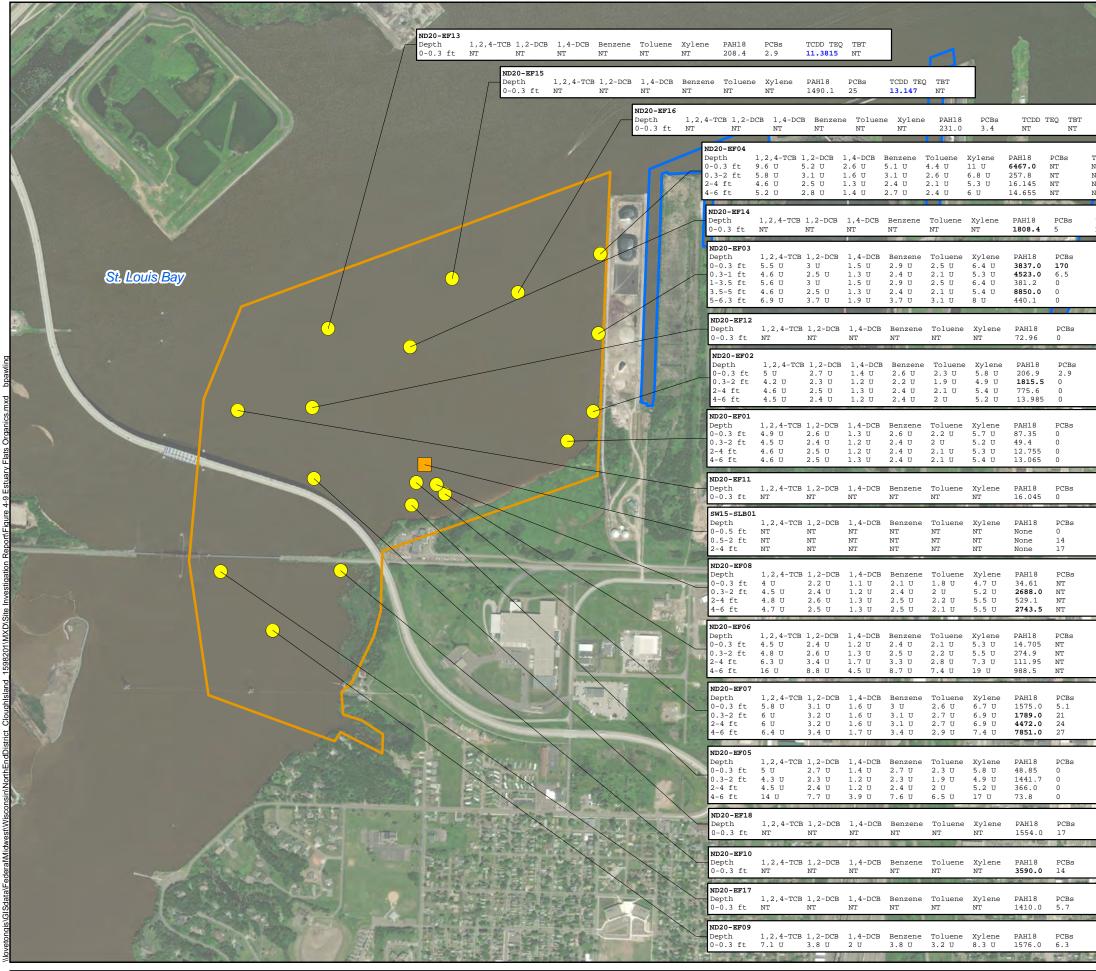
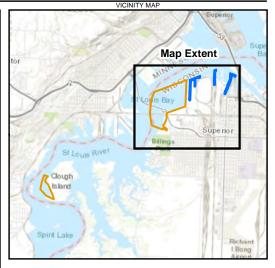





Figure 4-8 Tower Avenue Slip - Metals North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin



| 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                      |
| TT I<br>IT I<br>IT I                         | TBT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| TCDD TEQ<br>NT                               | TBT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| TCDD TEQ<br>NT<br>NT<br>NT<br>NT<br>NT       | TBT<br>NT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| TCDD TEQ<br>NT                               | TBT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| TCDD TEQ<br>NT<br>NT<br>NT<br>NT<br>NT       | TBT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| TCDD TEQ<br>2.463585<br>NT<br>NT<br>NT<br>NT | TBT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| TCDD TEQ<br>3.56348                          | TBT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| TCDD TEQ<br>NT<br>NT<br>NT<br>NT             | TBT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| TCDD TEQ<br>NT<br>NT<br>NT<br>NT<br>NT       | TBT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| TCDD TEQ<br>NT<br>NT<br>NT<br>NT<br>NT       | TBT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| TCDD TEQ<br>NT<br>NT<br>NT<br>NT<br>NT       | TBT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | с 11<br>1              |
| TCDD TEQ<br>6.25209<br>NT<br>NT<br>NT        | TBT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| TCDD TEQ<br>NT                               | TBT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| TCDD TEQ<br>NT                               | TBT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 記述                     |
| TCDD TEQ<br>7.1987                           | TBT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al and                 |
| TCDD TEQ<br>14.4235                          | TBT<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| and the state                                | States of Lot of | ALC: NO. OF THE OWNER. |



- Sediment Sample Location
- Historical Sediment Sample Location
- Sediment Characterization Area (468.74 ac)
  - Sediment Characterization
- and Survey Area (39.65 ac)

### Notes:

- Sample results are in ug/kg.
- Fish TEQ results are in pg/g.

Concentrations shown in **BOLD** exceed the TEC.

- Concentrations shown in **blue** exceed the MEC.
- Concentrations shown in red exceed the PEC.

TCDD TEQ in text boxes calculated as Fish Dioxin TEQ (ND=1/2RL)

## Acronyms:

J = Indicates that the concentration is an estimated value.

- U = Indicates the analyte was analyzed for but not detected.
- NT = Not tested.
- ug/kg Micrograms per kilogram
- pg/g Picograms per gram
- TEC = Threshold Effect Concentration
- MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration
- Map Date: 6/2/2021

Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Analyte                | Abbreviation | TEC     | MEC   | PEC   |  |
|------------------------|--------------|---------|-------|-------|--|
| Analyte                | Appreviation | (ug/kg) |       |       |  |
| 1,2,4-Trichlorobenzene | 1,2,4-TCB    | 8       | 13    | 18    |  |
| 1,2-Dichlorobenzene    | 1,2-DCB      | 23      |       | 23    |  |
| 1,4-Dichlorobenzene    | 1,4-DCB      | 31      | 60.5  | 90    |  |
| Benzene                | Benzene      | 57      | 83.5  | 110   |  |
| Toluene                | Toluene      | 890     | 1345  | 1800  |  |
| Xylene                 | Xylene       | 25      | 37.5  | 50    |  |
| Total PAH18 ND=1/2RL   | PAH18        | 1610    | 12205 | 22800 |  |
| Total PCBs ND=0        | PCBs         | 60      | 368   | 676   |  |
| FISH TEQ (ND=1/2RL)    | TCDD TEQ     | 0.85    | 11.2  | 21.5  |  |
| Tributyltin            | TBT          | 0.52    | 1.73  | 2.94  |  |

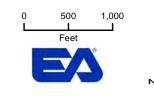
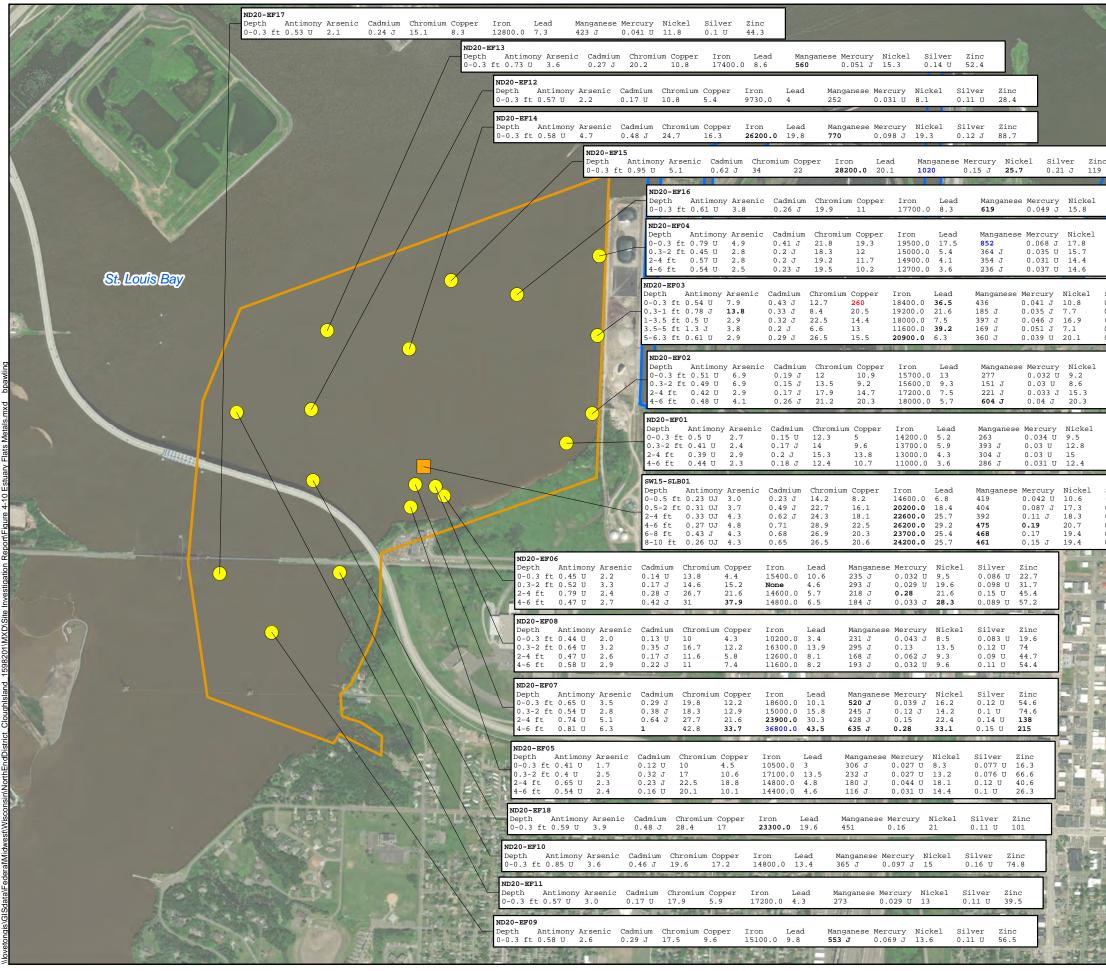
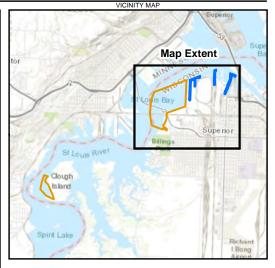





Figure 4-9 Estuary Flats - Organics North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin



| Zinc<br>19           |                                                                    |                                                         |                   | No. R. C. |
|----------------------|--------------------------------------------------------------------|---------------------------------------------------------|-------------------|-----------------------------------------------|
| 1 5                  | Silver<br>0.12 U                                                   | Zinc<br>51.9                                            |                   |                                               |
| 0<br>C<br>C          | Silver<br>.15 U<br>.085 U<br>.11 U<br>.11 U                        | Zinc<br>66.8<br>33.5<br>31.2<br>37.5                    |                   | A THE AND A                                   |
| 0.<br>0.<br>0.       | 095 U<br>095 U<br>12 U                                             | Zinc<br>77.7<br>86.4<br>47.6<br>32.4<br>52.7            | the second second | N 31 TH                                       |
|                      | Gilver<br>).097 U<br>).093 U<br>).08 U<br>).08 U                   |                                                         |                   | Re 11                                         |
| 0<br>0<br>0          | ilver<br>.094 U<br>.077 U<br>.075 U<br>.083 U                      | Zinc<br>29.3<br>27.9<br>28.2<br>23.2                    | 1 T               | TEL BUILT                                     |
| 0.<br>0.<br>0.<br>0. | lver<br>064 U<br>086 U<br>092 U<br>075 U<br>075 U<br>07 U<br>073 U | Zinc<br>38.6<br>82.5<br>119<br><b>129</b><br>111<br>113 | BILLING BURGEN    | The states of the                             |
|                      |                                                                    |                                                         |                   |                                               |



- Sediment Sample Location
- Historical Sediment Sample Location
- Sediment Characterization Area (468.74 ac)
- Sediment Characterization
- and Survey Area (39.65 ac)

### Notes:

Sample results are in mg/kg. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in blue exceed the MEC. Concentrations shown in red exceed the PEC.

Acronyms:

 $\begin{array}{l} J = Indicates that the concentration is an estimated value.\\ U = Indicates the analyte was analyzed for but not detected.\\ mg/kg - Milligrams per Kilogram\\ TEC = Threshold Effect Concentration\\ MEC = Midpoint Effect Concentration \end{array}$ 

MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

### Map Date: 6/2/2021

Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Metal     | TEC     | MEC   | PEC   |  |  |  |  |
|-----------|---------|-------|-------|--|--|--|--|
| Metal     | (mg/kg) |       |       |  |  |  |  |
| Antimony  | 2       | 13.5  | 25    |  |  |  |  |
| Arsenic   | 9.8     | 21.4  | 33    |  |  |  |  |
| Cadmium   | 0.99    | 3     | 5     |  |  |  |  |
| Chromium  | 43      | 76.5  | 110   |  |  |  |  |
| Copper    | 32      | 91    | 150   |  |  |  |  |
| Iron      | 20000   | 30000 | 40000 |  |  |  |  |
| Lead      | 36      | 83    | 130   |  |  |  |  |
| Manganese | 460     | 780   | 1100  |  |  |  |  |
| Mercury   | 0.18    | 0.64  | 1.1   |  |  |  |  |
| Nickel    | 23      | 36    | 49    |  |  |  |  |
| Silver    | 1.6     | 1.9   | 2.2   |  |  |  |  |
| Zinc      | 120     | 290   | 460   |  |  |  |  |

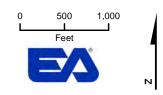



Figure 4-10 Estuary Flats - Metals North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

|                                                                                                         | SLR16-UR34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                 |                                                                                                    |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                                         | Depth         1,2,4-TCB         1,2-DCB         1,4-DCB         Benzend           0-0.5         ft         NT         NT         NT         NT           0.5-2         ft         NT         NT         NT         NT           2-4         ft         NT         NT         NT         NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Toluene Xylene PAH18 PCBs TCDD TEQ TBT<br>NT NT None 6.8 5.0265 NT<br>NT NT None 20 3.6842 NT<br>NT NT None 63 NT NT                                                                                          |                                                                                                    |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                    |
| buiwed                                                                                                  | 2 and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-0.3 ft NT NT NT<br>ND20-CL02                                                                                                                                                                                  |                                                                                                    |
| Organics mxd                                                                                            | the state of the s | Depth 1,2,4-TCB 1,2-DCB 1,<br>0-0.3 ft NT NT NT<br>ND20-CL03<br>Depth 1,2,4-TCB 1,2-DCB 1,                                                                                                                      | 4-DCB Benzene Toluene Xylene PAH18 PCBs TCDD TEQ TBT                                               |
| Isouth Isaac                                                                                            | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-0.3 ft NT NT NT<br>ND20-CL04<br>Depth 1,2,4-TCB 1,2-DCB 1,<br>0-0.3 ft NT NT NT                                                                                                                               | 4-DCB Benzene Toluene Xylene PAH18 PCBs TCDD TEQ TBT                                               |
| Figure 4-11 C                                                                                           | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND20-CL09                                                                                                                                                                                                       | 4-DCB Benzene Toluene Xylene PAH18 PCBs TCDD TEQ TBT                                               |
| aation Report                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND20-CL05<br>Depth 1,2,4-TCB 1,2-DCB 1,<br>0-0.3 ft NT NT NT<br>SLR16-UR31                                                                                                                                      | 4-DCB Benzene Toluene Xylene PAH18 PCBs TCDD TEQ TBT<br>NT NT NT 6373.0 15 10.4093 NT              |
| DQKite Investi                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 | NT NT NT None 0 11.751 NT                                                                          |
|                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND20-CL08           Depth         1,2,4-TCB         1,2-DCB         1,4           0-0.3 ft         NT         NT         NT           ND20-CL06                                                                 | -DCB Benzene Toluene Xylene PAH18 PCBs TCDD TEQ TBT<br>NT NT NT <b>2910.0</b> NT <b>26.1075</b> NT |
| loughtsland                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                    |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth 1,2,4-1CB 1,2-DCB 1,<br>0-0.5 ft NT NT NT<br>0.5-2 ft NT NT NT<br>2-4 ft NT NT NT<br>4-6 ft NT NT NT                                                                                                      | NT NT NT None 38 <b>22.797</b> NT<br>NT NT NT None 31 <b>7.6163</b> NT<br>NT NT NT None 0 NT NT    |
| Depth 1,2,4-TCB 1,2-DCB 1,4-DCB Benzene Toluene Xylene PAH18 PC<br>0-0.3 ft NT NT NT NT NT NT 1285.9 12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND20-CL07           Depth         1,2,4-TCB         1,2-DCB         1,           0-0.3 ft         NT         NT         NT                                                                                      | 4-DCB Benzene Toluene Xylene PAH18 PCBs TCDD TEQ TBT<br>NT NT NT 1465.0 15 30.81 NT                |
| VGISGata ta Federa Mildwest Wits                                                                        | SLR16-UR35<br>Depth 1,2,4-TCB 1,2-DCB 1,4-DCB Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                    |
| Movetongis                                                                                              | 0-0.5 ft NT NT NT NT<br>0.5-2 ft NT NT NT NT<br>2-4 ft NT NT NT NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NT         NT         None         0         4.0689         NT           NT         NT         None         0         4.8716         NT           NT         NT         None         14.8         NT         NT |                                                                                                    |



- Sediment Sample Location
- Historical Sediment Sample Location
- Sediment Characterization Area (468.74 ac)

### Notes:

Sample results are in ug/kg. Fish TEQ results are in pg/g. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in **blue** exceed the MEC. Concentrations shown in red exceed the PEC. TCDD TEQ in text boxes calculated as Fish Dioxin TEQ (ND=1/2RL) Acronyms:

J = Indicates that the concentration is an estimated value. J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. NT = Not tested. ug/kg - Micrograms per kilogram pg/g - Picograms per gram TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration DEC = Dreshold Effect Concentration

PEC = Probable Effect Concentration

Map Date: 6/2/2021

Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| A                      |              | TEC     | MEC   | PEC   |  |
|------------------------|--------------|---------|-------|-------|--|
| Analyte                | Abbreviation | (ug/kg) |       |       |  |
| 1,2,4-Trichlorobenzene | 1,2,4-TCB    | 8       | 13    | 18    |  |
| 1,2-Dichlorobenzene    | 1,2-DCB      | 23      |       | 23    |  |
| 1,4-Dichlorobenzene    | 1,4-DCB      | 31      | 60.5  | 90    |  |
| Benzene                | Benzene      | 57      | 83.5  | 110   |  |
| Toluene                | Toluene      | 890     | 1345  | 1800  |  |
| Xylene                 | Xylene       | 25      | 37.5  | 50    |  |
| Total PAH18 ND=1/2RL   | PAH18        | 1610    | 12205 | 22800 |  |
| Total PCBs ND=0        | PCBs         | 60      | 368   | 676   |  |
| FISH TEQ (ND=1/2RL)    | TCDD TEQ     | 0.85    | 11.2  | 21.5  |  |
| Tributyltin            | TBT          | 0.52    | 1.73  | 2.94  |  |

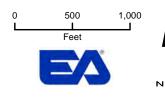
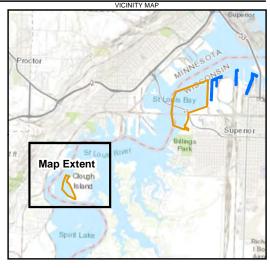




Figure 4-11 Clough Island - Organics North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

| and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D-CL10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ch Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Zinc<br>3 ft 0.52 U 2.5 0.16 U 13.8 6.7 12600.0 5 294 0.036 U 10.4 0.099 U 36 J<br>ND20-CL01<br>Depth Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Zinc<br>0-0.3 ft 1.2 U 5.9 0.54 J 26.9 20.2 2000.0 17.1 110 0.16 J 21.3 0.22 U 82.6 J                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The second                                                                                                                                                                                                                                              | ND20-CL02       Depth       Antimony Arsenic       Cadmium       Chromium       Copper       Iron       Lead       Manganese       Mercury       Nickel       Silver       Zinc         0-0.3 ft       0.79 U       4.1       0.5 J       22.1       15.3       17600.0       13.5       573       0.051 J       17.4       0.15 U       84.9 J         ND20-CL03       Depth       Antimony Arsenic       Cadmium       Chromium       Copper       Iron       Lead       Manganese       Mercury       Nickel       Silver       Zinc                                                                                                                                                                                                                                                                |
| Bation Report Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-0.3 ft 0.48 U 5.8 0.54 28.2 24.9 <b>21800.0</b> 14.3 <b>876</b> 0.12 U <b>23.8</b> 0.11 J 85.8 J<br><b>ND20-CL04</b><br>Depth Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Zinc<br>0-0.3 ft 1.1 U 5.3 0.6 J 31.6 22.2 <b>24800.0</b> 13.8 <b>1040</b> 0.14 J <b>24.4</b> 0.2 U 92.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MXD/Site Investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND20-CL09         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         1.4 U         7.5         1.3         35.6         28.9         27600.0         24.3         1390         0.26 J         27.5         0.27 U         147 J           ND20-CL05         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         0.46 U         6.1         0.72         25.6         28.9         20200.0         23.2         1160         0.3 J         21.4         0.12 J         114 J |
| 1288301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLR16-UR31         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.5         ft 1.3         0         8.8         0.91         26.8         28.8         22300.0         24.7         1130         0.28         J         10.25         U         127           0.5-2         ft 1.8         1.5         J         45.1         46         37000.0         35.4         968         0.3         J         34.5         0.51         201           2-4         ft 1.8         10.9         0.95         J         83.2         54.3         36100.0         12.3         594         0.039         51.1         0.36         148                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.3 ft         0.47 U         6.7         0.86         25.4         25.9         18700.0         34.5         1060         0.42 J         21         0.096 J         132 J           SLR16-UR29           Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.5 ft         0.41 J         7.7         1.3         33.9 J         35.7 J         27600.0         46.1 J         487         0.28         29.9 J         0.052 U         210 J         |
| ND20-CL08<br>Depth Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Zinc<br>0-0.3 ft 0.47 U 7.5 1.1 33.4 32.5 26200.0 39.6 672 0.31 J 28.4 0.14 J 200 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5-2 ft 0.48 J 10.1 1.1 42.6 J 42.4 J 29400.0 56.6 J 651 1.1 35.8 J 0.059 U 236 J<br>2-4 ft 0.33 J 8.0 0.23 J 20.4 J 19.7 J 12300.0 5.7 J 411 0.034 J 17.6 J 0.061 U 35.8 J<br>4-6 ft 0.56 U 3.4 0.32 J 29.7 J 17.5 J 16900.0 5.7 J 292 0.025 J 21.7 J 0.11 U 59.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ND20-CL07<br>Depth Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Zinc<br>0-0.3 ft 0.46 U 7.8 1 26.8 29.5 23000.0 44.8 576 0.44 J 24.3 0.086 U 184 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SLR16-UR35         Depth         Antimony Arsenic         Cadmium         Chromium         Copper         Iron         Lead         Manganese         Mercury         Nickel         Silver         Zinc           0-0.5         10.36         0         3.3         0.26         J         17.1         15.3         17900.0         5.3         455         0.033         16.9         0.071         U         39.7           0.5-2         ft         0.38         U         3.0         0.22         J         14.5         13.9         16700.0         5.2         252         0.01         J         14.3         0.075         U         34.2           2-4         ft         2         J         3.4         0.32         J         17.8         18.3         17700.0         34.1         341         0.038         J         1.0         180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



### Legend

Sediment Sample Location

Historical Sediment Sample Location



Sediment Characterization Area (468.74 ac)

#### Notes:

Sample results are in mg/kg. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in blue exceed the MEC. Concentrations shown in red exceed the PEC.

Acronyms: J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. mg/kg - Milligrams per Kilogram TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

Map Date: 6/2/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

| Metal     | TEC     | MEC       | PEC   |  |  |
|-----------|---------|-----------|-------|--|--|
| Metal     | (mg/kg) |           |       |  |  |
| Antimony  | 2       | 2 13.5 25 |       |  |  |
| Arsenic   | 9.8     | 21.4      | 33    |  |  |
| Cadmium   | 0.99    | 3         | 5     |  |  |
| Chromium  | 43      | 76.5      | 110   |  |  |
| Copper    | 32      | 91        | 150   |  |  |
| Iron      | 20000   | 30000     | 40000 |  |  |
| Lead      | 36      | 83        | 130   |  |  |
| Manganese | 460     | 780       | 1100  |  |  |
| Mercury   | 0.18    | 0.64      | 1.1   |  |  |
| Nickel    | 23      | 36        | 49    |  |  |
| Silver    | 1.6     | 1.9       | 2.2   |  |  |
| Zinc      | 120     | 290       | 460   |  |  |

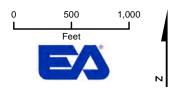
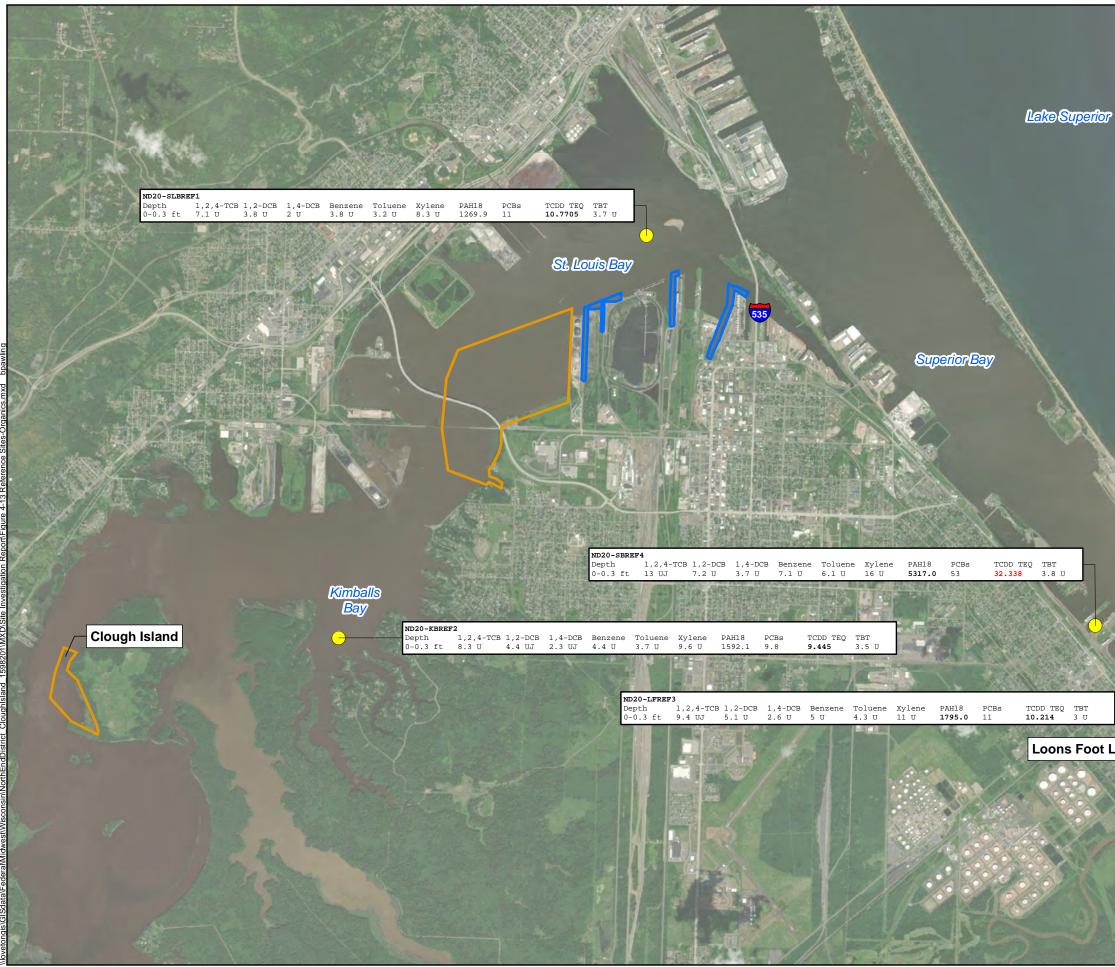




Figure 4-12 Clough Island - Metals North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin





#### Legend

- Sediment Sample Location
- Sediment Characterization Area (468.74 ac)
- Sediment Characterization and Survey Area (39.65 ac)

#### Notes:

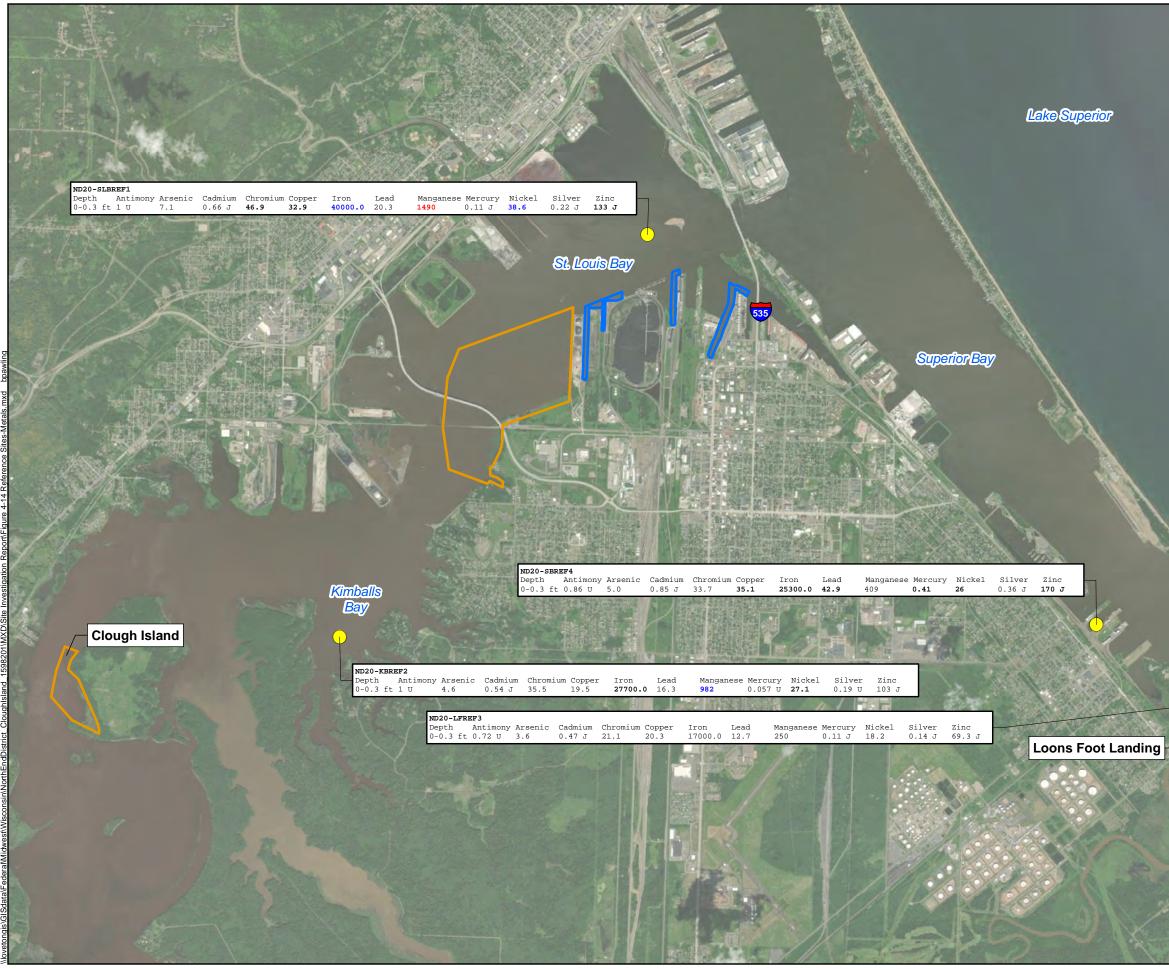
Sample results are in ug/kg. Fish TEQ results are in pg/g. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in **blue** exceed the MEC. Concentrations shown in red exceed the PEC. TCDD TEQ in text boxes calculated as Fish Dioxin TEQ (ND=1/2RL)

Acronyms:

Acronyms: J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. NT = not tested. ug/kg - Micrograms per kilogram pg/g - Picograms per gram TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

PEC = Probable Effect Concentration

Map Date: 6/2/2021


Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

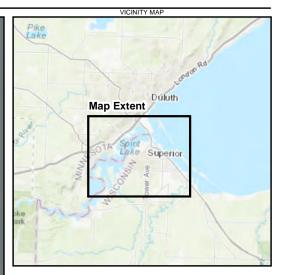

| A                      |              | TEC        | MEC   | PEC   |
|------------------------|--------------|------------|-------|-------|
| Analyte                | Abbreviation | (ug/kg)    |       |       |
| 1,2,4-Trichlorobenzene | 1,2,4-TCB    | 8          | 13    | 18    |
| 1,2-Dichlorobenzene    | 1,2-DCB      | 23         |       | 23    |
| 1,4-Dichlorobenzene    | 1,4-DCB      | 31 60.5 90 |       | 90    |
| Benzene                | Benzene      | 57         | 83.5  | 110   |
| Toluene                | Toluene      | 890        | 1345  | 1800  |
| Xylene                 | Xylene       | 25         | 37.5  | 50    |
| Total PAH18 ND=1/2RL   | PAH18        | 1610       | 12205 | 22800 |
| Total PCBs ND=0        | PCBs         | 60         | 368   | 676   |
| FISH TEQ (ND=1/2RL)    | TCDD TEQ     | 0.85       | 11.2  | 21.5  |
| Tributyltin            | TBT          | 0.52       | 1.73  | 2.94  |



Figure 4-13 Reference Sites-Organics North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

Loons Foot Landing





#### Legend

- Sediment Sample Location
- Sediment Characterization Area (468.74 ac)



Sediment Characterization and Survey Area (39.65 ac)

#### Notes:

Sample results are in mg/kg. Concentrations shown in **BOLD** exceed the TEC. Concentrations shown in blue exceed the MEC. Concentrations shown in red exceed the PEC.

Acronyms:

J = Indicates that the concentration is an estimated value. U = Indicates the analyte was analyzed for but not detected. mg/kg - Milligrams per Kilogram TEC = Threshold Effect Concentration MEC = Midpoint Effect Concentration PEC = Probable Effect Concentration

Map Date: 6/2/2021

Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

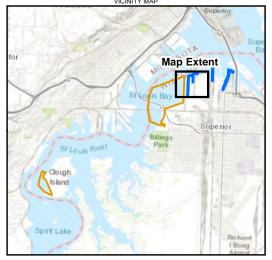

| Matel     | TEC       | MEC   | PEC   |  |
|-----------|-----------|-------|-------|--|
| Metal     | (mg/kg)   |       |       |  |
| Antimony  | 2 13.5 25 |       |       |  |
| Arsenic   | 9.8       | 21.4  | 33    |  |
| Cadmium   | 0.99      | 3     | 5     |  |
| Chromium  | 43        | 76.5  | 110   |  |
| Copper    | 32        | 91    | 150   |  |
| Iron      | 20000     | 30000 | 40000 |  |
| Lead      | 36        | 83    | 130   |  |
| Manganese | 460       | 780   | 1100  |  |
| Mercury   | 0.18      | 0.64  | 1.1   |  |
| Nickel    | 23        | 36    | 49    |  |
| Silver    | 1.6       | 1.9   | 2.2   |  |
| Zinc      | 120       | 290   | 460   |  |



Figure 4-14 Reference Sites-Metals North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin







# Legend

### **Microscopic Coal Result**

|            | •                                                       |
|------------|---------------------------------------------------------|
|            | 0 - 3 %                                                 |
|            | 3.1 - 5 %                                               |
| $\bigcirc$ | 5.1 - 12 %                                              |
| $\bigcirc$ | 12.1 - 69 %                                             |
|            | > 69 %                                                  |
| $\bigcirc$ | Not Tested                                              |
|            | Sediment Characterization Area (468.74 ac)              |
|            | Sediment Characterization<br>and Survey Area (39.65 ac) |

Notes:

Sample results are in %.

Acronyms: ND = Non Detect.

Map Date: 6/2/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

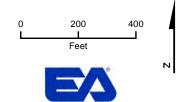
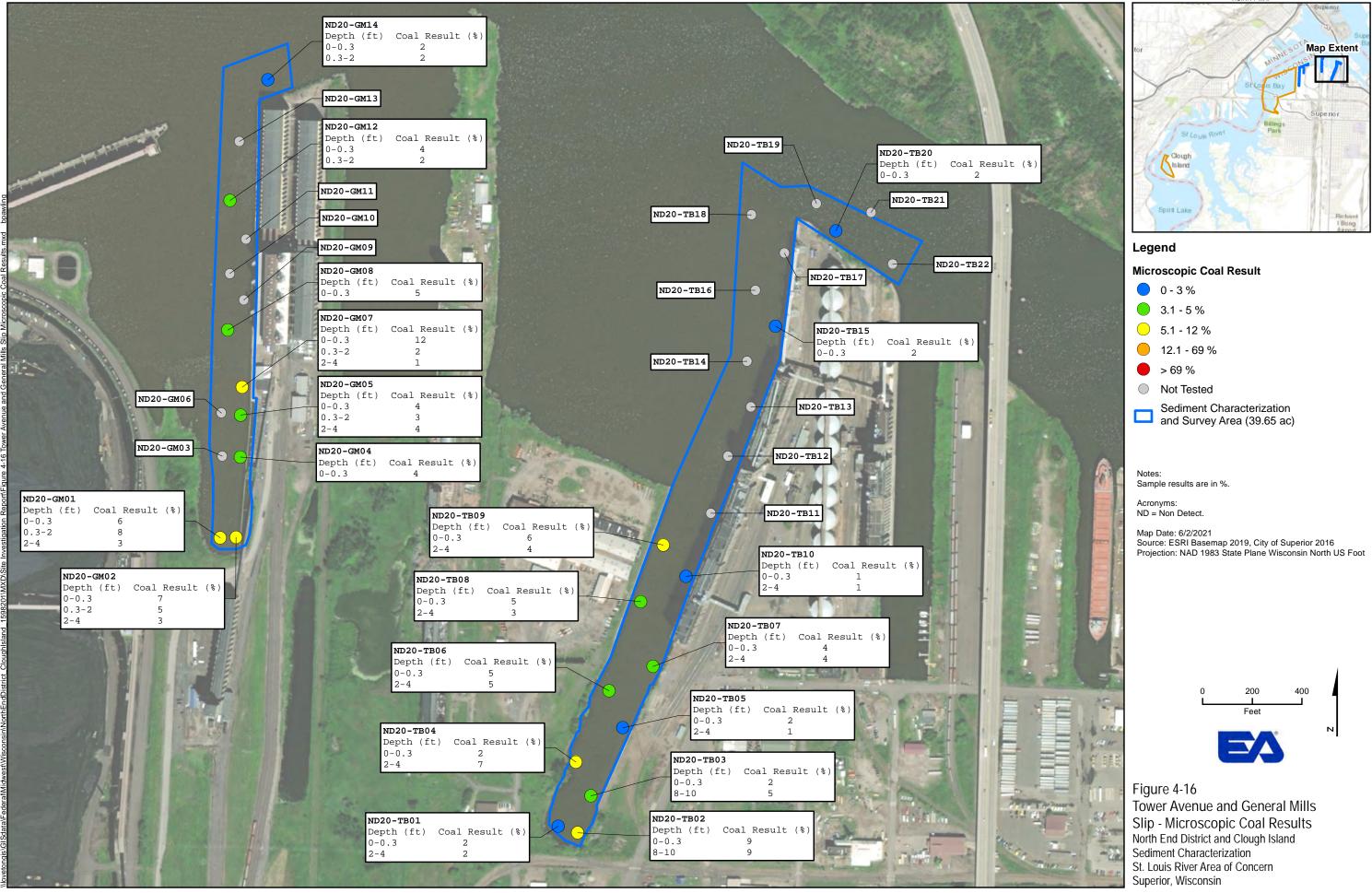
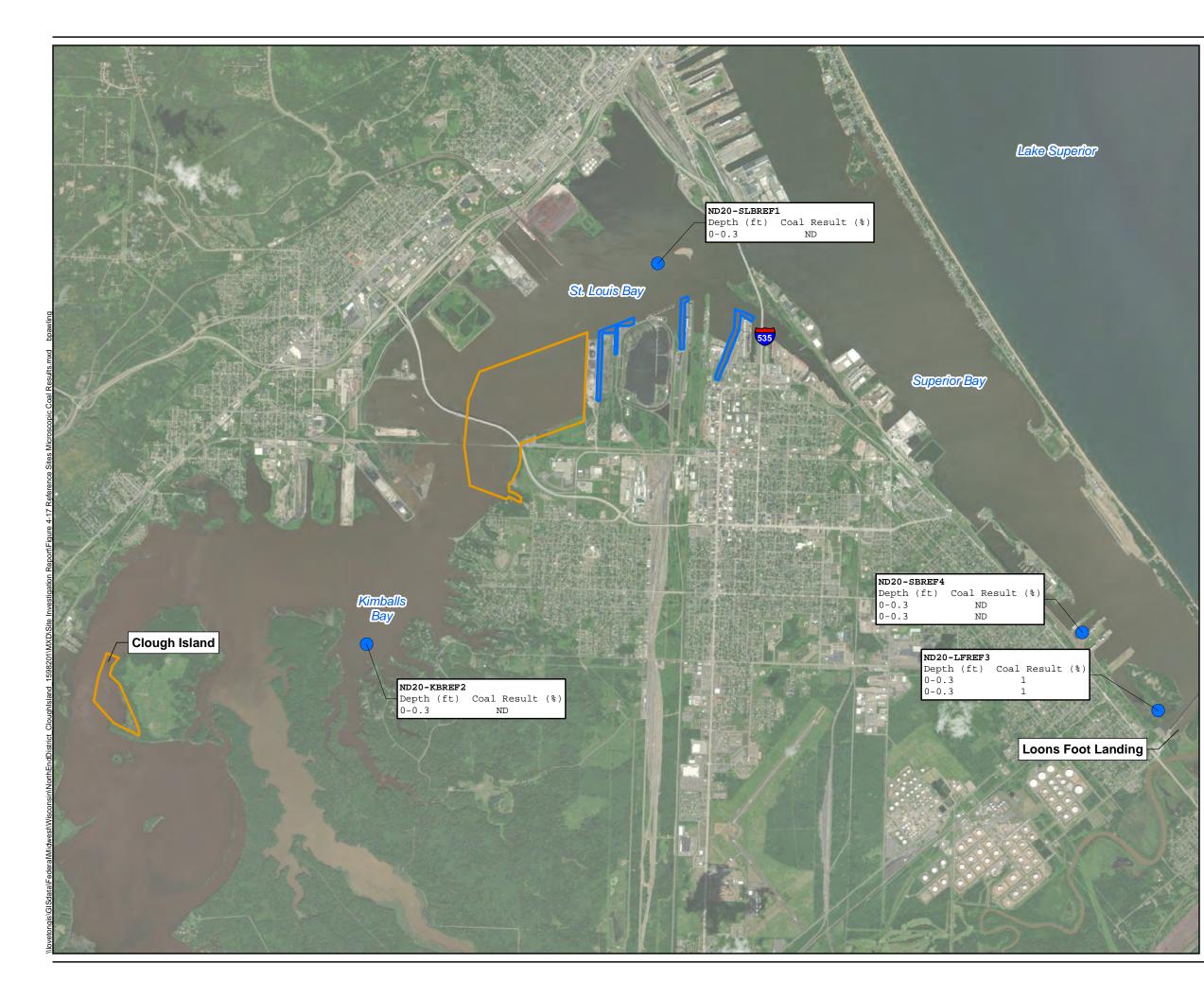





Figure 4-15 Hallet Dock **8** Slip and Oil Barge Slip - Microscopic Coal Results North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin



|            | 0 - 3 %                                              |
|------------|------------------------------------------------------|
|            | 3.1 - 5 %                                            |
| $\bigcirc$ | 5.1 - 12 %                                           |
|            | 12.1 - 69 %                                          |
|            | > 69 %                                               |
| $\bigcirc$ | Not Tested                                           |
|            | Sediment Characterization and Survey Area (39.65 ac) |





# Legend

# Microscopic Coal Result

| 0              | - 3 %                                                 |
|----------------|-------------------------------------------------------|
| 3.             | 1 - 5 %                                               |
| <mark> </mark> | 1 - 12 %                                              |
| 12             | 2.1 - 69 %                                            |
| >              | 69 %                                                  |
| 🔲 Se           | ediment Characterization Area (468.74 ac)             |
|                | ediment Characterization<br>nd Survey Area (39.65 ac) |

Notes: Sample results are in %.

Acronyms: ND = Non Detect.

Map Date: 6/2/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

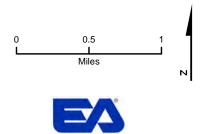



Figure 4-17 Reference Sites-Microscopic Coal Results North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

# Figure 4-18: Common petroleum products and boiling point ranges (TPHCWG 1998) North End District and Clough Island Sediment Characterization St. Louis River Area of Concern, Superior, Wisconsin

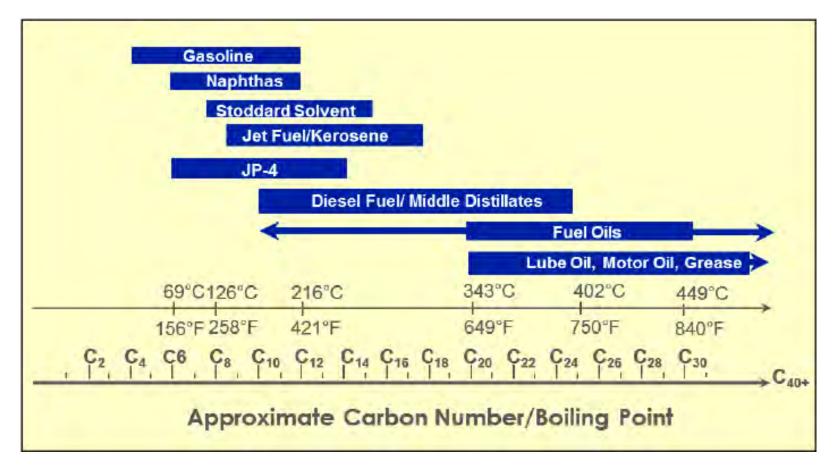
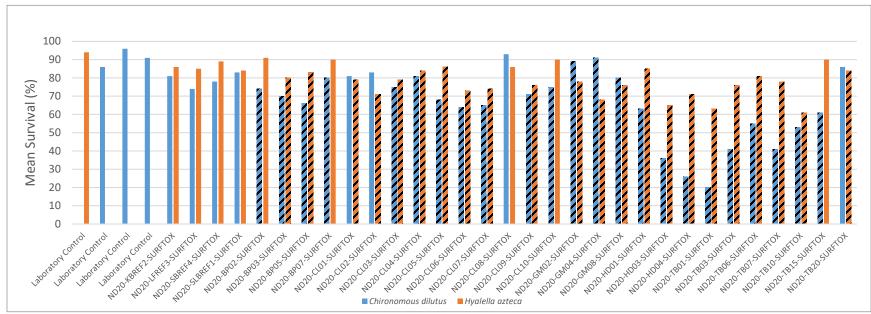
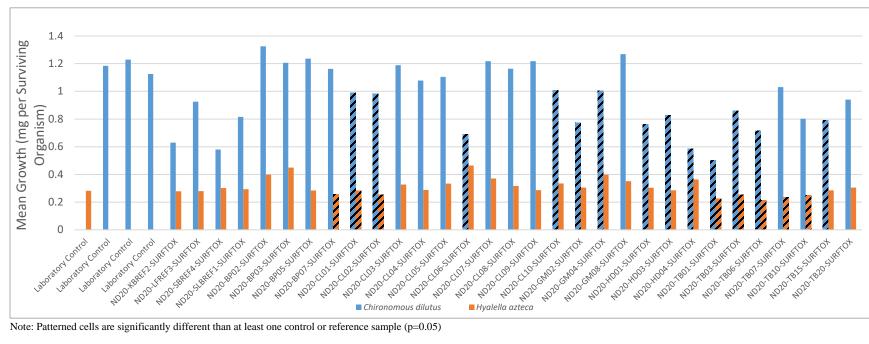
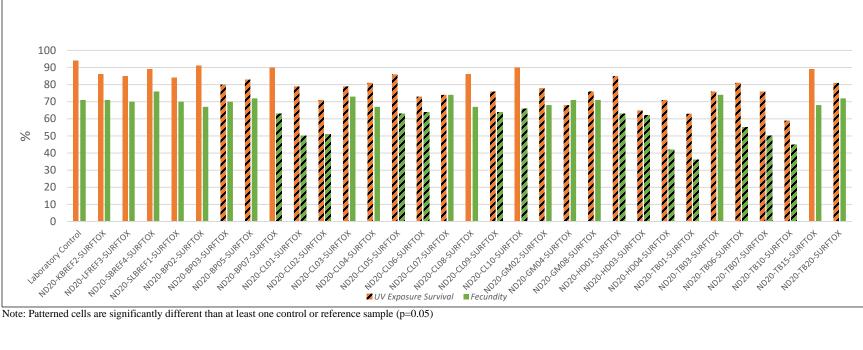
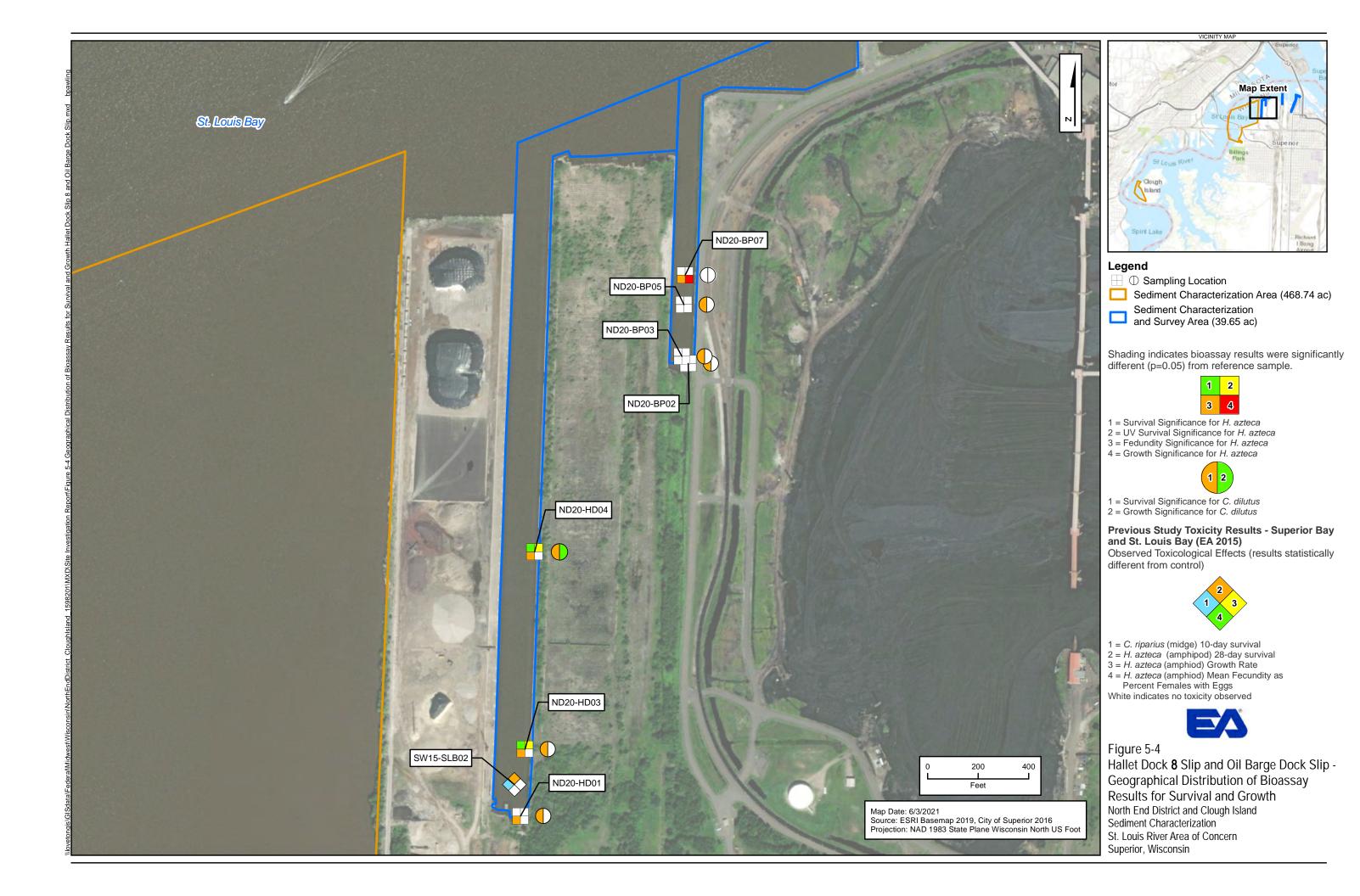




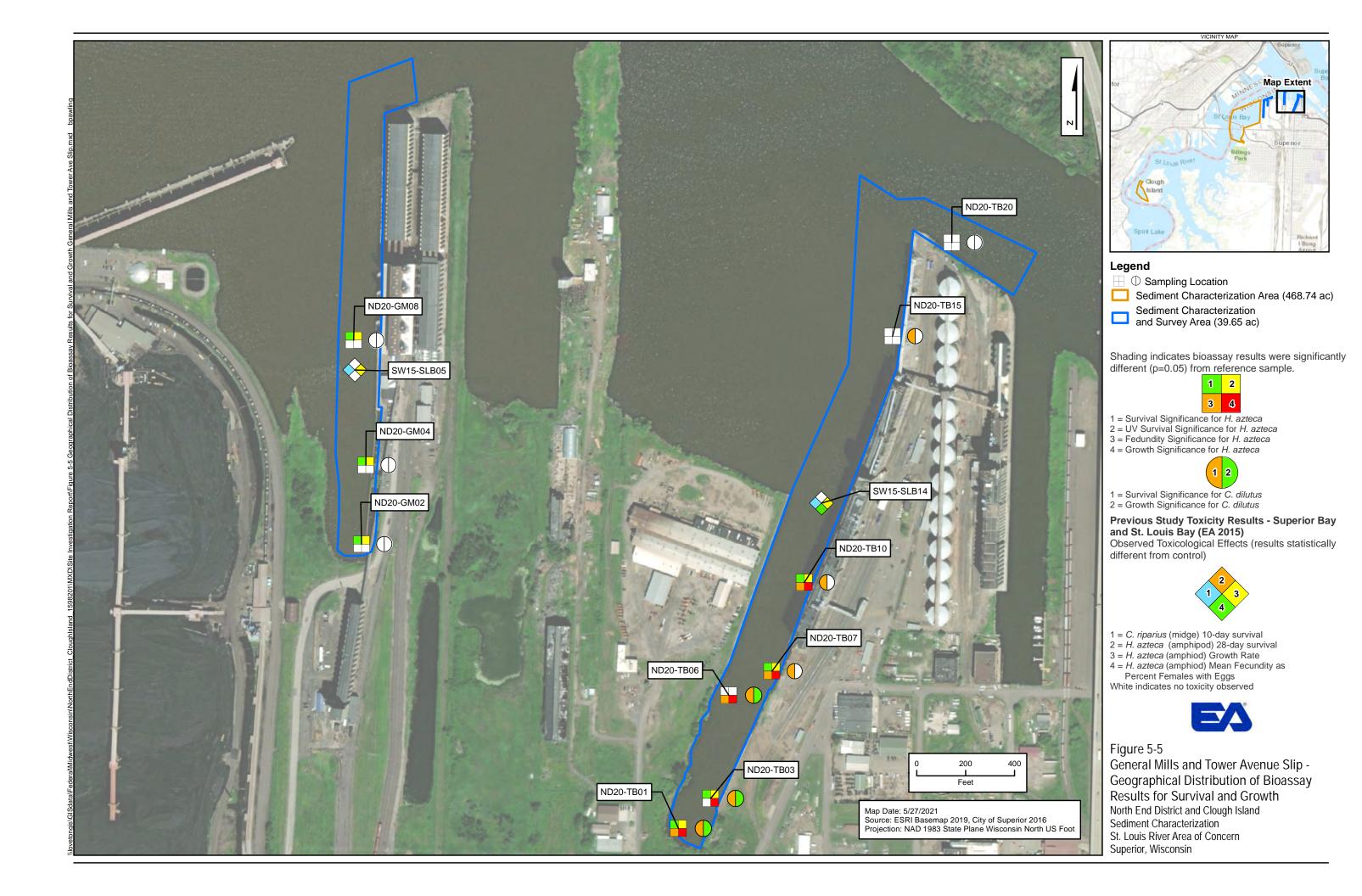

Figure 5-1: Sediment Toxicity Testing Survival Results North End District and Clough Island Sediment Characterization St. Louis River Area of Concern, Superior, Wisconsin

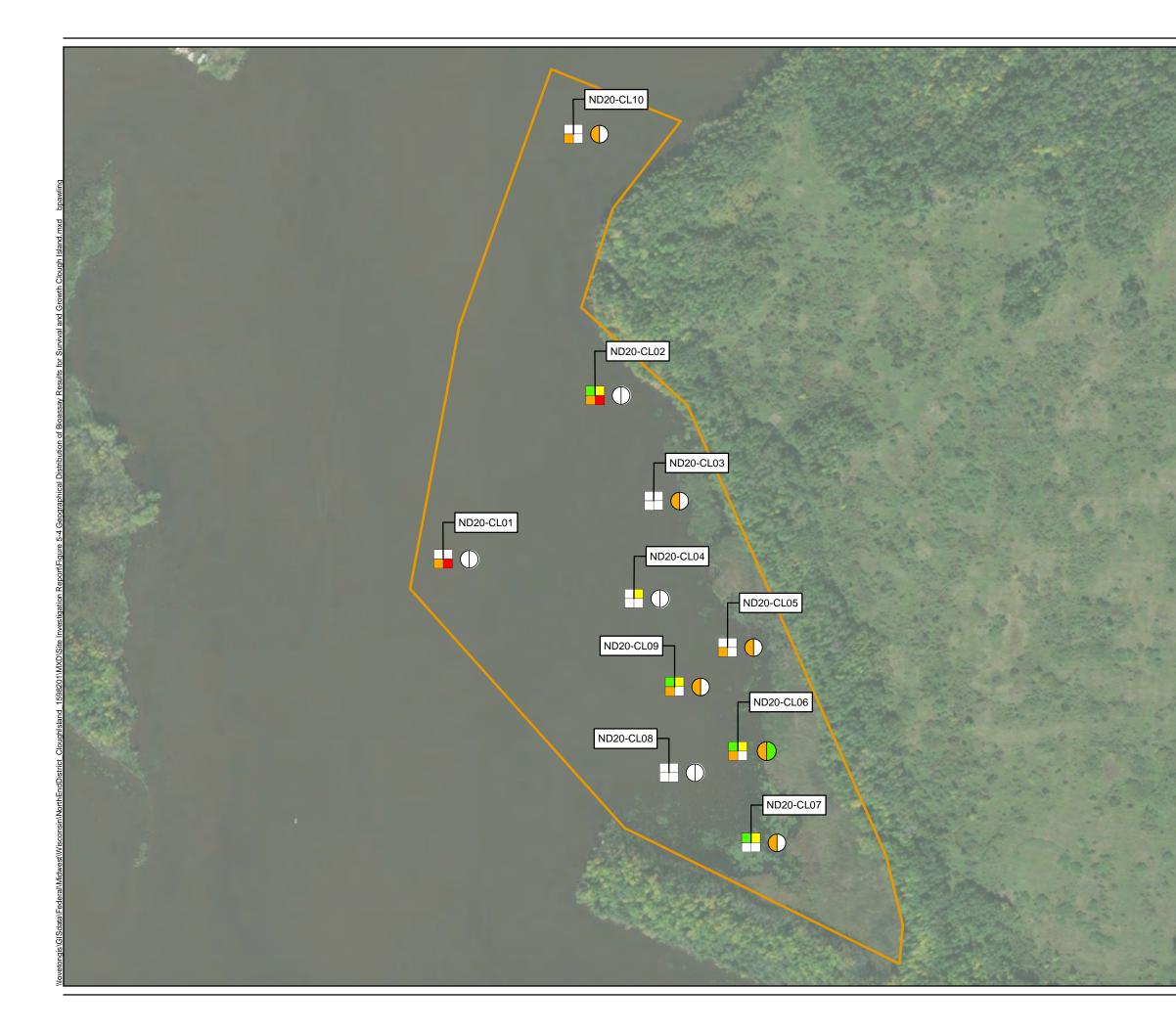


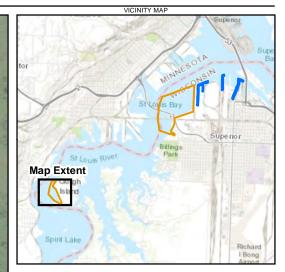

Note: Patterned cells are significantly different than at least one control or reference sample (p=0.05)




**Figure 5-2: Sediment Toxicity Testing Growth Results** North End District and Clough Island Sediment Characterization St. Louis River Area of Concern, Superior, Wisconsin


Note: Patterned cells are significantly different than at least one control or reference sample (p=0.05)


# Figure 5-3: Sediment Toxicity Testing UV Exposure Survival and Fecundity Results North End District and Clough Island Sediment Characterization St. Louis River Area of Concern, Superior, Wisconsin




Note: Patterned cells are significantly different than at least one control or reference sample (p=0.05)









# Legend

 $\square$   $\bigcirc$  Sampling Location

Sediment Characterization Area (468.74 ac)

Shading indicates bioassay results were significantly different (p=0.05) from reference sample.



- 1 = Survival Significance for *H. azteca* 2 = UV Survival Significance for *H. azteca* 3 = Fedundity Significance for *H. azteca* 4 = Growth Significance for *H. azteca*



- 1 = Survival Significance for *C. dilutus* 2 = Growth Significance for *C. dilutus*

Map Date: 2/10/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

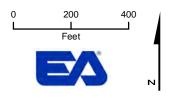
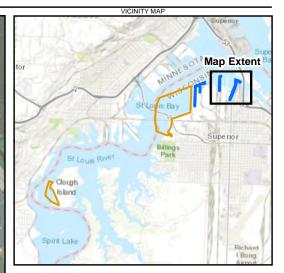



Figure 5-6 Clough Island - Geographical Distribution of Bioassay Results for Survival and Growth North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                   | ND20-GM14           |                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ND20-GM13           |                                     | ND20-TB19                                   | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND20-TB20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                   |                     |                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - the second sec |                     | ND20-GM12           | 9.14 March 19                       | ND20-TB18                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WHO TEQ (pg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ND20-GM11           |                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| - Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | ND20-GIWITI         |                                     | ND20-TB17                                   | + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tributyltin (ug/kg) 38.1 <sup>F</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 /                 |                     |                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ND20-GM08           |                                     |                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND20-GM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                  | Analyte             | Result                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | WHO TEQ (pg/g       |                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND20-TB22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| P ND20-GN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109                 | Mercury (mg/kg      | g) <0.0206                          |                                             | ND20-TB16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Tributyltin (ug/    | /kg) 79.1 <sup>PT, SLBREF1,SE</sup> |                                             | ND20-TBTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second se |
| R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                     | 1 1 27                              | ND20-TB14                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND20-TB15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND20-GM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0/                  |                     |                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                                     | ND20-TB13                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WHO TEQ (pg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND20-GM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 1 Provention        |                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | ND20-GM04           |                                     | ND20-TB12 🚽 🛛 💙 💋                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tributyltin (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND20-GM0<br>ND20-GM0<br>ND20-GM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | Analyte             | Result                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND20-GM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | WHO TEQ (pg/g)      | NT                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND20-GM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                   | Mercury (mg/kg)     | <0.0202<br>28.7 PT, SLBREF1, SBREF4 | - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Tributyltin (ug/kg) | 28.7                                | ND2                                         | 0-TB11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND20-GM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                     |                                     | The The                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| stigati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | ND20-GM02*          |                                     |                                             | 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Investigation of the second seco                                                                                                                                                                                                                                             |                     | Analyte             | Result                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND20-TB10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A)Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | WHO TEQ (pg/g)      | NT                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | Mercury (mg/kg)     | <0.0198                             | A ALT I                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WHO TEQ (pg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 98201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Tributyltin (ug/kg) | 22                                  | ND20-TB08                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury (mg/kg)<br>Tributyltin (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| InsinivorthEndDistrict CloughIsland 1598201/IMXDVSIte II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                     |                                     | E REAL                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND20-TB06           |                     | The second second                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND20-TB07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte             | Result              | her a                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lict C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WHO TEQ (pg/g)      | NT                  | A A A A                             |                                             | A STATE IN COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WHO TEQ (pg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dD ist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mercury (mg/kg)     | <0.02               | THE STREET                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Here and the second sec | Tributyltin (ug/kg) | <2.11               | ND20-TB04                           | ND20-TB05                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tributyltin (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                     |                                     | 1 (852.1 / Sa                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND20-TB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1                   | 7                                   | anomatil (2), The                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                                     |                                             | TAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WHO TEQ (pg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| eraM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND20-TB01           |                     |                                     | ND20-TB02                                   | and the second s | Mercury (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| alFed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analyte             | Result              |                                     |                                             | the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tributyltin (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Solution of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WHO TEQ (pg/g)      | NT                  |                                     |                                             | 1 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mercury (mg/kg)     | <0.0197             | a production of the                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (eto)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tributyltin (ug/kg) | <1.78               |                                     |                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Marine marine       |                                     | All And | No. 1 March 1 March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |


| Result             |
|--------------------|
| NT                 |
| <0.0203            |
| PT, SLBREF1,SBREF4 |

| Result     |  |
|------------|--|
| NT         |  |
| <0.021     |  |
| 21.3       |  |
| the states |  |

| Result  |   |
|---------|---|
| NT      |   |
| <0.0208 |   |
| <2.94   |   |
|         | 1 |
|         |   |

-

# Result NT <0.0206 <3.15 Result NT 0.043 <1.76



## Legend

Sample Location

Sediment Characterization and Survey Area (39.65 ac)

| Analyte            | Sample Location | Reference<br>Area Mean* | Units |
|--------------------|-----------------|-------------------------|-------|
|                    | PRETEST         | <0.0197                 |       |
|                    | ND20-SLBREF1    | <0.02                   |       |
| Mercury            | ND20-KBREF2     | < 0.0205                | mg/kg |
|                    | ND20-LFREF3     | 0.029                   |       |
|                    | ND20-SBREF4     | 0.027                   |       |
|                    | PRETEST         | 20.2                    |       |
|                    | ND20-SLBREF1    | 18.1                    |       |
| WHO TEQ (ND=1/2DL) | ND20-KBREF2     | 16.9                    | pg/g  |
|                    | ND20-LFREF3     | 20.6                    |       |
|                    | ND20-SBREF4     | 16.4                    |       |
|                    | PRETEST         | <1.73                   |       |
|                    | ND20-SLBREF1    | <1.86                   |       |
| Tributyltin        | ND20-KBREF2     | 14.8                    | ug/kg |
|                    | ND20-LFREF3     | 8.26                    |       |
|                    | ND20-SBRFF4     | <1.95                   |       |

#### Notes:

Grey shading indicates result showed statistical difference from reference location in superscript:

PT-Pretest

SLBREF1-St. Louis Bay reference location

KBREF2-Kimballs Bay reference location LFREF3-Loons Foot Landing reference location

SBREF4-Superior Bay reference location

Lipid normalized values reported for WHO TEQ and Tributyltin WHO TEQ calculated using nondetects equal to 1/2 the detection limit \*Location showed statistical difference from reference (SLBREF1) for dibutyltin

#### Acronyms:

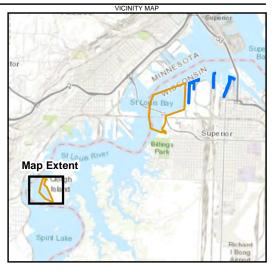
pg/g - picograms per gram mg/kg - milligrams per kilogram ug/kg - micrograms per kilogram NT = Not tested

Map Date: 6/3/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot



Figure 5-7 Tissue Results Summary General Mills and Tower Avenue Slip North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

| The second s |         |  |
|----------------------------------------------------------------------------------------------------------------|---------|--|
| ND20-CL10                                                                                                      |         |  |
| Analyte                                                                                                        | Result  |  |
| WHO TEQ (pg/g)                                                                                                 | 15.7    |  |
| Mercury (mg/kg)                                                                                                | <0.0207 |  |
| Tributyltin (ug/kg)                                                                                            | NT      |  |
|                                                                                                                |         |  |


The las

| ND20-CL01           |                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Analyte             | Result                                                                                                          |
| WHO TEQ (pg/g)      | 53.7                                                                                                            |
| Mercury (mg/kg)     | <0.02                                                                                                           |
| Tributyltin (ug/kg) | NT                                                                                                              |
|                     | A STATE OF A |

| And a second |         |
|----------------------------------------------------------------------------------------------------------------|---------|
| ND20-CL09                                                                                                      |         |
| Analyte                                                                                                        | Result  |
| WHO TEQ (pg/g)                                                                                                 | 7.44    |
| Mercury (mg/kg)                                                                                                | <0.0208 |
| Tributyltin (ug/kg)                                                                                            | NT      |
|                                                                                                                |         |

| ND20-CL08           |        |
|---------------------|--------|
| Analyte             | Result |
| WHO TEQ (pg/g)      | 14     |
| Mercury (mg/kg)     | 0.0254 |
| Tributyltin (ug/kg) | NT     |
|                     |        |

|                                 | and the second        |    |
|---------------------------------|-----------------------|----|
|                                 |                       |    |
|                                 |                       |    |
| A. A.                           |                       |    |
| ND20-CL02                       | 242620                | ٦  |
| Analyte                         | Result                |    |
| WHO TEQ (pg/g)                  | 60                    |    |
| Mercury (mg/kg)                 | <0.0198               | 1  |
| Tributyltin (ug/kg)             | NT                    |    |
|                                 | and the state         |    |
| A State Martin                  | and the second second | 2  |
| ND20-CL03                       |                       |    |
| Analyte                         | Result                |    |
| WHO TEQ (pg/g)                  | 22.7                  |    |
| Mercury (mg/kg)                 | <0.0202               |    |
| Tributyltin (ug/kg)             | NT                    |    |
| and a the Read of the Photo and | a and                 | -  |
| ND20-CL04                       |                       |    |
| Analyte                         | Result                |    |
| WHO TEQ (pg/g)                  | 60.6                  |    |
| Mercury (mg/kg)                 | <0.021                |    |
| Tributyltin (ug/kg)             | NT                    |    |
| ND20-CL05                       | and the second second | ٦  |
| Analyte                         | Result                |    |
| WHO TEQ (pg/g)                  | 14.1                  |    |
| Mercury (mg/kg)                 | <0.0205               |    |
| Tributyltin (ug/kg)             | NT                    |    |
|                                 | and the second        |    |
| ND20-CL06                       |                       | 1  |
| Analyte                         | Result                |    |
| WHO TEQ (pg/g)                  | 11.9                  |    |
| Mercury (mg/kg)                 | <0.0203               | 1  |
| Tributyltin (ug/kg)             | NT                    | 1  |
|                                 |                       |    |
| ND20-CL07                       |                       | 1  |
| Analyte                         | Result                |    |
| WHO TEQ (pg/g)                  | 12.6                  |    |
| Mercury (mg/kg)                 | <0.0205               |    |
|                                 |                       | 11 |



# Legend

Sample Location

Sediment Characterization Area (468.74 ac)

| Analyte            | Sample Location | Reference<br>Area Mean* | Units |  |  |
|--------------------|-----------------|-------------------------|-------|--|--|
| Mercury            | PRETEST         | <0.0197                 | mg/kg |  |  |
|                    | ND20-SLBREF1    | <0.02                   |       |  |  |
|                    | ND20-KBREF2     | <0.0205                 |       |  |  |
|                    | ND20-LFREF3     | 0.029                   |       |  |  |
|                    | ND20-SBREF4     | 0.027                   |       |  |  |
| WHO TEQ (ND=1/2DL) | PRETEST         | 20.2                    |       |  |  |
|                    | ND20-SLBREF1    | 18.1                    |       |  |  |
|                    | ND20-KBREF2     | 16.9                    | pg/g  |  |  |
|                    | ND20-LFREF3     | 20.6                    |       |  |  |
|                    | ND20-SBREF4     | 16.4                    |       |  |  |
| Tributyltin        | PRETEST         | <1.73                   |       |  |  |
|                    | ND20-SLBREF1    | <1.86                   | ug/kg |  |  |
|                    | ND20-KBREF2     | 14.8                    |       |  |  |
|                    | ND20-LFREF3     | 8.26                    |       |  |  |
|                    | ND20-SBREF4     | <1.95                   |       |  |  |

#### Notes:

Shading indicates result showed statistical difference from reference location in superscript:

PT-Pretest

SLBREF1-St. Louis Bay reference location KBREF2-Kimballs Bay reference location LFREF3-Loons Foot Landing reference location SBREF4-Superior Bay reference location Lipid normalized values reported for WHO TEQ and Tributyltin

WHO TEQ calculated using nondetects equal to 1/2 the detection limit

Acronyms: pg/g - picograms per gram mg/kg - milligrams per kilogram ug/kg - micrograms per kilogram NT = Not tested

Map Date: 6/3/2021 Source: ESRI Basemap 2019, City of Superior 2016 Projection: NAD 1983 State Plane Wisconsin North US Foot

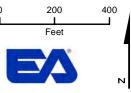
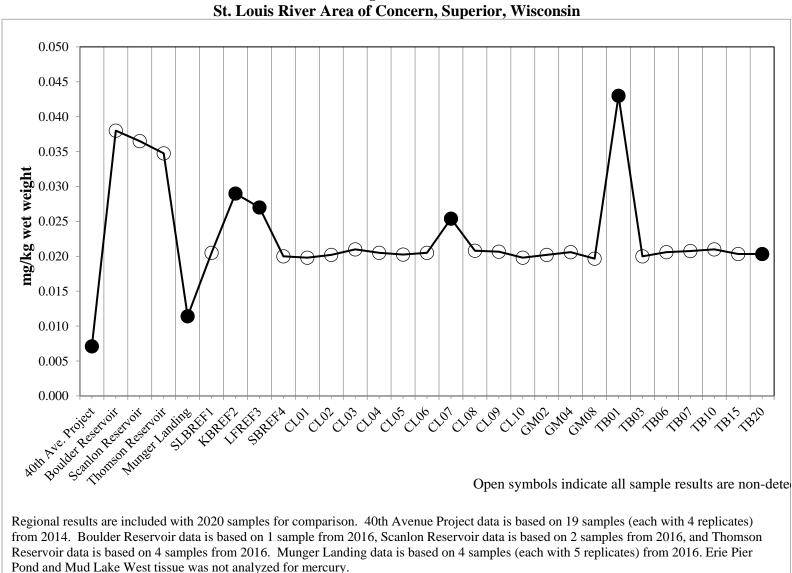
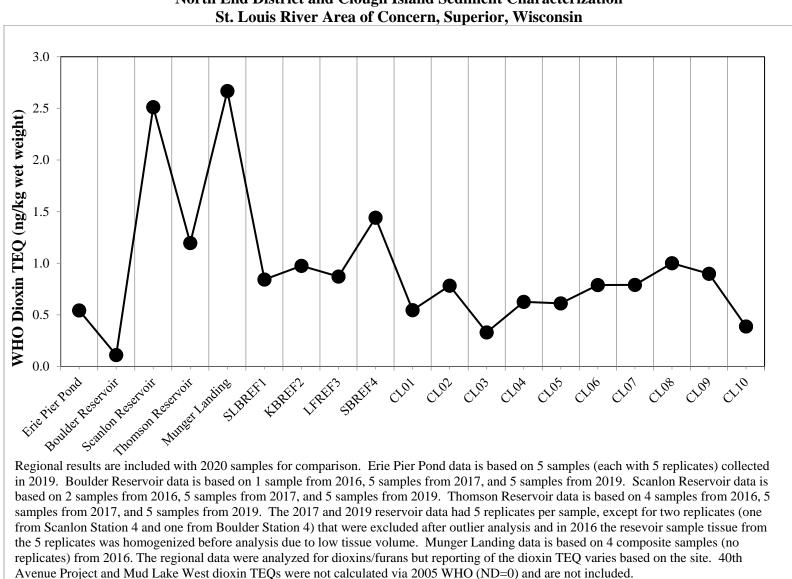





Figure 5-8 Tissue Results Summary Clough Island North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin



### Figure 5-9: Mean Plot for Mercury in *Lumbriculus variegatus* Tissue North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior Wisconsin



### Figure 5-10: Mean Plot for 2005 WHO Dioxin TEQ (ND=0) in *Lumbriculus variegatus* Tissue North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior Wisconsin

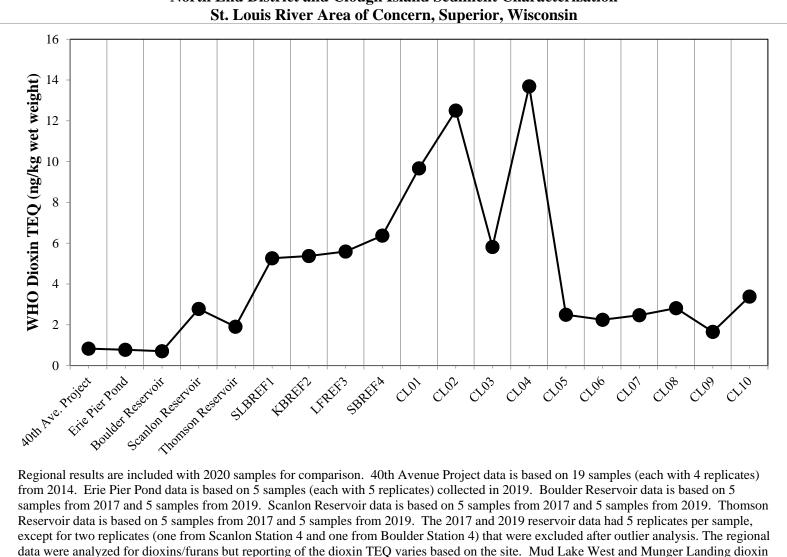
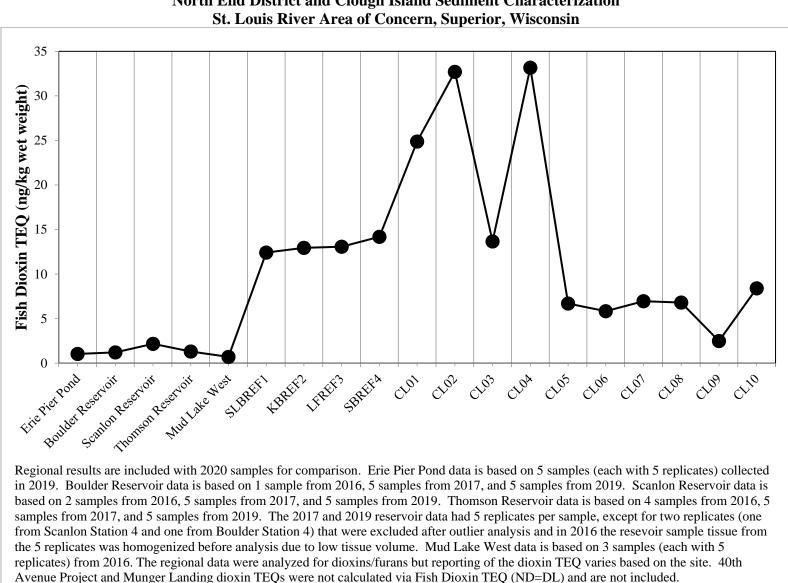
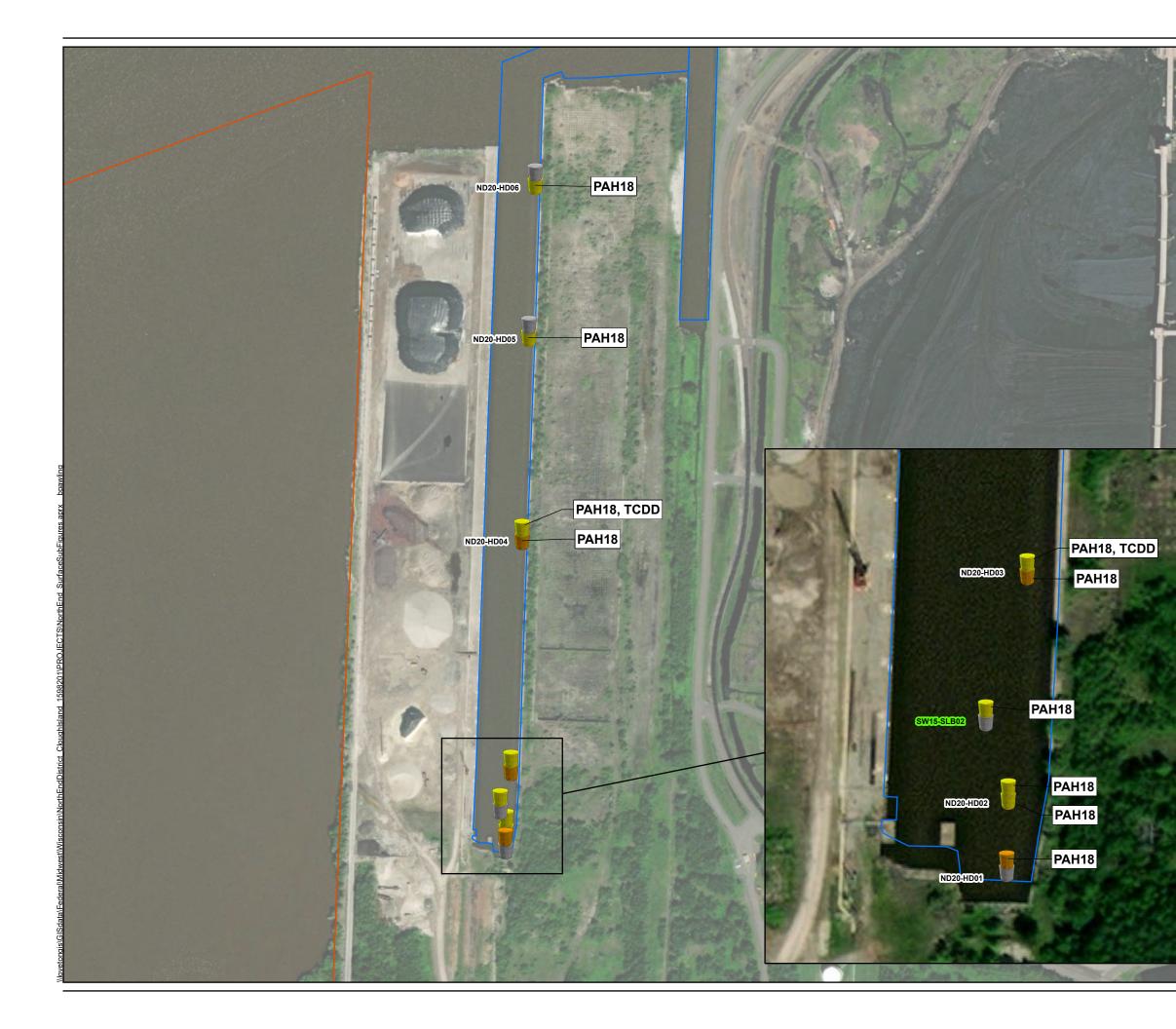





Figure 5-11: Mean Plot for 2005 WHO Dioxin TEQ (ND=1/2DL) in Lumbriculus variegatus Tissue North End District and Clough Island Sediment Characterization

TEQs were not calculated via 2005 WHO (ND=1/2DL) and are not included.







# Exceedance



No Exceedance ≥ TEC ≥ MEC PEC ≥ Sediment Characterization Area Sediment Characterization and Survey Area

# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



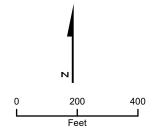





Figure 6-1 Summary of SQG Exceedance for Surface and Subsurface Organics Hallet Dock 8 Slip North End District and Clough Island Sediment Characterization St. Louis River Area of Concern

Superior, Wisconsin





# Exceedance



No Exceedance ≥ TEC ≥ MEC PEC ≥ Sediment Characterization Area Sediment Characterization and Survey Area

# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



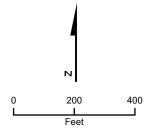
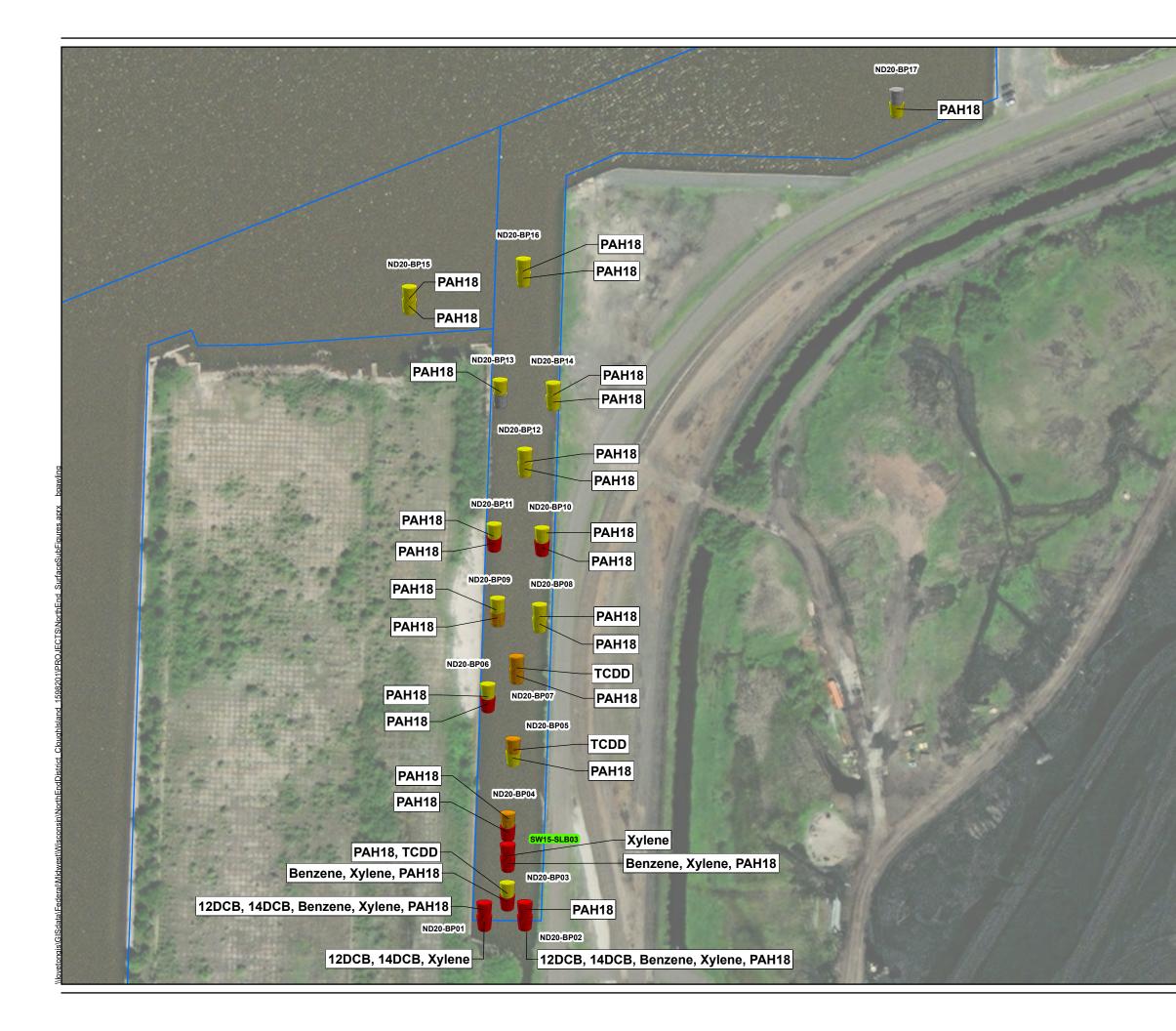






Figure 6-2 Summary of SQG Exceedance for Surface and Subsurface Metals Hallet Dock 8 Slip North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin





#### Exceedance



No Exceedance ≥ TEC ≥ MEC ≥ PEC Sediment Characterization Area Sediment Characterization and Survey Area

# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



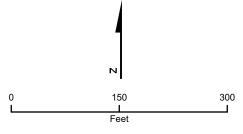
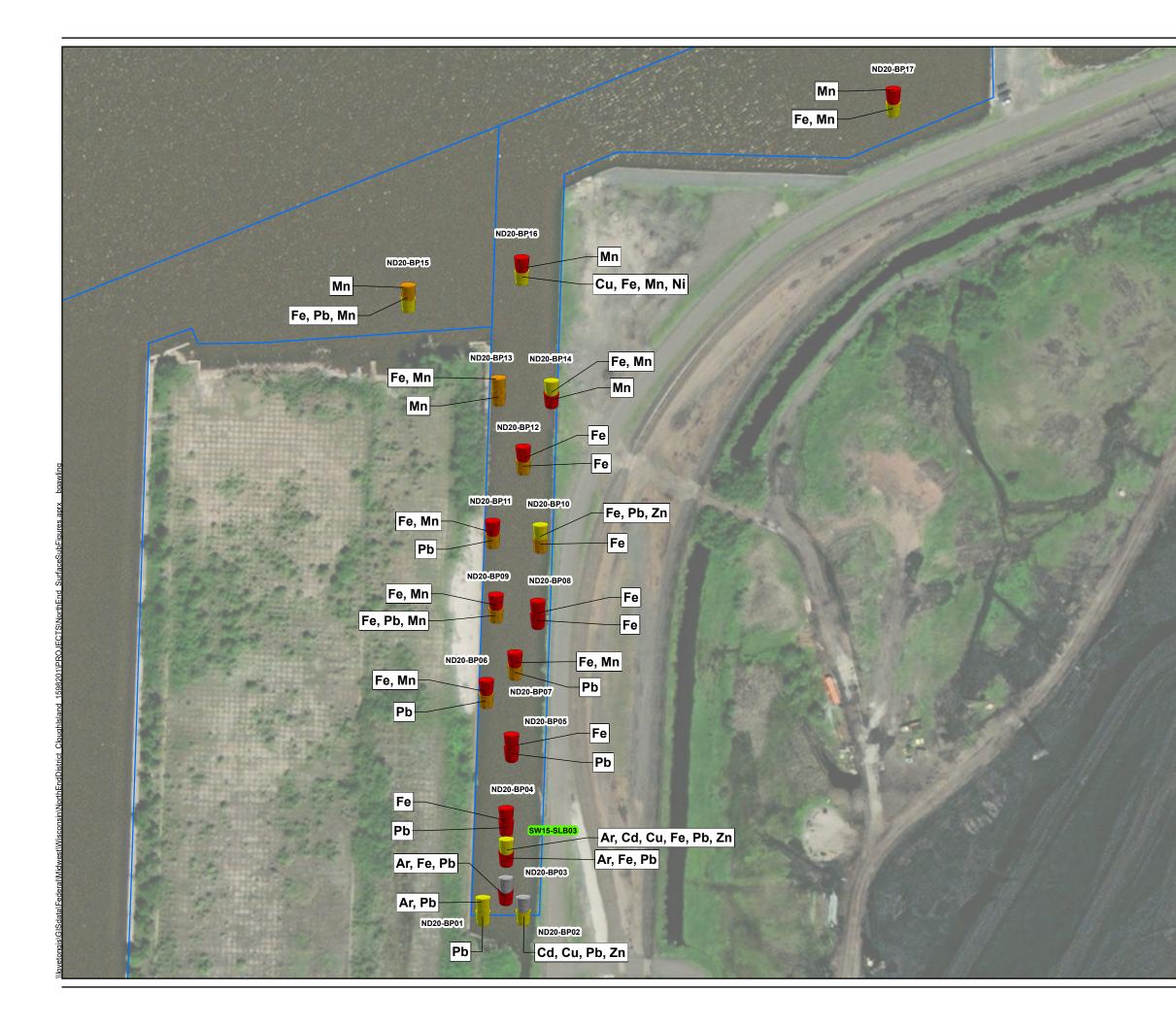






Figure 6-3 Summary of SQG Exceedance for Surface and Subsurface Organics Oil Barge Dock Slip North End District and Clough Island

Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin





#### Exceedance



No Exceedance ≥ TEC ≥ MEC ≥ PEC Sediment Characterization Area Sediment Characterization and Survey Area

# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



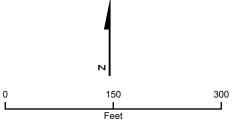
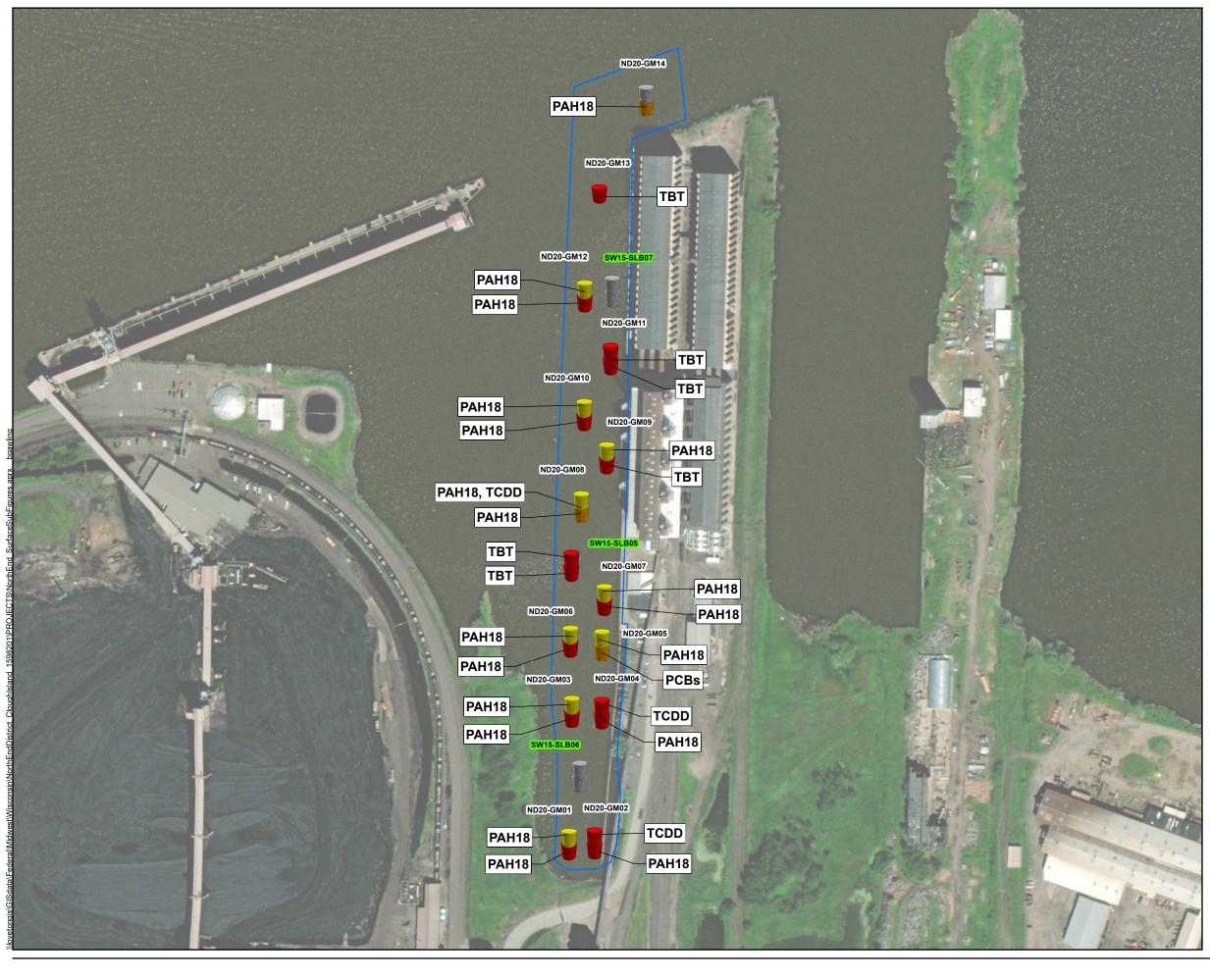






Figure 6-4 Summary of SQG Exceedance for Surface and Subsurface Metals **Oil Barge Dock Slip** North End District and Clough Island

Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin







No Exceedance ≥ TEC ≥ MEC PEC ≥ Sediment Characterization Area Sediment Characterization and Survey Area

# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



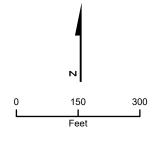
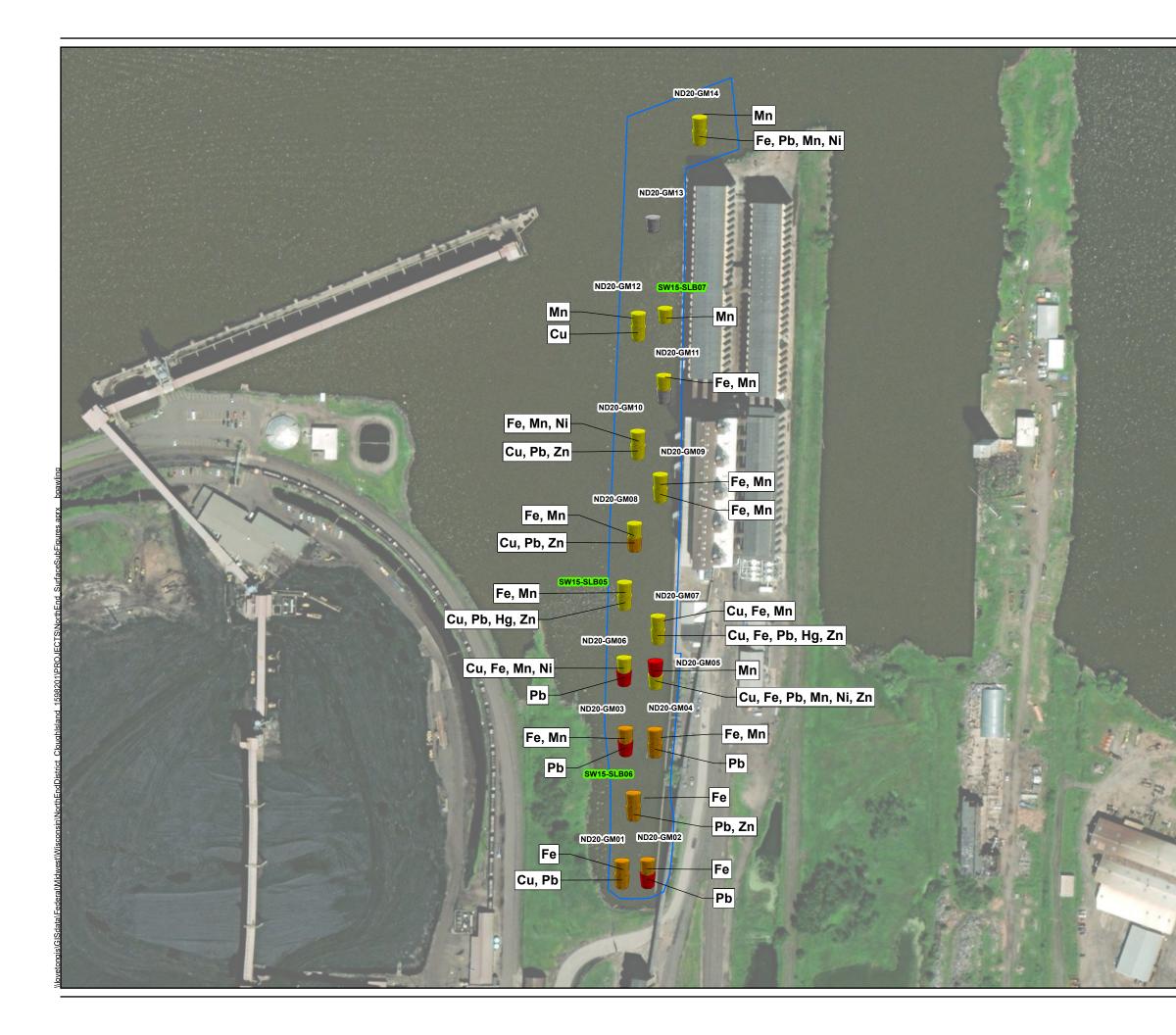






Figure 6-5 Summary of SQG Exceedance for Surface and Subsurface Organics General Mills Slip North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin





# Exceedance



No Exceedance ≥ TEC ≥ MEC PEC ≥ Sediment Characterization Area Sediment Characterization and Survey Area

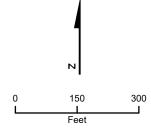
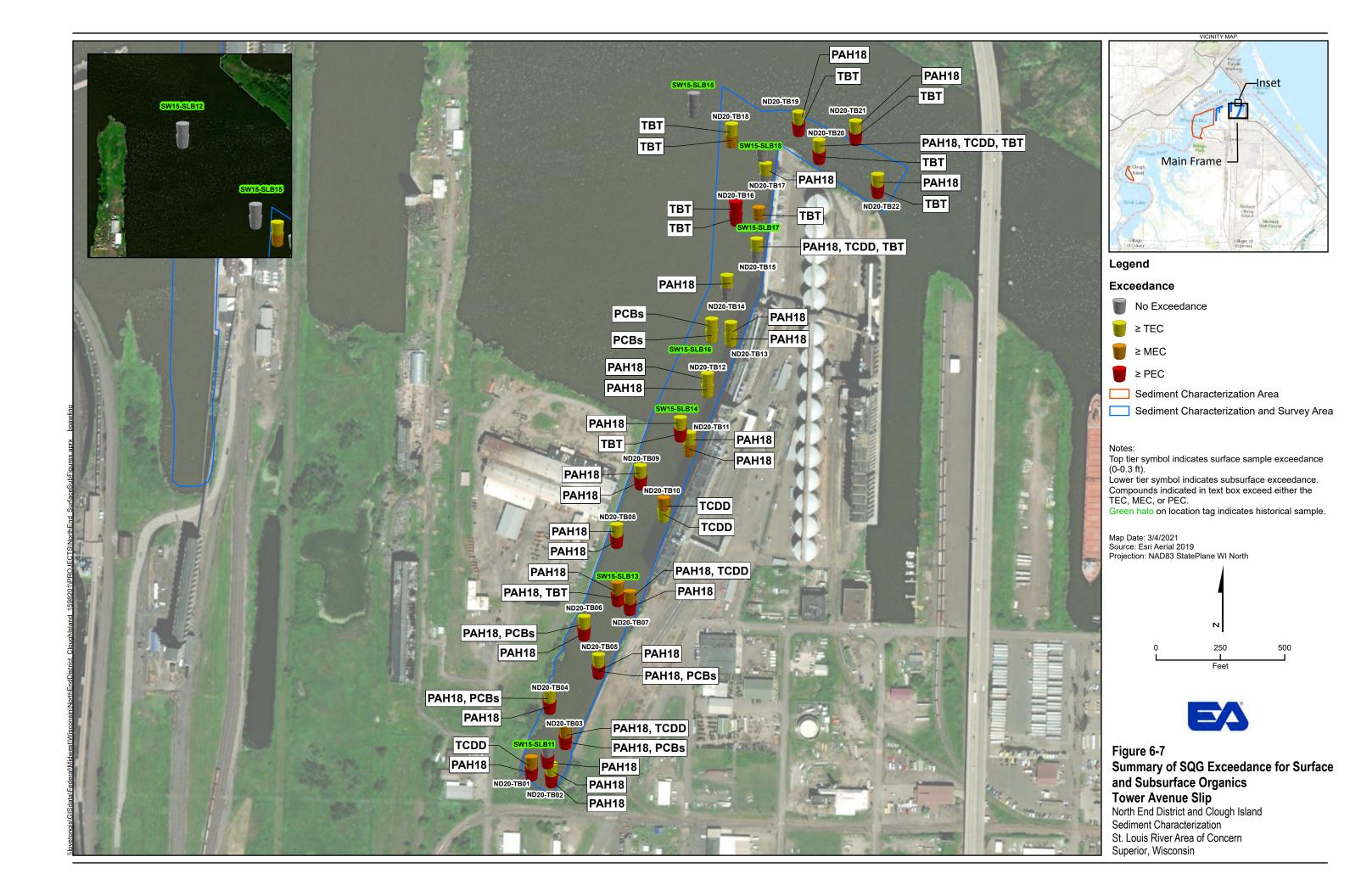
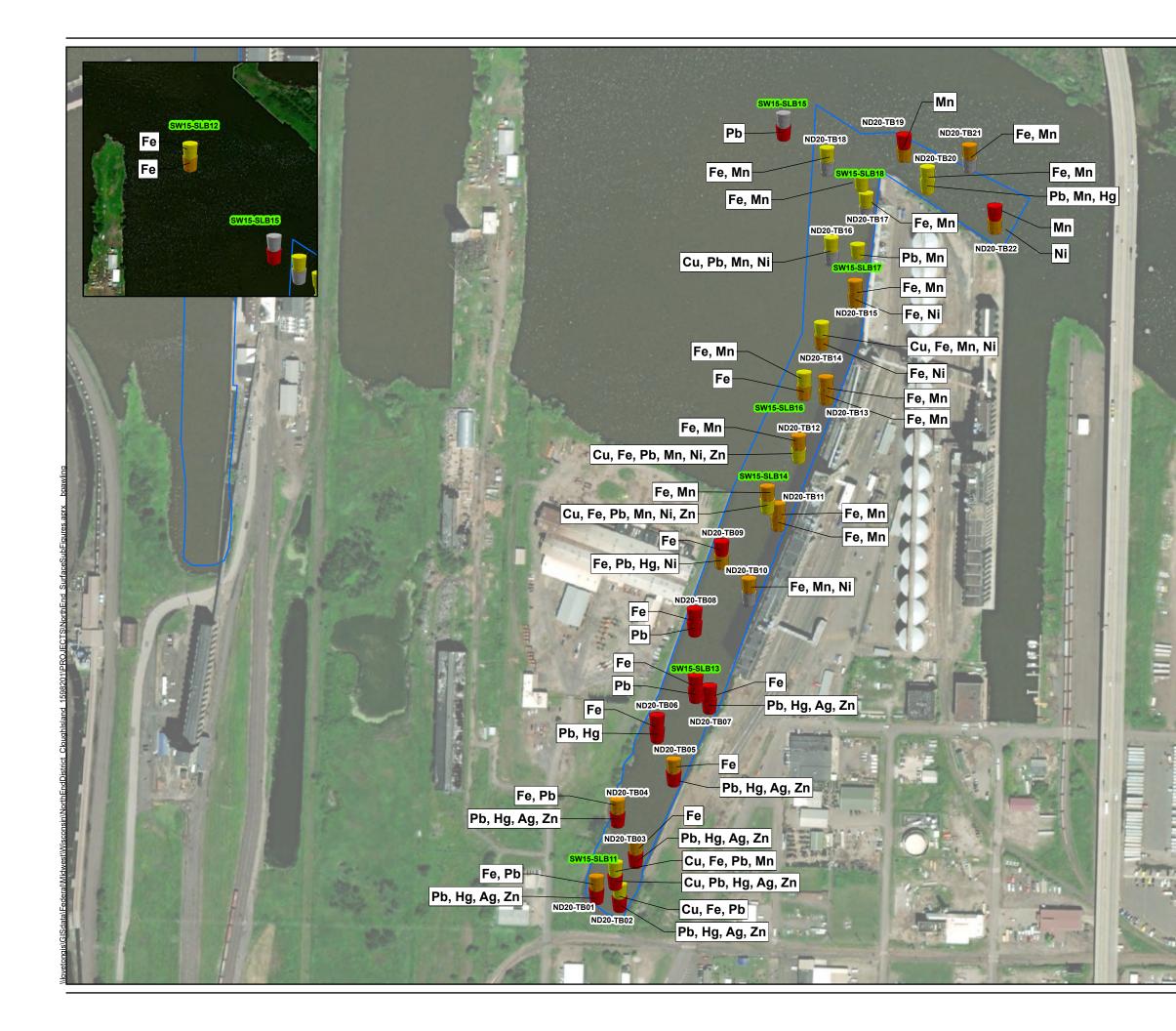
# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



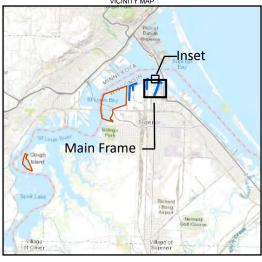




Figure 6-6 Summary of SQG Exceedance for Surface and Subsurface Metals General Mills Slip North End District and Clough Island Sediment Characterization St. Louis River Area of Concern

Superior, Wisconsin







#### Exceedance



No Exceedance ≥ TEC ≥ MEC ■ ≥ PEC Sediment Characterization Area Sediment Characterization and Survey Area

# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



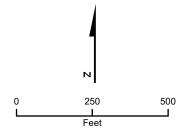
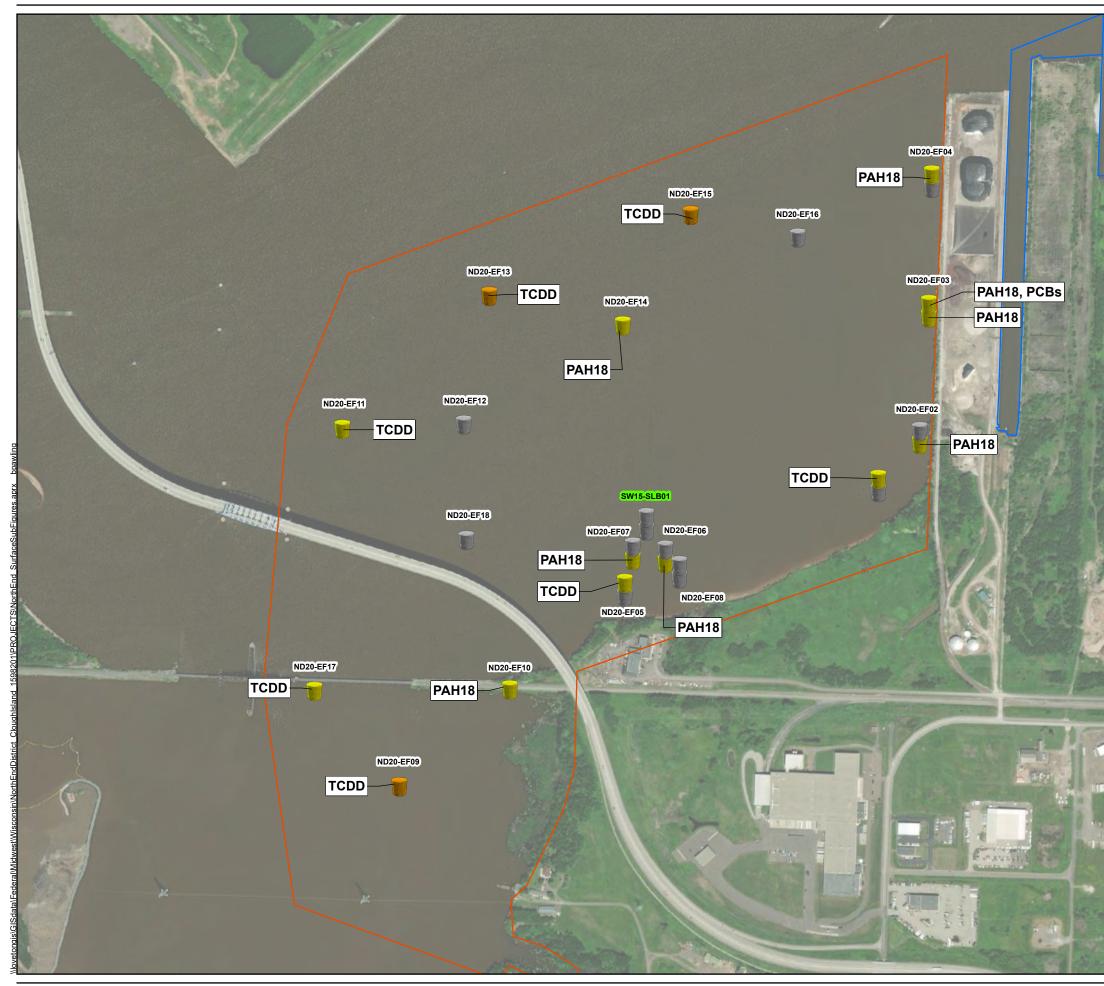






Figure 6-8 Summary of SQG Exceedance for Surface and Subsurface Metals Tower Avenue Slip North End District and Clough Island Sediment Characterization St. Louis River Area of Concern

Superior, Wisconsin







### Exceedance



No Exceedance ≥ TEC ≥ MEC PEC ≥ Sediment Characterization Area Sediment Characterization and Survey Area

# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



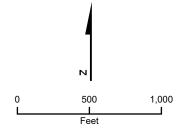
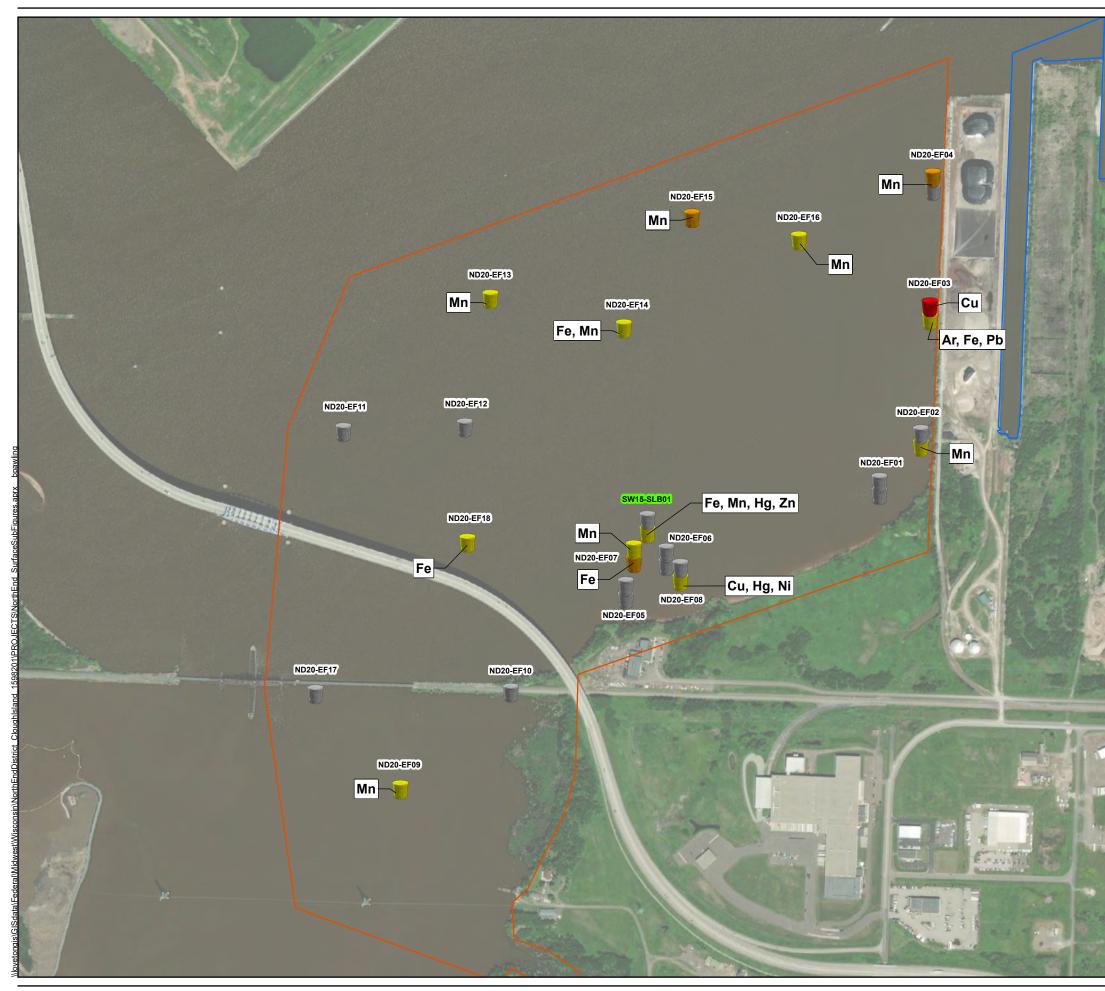






Figure 6-9 Summary of SQG Exceedance for Surface and Subsurface Organics Estuary Flats North End District and Clough Island Sediment Characterization St. Louis River Area of Concern

Superior, Wisconsin







#### Exceedance



No Exceedance ≥ TEC ≥ MEC PEC ≥ Sediment Characterization Area Sediment Characterization and Survey Area

#### Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



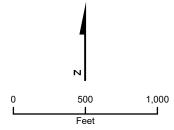
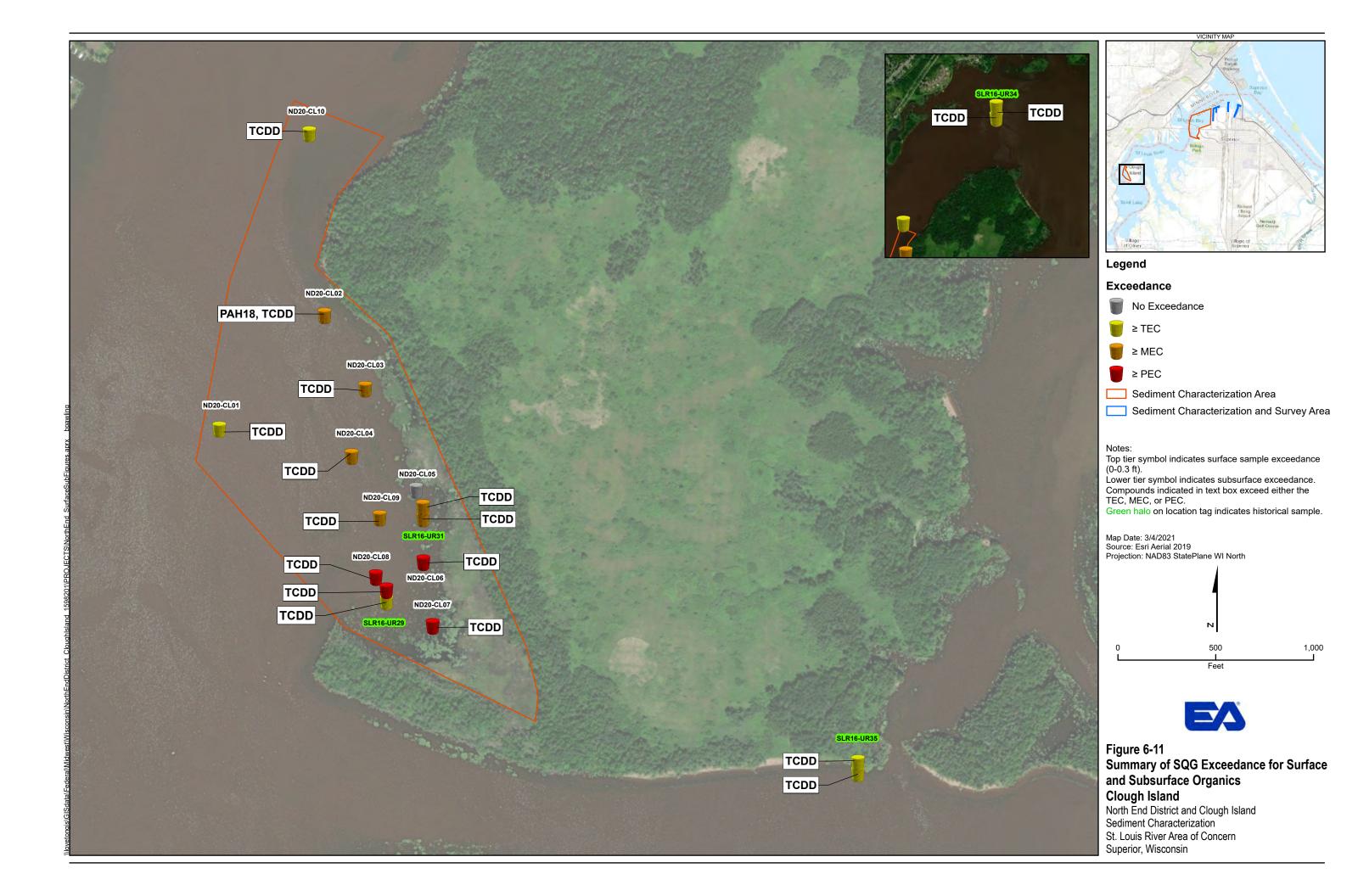
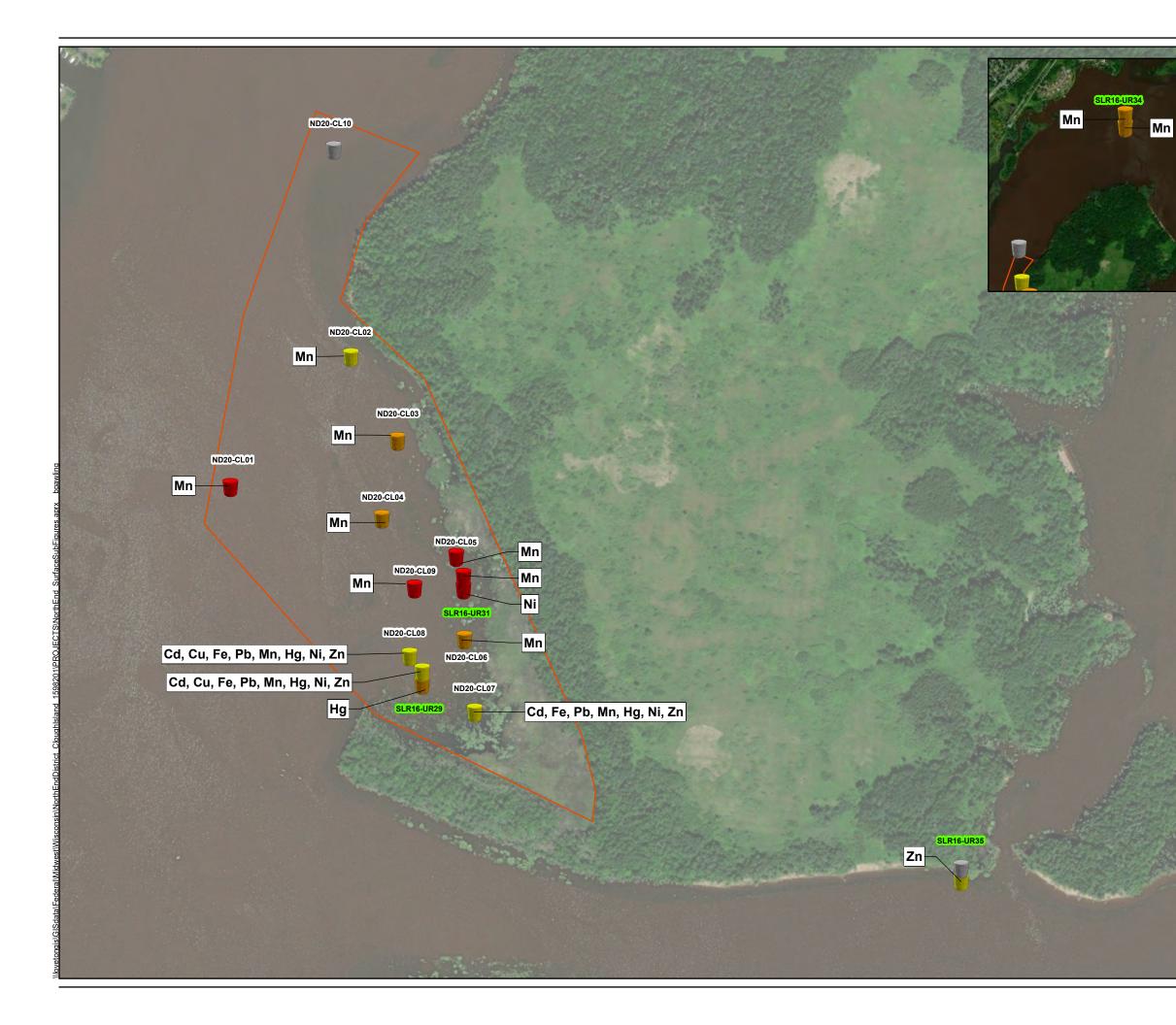
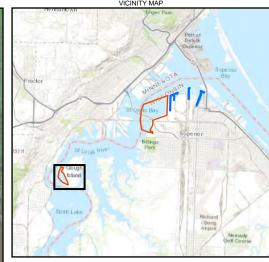








Figure 6-10 Summary of SQG Exceedance for Surface and Subsurface Metals Estuary Flats North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin







# Exceedance



≥ TEC



PEC ≥

Sediment Characterization Area

Sediment Characterization and Survey Area

# Notes:

Top tier symbol indicates surface sample exceedance (0-0.3 ft).

Lower tier symbol indicates subsurface exceedance. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Green halo on location tag indicates historical sample.



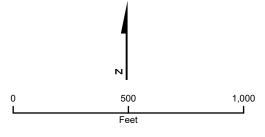
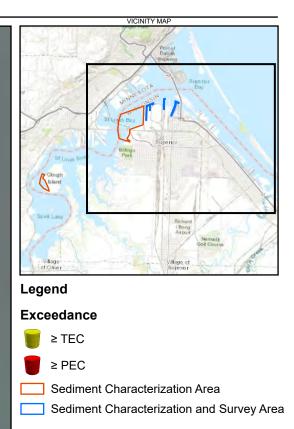





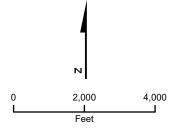

Figure 6-12 Summary of SQG Exceedance for Surface and Subsurface Metals Clough Island North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin





Notes: Symbol indicates surface sample exceedance (0-0.3 ft). No subsurface sample collected. Compounds indicated in text box exceed either the TEC, MEC, or PEC.





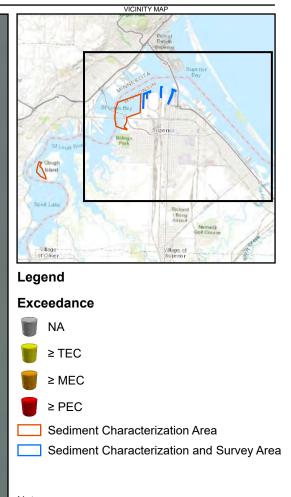




Figure 6-13 Summary of SQG Exceedance for Surface and Subsurface Organics **Reference Sites** North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin



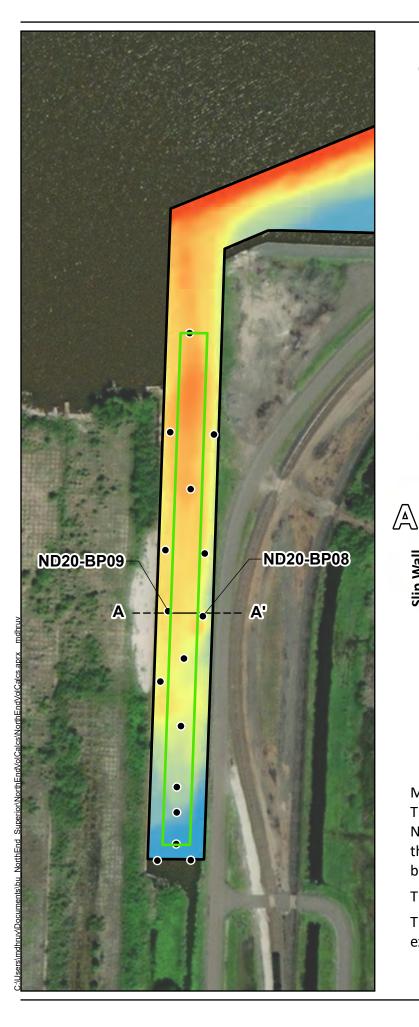
ND20-LREF3





Notes: Symbol indicates surface sample exceedance (0-0.3 ft). No subsurface sample collected. Compounds indicated in text box exceed either the TEC, MEC, or PEC.

Map Date: 3/4/2021 Source: Esri Aerial 2019 Projection: NAD83 StatePlane WI North

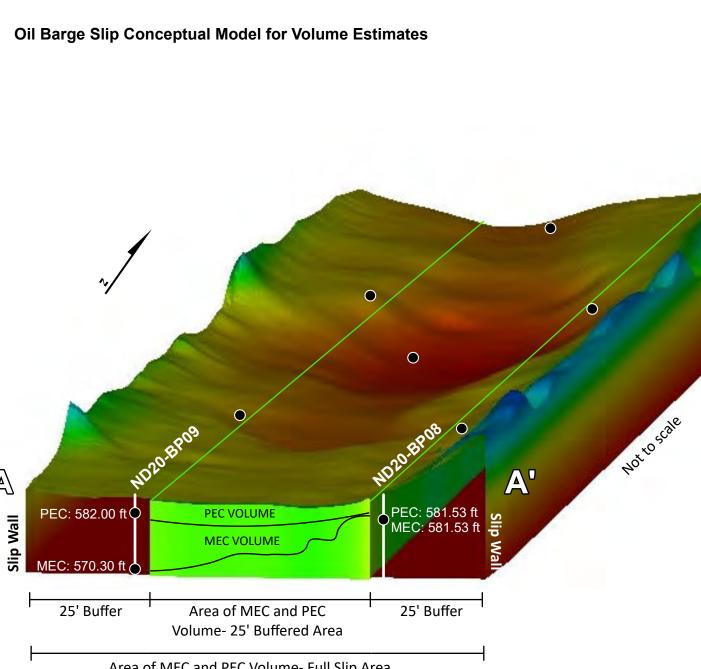




Figure 6-14 Summary of SQG Exceedance for Surface and Subsurface Metals Reference Sites North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

Cu, Fe, Pb, Hg, Ni, Zn

ND20-LREF3





Area of MEC and PEC Volume- Full Slip Area

MEC and PEC Volumes were calculated based on the difference in the kriged surface from the bathymetric sediment surface. The figure above is a representative conceptual model of the Oil Barge Slip with the cross section at borings ND20-BP08 and ND20-BP09. The surface of the model represents the sediment surface based on bathymetric data. The green area represents the area in which the MEC and PEC volumes were calculated which is the central portion of the slip constrained by a 25 foot buffer from the slip walls.

The PEC and MEC values indicate the depths at which the maximum exceedance occurred at that location.

The above image was created in C-Tech's EVS three-dimensional volumetric Earth Science software. A 2.5x vertical exaggeration was employed for visualization purposes.



#### Elevation



Map Date: 6/2/2021 Source: Esri Aerial 2019 Projection: NAD83 StatePlane WI North

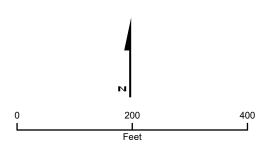





Figure 6-15 MEC and PEC Volume Estimate **Conceptual Site Model** North End District and Clough Island Sediment Characterization St. Louis River Area of Concern Superior, Wisconsin

# Tables

#### TABLE 2-1 MANUAL PROBING RESULTS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                            |                        | \$1.1                      | OUIS RIVER AREA  | OF CONCERN, SUI  | ERIOR, WISCONSIN                                                                                                                                                                            |
|----------------------------|------------------------|----------------------------|------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location<br>Identification | Date Sampled           | Time<br>Sampled<br>(local) | Water Depth (ft) | Probe Depth (ft) | Field Notes                                                                                                                                                                                 |
| Hallet Dock 8 Slip         |                        |                            |                  |                  |                                                                                                                                                                                             |
| HD-01                      | 4/29/2020              | 14:55                      | 5.2              | 1.0              | Coarse sand gravel packed penetration less than 1 ft with repeated<br>pushes.                                                                                                               |
| HD-02                      | 4/29/2020              | 15:00                      | 16.6             | 6.0              | Layers of sand and clay. Repeated pushes to reach penetration depth.                                                                                                                        |
| HD-03                      | 4/29/2020              | 15:05                      | 22.7             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| HD-04                      | 4/29/2020              | 15:05                      | 21.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| HD-05                      | 4/29/2020<br>4/29/2020 | 15:05<br>15:05             | 26.3<br>24.2     |                  | Water depth greater than 20 ft<br>Water depth greater than 20 ft                                                                                                                            |
| HD-06<br>Oil Barge Dock    | 4/29/2020              | 15:05                      | 24.2             |                  | water deput greater than 20 ft                                                                                                                                                              |
| BP-01                      | 4/29/2020              | 9:55                       | < 2.0            | 2.0              | Behind old pilings and bulkhead. Random debris. Penetration between<br>debris. Heavy timber in the area. Sheen observed. Dry swash discharge                                                |
| BP-02                      | 4/29/2020              | 9:55                       | 2.5-3            | 1.0              | May be accessible by Mudpuppy. Located at end of discharge canal.<br>Hard bottom. Likely rock placed at end discharge canal. Less rock to th<br>west. 1-ft penetration to north of location |
| BP-03                      | 4/29/2020              | 9:55                       | 3.5              | 2.0              | Sandy material. Woody debris including boards from bulkhead.                                                                                                                                |
| BP-04                      | 4/29/2020              | 11:00                      | 13.0             | > 8.0            | Soft sediments                                                                                                                                                                              |
| BP-05                      | 4/29/2020              | 11:17                      | 18.5             | > 5.0            | Firm on top, soft/sand underlying material.                                                                                                                                                 |
| BP-06                      | 4/29/2020              | 11:27                      | 20.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| BP-07<br>BP-08             | 4/30/2020<br>4/30/2020 | 14:15<br>13:54             | 19.0<br>20.2     | > 6.0            | Soft<br>Hard debris closer to wall. Gravel coarse at distance. Needed to probe<br>multiple times to find unconsolidated material. May need to shift towar                                   |
| BP-09                      | 4/29/2020              | 11:27                      | 22.0             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| BP-10                      | 4/29/2020              | 11:27                      | 21.0             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| BP-11                      | 4/29/2020              | 11:27                      | 22.2             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| BP-12                      | 4/29/2020              | 11:27                      | 24.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| BP-13                      | 4/29/2020              | 11:27                      | 24.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| BP-14                      | 4/29/2020              | 11:27                      | 21.2             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| BP-15                      | 4/29/2020              | 11:44                      | 7.5              | 2.0              | Firm sand on surface 2 ft of penetration                                                                                                                                                    |
| BP-16                      | 4/29/2020              | 11:27                      | 24.8             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| General Mills Slip         |                        |                            |                  |                  |                                                                                                                                                                                             |
| GM-01                      | 4/30/2020              | 14:45                      | 14.4             | 7.5              | Soft. Station close to old piling field from former pier. Consider shifting<br>east by 10 ft.                                                                                               |
| GM-02                      | 4/30/2020              | 14:58                      | 18.2             | > 7.0            | Soft brown slit and clay                                                                                                                                                                    |
| GM-03<br>GM-04             | 4/30/2020<br>4/30/2020 | 15:40<br>14:58             | 17.7<br>20.4     | 3.7              | Soft silt/clay over gravel<br>Water depth greater than 20 ft                                                                                                                                |
| GM-04<br>GM-05             | 4/30/2020              | 14:58                      | 26.7             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| GM-06                      | 4/30/2020              | 15:50                      | 20.1             | > 5.0            | Soft sediments, brown silt/clay                                                                                                                                                             |
| GM-07                      | 4/30/2020              | 14:58                      | 29.0             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| GM-08                      | 4/30/2020              | 14:58                      | 24.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| GM-09                      | 4/30/2020              | 14:58                      |                  |                  | Not accessible-vessel in slip                                                                                                                                                               |
| GM-10                      | 4/30/2020              | 14:58                      | 21.3             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| GM-11                      | 4/30/2020              | 14:58                      |                  |                  | Not accessible-vessel in slip                                                                                                                                                               |
| GM-12                      | 4/30/2020              | 14:58                      | 28.3             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| GM-13                      | 4/30/2020              | 14:58                      |                  |                  | Not accessible-vessel in slip                                                                                                                                                               |
| GM-14                      | 4/30/2020              | 14:58                      | 23.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| Tower Avenue Slip<br>TB-01 | 4/29/2020              | 12:21                      | 8.0              | 7.5              | Very shallow. Coarse sand over clay. Multiple outfalls. 1 active, 1 relic<br>near TB-02.                                                                                                    |
| TB-02                      | 4/29/2020              | 12:17                      | < 2.0            | > 8.0            | Very shallow. Coarse sand over clay.                                                                                                                                                        |
| TB-03                      | 4/29/2020              | 12:26                      | 12.3             | > 8.0            | Soft brown clay with limited sand. Outfall south of location.                                                                                                                               |
| TB-04                      | 4/29/2020              | 12:30                      | 13.0             | > 7.0            | Soft brown clay bricks or other debris at depth                                                                                                                                             |
| TB-05                      | 4/29/2020              | 12:11                      | 13.7             | > 7.0            | Soft brown clay obstruction at depth, but worked through                                                                                                                                    |
| TB-06                      | 4/29/2020              | 12:52                      | 16.9             | > 8.0            | Soft brown clay                                                                                                                                                                             |
| TB-07                      | 4/30/2020              | 13:15                      | 14.9             | 9.0              | Mixed soft material and hard fill (bricks). Outfall.                                                                                                                                        |
| TB-08                      | 4/30/2020<br>4/29/2020 | 13:36                      | 17.4             | > 8.0            | Soft throughout brown clay                                                                                                                                                                  |
| TB-09<br>TB-10             | 4/29/2020              | 13:20<br>13:20             | 20.5<br>22.5     |                  | Water depth greater than 20 ft<br>Water depth greater than 20 ft                                                                                                                            |
| TB-10<br>TB-11             | 4/29/2020              | 13:20                      | 22.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-12                      | 4/29/2020              | 13:20                      | 25.2             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-12<br>TB-13             | 4/29/2020              | 13:20                      | 29.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-14                      | 4/29/2020              | 13:20                      | 28.9             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-15                      | 4/29/2020              | 13:20                      | 37.0             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-16                      | 4/29/2020              | 13:20                      | 29.9             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-17                      | 4/29/2020              | 13:20                      | 36.9             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-18                      | 4/29/2020              | 13:20                      | 34.2             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-19                      | 4/29/2020              | 13:20                      | 30.0             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-20                      | 4/29/2020              | 13:50                      | 13.5             | 1.0              | One foot of soft silts over hard concrete rubble. Relocated 10 ft toward<br>channel. Water depth 15 ft, penetration 5 ft, dense brown clay.                                                 |
| TB-21                      | 4/29/2020              | 13:20                      | 34.0             |                  | Water depth greater than 20 ft. Falls with in Nav channel, consider<br>shifting.                                                                                                            |
|                            | 1/20/2020              | 13:20                      | 31.5             |                  | Water depth greater than 20 ft                                                                                                                                                              |
| TB-22                      | 4/29/2020              | 15:20                      |                  |                  |                                                                                                                                                                                             |

#### TABLE 2-2 SURFACE SAMPLE COLLECTION NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                            | State Plane Wise      | consin North, US       |                           |                                    |                        | <b>XX</b> 7 4                                |                                              |                                     |                                     |                     | Surface Grab Sample                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|-----------------------|------------------------|---------------------------|------------------------------------|------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location<br>Identification | Survey Fee<br>Easting | et (NAD83)<br>Northing | Sample<br>Collection Date | Sample<br>Collection Time<br>(CDT) | Water<br>Depth<br>(ft) | Water<br>Surface<br>Elevation<br>IGLD85 (ft) | Sediment Surface<br>Elevation<br>IGLD85 (ft) | Target<br>Penetration<br>Depth (ft) | Actual<br>Penetration<br>Depth (ft) | Percent<br>Recovery | Field Notes                                                                                                                                                                                                                                                                                                                                                                                                 |
| HALLET DOCK                |                       |                        |                           |                                    |                        |                                              |                                              |                                     |                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND20-HD01                  | 1436299.59            | 578448.64              | 6/30/2020                 | 15:35                              | 8.1                    | 603.29                                       | 595.19                                       | 0.3                                 | 0.2                                 | 66%                 | Light brown silts over medium brown clays with trace fine sands. Pockets of medium/coarse black sands with sheen in clay layer. Large sheen appeared on surface of water as ponar was collected. No odor in sediments. Subsequent grabs pulled up part of a large tarp, that when pulled on released a large (10 ft x 10 ft) sheen on surface of water. Tarp could not be removed, was buried in sediments. |
| ND20-HD02                  | 1436300.64            | 578520.46              | 6/25/2020                 | 9:15                               | 20.8                   | 602.87                                       | 582.07                                       | 0.3                                 | 0.3                                 | 100%                | Loose brown silts over brown fine-grained sands. Some coal chunks. No odor, no sheen.                                                                                                                                                                                                                                                                                                                       |
| ND20-HD03                  | 1436312.00            | 578718.16              | 6/30/2020                 | 16:50                              | 21.9                   | 603.14                                       | 581.24                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with trace clays and loose cohesion. High density of coal chunks<br>in sample. No odor, slight sheen.                                                                                                                                                                                                                                                                                     |
| ND20-HD04                  | 1436352.88            | 579503.11              | 6/30/2020                 | 17:35                              | 21.6                   | 603.25                                       | 581.65                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts over medium brown silty-clays with loose/medium cohesion. Coa<br>chunks throughout. Petroleum odor and sheen noted in sample.                                                                                                                                                                                                                                                             |
| ND20-HD05                  | 1436372.67            | 580188.42              | 6/25/2020                 | 8:55                               | 23.8                   | 602.93                                       | 579.13                                       | 0.3                                 | 0.2                                 | 66%                 | Medium brown sands with coal chunks throughout. No odor, no sheen.                                                                                                                                                                                                                                                                                                                                          |
| ND20-HD06                  | 1436393.21            | 580704.72              | 6/25/2020                 | 8:30                               | 23.4                   | 602.98                                       | 579.58                                       | 0.3                                 | 0.2                                 | 66%                 | Loose brown silts and fine sands, over compacted fine sands. Coal chunks in<br>sample. No odor, no sheen                                                                                                                                                                                                                                                                                                    |
| OIL BARGE DOG              | СК                    |                        |                           |                                    |                        |                                              |                                              |                                     |                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND20-BP01                  | 1436912.94            | 580306.26              | 6/26/2020                 |                                    |                        |                                              |                                              | 0.3                                 | 0.0                                 | 0%                  | Due to dense woody debris, a surface grab sample could not be collected at this location. The surface interval (0.0 to 0.3 ft) was collected from the core collected instead.                                                                                                                                                                                                                               |
| ND20-BP02                  | 1436953.62            | 580233.08              | 7/2/2020                  | 17:42                              | 2.5                    | 603.13                                       | 600.63                                       | 0.3                                 | 0.2                                 | 66%                 | Black silty fine sands with vegetative and woody debris. A decontaminated<br>stainless-steel shovel was used to collect surficial sediments due to debris. Both<br>odor and sheen observed.                                                                                                                                                                                                                 |
| ND20-BP03                  | 1436910.31            | 580229.55              | 7/2/2020                  | 19:05                              | 2.0                    | 603.07                                       | 601.07                                       | 0.3                                 | 0.3                                 | 100%                | Due to dense woody debris at the target location, the sampling location was shifted<br>and the sediments were collected with a stainless steel shovel, per direction of J.<br>Graham (DNR). Sediment comprised of fine black sands, with woody debris.<br>Petroleum sheen arose in water at collection, and odor was noted in sediments.                                                                    |
| ND20-BP04                  | 1436934.82            | 580377.66              | 6/25/2020                 | 15:42                              | 13.2                   | 603.03                                       | 589.83                                       | 0.3                                 | 0.3                                 | 100%                | Medium brown silts over medium brown clays with vegetative matter and medium<br>cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                                                |
| ND20-BP05                  | 1436940.35            | 580482.52              | 7/1/2020                  | 17:05                              | 17.3                   | 603.22                                       | 585.92                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown silty-clay with medium cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                                                 |
| ND20-BP06                  | 1436903.33            | 580559.19              | 6/25/2020                 | 15:05                              | 18.9                   | 603.04                                       | 584.14                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown clay with medium cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                                                       |
| ND20-BP07                  | 1436946.99            | 580598.17              | 7/1/2020                  | 17:55                              | 19.0                   | 603.07                                       | 584.07                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown silty-clay with medium cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                                                 |
| ND20-BP08                  | 1436980.95            | 580674.57              | 6/25/2020                 | 14:45                              | 18.2                   | 603.00                                       | 584.80                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown clay with medium cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                                                       |
| ND20-BP09                  | 1436912.10            | 580682.13              | 6/25/2020                 | 14:25                              | 20.7                   | 602.98                                       | 582.28                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown clay with medium<br>cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                                                    |
| ND20-BP10                  | 1436989.12            | 580782.78              | 6/25/2020                 | 13:40                              | 18.0                   | 603.04                                       | 585.04                                       | 0.3                                 | 0.3                                 | 100%                | Light brown fine sands and silts with loose cohesion over medium brown sandy-<br>clays with medium cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                             |
| ND20-BP11                  | 1436915.47            | 580784.42              | 6/25/2020                 | 13:20                              | 20.7                   | 602.99                                       | 582.29                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown silty-clay with medium<br>cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                                              |
| ND20-BP12                  | 1436960.33            | 580889.67              | 6/25/2020                 | 12:55                              | 23.8                   | 602.91                                       | 579.11                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown silty-clay with medium cohesion. No odor, no sheen.                                                                                                                                                                                                                                                                                                 |

#### TABLE 2-2 SURFACE SAMPLE COLLECTION NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                            | State Plane Wise | consin North, US |                           |                                    |                        | Water                               |                                              |                       |                       |                     | Surface Grab Sample                                                                                                               |
|----------------------------|------------------|------------------|---------------------------|------------------------------------|------------------------|-------------------------------------|----------------------------------------------|-----------------------|-----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Location<br>Identification |                  | et (NAD83)       | Sample<br>Collection Date | Sample<br>Collection Time<br>(CDT) | Water<br>Depth<br>(ft) | Surface<br>Elevation<br>IGLD85 (ft) | Sediment Surface<br>Elevation<br>IGLD85 (ft) | Target<br>Penetration | Actual<br>Penetration | Percent<br>Recovery | Field Notes                                                                                                                       |
|                            | Easting          | Northing         |                           |                                    |                        | 10LD05 (II)                         |                                              | Depth (ft)            | Depth (ft)            | ,                   |                                                                                                                                   |
| ND20-BP13                  | 1436921.92       | 580991.74        | 6/25/2020                 | 10:35                              | 22.7                   | 602.78                              | 580.08                                       | 0.3                   | 0.3                   | 100%                | Light brown silts with loose cohesion over medium brown silty-clay with medium cohesion. No odor, no sheen.                       |
| ND20-BP14                  | 1436992.89       | 580989.81        | 6/25/2020                 | 11:30                              | 19.9                   | 602.29                              | 582.39                                       | 0.3                   | 0.3                   | 100%                | Light brown silts with loose cohesion over medium brown sandy-clay with<br>low/medium cohesion. No odor, no sheen                 |
| ND20-BP15                  | 1436791.85       | 581123.98        | 6/25/2020                 | 12:10                              | 7.9                    | 602.86                              | 594.96                                       | 0.3                   | 0.3                   | 100%                | Light brown silts with loose cohesion and coal chunks over clays with trace fine sands.                                           |
| ND20-BP16                  | 1436954.41       | 581163.08        | 6/25/2020                 | 10:15                              | 23.3                   | 602.83                              | 579.53                                       | 0.3                   | 0.3                   | 100%                | Light brown silts with loose cohesion over medium brown silty-clay with medium cohesion. No odor, no sheen.                       |
| ND20-BP17                  | 1437488.57       | 581402.31        | 6/25/2020                 | 9:45                               | 20.8                   | 602.86                              | 582.06                                       | 0.3                   | 0.3                   | 100%                | Light brown silts with loose cohesion over medium brown silty-clay with medium cohesion. No odor, no sheen.                       |
| GENERAL MILL               | S SLIP           | n                | 1                         | r r                                |                        | 1                                   |                                              |                       | 1                     | 1                   |                                                                                                                                   |
| ND20-GM01                  | 1439427.48       | 580487.69        | 6/28/2020                 | 14:15                              | 14.4                   | 603.16                              | 588.76                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. No odor,<br>no sheen.                                        |
| ND20-GM02                  | 1439500.13       | 580485.29        | 7/1/2020                  | 8:30                               | 17.9                   | 603.08                              | 585.18                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. No odor,<br>no sheen.                                        |
| ND20-GM03                  | 1439441.83       | 580812.96        | 6/28/2020                 | 14:35                              | 17.3                   | 603.25                              | 585.95                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. No odor,<br>no sheen.                                        |
| ND20-GM04                  | 1439517.47       | 580811.19        | 6/30/2020                 | 18:20                              | 19.4                   | 603.06                              | 583.66                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. No odor,<br>no sheen.                                        |
| ND20-GM05                  | 1439516.98       | 580978.24        | 6/28/2020                 | 14:50                              | 26.2                   | 603.31                              | 577.11                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. No odor,<br>no sheen.                                        |
| ND20-GM06                  | 1439434.08       | 580984.47        | 6/28/2020                 | 15:05                              | 18.7                   | 603.21                              | 584.51                                       | 0.3                   | 0.3                   | 100%                | Medium brown silts over medium brown silty-clay with medium cohesion. No odor, no sheen.                                          |
| ND20-GM07                  | 1439525.88       | 581096.72        | 6/28/2020                 | 15:20                              | 28.7                   | 603.15                              | 574.45                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. No odor,<br>no sheen.                                        |
| ND20-GM08                  | 1439470.31       | 581321.42        | 6/29/2020                 | 18:00                              | 24.8                   | 603.09                              | 578.29                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. No odor,<br>no sheen.                                        |
| ND20-GM09                  | 1439534.68       | 581441.04        | 6/28/2020                 | 15:35                              | 28.8                   | 603.09                              | 574.29                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with loose/medium cohesion. No odor, no sheen.                                     |
| ND20-GM10                  | 1439478.39       | 581549.51        | 6/28/2020                 | 15:48                              | 24.5                   | 603.03                              | 578.53                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. No odor,<br>no sheen.                                        |
| ND20-GM11                  | 1439541.20       | 581688.69        | 6/28/2020                 | 16:00                              | 33.5                   | 603.04                              | 569.54                                       | 0.3                   | 0.3                   | 100%                | Light brown silty-clays with low/medium cohesion. No odor, no sheen.                                                              |
| ND20-GM12                  | 1439476.18       | 581840.47        | 6/28/2020                 | 16:25                              | 26.8                   | 603.13                              | 576.33                                       | 0.3                   | 0.3                   | 100%                | Light brown silts over medium brown silty-clay with medium cohesion. A few chunks of coal. No odor, no sheen.                     |
| ND20-GM13                  | 1439511.22       | 582076.28        | 7/1/2020                  | 9:25                               | 31.7                   | 603.09                              | 571.39                                       | 0.3                   | 0.2                   | 66%                 | Light brown silts over medium brown clays with trace fine sands. Small pockets or<br>black sands in clay layer. No odor, no sheen |
| ND20-GM14                  | 1439628.17       | 582333.09        | 6/30/2020                 | 19:00                              | 22.8                   | 603.13                              | 580.33                                       | 0.3                   | 0.2                   | 66%                 | Loose brown silts over medium brown fine sands, loosely packed. No odor, no sheen                                                 |
| TOWER AVENUE               | E SLIP           |                  |                           | I                                  |                        |                                     |                                              |                       |                       | r                   | Light brown silty-clays with low/medium cohesion. Small sheens, no odor.                                                          |
| ND20-TB01                  | 1440799.04       | 579323.06        | 6/29/2020                 | 14:10                              | 8.6                    | 603.28                              | 594.68                                       | 0.3                   | 0.3                   | 100%                | Vegetative debris.                                                                                                                |
| ND20-TB02                  | 1440875.15       | 579286.80        | 6/28/2020                 | 10:35                              | 1.9                    | 603.15                              | 601.25                                       | 0.3                   | 0.1                   | 33%                 | Light brown reddish silty fine sand. No odor, no sheen.                                                                           |
| ND20-TB03                  | 1440931.26       | 579450.04        | 6/29/2020                 | 15:05                              | 12.2                   | 603.27                              | 591.07                                       | 0.3                   | 0.3                   | 100%                | Light brown silty-clays with low/medium cohesion. No odor, no sheen. Lots of<br>woody/vegetative debris.                          |
| ND20-TB04                  | 1440875.21       | 579584.46        | 6/28/2020                 | 10:55                              | 10.1                   | 603.28                              | 593.18                                       | 0.3                   | 0.3                   | 100%                | Light brown silty-clay with medium cohesion. Some sheen. Trace vegetative debris. No odor.                                        |
| ND20-TB05                  | 1441060.69       | 579722.33        | 6/28/2020                 | 11:35                              | 13.5                   | 603.27                              | 589.77                                       | 0.3                   | 0.3                   | 100%                | Light brown silts with loose cohesion over medium brown silty-clay with medium cohesion. No odor, sheen at surface of sediments.  |

#### TABLE 2-2 SURFACE SAMPLE COLLECTION NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                            | State Plane Wise      | consin North, US       |                           |                                    |                        | Water                               |                                              |                                     |                                     |                     | Surface Grab Sample                                                                                                                         |
|----------------------------|-----------------------|------------------------|---------------------------|------------------------------------|------------------------|-------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Location<br>Identification | Survey Fee<br>Easting | et (NAD83)<br>Northing | Sample<br>Collection Date | Sample<br>Collection Time<br>(CDT) | Water<br>Depth<br>(ft) | Surface<br>Elevation<br>IGLD85 (ft) | Sediment Surface<br>Elevation<br>IGLD85 (ft) | Target<br>Penetration<br>Depth (ft) | Actual<br>Penetration<br>Depth (ft) | Percent<br>Recovery | Field Notes                                                                                                                                 |
| ND20-TB06                  | 1440993.42            | 579872.16              | 6/29/2020                 | 16:00                              | 16.1                   | 603.16                              | 587.06                                       | 0.3                                 | 0.3                                 | 100%                | Medium brown silts over medium brown silty-clay with medium cohesion. Slight<br>petroleum odor, sheen present.                              |
| ND20-TB07                  | 1441185.39            | 579962.96              | 6/29/2020                 | 12:25                              | 15.0                   | 603.43                              | 588.43                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts over light brown silty-clays with low/medium cohesion. Sheens a<br>surface of sediments, no odor.                         |
| ND20-TB08                  | 1441131.19            | 580227.81              | 6/28/2020                 | 10:15                              | 16.0                   | 603.16                              | 587.16                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silty-clays with medium cohesion. No odor, no sheen.                                                                            |
| ND20-TB09                  | 1441216.76            | 580458.38              | 6/28/2020                 | 9:37                               | 21.1                   | 603.20                              | 582.10                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts over medium brown silty-clays with medium cohesion. No odor, no sheen.                                                    |
| ND20-TB10                  | 1441314.29            | 580331.36              | 6/29/2020                 | 13:20                              | 21.5                   | 603.42                              | 581.92                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts over light brown silty-clays with low/medium cohesion. No odor<br>slight sheen.                                           |
| ND20-TB11                  | 1441415.51            | 580583.92              | 6/28/2020                 | 9:10                               | 26.7                   | 603.13                              | 576.43                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silty-clays with medium cohesion. No odor, no sheen.                                                                            |
| ND20-TB12                  | 1441485.58            | 580813.78              | 6/28/2020                 | 9:00                               | 23.7                   | 603.15                              | 579.45                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts over medium brown silty-clays with medium cohesion. No odor, no sheen.                                                    |
| ND20-TB13                  | 1441580.60            | 581007.74              | 6/28/2020                 | 8:45                               | 27.5                   | 603.05                              | 575.55                                       | 0.3                                 | 0.3                                 | 100%                | Thin layer of loose light brown silts over medium brown silty-clay with medium cohesion. No odor, no sheen.                                 |
| ND20-TB14                  | 1441558.60            | 581195.93              | 6/28/2020                 | 8:30                               | 26.3                   | 602.96                              | 576.66                                       | 0.3                                 | 0.2                                 | 66%                 | Light brown silts with loose cohesion with small (1 inch diameter) dense clay<br>chunks throughout. Slight Sheen. No odor.                  |
| ND20-TB15                  | 1441670.77            | 581361.43              | 6/29/2020                 | 16:40                              | 35.0                   | 603.01                              | 568.01                                       | 0.3                                 | 0.2                                 | 66%                 | Medium brown silty-clays with medium cohesion. No odor. Sheen present. Some small chunks of coal.                                           |
| ND20-TB16                  | 1441594.02            | 581477.06              | 6/28/2020                 | 8:10                               | 27.8                   | 602.99                              | 575.19                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown clays with medium<br>cohesion. Trace chunks of dense clay. Shell hash.              |
| ND20-TB17                  | 1441707.83            | 581633.23              | 6/28/2020                 | 7:55                               | 34.3                   | 603.03                              | 568.73                                       | 0.3                                 | 0.2                                 | 66%                 | Light brown silty-clays with loose cohesion. Trace medium sands. Shell shash. No odor. Some sheens.                                         |
| ND20-TB18                  | 1441583.47            | 581780.25              | 7/1/2020                  | 9:45                               | 26.6                   | 603.05                              | 576.45                                       | 0.3                                 | 0.2                                 | 66%                 | Light brown silts over medium brown clays with trace fine sands. No odor, no sheen.                                                         |
| ND20-TB19                  | 1441837.24            | 581832.69              | 6/28/2020                 | 13:30                              | 28.1                   | 603.19                              | 575.09                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts over medium brown silty-clay. No odor, no sheen. Some sort of<br>ore/metallic chunks, photo taken.                        |
| ND20-TB20                  | 1441915.57            | 581719.42              | 7/1/2020                  | 10:05                              | 13.4                   | 603.07                              | 589.67                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silts with loose cohesion over medium brown silty-clays with mediun<br>cohesion. Slight organic odor, no sheen.                 |
| ND20-TB21                  | 1442054.46            | 581771.15              | 7/3/2020                  | 16:30                              | 31.3                   | 603.26                              | 571.96                                       | 0.3                                 | 0.3                                 | 100%                | Medium brown silts over medium brown silty-clays with low/medium cohesion. N odor, no sheen.                                                |
| ND20-TB22                  | 1442147.48            | 581591.06              | 6/28/2020                 | 13:15                              | 29.5                   | 603.21                              | 573.71                                       | 0.3                                 | 0.3                                 | 100%                | Light brown silty-clays with loose cohesion. Sheen present. No odor.                                                                        |
| ESTUARY FLAT               | s                     |                        | 1                         |                                    |                        | 1                                   | 1                                            |                                     |                                     |                     |                                                                                                                                             |
| ND20-EF01                  | 1435360.75            | 578053.21              | 6/24/2020                 | 9:25                               | 3.1                    | 602.82                              | 599.72                                       | 0.3                                 | 0.2                                 | 66%                 | Light brown fine grained sands with trace silts. No odor, no sheen.                                                                         |
| ND20-EF02                  | 1435652.15            | 578383.97              | 6/24/2020                 | 8:50                               | 3.2                    | 602.85                              | 599.65                                       | 0.3                                 | 0.2                                 | 66%                 | Light brown medium and fine grained sands with trace silts. No odor, no sheen.                                                              |
| ND20-EF03                  | 1435706.36            | 579260.96              | 6/24/2020                 | 8:30                               | 9.0                    | 602.93                              | 593.93                                       | 0.3                                 | 0.1                                 | 33%                 | Brown silty-coarse grained sands with some fine sands. Coal chunks throughout sample. No odor, no sheen.                                    |
| ND20-EF04                  | 1435729.22            | 580161.63              | 6/24/2020                 | 7:55                               | 6.1                    | 603.04                              | 596.94                                       | 0.3                                 | 0.1                                 | 33%                 | Brown silts with trace coarse sands and loose cohesion. Coal chunks throughout<br>sample. Trace gravel and woody debris. No odor, no sheen. |
| ND20-EF05                  | 1433594.26            | 577330.19              | 6/25/2020                 | 7:45                               | 2.4                    | 603.00                              | 600.60                                       | 0.3                                 | 0.2                                 | 66%                 | Light brown fine sands. No odor, no sheen.                                                                                                  |
| ND20-EF06                  | 1433974.41            | 577454.02              | 6/24/2020                 | 13:00                              | 3.3                    | 602.86                              | 599.56                                       | 0.3                                 | 0.1                                 | 33%                 | Light brown fine sands. No odor, no sheen.                                                                                                  |
| ND20-EF07                  | 1433653.04            | 577583.79              | 6/24/2020                 | 13:40                              | 6.6                    | 602.98                              | 596.38                                       | 0.3                                 | 0.2                                 | 66%                 | Light brown silts with fine grained sands with loose cohesion over medium brown fine sands with some clays. No odor, no sheen.              |

## TABLE 2-2 SURFACE SAMPLE COLLECTION NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                            | State Plane Wise | consin North, US |                           |                           |                | Water                |                               |                           |                           |          | Surface Grab Sample                                                                                                                 |
|----------------------------|------------------|------------------|---------------------------|---------------------------|----------------|----------------------|-------------------------------|---------------------------|---------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| Location<br>Identification | Survey Fee       | et (NAD83)       | Sample<br>Collection Date | Sample<br>Collection Time | Water<br>Depth | Surface<br>Elevation | Sediment Surface<br>Elevation | Target                    | Actual                    | Percent  |                                                                                                                                     |
| Identification             | Easting          | Northing         | Conection Date            | (CDT)                     | (ft)           | IGLD85 (ft)          | IGLD85 (ft)                   | Penetration<br>Depth (ft) | Penetration<br>Depth (ft) | Recovery | Field Notes                                                                                                                         |
| ND20-EF08                  | 1433872.89       | 577563.99        | 6/24/2020                 | 13:20                     | 3.7            | 602.93               | 599.23                        | 0.3                       | 0.1                       | 33%      | Light brown sands. No odor, no sheen.                                                                                               |
| ND20-EF09                  | 1432031.30       | 575915.46        | 6/24/2020                 | 14:25                     | 6.0            | 603.01               | 597.01                        | 0.3                       | 0.2                       | 66%      | Light brown silts over medium brown clays with medium cohesion. No odor, no sheen.                                                  |
| ND20-EF10                  | 1432798.70       | 576586.64        | 6/24/2020                 | 14:50                     | 4.2            | 603.03               | 598.83                        | 0.3                       | 0.3                       | 100%     | Brown silts with loose cohesion over brown clays. Some woody debris throughout<br>clay portion of sample.                           |
| ND20-EF11                  | 1431635.87       | 578398.03        | 6/24/2020                 | 11:15                     | 6.4            | 602.79               | 596.39                        | 0.3                       | 0.1                       | 33%      | Light brown fine sands. No odor, no sheen.                                                                                          |
| ND20-EF12                  | 1432479.49       | 578429.60        | 6/24/2020                 | 11:00                     | 6.8            | 602.79               | 595.99                        | 0.3                       | 0.2                       | 66%      | Light brown fine sands. No odor, no sheen.                                                                                          |
| ND20-EF13                  | 1432657.02       | 579320.77        | 6/24/2020                 | 10:40                     | 8.0            | 602.76               | 594.76                        | 0.3                       | 0.2                       | 66%      | Light brown silts over medium brown clays with fine sands with medium cohesion<br>Shell hash. No odor, no sheen.                    |
| ND20-EF14                  | 1433582.72       | 579114.44        | 6/24/2020                 | 10:20                     | 8.0            | 602.77               | 594.77                        | 0.3                       | 0.2                       | 66%      | Light brown silts over medium brown clay with fine sands, medium cohesion. No odor, no sheen.                                       |
| ND20-EF15                  | 1434056.56       | 579883.02        | 6/24/2020                 | 10:00                     | 9.9            | 602.80               | 592.90                        | 0.3                       | 0.3                       | 100%     | Light brown silts over medium brown clays with some fine sands, medium cohesion. No odor, no sheen.                                 |
| ND20-EF16                  | 1434800.41       | 579727.71        | 6/24/2020                 | 9:45                      | 6.2            | 602.79               | 596.59                        | 0.3                       | 0.2                       | 66%      | Light brown silty-sands over medium brown clays with sand and woody debris,<br>medium cohesion. No odor, no sheen.                  |
| ND20-EF17                  | 1431442.79       | 576576.47        | 6/24/2020                 | 14:10                     | 11.2           | 603.03               | 591.83                        | 0.3                       | 0.2                       | 66%      | Light brown silts over medium brown clays with fine sands, medium/firm cohesion<br>No odor, no sheen.                               |
| ND20-EF18                  | 1432496.98       | 577626.59        | 6/24/2020                 | 11:35                     | 5.0            | 602.81               | 597.81                        | 0.3                       | 0.1                       | 33%      | Light brown fine sands with some clay. No odor, no sheen.                                                                           |
| CLOUGH ISLAN               | D                |                  | •                         |                           |                | •                    |                               |                           | •                         |          |                                                                                                                                     |
| ND20-CL01                  | 1416928.86       | 566992.04        | 6/30/2020                 | 8:00                      | 5.5            | 603.04               | 597.54                        | 0.3                       | 0.3                       | 100%     | Light brown silts over medium brown silty-clays with loose/medium cohesion.<br>Woody debris throughout. No odor, no sheen.          |
| ND20-CL02                  | 1417467.13       | 567573.21        | 6/30/2020                 | 12:25                     | 5.2            | 603.26               | 598.06                        | 0.3                       | 0.3                       | 100%     | Light brown silts with loose cohesion over medium brown clays with medium/firm cohesion. No odor, no sheen.                         |
| ND20-CL03                  | 1417675.38       | 567198.65        | 6/30/2020                 | 11:35                     | 4.6            | 603.26               | 598.66                        | 0.3                       | 0.3                       | 100%     | Medium brown silts with lots of vegetative matter and SAV. Slight organic odor.<br>No sheen.                                        |
| ND20-CL04                  | 1417605.84       | 566852.21        | 6/30/2020                 | 8:40                      | 5.5            | 603.12               | 597.62                        | 0.3                       | 0.3                       | 100%     | Light brown silts over medium brown silty-clays with loose/medium cohesion.<br>Woody debris throughout. No odor, no sheen.          |
| ND20-CL05                  | 1417937.24       | 566679.39        | 6/30/2020                 | 9:10                      | 4.4            | 603.26               | 598.86                        | 0.3                       | 0.3                       | 100%     | Medium brown silty-clays with loose cohesion. Some SAV, vegetative detritus.<br>Organic odor, no sheen.                             |
| ND20-CL06                  | 1417973.75       | 566311.43        | 6/30/2020                 | 11:05                     | 4.3            | 603.02               | 598.72                        | 0.3                       | 0.3                       | 100%     | Medium brown silts over medium brown silty-clay with medium cohesion. Lots o<br>vegetative matter. SAV present. No odor, no sheen.  |
| ND20-CL07                  | 1418020.64       | 565985.76        | 6/30/2020                 | 10:30                     | 4.1            | 603.08               | 598.98                        | 0.3                       | 0.2                       | 66%      | Medium brown silts, trace clays. Lots of vegetative debris. Organic odor, no sheen                                                  |
| ND20-CL08                  | 1417729.70       | 566234.56        | 6/30/2020                 | 10:05                     | 5.3            | 603.31               | 598.01                        | 0.3                       | 0.3                       | 100%     | Medium brown silts over medium brown silty-clays with medium cohesion. Trace<br>vegetative debris in clay layer. No odor, no sheen. |
| ND20-CL09                  | 1417750.00       | 566538.50        | 6/30/2020                 | 9:40                      | 5.6            | 603.54               | 597.94                        | 0.3                       | 0.3                       | 100%     | Light brown silts over medium brown silty-clays with medium cohesion. No odor, no sheen.                                            |
| ND20-CL10                  | 1417390.40       | 568501.33        | 6/30/2020                 | 13:00                     | 4.0            | 603.45               | 599.45                        | 0.3                       | 0.2                       | 66%      | Light brown silts with loose cohesion over medium brown silty-fine sands. SAV present in abundance.                                 |

#### TABLE 2-2 SURFACE SAMPLE COLLECTION NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                                                                                                                | State Plane Wise             | consin North, US |                           |                           |                | Water       |                               |                           |                           |          | Surface Grab Sample                                                                                                    |
|----------------------------------------------------------------------------------------------------------------|------------------------------|------------------|---------------------------|---------------------------|----------------|-------------|-------------------------------|---------------------------|---------------------------|----------|------------------------------------------------------------------------------------------------------------------------|
| Location<br>Identification                                                                                     | Survey Fee                   | et (NAD83)       | Sample<br>Collection Date | Sample<br>Collection Time | Water<br>Depth | Surface     | Sediment Surface<br>Elevation | Target                    | Actual                    | Percent  |                                                                                                                        |
| Identification                                                                                                 | Easting                      | Northing         | Conection Date            | (CDT)                     | (ft)           | IGLD85 (ft) | IGLD85 (ft)                   | Penetration<br>Depth (ft) | Penetration<br>Depth (ft) | Recovery | Field Notes                                                                                                            |
| REFERENCE                                                                                                      |                              |                  |                           |                           |                |             |                               |                           |                           |          |                                                                                                                        |
| ND20-SLBREF1                                                                                                   | 1438553.42                   | 583747.05        | 7/1/2020                  | 7:45                      | 23.2           | 603.11      | 579.91                        | 0.3                       | 0.3                       | 100%     | Light brown silts with loose cohesion over medium brown clays with medium cohesion. No odor, no sheen.                 |
| ND20-KBREF2                                                                                                    | 1427328.73                   | 569074.70        | 6/30/2020                 | 14:00                     | 10.5           | 603.45      | 592.95                        | 0.3                       | 0.3                       | 100%     | Light brown silts with loose cohesion over medium brown silty-clays with mediun<br>cohesion. No odor, no sheen.        |
| ND20-LREF3                                                                                                     | 1457850.09                   | 566511.62        | 7/3/2020                  | 0.7                       | 2.7            | 603.28      | 600.58                        | 0.3                       | 0.2                       | 66%      | Medium brown silts with loose cohesion over dense clays with strong cohesion.<br>SAV abundant. No sheen, organic odor. |
| ND20-SBREF4                                                                                                    | 1454913.55                   | 569521.37        | 7/1/2020                  | 18:55                     | 19.2           | 603.14      | 583.94                        | 0.3                       | 0.3                       | 100%     | Light brown silts over medium brown dense clays with strong cohesion. Slight sheen, no odor.                           |
| NOTES:<br>IGLD85 = Internati<br>NAD83 = North Ar<br>ft = Foot (feet).<br>CDT = Central dayl<br>SAV = Submerged | nerican Datum of light time. | 1983.            |                           |                           |                |             |                               |                           |                           |          |                                                                                                                        |

# TABLE 2-3 VIBRACORE COLLECTION DATA NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                            | State Plane Wise      | consin North, US       |                         |                               |                     |                                           |                                              |                                     | Se                                  | ediment Core              |                     |                      |
|----------------------------|-----------------------|------------------------|-------------------------|-------------------------------|---------------------|-------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|---------------------------|---------------------|----------------------|
| Location<br>Identification | Survey Fee<br>Easting | et (NAD83)<br>Northing | Core Collection<br>Date | Core Collection<br>Time (CDT) | Water Depth<br>(ft) | Water Surface<br>Elevation<br>IGLD85 (ft) | Sediment Surface<br>Elevation<br>IGLD85 (ft) | Target<br>Penetration<br>Depth (ft) | Actual<br>Penetration<br>Depth (ft) | Sediment<br>Recovery (ft) | Percent<br>Recovery | Refusal Met<br>(Y/N) |
|                            |                       |                        |                         |                               |                     |                                           |                                              | 1 . /                               | 1 ()                                |                           |                     |                      |
| HALLET DOCK                |                       |                        |                         |                               |                     |                                           |                                              |                                     |                                     |                           |                     |                      |
| ND20-HD01                  | 1436294.45            | 578455.64              | 6/23/2020               | 15:18                         | 8.7                 | 603.08                                    | 594.38                                       | 4                                   | 6.5                                 | 5.8                       | 89.23%              | N                    |
| ND20-HD02                  | 1436295.54            | 578519.92              | 6/23/2020               | 15:51                         | 22.5                | 603.14                                    | 580.64                                       | 4                                   | 6.5                                 | 6.1                       | 93.85%              | N                    |
| ND20-HD03                  | 1436312.58            | 578720.23              | 6/23/2020               | 13:04                         | 22.4                | 602.84                                    | 580.44                                       | 4                                   | 6.5                                 | 5.6                       | 86.15%              | N                    |
| ND20-HD04                  | 1436350.65            | 579501.76              | 6/23/2020               | 11:26                         | 20.8                | 602.69                                    | 581.89                                       | 4                                   | 6.5                                 | 5.9                       | 90.77%              | N                    |
| ND20-HD05                  | 1436372.64            | 580189.60              | 6/23/2020               | 10:48                         | 22.4                | 602.63                                    | 580.23                                       | 4                                   | 6.50                                | 5.9                       | 90.77%              | N                    |
| ND20-HD06                  | 1436394.84            | 580704.93              | 6/23/2020               | 10:03                         | 22.1                | 602.67                                    | 580.57                                       | 4                                   | 6.5                                 | 6.4                       | 98.46%              | N                    |
| OIL BARGE DOC              |                       |                        |                         |                               |                     |                                           |                                              |                                     |                                     |                           |                     |                      |
| ND20-BP01                  | 1436900.58            | 580247.36              | 6/26/2020               | 9:21                          | 2.6                 | 602.99                                    | 600.39                                       | 20                                  | 20.5                                | 20.4                      | 99.51%              | N                    |
| ND20-BP02                  | 1436958.57            | 580248.06              | 6/26/2020               | 11:50                         | 2.3                 | 603.05                                    | 600.75                                       | 20                                  | 20.5                                | 20.3                      | 99.02%              | N                    |
| ND20-BP03                  | 1436933.32            | 580276.10              | 6/26/2020               | 10:33                         | 3.4                 | 603.04                                    | 599.64                                       | 20                                  | 20.5                                | 20.0                      | 97.56%              | N                    |
| ND20-BP04                  | 1436934.39            | 580375.00              | 6/27/2020               | 8:33                          | 12.4                | 602.87                                    | 590.47                                       | 20                                  | 20.5                                | 20.3                      | 99.02%              | N                    |
| ND20-BP05                  | 1436941.52            | 580480.84              | 6/27/2020               | 9:48                          | 16.0                | 602.91                                    | 586.91                                       | 20                                  | 20.5                                | 20.1                      | 98.05%              | N                    |
| ND20-BP06                  | 1436905.81            | 580558.20              | 6/26/2020               | 13:30                         | 18.6                | 603.01                                    | 584.41                                       | 20                                  | 20.5                                | 20.3                      | 99.02%              | N                    |
| ND20-BP07                  | 1436946.73            | 580598.16              | 6/27/2020               | 11:20                         | 18.5                | 603.11                                    | 584.61                                       | 20                                  | 20.5                                | 19.8                      | 96.59%              | N                    |
| ND20-BP08                  | 1436979.51            | 580671.60              | 6/26/2020               | 15:28                         | 18.5                | 602.84                                    | 584.34                                       | 20                                  | 20.0                                | 19.4                      | 97.00%              | N                    |
| ND20-BP09                  | 1436919.22            | 580680.40              | 6/26/2020               | 14:21                         | 20.4                | 603.02                                    | 582.62                                       | 20                                  | 20.5                                | 20.3                      | 99.02%              | Ν                    |
| ND20-BP10                  | 1436982.85            | 580780.50              | 6/24/2020               | 15:41                         | 19.1                | 603.05                                    | 583.95                                       | 10                                  | 10.2                                | 9.4                       | 92.16%              | N                    |
| ND20-BP11                  | 1436914.56            | 580786.35              | 6/24/2020               | 15:05                         | 20.5                | 603.06                                    | 582.56                                       | 10                                  | 10.2                                | 10.0                      | 98.04%              | N                    |
| ND20-BP12                  | 1436958.40            | 580892.28              | 6/27/2020               | 13:12                         | 23.3                | 603.04                                    | 579.74                                       | 10                                  | 10.2                                | 10.0                      | 98.04%              | Ν                    |
| ND20-BP13                  | 1436922.95            | 580991.06              | 6/24/2020               | 14:21                         | 22.5                | 602.91                                    | 580.41                                       | 10                                  | 10.2                                | 10.1                      | 99.02%              | N                    |
| ND20-BP14                  | 1436998.83            | 580987.10              | 6/24/2020               | 13:01                         | 19.2                | 602.88                                    | 583.68                                       | 10                                  | 10.2                                | 10.0                      | 98.04%              | N                    |
| ND20-BP15                  | 1436793.81            | 581124.03              | 6/25/2020               | 8:40                          | 7.3                 | 602.94                                    | 595.64                                       | 10                                  | 10.2                                | 9.8                       | 96.08%              | N                    |
| ND20-BP16                  | 1436956.58            | 581163.11              | 6/25/2020               | 15:56                         | 22.9                | 603.04                                    | 580.14                                       | 10                                  | 10.2                                | 9.7                       | 95.10%              | N                    |
| ND20-BP17                  | 1437487.64            | 581404.09              | 6/27/2020               | 14:38                         | 20.5                | 602.99                                    | 582.49                                       | 10                                  | 10.0                                | 8.6                       | 86.00%              | N                    |
| GENERAL MILL               | S SLIP                |                        |                         |                               |                     |                                           |                                              |                                     |                                     |                           |                     | •                    |
| ND20-GM01                  | 1439438.81            | 580486.08              | 7/1/2020                | 9:02                          | 14.3                | 603.1                                     | 588.80                                       | 10                                  | 6.6                                 | 4.2                       | 63.64%              | Y                    |
| ND20-GM02                  | 1439501.73            | 580488.27              | 7/1/2020                | 9:42                          | 17.0                | 603.05                                    | 586.05                                       | 10                                  | 10.0                                | 9.6                       | 96.00%              | N                    |
| ND20-GM03                  | 1439446.40            | 580814.34              | 7/1/2020                | 15:58                         | 17.0                | 603.35                                    | 586.35                                       | 10                                  | 10.0                                | 9.4                       | 94.00%              | N                    |
| ND20-GM04                  | 1439519.96            | 580810.85              | 6/28/2020               | 15:42                         | 18.8                | 603.03                                    | 584.23                                       | 10                                  | 10.2                                | 9.2                       | 90.20%              | N                    |
| ND20-GM05                  | 1439520.58            | 580980.04              | 7/1/2020                | 14:08                         | 25.4                | 603.26                                    | 577.86                                       | 10                                  | 7.6                                 | 7.6                       | 100.00%             | Y                    |
| ND20-GM06                  | 1439443.31            | 580988.57              | 7/1/2020                | 15:32                         | 19.4                | 603.35                                    | 583.95                                       | 10                                  | 10.0                                | 9.6                       | 96.00%              | N                    |
| ND20-GM07                  | 1439526.81            | 581092.05              | 7/1/2020                | 13:24                         | 28.1                | 603.16                                    | 575.06                                       | 10                                  | 10.0                                | 9.9                       | 99.00%              | N                    |
| ND20-GM08                  | 1439469.30            | 581321.88              | 7/1/2020                | 12:21                         | 24.6                | 603.4                                     | 578.80                                       | 10                                  | 9.5                                 | 9.1                       | 95.79%              | N                    |
| ND20-GM09                  | 1439533.06            | 581442.91              | 7/1/2020                | 11:24                         | 28.1                | 603.26                                    | 575.16                                       | 10                                  | 9.0                                 | 8.7                       | 96.67%              | N                    |
| ND20-GM10                  | 1439477.15            | 581550.07              | 7/1/2020                | 9:48                          | 24.0                | 603.05                                    | 579.05                                       | 6                                   | 10.0                                | 9.9                       | 99.00%              | N                    |
| ND20-GM11                  | 1439541.97            | 581688.21              | 7/1/2020                | 8:48                          | 31.5                | 603.07                                    | 571.57                                       | 6                                   | 10.2                                | 9.8                       | 96.08%              | N                    |
| ND20-GM12                  | 1439477.91            | 581843.69              | 7/2/2020                | 10:44                         | 26.5                | 603.07                                    | 576.57                                       | 6                                   | 7.3                                 | 7.3                       | 100.00%             | Y                    |
| ND20-GM13 <sup>1</sup>     | 1439515.06            | 582081.59              | 7/2/2020                | 11:55                         | 30.9                | 603.06                                    | 572.16                                       | 6                                   | 1.1                                 | 1.1                       | 100.00%             | Y                    |
| -                          |                       |                        | 7/2/2020                | 11:55                         |                     |                                           | 572.16                                       | 6                                   | 1.1                                 |                           |                     |                      |
| ND20-GM14                  | 1439630.38            | 582329.41              | //2/2020                | 15:12                         | 21.6                | 603.15                                    | 381.33                                       | 0                                   | 10.2                                | 10.0                      | 98.04%              | Ν                    |

# TABLE 2-3 VIBRACORE COLLECTION DATA NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                                                                                                              | State Plane Wise                            | consin North, US |                         |                               |                     |                                           |                                              |                                     | S                                   | ediment Core              |                     |                      |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|-------------------------|-------------------------------|---------------------|-------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|---------------------------|---------------------|----------------------|
| Location<br>Identification                                                                                   | Survey Fee<br>Easting                       | et (NAD83)       | Core Collection<br>Date | Core Collection<br>Time (CDT) | Water Depth<br>(ft) | Water Surface<br>Elevation<br>IGLD85 (ft) | Sediment Surface<br>Elevation<br>IGLD85 (ft) | Target<br>Penetration<br>Depth (ft) | Actual<br>Penetration<br>Depth (ft) | Sediment<br>Recovery (ft) | Percent<br>Recovery | Refusal Met<br>(Y/N) |
| TOWER AVENUE                                                                                                 | SLIP                                        |                  |                         |                               |                     |                                           |                                              |                                     |                                     |                           |                     |                      |
| ND20-TB01                                                                                                    | 1440799.09                                  | 579324.92        | 6/30/2020               | 8:57                          | 7.9                 | 603.2                                     | 595.30                                       | 20                                  | 20.5                                | 20.1                      | 98.05%              | Ν                    |
| ND20-TB02                                                                                                    | 1440877.28                                  | 579298.45        | 6/30/2020               | 12:37                         | 1.9                 | 603.4                                     | 601.50                                       | 20                                  | 20.0                                | 18.1                      | 90.50%              | N                    |
| ND20-TB03                                                                                                    | 1440930.79                                  | 579446.81        | 6/30/2020               | 14:23                         | 11.4                | 603.16                                    | 591.76                                       | 20                                  | 20.0                                | 19.2                      | 96.00%              | Ν                    |
| ND20-TB04                                                                                                    | 1440870.01                                  | 579583.57        | 6/30/2020               | 15:31                         | 9.4                 | 603.29                                    | 593.89                                       | 20                                  | 19.2                                | 18.7                      | 97.40%              | Ν                    |
| ND20-TB05                                                                                                    | 1441059.56                                  | 579721.67        | 6/28/2020               | 8:44                          | 12.6                | 602.99                                    | 590.39                                       | 10                                  | 10.2                                | 9.7                       | 95.10%              | N                    |
| ND20-TB06                                                                                                    | 1441004.26                                  | 579869.96        | 6/28/2020               | 10:34                         | 15.6                | 603.2                                     | 587.60                                       | 10                                  | 10.2                                | 9.7                       | 95.10%              | Ν                    |
| ND20-TB07                                                                                                    | 1441181.08                                  | 579968.02        | 6/28/2020               | 12:07                         | 14.4                | 603.13                                    | 588.73                                       | 10                                  | 9.1                                 | 9.1                       | 100.00%             | Y                    |
| ND20-TB08                                                                                                    | 1441131.07                                  | 580228.44        | 6/28/2020               | 13:13                         | 15.8                | 603.21                                    | 587.41                                       | 10                                  | 10.2                                | 10.0                      | 98.04%              | N                    |
| ND20-TB09                                                                                                    | 1441222.06                                  | 580456.79        | 6/28/2020               | 14:13                         | 20.4                | 603.16                                    | 582.76                                       | 10                                  | 10.2                                | 9.8                       | 96.08%              | N                    |
| ND20-TB10                                                                                                    | 1441313.53                                  | 580331.38        | 6/27/2020               | 15:39                         | 20.6                | 602.85                                    | 582.25                                       | 10                                  | 10.2                                | 10.0                      | 98.04%              | N                    |
| ND20-TB11                                                                                                    | 1441413.69                                  | 580585.41        | 7/2/2020                | 15:16                         | 26.0                | 603.19                                    | 577.19                                       | 6                                   | 6.5                                 | 5.9                       | 90.77%              | N                    |
| ND20-TB12                                                                                                    | 1441483.20                                  | 580814.97        | 7/2/2020                | 15:59                         | 23.2                | 603.19                                    | 579.99                                       | 6                                   | 6.5                                 | 6.4                       | 98.46%              | N                    |
| ND20-TB13                                                                                                    | 1441574.45                                  | 581012.84        | 7/3/2020                | 8:38                          | 26.9                | 603.03                                    | 576.13                                       | 6                                   | 3.2                                 | 3.2                       | 100.00%             | Y                    |
| ND20-TB14                                                                                                    | 1441559.49                                  | 581196.40        | 7/4/2020                | 9:45                          | 25.5                | 602.95                                    | 577.45                                       | 6                                   | 1.0                                 | 0.8                       | 80.00%              | Y                    |
| ND20-TB15                                                                                                    | 1441674.39                                  | 581338.37        | 7/4/2020                | 8:48                          | 34.2                | 603.0                                     | 568.80                                       | 6                                   | 2.3                                 | 2.3                       | 100.00%             | Y                    |
| ND20-TB16                                                                                                    | 1441593.72                                  | 581482.84        | 7/4/2020                | 10:55                         | 26.1                | 602.89                                    | 576.79                                       | 6                                   | 1.0                                 | 1.0                       | 100.00%             | Y                    |
| ND20-TB17                                                                                                    | 1441709.61                                  | 581632.20        | 7/3/2020                | 15:28                         | 33.7                | 603.22                                    | 569.52                                       | 6                                   | 3.0                                 | 2.6                       | 86.67%              | Y                    |
| ND20-TB18                                                                                                    | 1441577.54                                  | 581785.64        | 7/3/2020                | 14:52                         | 26.4                | 603.19                                    | 576.79                                       | 6                                   | 2.0                                 | 1.9                       | 95.00%              | N                    |
| ND20-TB19                                                                                                    | 1441838.74                                  | 581831.29        | 7/3/2020                | 13:18                         | 28.1                | 603.16                                    | 575.06                                       | 6                                   | 6.5                                 | 6.2                       | 95.38%              | N                    |
| ND20-TB20                                                                                                    | 1441917.05                                  | 581722.26        | 7/3/2020                | 12:18                         | 13.4                | 603.12                                    | 589.72                                       | 6                                   | 6.6                                 | 6.6                       | 100.00%             | N                    |
| ND20-TB21                                                                                                    | 1442058.87                                  | 581796.01        | 7/3/2020                | 10:38                         | 29.4                | 603.03                                    | 573.63                                       | 6                                   | 5.7                                 | 5.7                       | 100.00%             | Y                    |
| ND20-TB22                                                                                                    | 1442145.14                                  | 581589.16        | 7/3/2020                | 9:38                          | 29.0                | 603.06                                    | 574.06                                       | 6                                   | 6.3                                 | 6.3                       | 100.00%             | N                    |
| ESTUARY FLATS                                                                                                |                                             |                  |                         |                               |                     | 1                                         |                                              |                                     |                                     |                           |                     |                      |
| ND20-EF01                                                                                                    | 1435358.26                                  | 578051.24        | 6/24/2020               | 11:05                         | 2.6                 | 602.77                                    | 600.17                                       | 6                                   | 6.0                                 | 5.4                       | 90.00%              | Ν                    |
| ND20-EF02                                                                                                    | 1435645.79                                  | 578384.42        | 6/22/2020               | 15:45                         | 2.9                 | 603.16                                    | 600.26                                       | 6                                   | 6.4                                 | 6.4                       | 100.00%             | N                    |
| ND20-EF03                                                                                                    | 1435707.91                                  | 579264.45        | 6/22/2020               | 14:25                         | 4.4                 | 603.08                                    | 598.68                                       | 6                                   | 6.5                                 | 6.3                       | 96.92%              | N                    |
| ND20-EF04                                                                                                    | 1435728.92                                  | 580162.88        | 6/22/2020               | 12:46                         | 5.8                 | 602.95                                    | 597.15                                       | 6                                   | 6.5                                 | 6.4                       | 98.46%              | N                    |
| ND20-EF05                                                                                                    | 1433598.50                                  | 577327.20        | 6/24/2020               | 9:09                          | 1.8                 | 602.81                                    | 601.01                                       | 6                                   | 6.5                                 | 6.2                       | 95.38%              | N                    |
| ND20-EF06                                                                                                    | 1433975.70                                  | 577453.02        | 6/24/2020               | 9:50                          | 2.5                 | 602.81                                    | 600.31                                       | 6                                   | 6.5                                 | 6.3                       | 96.92%              | N                    |
| ND20-EF07                                                                                                    | 1433652.04                                  | 577581.67        | 6/24/2020               | 8:27                          | 6.3                 | 602.93                                    | 596.63                                       | 6                                   | 6.5                                 | 6.5                       | 100.00%             | N                    |
| ND20-EF08                                                                                                    | 1433877.46                                  | 577559.18        | 6/23/2020               | 8:53                          | 3.2                 | 602.89                                    | 599.69                                       | 6                                   | 6.5                                 | 6.0                       | 92.31%              | N                    |
| NOTES:                                                                                                       |                                             |                  |                         |                               |                     |                                           |                                              |                                     |                                     |                           |                     |                      |
| IGLD85 = Internation<br>NAD83 = North Arr<br>ft = Foot (feet).<br>CDT = Central dayli<br>1. A sample was not | erican Datum of 1 <sup>4</sup><br>ght time. | 983.             | recovery at the lo      | cation with shallow           | v refusal.          |                                           |                                              |                                     |                                     |                           |                     |                      |

#### TABLE 2-4 ACTUAL ANALYTICAL PROGRAM—HALLET DOCK 8 SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                                                                 |                                                          |                             |                                           |                                       |                        |                                    | Fi                                | eld Sample                                   | Count and                      | Required                                                | 00                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                         |                                      | Analytica                                        | l Interval                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|---------------------------------------|------------------------|------------------------------------|-----------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                                                                 |                                                          |                             |                                           |                                       | Chem                   | istry                              | FIC                               | au sample                                    | Count and                      | Required                                                | QC                                                            |                                                                                        |                                                       |                                                                      | Bioassay                                                   |                                                         |                                                         |                                      | marytica                                         | i inter var                                    |
| Sample Location/<br>Sample ID                                                                                                                                                                                                                                                                                                                               | Sample Depth Interval (ft)                                                                    | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM024/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | rcl vocs<br>EPA SW846 8260D | FCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>PA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Fotal Organic Carbon<br>Joyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Foxicity Testing (28-day +<br>1 hr UV light <i>Hyalella</i> )<br>EPA 100.4/ ASTM E1706 | Foxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Jioxin/Furans<br>Lumbriculus tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
| •                                                                                                                                                                                                                                                                                                                                                           | surf                                                                                          |                                                                 | 1                                                        | 1                           | 1                                         | 1                                     | 1                      | 1                                  | 1                                 | 1                                            | 1                              | N U H                                                   | 1                                                             | 1                                                                                      | 1                                                     | H U H                                                                |                                                            |                                                         | H V H                                                   | щŲ                                   | 0                                                | 0.3                                            |
| ND20-HD01                                                                                                                                                                                                                                                                                                                                                   | 0.3-1.0<br>1.0-2.0<br>2.0-3.0<br>3.0-4.0                                                      |                                                                 | 1<br>1<br>1<br>1                                         | 1                           | 1<br>1<br>1<br>1                          |                                       |                        |                                    | 1<br>1<br>1<br>1                  |                                              | 1<br>1<br>1<br>1               |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                         |                                      | 0.3<br>1.0<br>2.0<br>3.0                         | 1.0<br>2.0<br>3.0<br>4.0                       |
| ND20-HD02                                                                                                                                                                                                                                                                                                                                                   | surf<br>0.3-1.0<br>1.0-2.0<br>2.0-3.0                                                         |                                                                 | 1<br>1<br>1<br>1                                         | 1                           | 1<br>1<br>1<br>1                          |                                       |                        |                                    | 1<br>1<br>1<br>1                  | 1                                            | 1<br>1<br>1<br>1               |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                         |                                      | 0<br>0.3<br>1.0<br>2.0                           | 0.3<br>1.0<br>2.0<br>3.0                       |
| ND20-HD03                                                                                                                                                                                                                                                                                                                                                   | 3.0-4.0<br>surf<br>0.3-1.0<br>1.0-2.0                                                         |                                                                 | 1<br>1<br>1<br>1                                         | 1                           | 1<br>1<br>1<br>1                          | 1                                     | 1                      | 1                                  | 1<br>1<br>1<br>1                  | 1                                            | 1<br>1<br>1<br>1               |                                                         | 1                                                             | 1                                                                                      | 1                                                     |                                                                      |                                                            |                                                         |                                                         |                                      | 3.0<br>0<br>0.3<br>1.0                           | 4.0<br>0.3<br>1.0<br>2.0                       |
| ND20-HD04                                                                                                                                                                                                                                                                                                                                                   | 2.0-3.0<br>3.0-4.0<br>surf<br>0.3-1.0<br>1.0-2.0                                              |                                                                 | 1<br>1<br>1<br>1                                         | 1                           | 1<br>1<br>1<br>1<br>1                     | 1                                     | 1                      | 1                                  | 1<br>1<br>1<br>1<br>1             | 1                                            | 1<br>1<br>1<br>1<br>1          |                                                         |                                                               | 1                                                                                      | 1                                                     |                                                                      |                                                            |                                                         |                                                         |                                      | 2.0<br>3.0<br>0<br>0.3<br>1.0                    | 3.0<br>4.0<br>0.3<br>1.0<br>2.0                |
| 1120-11204                                                                                                                                                                                                                                                                                                                                                  | 1.0-2.0<br>2.0-3.0<br>3.0-4.0<br>surf<br>0.3-1.0                                              |                                                                 | 1<br>1<br>1<br>1                                         | 1                           | 1<br>1<br>1<br>1<br>1                     |                                       |                        |                                    | 1<br>1<br>1<br>1<br>1             | 1                                            | 1<br>1<br>1<br>1<br>1          |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                         |                                      | 1.0<br>2.0<br>3.0<br>0<br>0.3                    | 2.0<br>3.0<br>4.0<br>0.3<br>1.0                |
| ND20-HD05                                                                                                                                                                                                                                                                                                                                                   | 1.0-2.0<br>2.0-3.0<br>3.0-4.0<br>4.0-5.0**                                                    |                                                                 | 1<br>1<br>1<br>1                                         | 1                           | 1<br>1<br>1<br>1<br>1                     |                                       |                        |                                    | 1<br>1<br>1<br>1                  |                                              | 1<br>1<br>1<br>1               |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                         |                                      | 1.0<br>2.0<br>3.0<br>4.0                         | 2.0<br>3.0<br>4.0<br>5.0                       |
| ND20-HD06                                                                                                                                                                                                                                                                                                                                                   | surf<br>0.3-1.0<br>1.0-2.0<br>2.0-3.0                                                         |                                                                 | 1<br>1<br>1<br>1                                         | 1                           | 1<br>1<br>1<br>1                          |                                       |                        |                                    | 1<br>1<br>1<br>1                  | 1                                            | 1<br>1<br>1<br>1               |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                         |                                      | 0<br>0.3<br>1.0<br>2.0                           | 0.3<br>1.0<br>2.0<br>3.0                       |
| T + 1 C - 1                                                                                                                                                                                                                                                                                                                                                 | 3.0-4.0                                                                                       | 0                                                               | 1<br>31                                                  | 13                          | 1<br>31                                   | 3                                     | 3                      | 3                                  | 1<br>31                           | 6                                            | 1<br>31                        | 0                                                       | 6                                                             | 3                                                                                      | 3                                                     | 0                                                                    | 0                                                          | 0                                                       | 0                                                       | 0                                    | 3.0                                              | 4.0                                            |
| Total Sediment Samples<br>Field Quality Control Sa                                                                                                                                                                                                                                                                                                          |                                                                                               | U                                                               | 51                                                       | 15                          | 51                                        | 3                                     | 3                      | 3                                  | 51                                | U                                            | 31                             | 0                                                       | U                                                             | 3                                                                                      | 3                                                     | 0                                                                    | 0                                                          | U                                                       | U                                                       | U                                    |                                                  |                                                |
| Field Split / Duplicates (10<br>Matrix Spike / Matrix Spik                                                                                                                                                                                                                                                                                                  | % of samples)<br>e Duplicates <sup>3</sup> (5% of samples)                                    | 0                                                               | 3                                                        | 2                           | 3 2 5                                     | 1                                     | 1                      | 1 0                                | 3 2                               | 0                                            | 3                              | 0                                                       | 1 0                                                           | 0                                                                                      | 0                                                     | 0                                                                    | 0                                                          | 0                                                       | 0                                                       | 0                                    |                                                  |                                                |
| Total Field Quality Cont<br>Total Samples                                                                                                                                                                                                                                                                                                                   | roi sampies                                                                                   | 0                                                               | 5<br>36                                                  | 3                           | 5<br>36                                   | 2 5                                   | 2 5                    | 1 4                                | 5<br>36                           | 0<br>6                                       | 3 34                           | 0                                                       | 1 7                                                           | 0                                                                                      | 0                                                     | 0                                                                    | 0                                                          | 0                                                       | 0                                                       | 0                                    |                                                  |                                                |
| NOTES:<br>AES = Atomic emission spect<br>ASTM = ASTM International<br>C8-C40 = 8 carbon-chain to 4<br>CLP = Contract Laboratory P<br>EPA = U.S. Environmental Pr<br>GC/MS = Gas chromatograph<br>ICP = Inductively-coupled pla<br>PAH = Polycyclic aromatic hy<br>PCB = Polychlorinated bipher<br>TAL = Target Analyte List<br>** Sample added during field | 0 carbon-chain<br>rogram<br>otection Agency<br>y/mass spectrometry<br>sma<br>drocarbon<br>yyl |                                                                 |                                                          |                             |                                           |                                       |                        |                                    |                                   |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                         |                                      | aphthalenes, d                                   | :2-                                            |
| phenanthrenes/anthracenes, c3                                                                                                                                                                                                                                                                                                                               | chrysenes, c3 fluorenes, c3-naphthalen<br>2-methylnaphthalene, acenaphthene, ace              | ies, c3-phenai                                                  | nthrenes/anthr                                           | acenes, c4 ch               | rysenes, c4-na                            | phthalenes, c                         | 4-phenanthre           | enes/anthrace                      | nes, chrysene                     | e, dibenzo(a,h                               | )anthracene,                   | fluoranthene,                                           | fluorene, ind                                                 | eno(1,2,3-cd)                                                                          | pyrene, naph                                          | thalene, peryl                                                       | ene, phenant                                               | hrene, pyrene.                                          |                                                         |                                      |                                                  |                                                |
|                                                                                                                                                                                                                                                                                                                                                             | 2-methylnaphthalene, acenaphthene, ace                                                        |                                                                 |                                                          | enzo(a)anthr                | acene, penzo(a                            | a)pyrene, ben                         | zo(e)pyrene,           | penzo(b)fluo                       | rantnene, ber                     | izo(g,n,i)pery                               | iene, benzo(F                  | Gindoranthen                                            | e, enrysene, d                                                | ioenzo(a,n)ar                                                                          | iun acene, flu                                        | orantnene, flu                                                       | orene, indeno                                              | л(1,2,3-с,d)ру                                          | rene, napritha                                          | iene, prienan                        | mene, pyrene                                     |                                                |

3. For matrix spike/matrix spike duplicate samples, double volume submitted for analysis.

## TABLE 2-5 ACTUAL ANALYTICAL PROGRAM—OIL BARGE DOCK SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                               |                            |                                                                  |                                                          |                             |                                           |                                        |                        |                                    | Fi                                | eld Sample                                   | Count and                      | Required                                                | QC                                                           |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | Analytica                                        | l Interval                                     |
|-------------------------------|----------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------|------------------------|------------------------------------|-----------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                               |                            |                                                                  |                                                          |                             |                                           |                                        | Chen                   | nistry                             |                                   |                                              |                                |                                                         |                                                              |                                                                                        |                                                       |                                                                      | Bioassay                                                   |                                                         |                                                                  |                                      |                                                  |                                                |
| Sample Location/<br>Sample ID | Sample Depth Interval (ft) | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Jioxins/Furans<br>EPA Method 1613B | Fotal Organic Carbon<br>Joyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Oal Particles<br>Method OPT.023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyatella</i> )<br>EPA 100.4/ ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Bravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                        | 00                     |                                    | 1                                 |                                              |                                |                                                         | 202                                                          |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  | <u> </u>                             | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-BP01                     | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 10.0-12.0<br>12.0-14.0     | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0<br>14.0                                   |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | surftox**                  | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                 | 1                                            | 1                              | 1                                                       | 1                                                            | 1                                                                                      | 1                                                     |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        | •                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                            | l ·                                                                                    |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                            | 1                                                                                      |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-BP02                     | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 10.0-12.0                  |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0                                           |
|                               | 12.0-14.0                  |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 14.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                 | 1                                            | 1                              |                                                         | 1                                                            | 1                                                                                      |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | surftox**<br>0.3-2.0       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                 | 1                                            | 1                              | I                                                       | 1                                                            | 1                                                                                      | I                                                     |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 0.3                                            |
|                               | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
| ND20-BP03                     | 8.0-10.0                   | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 10.0-12.0                  | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0                                           |
|                               | 12.0-14.0                  | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 14.0                                           |
|                               | 14.0-16.0**                | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 14.0                                             | 16.0                                           |
|                               | 16.0-18.0**                | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 16.0                                             | 18.0                                           |
|                               | 18.0-20.0**                | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 18.0                                             | 20.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0<br>2.0-4.0         | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0<br>4.0                                     |
|                               | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
| ND20-BP04                     | 6.0-8.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              | -                                                                                      |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 10.0-12.0                  |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0                                           |
|                               | 12.0-14.0                  |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 14.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                 | 1                                            | 1                              | 1                                                       | 1                                                            | 1                                                                                      | 1                                                     |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                            | ļ                                                                                      |                                                       |                                                                      |                                                            | ļ                                                       |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-BP05                     | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         | <u> </u>                                                     | I                                                                                      |                                                       | <u> </u>                                                             |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0<br>8.0-10.0        | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              | l                                                                                      |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0<br>8.0                                       | 8.0<br>10.0                                    |
|                               | 8.0-10.0                   | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 12.0-14.0                  | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 12.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 | 1                                            | 1                              |                                                         | 1                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                            | 1                                                                                      |                                                       |                                                                      | -                                                          |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                            | 1                                                                                      |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20 PD06                     | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
| ND20-BP06                     | 6.0-8.0                    |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 10.0-12.0                  |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0                                           |
|                               | 12.0-14.0                  |                                                                  | 1                                                        | 1                           | 1                                         |                                        |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                              |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 14.0                                           |

## TABLE 2-5 ACTUAL ANALYTICAL PROGRAM—OIL BARGE DOCK SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                               |                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    | Fi                                 | eld Sample                                   | Count and                      | Required                                                | 00                                                            |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | Analytica                                        | l Interval                                     |
|-------------------------------|----------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|---------------------------------------|------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                               |                            |                                                                  |                                                          |                             |                                           |                                       | Chen                   | istry                              | 1.1                                | ciu Sampie                                   | count and                      | Requireu                                                | QC                                                            | 1                                                                                     |                                                       |                                                                      | Bioassay                                                   |                                                         |                                                                  |                                      | maiyaca                                          | i inter var                                    |
| Sample Location/<br>Sample ID | Sample Depth Interval (ft) | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | ETL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM024/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyatella</i> )<br>EPA 100.4/ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                     | 1                      | 1                                  | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             | 1                                                                                     | 1                                                     |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-BP07                     | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0<br>8.0-10.0        | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0<br>8.0                                       | 8.0                                            |
|                               | 10.0-12.0                  | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0<br>12.0                                   |
|                               | 12.0-14.0                  | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 12.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-BP08                     | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
| 1020 0100                     | 6.0-8.0                    |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 10.0-12.0                  |                                                                  | 1                                                        | 1                           | •                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0<br>14.0                                   |
|                               | 12.0-14.0<br>surf          | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
| ND20-BP09                     | 6.0-8.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 10.0-12.0                  | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0                                           |
|                               | 12.0-14.0                  | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 14.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              | 1                                                       | 1                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-BP10                     | 2.0-4.0 4.0-6.0            | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0 4.0                                          | 4.0<br>6.0                                     |
|                               | 6.0-8.0                    |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              |                                                         | 1                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.0                                              | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-BP11                     | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-BP11                     | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0<br>2.0-4.0         | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              | 1                                                       | 1                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0 4.0                                        |
| ND20-BP12                     | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-BP13                     | 2.0-4.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| 11020-DI 13                   | 4.0-6.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         | ļ                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              |                                                         | <u> </u>                                                      | ļ                                                                                     |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0 2.0-4.0            | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         | l                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         | └──┤                                                             |                                      | 0.3                                              | 2.0                                            |
| ND20-BP14                     | 2.0-4.0 4.0-6.0            | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 4.0<br>6.0                                     |
|                               | 6.0-8.0                    |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         | <u> </u>                                                      |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 0.0 10.0                   |                                                                  |                                                          | 1                           | -                                         |                                       |                        |                                    | 1                                  |                                              | 4                              |                                                         | 1                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.0                                              | 10.0                                           |

North End District and Clough Island Sediment Characterization St. Louis River Area of Concern, Superior, Wisconsin

## TABLE 2-5 ACTUAL ANALYTICAL PROGRAM—OIL BARGE DOCK SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

| Sample Dop     Sample Dop     Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    | Fie                                | eld Sample                                   | Count and                      | Required (                                              | QC                                                             |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      | Analytica                                        | l Interval                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|---------------------------------------|------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|----------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       | Chem                   | istry                              |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      | Bioassay                                                   |                                                        |                |                                      |                                                  |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Location/<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample Depth Interval (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM024/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT ,023.3 | Foxicity Testing (28-day +<br>4 hr UV light <i>Hyalella</i> )<br>EPA 100.4/ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GCMS SIM |                | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
| N28-B13     2 0.4 0     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <th1< th="">     1     1</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | surf         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                   |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       | 0.3                                                                  |                                                            |                                                        |                |                                      |                                                  |                                                |
| Und         416.6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td></td> <td colspan="15">surf         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td> <td>0.3</td> <td>2.0</td> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | surf         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                   |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       | 0.3                                                                  | 2.0                                                        |                                                        |                |                                      |                                                  |                                                |
| 40.60         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND20 BP15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      | 2.0                                              | 4.0                                            |
| N20-BP16         No.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <th1< th="">         1         1         <th1<< td=""><td>ND20-DI 15</td><td>4.0-6.0</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.0</td><td>6.0</td></th1<<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND20-DI 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0-6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      | 4.0                                              | 6.0                                            |
| stri         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| N29.B76       0.5.2.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <t< td=""><td></td><td>8.0-10.0</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.0</td><td></td></t<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.0-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      | 8.0                                              |                                                |
| 20.2.BP10       20.4.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              |                                                         | 1                                                              |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| UDU-BYIO         40.60         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         <th< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                              |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| 41.45.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td>ND20 BP16</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>4.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND20 BP16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  | 4.0                                            |
| No.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND20 DI 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| surf         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0-10.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1< |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| 0.3.2.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td colspan="15">surf         1         1         1         1         1         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td></td>                                                                                                                                               | surf         1         1         1         1         1         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| Q2.04.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                | 1                                                        | 1                           | 1                                         |                                       |                        |                                    | 1                                  | 1                                            | 1                              |                                                         | 1                                                              |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| UD20. B17       UD20. B17       UD20. 60       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td colspan="15">surf         1         1         1         1         1         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td></td>                                                                                                                                      | surf         1         1         1         1         1         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| 40.6.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<td>ND20-BP17</td><td colspan="15">0.3-2.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<!--</td--><td></td></td></th1<>                                                                                                           | ND20-BP17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3-2.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td></td> |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| Bit         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3-2.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td></td> |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| Ford Sediment Samples         97         125         125         6         4         4         125         16         122         20         32         4         4         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3-2.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td></td> |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| Field Quality Control Samples       Image: Control Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.0-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                | 1                                                        | -                           |                                           |                                       |                        |                                    | -                                  |                                              | -                              |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      | 8.0                                              | 10.0                                           |
| Field Split / Duplicates (10% of samples)       11       13       13       13       2       2       2       13       0       13       3       4       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND20-BP17         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| Matrix Spike / Matrix Spike Duplicates <sup>3</sup> (5% of samples)       5       7       7       1       1       0       7       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1 1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                |                                                          | 1                           |                                           |                                       |                        |                                    | 1                                  |                                              |                                |                                                         | 1 1                                                            |                                                                                       | 1                                                     | 1                                                                    | 1                                                          | 1                                                      | 1              | 1                                    |                                                  |                                                |
| Total Field Quality Control Samples         16         20         20         2         2         20         14         3         4         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             | -                                         |                                       | 2                      | _                                  |                                    |                                              | 13                             | -                                                       |                                                                |                                                                                       | -                                                     |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| Total Samples       113       145       145       9       7       6       145       16       136       23       36       4       4       0       0       0       0       0         VOTES:       Attain emission spectroscopy       StM = ASTM International       36       4       4       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix Spike / Matrix Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duplicates3 (5% of samples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 7                                                        | ,                           | ,                                         | 1                                     | 1                      |                                    |                                    | 0                                            | 1                              | 0                                                       | 0                                                              | 0                                                                                     | 0                                                     | 0                                                                    | 0                                                          | 0                                                      | 0              | 0                                    |                                                  |                                                |
| NOTES:<br>AES = Atomic emission spectroscopy<br>ASTM = ASTM International<br>3S-C40 = 8 carbon-chain to 40 carbon-chain<br>DLP = Contract Laboratory Program<br>BPA = U.S. Environmental Protection Agency<br>3C/MS = Gas chromatographylmas spectrometry<br>CP = Inductively-coupled plasma<br>PAH = Polycyclic aromatic hydrocarbon<br>PCB = Polycholininated biphonyl<br>FAL = Target Analyte List<br>** Sample added during field effort<br>1.34 PAHs include: acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(a)fluoranthene, c1 chrysenes, c1-fluoranthenes/pyrenes, c1-naphthalenes, c2-phenanthrenes/anthracenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2                                                                                                                              | Total Field Quality Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ol Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                               | 20                                                       | 20                          | 20                                        | 3                                     | 3                      | 2                                  | 20                                 | 0                                            | 14                             | 3                                                       | 4                                                              | 0                                                                                     | 0                                                     | 0                                                                    | 0                                                          | 0                                                      | 0              | 0                                    |                                                  |                                                |
| AES = Atomic emission spectroscopy<br>SC 40 = S atomic emission spectroscopy<br>CP = Contract Laboratory Program<br>CP = Contract Laboratory Program<br>CP = Contract Laboratory Program<br>CP = Contract Laboratory Program<br>CP = Inductively-coupled plasma<br>PAT = Polycyclic aromatic hydrocarbon<br>PAT = Polycyclic aromatic hydrocarbon<br>PAT = Polycyclic aromatic hydrocarbon<br>PAT = Strapped added <i>during field effort</i><br>1. 34 PATs include: acenaphthylene, antracene, benzo(a)antracene, caenaphthylene, antracene, benzo(a)antracene, benzo(a)                                                                                                                           | Total Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113                                                              | 145                                                      | 145                         | 145                                       | 9                                     | 7                      | 6                                  | 145                                | 16                                           | 136                            | 23                                                      | 36                                                             | 4                                                                                     | 4                                                     | 0                                                                    | 0                                                          | 0                                                      | 0              | 0                                    |                                                  |                                                |
| ASTM = ASTM International<br>28-C40 = 8 carbon-chain to 40 carbon-chain<br>C1P = Contract Laboratory Program<br>28-A = U.S. Environmental Protection Agency<br>36-MS = Gas chromatography/mass spectrometry<br>GCMS = Gas chromatography/mass spectrometry<br>GP = Inductively-coupled plasma<br>PAH = Polycyclic aromatic hydrocarbon<br>PCB = Polycyclic                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| 28-C40 = 8 carbon-chain to 40 carbon-chain<br>CLP = Contract Laboratory Program<br>EPA = U.S. Environmental Protection Agency<br>CC/MS = Gas chromatography/mass spectromety<br>CP = Inductively-coupled plasma<br>PAH = Polycyclic aromatic hytrocarbon<br>PCB = Polycyclic aromatic hytrocarbon<br>PCB = Polychlorinated biphenyl<br>FAL = Target Analyte Lis<br>** Sample added during fiel effort<br>1. 34 PAHs include: acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(c),h)perylene, benzo(k)fluoranthene, fluorenes, c1-fluoranthenes/nethracenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2-<br>henanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, e4 chrysenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, enco(c),h)perylene, benzo(k)fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, pyrene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| CLP = Contract Laboratory Program<br>EPA = U.S. Environmental Protection Agency<br>GCMS = Gas chromatographymass spectrometry<br>GCP = Inductively-coupled plasma<br>PAH = Polycyclic aromatic hydrocarbon<br>PGB = Polychlorinated biphenyl<br>PGB = Polychlorinated biphenyl<br>FAL = Target Analyte List<br>** Sample added during field effort<br>1. 34 PAHs include: acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)flooranthene, benzo(c),hi)perylene, benzo(k)fluoranthene, s, 1-fluoranthenes, s, 1-phenanthrenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2-<br>henanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4 chrysenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, benzo(a)anthracene, benzo(a)anthracene, benzo(a)anthracene, benzo(a)anthracene, benzo(a)anthracene, benzo(c)pryne, benzo(b)fluoranthene, benzo(c),hi)perylene, benzo(k)fluoranthene, fluorene, indeno(1,2,3-cd)pryne, naphthalene, pryneme.<br>2. SVOCs include 18 PAHS: 2-methylnaphthalene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(c)pryneme, benzo(c)pryneme, benzo(c),hi)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)prynem, naphthalene, phenanthrene, pryneme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| EPA = U.S. Environmental Production Agency<br>GCMS = Gas chromatography/mass spectrometry<br>CP = Inductively-coupled plasma<br>PAH = Polycyclici aromatic hydrocarbon<br>PCB = Polychlorinated biphenyl<br>PCB = Polychlorinated biphenyl<br>FAL = Target Analyte List<br>** Sample added during field effort<br>1. 34 PAHs include: acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(c),hi)perylene, benzo(k)fluoranthenes, c1-fluoranthenes/anthracenes, c1-phenanthrenes/anthracenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2-<br>henanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4 chrysenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, chrysene, dibenzo(a,h)anthracene, fluoranthene,                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| GC/MS = Gas chromatography/mass spectrometry<br>CP = Inductively-coupled plasma<br>PAH = Polycyclic aromatic hydrocarbon<br>PCB = Polychlorinated biphonyl<br>TAL = Target Analyte List<br>** Sample added during field effort<br>1. 34 PAHs include: acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(c,h,i)perylene, benzo(k)fluoranthene, fluorenes, c1-fluoranthenes/apthalenes, c1-phenanthrenes/anthracenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2-<br>henanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, ehrzo(a)pyrene, benzo(a)pyrene, benzo(c)pyrene, benzo(c)pyrene, benzo(c)hi)perylene, benzo(c)hi)perylene, benzo(c)fluoranthene, fluorenthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, pyrenes, c2-naphthalenes, c2-<br>henanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, c4-phenanthrenes/anthracenes, c4-phenanthrenes/anthracenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, c4-phenanthrenes/                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| CP = Inductively-coupled plasma<br>PAH = Polycyclic aromatic hydrocarbon<br>PCB = Polychlorinated biphenyl<br>FAL = Target Analyte List<br>** Sample added during field effort<br>1. 34 PAHs include: acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(c),h)perylene, benzo(k)fluoranthene, c1 chrysenes, c1 fluorenes, c1-fluoranthenes/pyrenes, c1-naphthalenes, c2-naphthalenes, c2-naphthalenes, c2-naphthalenes, c3-naphthalenes, c3-naphthalenes, c3-naphthalenes, c3-naphthalenes, c3-naphthalenes, c3-naphthalenes, c4-naphthalenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, pyrene.<br>2. SVOCs include 18 PAHS: 2-methylnaphthalene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(c)pyrene, benzo(c),h)perylene, benzo(c),fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, pyrene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| PAH = Polycyclic aromatic hydrocarbon<br>PCB = Polycychorinated biphenyl<br>FAL = Target Analyte List<br>** Sample added during field effort<br>1. 34 PAHs include: acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(c,h.i)perylene, benzo(k)fluoranthene, c1 chrysenes, c1 fluorenthenes/pyrenes, c1-naphthalenes, c1-phenanthrenes/anthracenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2-<br>henanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4 chrysenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, pyrene.<br>2. SVOCs include 18 PAHS: 2-methylnaphthalene, acenaphthylene, anephthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(c,h.i)perylene, benzo(c,h.i)perylene, benzo(a,h)anthracene, fluoranthene, fluorene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, pyrene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| PCB = Polychlorinated biphenyl<br>FAL = Target Analyte List<br>** Sample added during field effort<br>1. 34 PAHs include: acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(c,h,i)perylene, benzo(k)fluoranthene, c1 chrysenes, c1 fluorenes, c1-fluoranthenes/anthracenes, c1-phenanthrenes/anthracenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2-<br>henanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4 chrysenes, c4-naphthalenes, c4-                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| FAL = Target Analyte List<br>** Sample added during field effort<br>1. 34 PAHs include: acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(c)pyrene, benzo(k)fluoranthene, c1 chrysenes, c1 fluorenes, c1-fluoranthenes/pyrenes, c1-naphthalenes, c1-phenanthrenes/anthracenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2-<br>abhenanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4 chrysenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorent, indeno(1,2,3-cd)pyrene, phenanthrene, pyrene.<br>2. SVOCs include 18 PAHS: 2-methylnaphthalene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(g,h,i)p                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| ** Sample added during field effort<br>1. 34 PAHs include: acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(e)pyrene, benzo(g,h,i)perylene, benzo(k)fluoranthene, c1 chrysenes, c1 fluorenes, c1-fluoranthenes/pyrenes, c1-naphthalenes, c1-phenanthrenes/anthracenes, c2 chrysenes, c2 fluorenes, c2-naphthalenes, c2-<br>aphthalenes, c3-naphthalenes, c3-naphthalenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4 chrysenes, c4-naphthalenes, c4-naphthalenes, c4-naphthalenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, naphthalene, perylene, phenanthrene, pyrene.<br>2. SVOCs include 18 PAHS: 2-methylnaphthalene, acenaphthylene, andphthalene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(g,h,i)perylene, benzo(g,h,i)netrylene, benzo(g,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, indeno(1,2,3-cd)pyre                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| ohenanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4 chrysenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorent, indeno(1,2,3-cd)pyrene, pervlene, phenanthrenes, pyrene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | effort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |
| ohenanthrenes/anthracenes, c3 chrysenes, c3 fluorenes, c3-naphthalenes, c3-phenanthrenes/anthracenes, c4 chrysenes, c4-naphthalenes, c4-phenanthrenes/anthracenes, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorent, indeno(1,2,3-cd)pyrene, pervlene, phenanthrenes, pyrene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 34 PAHs include: acenapht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ene acenanhthylene anthracene ben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o(a)anthrace                                                     | ne henzo(a)n                                             | vrene henzo(                | a)fluoranthen                             | e henzo(e)pvz                         | ene benzo(e            | h i)nervlene                       | henzo(k)flu                        | oranthene cl                                 | chrysenes of                   | fluorenes c                                             | 1-fluoranthen                                                  | es/nyrenes_c                                                                          | l-nanhthalen                                          | es cl-nhenar                                                         | threnes/anthr                                              | acenes c2 ct                                           | rysenes c2 fl  | norenes c?-r                         | anhthalenes                                      | ·?-                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                          |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                | uorenes, c2-1                        | aprillatenes, (                                  | -2-                                            |
| 3. For matrix spike/matrix spike duplicate samples, double volume submitted for analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2. SVOCs include 18 PAHS: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -methylnaphthalene, acenaphthene, ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | enaphthylene                                                     | e, anthracene, b                                         | oenzo(a)anthr               | acene, benzo(                             | a)pyrene, ben                         | zo(e)pyrene,           | benzo(b)fluo                       | oranthene, bei                     | nzo(g,h,i)pery                               | lene, benzo(k                  | )fluoranthen                                            | e, chrysene, d                                                 | ibenzo(a,h)an                                                                         | thracene, flue                                        | oranthene, flu                                                       | orene, indeno                                              | o(1,2,3-c,d)py                                         | yrene, naphtha | ilene, phenan                        | threne, pyrene                                   |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3. For matrix spike/matrix spil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e duplicate samples, double volume su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ubmitted for a                                                   | analysis.                                                |                             |                                           |                                       |                        |                                    |                                    |                                              |                                |                                                         |                                                                |                                                                                       |                                                       |                                                                      |                                                            |                                                        |                |                                      |                                                  |                                                |

## TABLE 2-6 ACTUAL ANALYTICAL PROGRAM—GENERAL MILLS SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                               | ]                          |                                                                  |                                                          |                             |                                           |                                       |                        |                                    | Fi                                | eld Sample                                   | Count and                      | Required                                                | 00                                                            |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | Analytica                                        | al Interval                                    |
|-------------------------------|----------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|---------------------------------------|------------------------|------------------------------------|-----------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                               |                            |                                                                  |                                                          |                             |                                           |                                       | Chen                   | nistrv                             |                                   | elu Sample                                   | count and                      | Requireu                                                | QC                                                            | I                                                                                      |                                                       |                                                                      | Bioassay                               |                                                         |                                                         |                                      | . indig tiet                                     | - inter var                                    |
|                               |                            | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>PA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Jioxins/Furans<br>EPA Method 1613B | Fotal Organic Carbon<br>Joyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyalella</i> )<br>EPA 100.4/ ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 |                                        | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>Lumbriculus tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
| Sample Location/<br>Sample ID | Sample Depth Interval (ft) | Alkyls<br>EPA (<br>SOM(                                          | TAL I<br>EPA (<br>AES +                                  | TCL 7<br>EPA 5              | TCL S<br>EPA S                            | PCBs<br>EPA (                         | Organ<br>GC/M          | Dioxir<br>EPA I                    | Total<br>Lloyd                    | Grain<br>(with ]<br>ASTN                     | Moist                          | Alipha<br>(C8-C<br>Full S                               | Micro<br>Coal I<br>Methc                                      | Toxici<br>4 hr U<br>EPA                                                                | Toxici<br><i>Chiro</i> 1<br>EPA 1                     | Bioace<br>(28-da<br>EPA 1                                            | Mercury<br>( <i>Lumbric</i><br>EPA CLJ | Organ<br>( <i>Lumb</i><br>GC/M                          | Dioxir<br>( <i>Lumb</i><br>EPA N                        | Percei<br>Gravi                      | Start (<br>Sedim                                 | End o<br>Sedim                                 |
|                               | surf                       |                                                                  | 1                                                        |                             | 1                                         | 1                                     | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0                                                | 0.3                                            |
| ND20-GM01                     | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                     | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                     | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0                                              | 4.0                                            |
|                               | surf                       |                                                                  | 1                                                        | 1                           | 1                                         | 1                                     | 1                      | 1                                  | 1                                 | 1                                            | 1                              |                                                         | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                    | 5                                      | 5                                                       |                                                         |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
| ND20-GM02                     | 2.0-4.0<br>4.0-6.0         |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0<br>4.0                                       | 4.0<br>6.0                                     |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 | ├                                            | 1                              |                                                         | <del> </del>                                                  | ł                                                                                      |                                                       |                                                                      |                                        |                                                         | +                                                       |                                      | 8.0                                              | 8.0                                            |
|                               | 8.0-10.0<br>surf           |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        | -                                                       |                                                         |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0                                              | 4.0                                            |
| ND20-GM03                     | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       |                                                                  | 1                                                        | 1                           | 1                                         | 1                                     | 1                      | 1                                  | 1                                 | 1                                            | 1                              |                                                         | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                    | 5                                      | 5                                                       |                                                         |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
| ND20-GM04                     | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0                                              | 4.0                                            |
| ND20-GM04                     | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       |                                                                  | 1                                                        |                             | 1                                         | 1                                     | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                     | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
| ND20-GM05                     | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                     | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                     | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                     | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 6.0                                              | 8.0                                            |
|                               | surf                       |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
| ND20-GM06                     | 2.0-4.0<br>4.0-6.0         |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0<br>4.0                                       | 4.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 4.0<br>6.0                                       | 6.0<br>8.0                                     |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0                                              | 4.0                                            |
| ND20-GM07                     | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       |                                                                  | 1                                                        | 1                           | 1                                         |                                       | 1                      | 1                                  | 1                                 | 1                                            | 1                              |                                                         | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                    | 5                                      | 5                                                       |                                                         |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
| ND20-GM08                     | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0                                              | 4.0                                            |
| ND20-GINI08                   | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                       |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 0.3                                              | 2.0                                            |
| ND20-GM09                     | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 2.0                                              | 4.0                                            |
| 11220-01007                   | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                       | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                        |                                                         |                                                         |                                      | 8.0                                              | 10.0                                           |

#### TABLE 2-6 ACTUAL ANALYTICAL PROGRAM—GENERAL MILLS SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                               |                                                                                                            |                                                                  |                                                          |                             |                                           |                                        |                        |                                    | Fie                                | eld Sample                                   | Count and                      | Required                                                | OC                                                            |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | Analytica                                        | l Interval                                     |
|-------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------|------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                               |                                                                                                            |                                                                  |                                                          |                             |                                           |                                        | Chem                   | istry                              |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                      | Bioassay                                           |                                                         |                                                                  |                                      |                                                  |                                                |
| Sample Location/<br>Sample ID | Sample Depth Interval (ft)                                                                                 | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT 023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyalella</i> )<br>EPA 100.4/ ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>(Lumbriculus tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
|                               | surf                                                                                                       |                                                                  | 1                                                        |                             | 1                                         |                                        |                        |                                    | 1                                  | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
| ND20-GM10                     | 0.3-2.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         |                                        |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-GM10                     | 2.0-4.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         |                                        |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         |                                        |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | surf                                                                                                       |                                                                  | 1                                                        |                             | 1                                         |                                        | 1                      |                                    | 1                                  | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
| ND20-GM11                     | 0.3-2.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         |                                        | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-OWIT                     | 2.0-4.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         |                                        | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         |                                        | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | surf                                                                                                       |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
| ND20-GM12                     | 0.3-2.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
| ND20-GM13                     | surf                                                                                                       |                                                                  | 1                                                        |                             | 1                                         |                                        | 1                      |                                    | 1                                  | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | surf<br>0.3-2.0                                                                                            |                                                                  | 1                                                        |                             | 1                                         |                                        | 1                      |                                    | 1                                  | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-GM14                     | 2.0-4.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         |                                        | 1                      |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                                                                                                    |                                                                  | 1                                                        |                             | 1                                         |                                        | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
| Total Sediment Samples        |                                                                                                            | 0                                                                | 67                                                       | 3                           | 67                                        | 14                                     | 37                     | 3                                  | 67                                 | 14                                           | 67                             | 0                                                       | 18                                                            | 3                                                                                      | 3                                                     | 3                                                                    | 15                                                 | 15                                                      | 0                                                                | 0                                    |                                                  | 0.0                                            |
| Field Quality Control Sa      |                                                                                                            |                                                                  |                                                          | <u> </u>                    |                                           |                                        |                        |                                    |                                    |                                              |                                | -                                                       |                                                               | <u> </u>                                                                               | -                                                     |                                                                      |                                                    |                                                         | -                                                                | -                                    |                                                  |                                                |
| Field Split / Duplicates (10  |                                                                                                            | 0                                                                | 8                                                        | 1                           | 8                                         | 2                                      | 5                      | 1                                  | 8                                  | 0                                            | 8                              | 0                                                       | 4                                                             | 0                                                                                      | 0                                                     | 0                                                                    | 0                                                  | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| · · ·                         | ke Duplicates <sup>3</sup> (5% of samples)                                                                 | 0                                                                | 4                                                        | 1                           | 4                                         | 2                                      | 3                      | 0                                  | 4                                  | 0                                            | 0                              | 0                                                       | 0                                                             | 0                                                                                      | 0                                                     | 0                                                                    | 0                                                  | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Total Field Quality Cont      | · · ·                                                                                                      | 0                                                                | 12                                                       | 2                           | 12                                        | 4                                      | 8                      | 1                                  | 12                                 | 0                                            | 8                              | 0                                                       | 4                                                             | 0                                                                                      | 0                                                     | 0                                                                    | 0                                                  | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Total Samples                 | Tor Sumples                                                                                                | 0                                                                | 79                                                       | 5                           | 79                                        | 18                                     | 45                     | 4                                  | 79                                 | 14                                           | 75                             | 0                                                       | 22                                                            | 3                                                                                      | 3                                                     | 3                                                                    | 15                                                 | 15                                                      | 0                                                                | 0                                    |                                                  |                                                |
| NOTES:                        |                                                                                                            | v                                                                | .,                                                       | 5                           | 17                                        | 10                                     | 40                     | -                                  | 17                                 | 14                                           | 15                             | 0                                                       |                                                               | 5                                                                                      | 5                                                     | 5                                                                    | 10                                                 | 15                                                      | 0                                                                | 0                                    |                                                  |                                                |
|                               | l<br>40 carbon-chain<br>Yrogram<br>Torotection Agency<br>hy/mass spectrometry<br>asma<br>ydrocarbon<br>nyl |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  | s, c2 fluorene                       | s, c2-naphtha                                    | lenes, c2-                                     |
| 2. SVOCs include 18 PAHS:     | 2-methylnaphthalene, acenaphthene, ac                                                                      | cenaphthylen                                                     | e, anthracene                                            | , benzo(a)antl              | hracene, benz                             | o(a)pyrene, b                          | enzo(e)pyrei           | ne, benzo(b)f                      | luoranthene,                       | benzo(g,h,i)p                                | erylene, ben                   | zo(k)fluorant                                           | thene, chryse                                                 | ne, dibenzo(a                                                                          | ,h)anthracene                                         | e, fluoranthei                                                       | ne, fluorene, i                                    | ndeno(1,2,3-                                            | c,d)pyrene, n                                                    | aphthalene, p                        | henanthrene,                                     | pyrene.                                        |
| 2 For matrix spike/matrix spi | ike duplicate samples, double volume s                                                                     | ubmitted for                                                     | opolycic                                                 |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                    |                                                         |                                                                  |                                      |                                                  | ļ                                              |

3. For matrix spike/matrix spike duplicate samples, double volume submitted for analysis.

## TABLE 2-7 ACTUAL ANALYTICAL PROGRAM—TOWER AVENUE SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                               | I                          |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    | eld Sample                                   |                                |                                                         | 00                                                            |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | Analytica                                        | al Interval                                    |
|-------------------------------|----------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------|------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                               |                            |                                                                  |                                                          |                             |                                           |                                        | Chen                   | nistry                             | 11                                 | au Sample                                    | count and                      | Kequireu                                                | QC                                                            | 1                                                                                      |                                                       |                                                                      | Bioassay                                                   |                                                         |                                                                  |                                      | marytica                                         | i inter var                                    |
| Sample Location/<br>Sample ID | Sample Depth Interval (ft) | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyatella</i> )<br>EPA 100.4/ ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                    | 5                                                          | 5                                                       |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                  |                                              | 1                              | 1                                                       |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              | 1                                                       | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-TB01                     | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
| ND20-1B01                     | 6.0-8.0<br>8.0-10.0        |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0<br>10.0                                    |
|                               | 10.0-12.0**                |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0                                           |
|                               | 12.0-14.0**                |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 14.0                                           |
|                               | 14.0-16.0**                | 1                                                                | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             | 1                                                                                      |                                                       |                                                                      |                                                            | 1                                                       |                                                                  |                                      | 14.0                                             | 16.0                                           |
|                               | surf                       |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-TB02                     | 4.0-6.0<br>6.0-8.0         |                                                                  | 1                                                        |                             | 1                                         |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0<br>6.0                                       | 6.0<br>8.0                                     |
| ND20-1B02                     | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 8.0                                            |
|                               | 10.0-12.0**                |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0                                           |
|                               | 12.0-14.0**                |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 14.0                                           |
|                               | 14.0-16.0**                |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 14.0                                             | 16.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                    | 5                                                          | 5                                                       |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-TB03                     | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0<br>6.0-8.0         |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              | 1                                                       |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0<br>6.0                                       | 6.0<br>8.0                                     |
|                               | 8.0-10.0                   |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                  |                                              | 1                              | 1                                                       | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 8.0                                            |
|                               | surf                       |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  | _                                            | 1                              |                                                         | -                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
|                               | 2.0-4.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
| ND20-TB04                     | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | 10.0-12.0**<br>12.0-14.0** |                                                                  | 1                                                        |                             | 1                                         |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 10.0                                             | 12.0<br>14.0                                   |
|                               | 14.0-16.0**                |                                                                  | 1                                                        |                             | 1                                         |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 12.0                                             | 14.0                                           |
|                               | surf                       |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      |                                    | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             | <b> </b>                                                                               |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              | 1                                                       | -                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-TB05                     | 2.0-4.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              | 1                                                       | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-1B03                     | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      | 1                      |                                    | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             |                                                                                        | 1                                                     | 1                                                                    | 6                                                          | 5                                                       |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | surf<br>0.3-2.0            | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  | I                                            | 1                              | 1                                                       | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                    | 5                                                          | 5                                                       |                                                                  |                                      | 0                                                | 0.3 2.0                                        |
|                               | 2.0-4.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
| ND20-TB06                     | 4.0-6.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               | ł                                                                                      |                                                       |                                                                      |                                                            |                                                         | -                                                                |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0                                              | 8.0                                            |
|                               | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 8.0                                              | 10.0                                           |
|                               | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                  | 1                                            | 1                              | 1                                                       | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                    | 5                                                          | 5                                                       |                                                                  |                                      | 0                                                | 0.3                                            |
|                               | 0.3-2.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      | 1                                  | 1                                  |                                              | 1                              | 1                                                       |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3                                              | 2.0                                            |
| ND20-TB07                     | 2.0-4.0                    |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              | 1                                                       | 1                                                             | ļ                                                                                      |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0                                              | 4.0                                            |
|                               | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               | ļ                                                                                      |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0                                              | 6.0                                            |
|                               | 6.0-8.0<br>8.0-10.0        |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 6.0<br>8.0                                       | 8.0<br>10.0                                    |
|                               | 6.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         | 1                                      | 1                      |                                    | 1                                  |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.0                                              | 10.0                                           |

## TABLE 2-7 ACTUAL ANALYTICAL PROGRAM—TOWER AVENUE SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                  | I                          |                                                                  |                                                          |                             |                                           |                                                |                        |                                    | Fi                                | eld Sample                                   | Count and                      | Required (                                              | 0C                                                            |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | Analytics                                        | al Interval                                    |
|------------------|----------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|------------------------------------------------|------------------------|------------------------------------|-----------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                  |                            |                                                                  |                                                          |                             |                                           |                                                | Chen                   | nistry                             |                                   | ciu bampic                                   | count and                      | Requireu                                                | Qυ                                                            |                                                                                        |                                                       |                                                                     | Bioassay                                                   |                                                |                                                                |                                      |                                                  | - inter vui                                    |
|                  |                            | 34)<br>SIM                                                       | reury<br>4/ICP-                                          | D                           | 0                                         | A/PCB                                          |                        |                                    | .pou                              |                                              |                                | thous                                                   | /sis of<br>3                                                  | 28-day +<br>'ella )<br>1 E1706                                                         | 10-day                                                | Testing<br>tlus )                                                   |                                                            | (ər                                            | (ər                                                            | od                                   | telow<br>(ft)                                    | elow<br>(ft)                                   |
| Sample Location/ |                            | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM02 <i>4/</i> PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Fotal Organic Carbon<br>Joyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyalella</i> )<br>EPA 100.4/ ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testin<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Drganotins<br>Lumbriculus tissue)<br>GC/MS SIM | Dioxin/Furans<br><i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
| Sample ID        | Sample Depth Interval (ft) | AL<br>EP<br>SC                                                   |                                                          | TC<br>EP                    |                                           | PC                                             | 6 O                    | EP                                 |                                   |                                              |                                | Fu CC                                                   |                                                               | To<br>14<br>E                                                                          | To<br>Ch<br>EF                                        | Bi<br>(28<br>EP                                                     | EF (L                                                      | 0<br>E<br>G                                    | E C D                                                          | Pe                                   |                                                  |                                                |
|                  | surf<br>0.3-2.0            |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0                                                | 0.3                                            |
|                  | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0                                              | 4.0                                            |
| ND20-TB08        | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 4.0                                              | 6.0                                            |
|                  | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 6.0                                              | 8.0                                            |
|                  | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 8.0                                              | 10.0                                           |
|                  | surf                       |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0                                                | 0.3                                            |
|                  | 0.3-2.0<br>2.0-4.0         |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             | <b> </b>                                                                               |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
| ND20-TB09        | 2.0-4.0<br>4.0-6.0         |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0                                              | 4.0<br>6.0                                     |
|                  | 6.0-8.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 6.0                                              | 8.0                                            |
|                  | 8.0-10.0                   |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 8.0                                              | 10.0                                           |
|                  | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                              | 1                      | 1                                  | 1                                 | 1                                            | 1                              | 1                                                       | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                   | 5                                                          | 5                                              |                                                                |                                      | 0                                                | 0.3                                            |
|                  | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      | 1                                  | 1                                 |                                              | 1                              | 1                                                       |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
| ND20-TB10        | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              | 1                                                       | 1                                                             |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0                                              | 4.0                                            |
|                  | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 4.0                                              | 6.0                                            |
|                  | 6.0-8.0<br>8.0-10.0        |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 6.0<br>8.0                                       | 8.0<br>10.0                                    |
|                  | 8.0-10.0<br>surf           |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0                                                | 0.3                                            |
|                  | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 | 1                                            | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
| ND20-TB11        | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0                                              | 4.0                                            |
|                  | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 4.0                                              | 6.0                                            |
|                  | surf                       |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0                                                | 0.3                                            |
| ND20-TB12        | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
|                  | 2.0-4.0<br>4.0-6.0         |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0<br>4.0                                       | 4.0<br>6.0                                     |
|                  | 4.0-6.0<br>surf            |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 4.0                                              | 0.3                                            |
|                  | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
| ND20-TB13        | 2.0-3.0**                  |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         | 1                                                             |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0                                              | 3.0                                            |
|                  | 3.0-3.5**                  |                                                                  | -                                                        |                             | 1                                         |                                                |                        |                                    |                                   |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 3.0                                              | 3.5                                            |
| ND20-TB14        | surf                       |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0                                                | 0.3                                            |
| ND20-1B14        | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
|                  | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                              | 1                      | 1                                  | 1                                 | 1                                            | 1                              | 1                                                       | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                   | 5                                                          | 5                                              |                                                                |                                      | 0                                                | 0.3                                            |
| ND20-TB15        | 0.3-1.7** 1.7-2.3**        |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 1.7<br>2.3                                     |
|                  | 1.7-2.3**<br>surf          |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         | -                                                             |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0                                                | 0.3                                            |
| ND20-TB16        | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
|                  | surf                       |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 | 1                                            | 1                              | 1                                                       |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0                                                | 0.3                                            |
| ND20-TB17        | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              | 1                                                       |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
|                  | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                |                        |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0                                              | 4.0                                            |
| ND20-TB18        | surf                       |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0                                                | 0.3                                            |
|                  | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 | <u> </u>                                     | 1                              |                                                         | <u> </u>                                                      | ļ                                                                                      |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
|                  | surf<br>0.3-2.0            |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 0.3                                            |
| ND20-TB19        | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         | <u> </u>                                                      | ł                                                                                      |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0                                              | 4.0                                            |
|                  | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 4.0                                              | 6.0                                            |
|                  | surf                       | 1                                                                | 1                                                        | 1                           | 1                                         | 1                                              | 1                      | 1                                  | 1                                 | 1                                            | 1                              | 1                                                       | 1                                                             | 1                                                                                      | 1                                                     | 1                                                                   | 5                                                          | 5                                              |                                                                |                                      | 0                                                | 0.3                                            |
| ND20-TB20        | 0.3-2.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 0.3                                              | 2.0                                            |
| 111120-11120     | 2.0-4.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 2.0                                              | 4.0                                            |
|                  | 4.0-6.0                    |                                                                  | 1                                                        |                             | 1                                         |                                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                         |                                                               |                                                                                        |                                                       |                                                                     |                                                            |                                                |                                                                |                                      | 4.0                                              | 6.0                                            |

## TABLE 2-7 ACTUAL ANALYTICAL PROGRAM—TOWER AVENUE SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                                |                                                                                  |                                                                 |                                                          |                             |                                           |                                |                        |                                    | E                                 | eld Sample                                   | Count and                      | Decuired (                                            | nc.                                                           |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | Analytica                                        | Intervol                                       |
|--------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|--------------------------------|------------------------|------------------------------------|-----------------------------------|----------------------------------------------|--------------------------------|-------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------------|--------------------------------------------------|------------------------------------------------|
|                                |                                                                                  |                                                                 |                                                          |                             |                                           |                                | Chem                   | ictry                              | Flo                               | eid Sample                                   | Count and                      | Kequirea (                                            | ų c                                                           |                                                                                    |                                                       |                                                                      | Bioassay                         |                                                |                                                                  |                                     | Anaryuca                                         | i intervai                                     |
|                                |                                                                                  | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM024/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | ICL SVOCs <sup>2</sup><br>EPA SW846 8270D | : - Aroclors<br>CLP SOM024/PCB | Organotin<br>GC/MS SIM | Jioxins/Furans<br>SPA Method 1613B | 'otal Organic Carbon<br>Joyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Aoisture Content<br>ASTM D2216 | Miphatic Hydrocarbons<br>C8-C40) - GC/MS<br>7ull Scan | dicroscopic Analysis of<br>Joal Particles<br>Aethod OPT.023.3 | Oxicity Testing (28-day +<br>hr UV light <i>Hyalella</i> )<br>EPA 100.4/ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | <i>ulus</i> tissue)<br>• ISM02.4 | Drganotins<br>Lumbriculus tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | ercent Lipids<br>Gravimetric Method | itart of Interval Below<br>sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
| Sample Location/<br>Sample ID  | Sample Depth Interval (ft)                                                       | Alkyl<br>EPA<br>SOM                                             | FAL<br>EPA<br>AES                                        | <b>FCL</b>                  | <b>FCL</b>                                | PCBs<br>EPA (                  | Orgai<br>GC/N          | Dioxi                              | Fotal<br>Lloyd                    | Grair<br>(with<br>ASTN                       | Moist                          | Aliphatic<br>(C8-C40)<br>Full Scan                    | Micro<br>Coal<br>Meth                                         | Foxic<br>4 hr U<br>EPA                                                             | Foxic<br>Chiro<br>EPA                                 | Bioac<br>28-di<br>EPA                                                | Mercury<br>Lumbric<br>EPA CLI    | Orgai<br>Lum<br>GC/N                           | Dioxi<br>Lum<br>EPA                                              | Perce<br>Gravi                      | Start<br>Sedin                                   | End (<br>Sedin                                 |
|                                | surf                                                                             | 1                                                               | 1                                                        |                             | 1                                         | 1                              | 1                      |                                    | 1                                 | 1                                            | 1                              | ~ ~                                                   |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | 0                                                | 0.3                                            |
| ND20-TB21                      | 0.3-2.0                                                                          |                                                                 | 1                                                        |                             | 1                                         |                                | 1                      | 1                                  | 1                                 |                                              | 1                              |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | 0.3                                              | 2.0                                            |
| ND20-1B21                      | 2.0-4.0                                                                          |                                                                 | 1                                                        |                             | 1                                         |                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | 2.0                                              | 4.0                                            |
|                                | 4.0-6.0                                                                          |                                                                 | 1                                                        |                             | 1                                         |                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | 4.0                                              | 6.0                                            |
|                                | surf                                                                             |                                                                 | 1                                                        |                             | 1                                         |                                | 1                      |                                    | 1                                 | 1                                            | 1                              |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | 0                                                | 0.3                                            |
| ND20-TB22                      | 0.3-2.0                                                                          |                                                                 | 1                                                        |                             | 1                                         |                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | 0.3                                              | 2.0                                            |
| ND20-1B22                      | 2.0-4.0                                                                          |                                                                 | 1                                                        |                             | 1                                         |                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | 2.0                                              | 4.0                                            |
|                                | 4.0-6.0                                                                          |                                                                 | 1                                                        |                             | 1                                         |                                | 1                      |                                    | 1                                 |                                              | 1                              |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     | 4.0                                              | 6.0                                            |
| Total Sediment Samples         |                                                                                  | 8                                                               | 108                                                      | 24                          | 109                                       | 49                             | 58                     | 11                                 | 102                               | 22                                           | 102                            | 20                                                    | 22                                                            | 7                                                                                  | 7                                                     | 7                                                                    | 35                               | 35                                             | 0                                                                | 0                                   |                                                  |                                                |
| Field Quality Control San      | ples                                                                             |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| Field Split / Duplicates (109  | 6 of samples)                                                                    | 8                                                               | 11                                                       | 5                           | 11                                        | 7                              | 7                      | 3                                  | 11                                | 0                                            | 11                             | 3                                                     | 5                                                             | 0                                                                                  | 0                                                     | 0                                                                    | 0                                | 0                                              | 0                                                                | 0                                   |                                                  |                                                |
| Matrix Spike / Matrix Spike    | Duplicates3 (5% of samples)                                                      | 2                                                               | 6                                                        | 3                           | 6                                         | 3                              | 4                      | 0                                  | 6                                 | 0                                            | 0                              | 0                                                     | 0                                                             | 0                                                                                  | 0                                                     | 0                                                                    | 0                                | 0                                              | 0                                                                | 0                                   |                                                  |                                                |
| Total Field Quality Contr      | ol Samples                                                                       | 10                                                              | 17                                                       | 8                           | 17                                        | 10                             | 11                     | 3                                  | 17                                | 0                                            | 11                             | 3                                                     | 5                                                             | 0                                                                                  | 0                                                     | 0                                                                    | 0                                | 0                                              | 0                                                                | 0                                   |                                                  |                                                |
| Total Samples                  |                                                                                  | 18                                                              | 125                                                      | 32                          | 126                                       | 59                             | 69                     | 14                                 | 119                               | 22                                           | 113                            | 23                                                    | 27                                                            | 7                                                                                  | 7                                                     | 7                                                                    | 35                               | 35                                             | 0                                                                | 0                                   |                                                  |                                                |
| NOTES:                         |                                                                                  |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| AES = Atomic emission spectro  | oscopy                                                                           |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| ASTM = ASTM International      |                                                                                  |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| C8-C40 = 8 carbon-chain to 40  | carbon-chain                                                                     |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| CLP = Contract Laboratory Pro  | 0                                                                                |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| EPA = U.S. Environmental Pro   |                                                                                  |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| GC/MS = Gas chromatography     |                                                                                  |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| ICP = Inductively-coupled plas |                                                                                  |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| PAH = Polycyclic aromatic hyd  |                                                                                  |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| PCB = Polychlorinated biphen   | d                                                                                |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| TAL = Target Analyte List      |                                                                                  |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
| ** Sample added during field   | effort                                                                           |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  |                                     |                                                  |                                                |
|                                | hene, acenaphthylene, anthracene, benz<br>chrysenes, c3 fluorenes, c3-naphthalen |                                                                 |                                                          |                             |                                           |                                |                        |                                    |                                   |                                              |                                |                                                       |                                                               |                                                                                    |                                                       |                                                                      |                                  |                                                |                                                                  | uorenes, c2-n                       | aphthalenes, c                                   | :2-                                            |
| 2. SVOCs include 18 PAHS: 2    | -methylnaphthalene, acenaphthene, ace                                            | naphthylene                                                     | , anthracene, t                                          | oenzo(a)anthr               | acene, benzo(                             | a)pyrene, benz                 | zo(e)pyrene,           | benzo(b)fluo                       | ranthene, ber                     | nzo(g,h,i)pery                               | lene, benzo(l                  | c)fluoranthene                                        | e, chrysene, d                                                | ibenzo(a,h)an                                                                      | thracene, fluc                                        | oranthene, flu                                                       | orene, indeno                    | o(1,2,3-c,d)py                                 | rene, naphtha                                                    | llene, phenant                      | hrene, pyrene                                    |                                                |

3. For matrix spike/matrix spike duplicate samples, double volume submitted for analysis.

|                                     |                                           |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                       | Analytica                                             | Interval                                                             |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
|-------------------------------------|-------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------|------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                                     |                                           |                                                                  |                                                          |                             |                                           |                                        | Chem                   | istry                              | FIE                                | iu Sample v                                  | Jouint and                     | Kequireu                                                | ųι                                                            |                                                                                       |                                                       |                                                                      | Bioassay                                                   |                                                         |                                                                  |                                      | Апатуиса                                         | inter var                                      |
|                                     |                                           |                                                                  |                                                          |                             |                                           |                                        | Chem                   | usu y                              |                                    |                                              |                                |                                                         |                                                               | + 0                                                                                   |                                                       |                                                                      | Dibassay                                                   | -                                                       |                                                                  |                                      |                                                  |                                                |
| Sample Location/<br>Sample ID       | Sample Depth Interval (ft)                | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyatella</i> )<br>EPA 100.4/ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
|                                     | surf                                      |                                                                  | 1                                                        | 1                           | 1                                         | 1                                      |                        | 1                                  | 1                                  | 1                                            | 1                              |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0                                                | 0.3                                            |
| ND20-EF01                           | 0.3-2.0<br>2.0-4.0<br>4.0-6.0             |                                                                  | 1<br>1<br>1                                              | 1<br>1<br>1                 | 1<br>1<br>1                               | 1<br>1<br>1                            |                        |                                    | 1<br>1<br>1                        |                                              | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3<br>2.0<br>4.0                                | 2.0<br>4.0<br>6.0                              |
| ND20-EF02                           | surf<br>0.3-2.0<br>2.0-4.0                |                                                                  | 1<br>1<br>1                                              | 1<br>1<br>1                 | 1<br>1<br>1                               | 1<br>1<br>1                            |                        |                                    | 1<br>1<br>1                        | 1                                            | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0<br>0.3<br>2.0                                  | 0.3<br>2.0<br>4.0                              |
| ND20-EF03                           | 4.0-6.0<br>surf<br>0.3-1.0**<br>1.0-3.5** |                                                                  | 1<br>1<br>1                                              | 1<br>1<br>1                 | 1<br>1<br>1                               | 1<br>1<br>1                            |                        |                                    | 1<br>1<br>1                        | 1                                            | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0<br>0<br>0.3<br>1.0                           | 6.0<br>0.3<br>1.0<br>3.5                       |
| ND20-EF03                           | 3.5-5.0**<br>5.0-6.3**<br>surf            |                                                                  | 1<br>1<br>1                                              | 1<br>1<br>1                 | 1<br>1<br>1                               | 1 1                                    |                        |                                    | 1<br>1<br>1                        | 1                                            | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 3.5<br>5.0<br>0                                  | 5.0<br>6.3<br>0.3                              |
| ND20-EF04                           | 0.3-2.0<br>2.0-4.0<br>4.0-6.0             |                                                                  | 1<br>1<br>1                                              | 1<br>1<br>1                 | 1<br>1<br>1                               |                                        |                        |                                    | 1<br>1<br>1                        | 1                                            | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0.3<br>2.0<br>4.0                                | 2.0<br>4.0<br>6.0                              |
| ND20-EF05                           | surf<br>0.3-2.0<br>2.0-4.0                |                                                                  | 1<br>1<br>1                                              | 1<br>1<br>1                 | 1<br>1<br>1                               | 1<br>1<br>1                            |                        | 1                                  | 1<br>1<br>1                        | 1                                            | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0<br>0.3<br>2.0                                  | 0.3<br>2.0<br>4.0                              |
| ND20-EF06                           | 4.0-6.0<br>surf<br>0.3-2.0<br>2.0-4.0     |                                                                  | 1<br>1<br>1<br>1                                         | 1<br>1<br>1<br>1            | 1<br>1<br>1<br>1                          | 1                                      |                        |                                    | 1<br>1<br>1<br>1                   | 1                                            | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0<br>0<br>0.3<br>2.0                           | 6.0<br>0.3<br>2.0<br>4.0                       |
| ND20-EF07                           | 4.0-6.0<br>surf<br>0.3-2.0<br>2.0-4.0     |                                                                  | 1<br>1<br>1<br>1                                         | 1<br>1<br>1<br>1            | 1<br>1<br>1                               | 1 1 1                                  |                        |                                    | 1<br>1<br>1<br>1                   | 1                                            | 1<br>1<br>1<br>1               |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 4.0<br>0<br>0.3<br>2.0                           | 6.0<br>0.3<br>2.0<br>4.0                       |
|                                     | 4.0-6.0<br>surf<br>0.3-2.0                |                                                                  | 1<br>1<br>1<br>1                                         | 1<br>1<br>1<br>1            | 1<br>1<br>1<br>1                          | 1                                      |                        |                                    | 1<br>1<br>1<br>1                   | 1                                            | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0<br>4.0<br>0<br>0.3                           | 6.0<br>0.3<br>2.0                              |
| ND20-EF08<br>ND20-EF09              | 2.0-4.0<br>4.0-6.0<br>surf                |                                                                  | 1<br>1<br>1                                              | 1<br>1<br>1                 | 1<br>1<br>1                               | 1                                      |                        | 1                                  | 1<br>1<br>1                        | 1                                            | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 2.0<br>4.0<br>0                                  | 4.0<br>6.0<br>0.3                              |
| ND20-EF10<br>ND20-EF11<br>ND20-EF12 | surf<br>surf<br>surf                      |                                                                  | 1<br>1<br>1                                              |                             | 1<br>1<br>1                               | 1<br>1<br>1                            |                        | 1                                  | 1<br>1<br>1                        | 1<br>1<br>1                                  | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0<br>0<br>0                                      | 0.3<br>0.3<br>0.3                              |
| ND20-EF13<br>ND20-EF14<br>ND20-EF15 | surf<br>surf<br>surf                      |                                                                  | 1<br>1<br>1                                              |                             | 1<br>1<br>1                               | 1<br>1<br>1                            |                        | 1                                  | 1<br>1<br>1                        | 1<br>1<br>1                                  | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0 0 0 0                                          | 0.3<br>0.3<br>0.3                              |
| ND20-EF16<br>ND20-EF17<br>ND20-EF18 | surf<br>surf<br>surf                      |                                                                  | 1<br>1<br>1                                              |                             | 1<br>1<br>1                               | 1<br>1<br>1                            |                        | 1                                  | 1<br>1<br>1                        | 1<br>1<br>1                                  | 1<br>1<br>1                    |                                                         |                                                               |                                                                                       |                                                       |                                                                      |                                                            |                                                         |                                                                  |                                      | 0 0 0 0                                          | 0.3<br>0.3<br>0.3                              |
| Total Sediment Samples              |                                           | 0                                                                | 43                                                       | 34                          | 43                                        | 31                                     | 0                      | 7                                  | 43                                 | 18                                           | 43                             | 0                                                       | 0                                                             | 0                                                                                     | 0                                                     | 0                                                                    | 0                                                          | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |

## TABLE 2-8 ACTUAL ANALYTICAL PROGRAM—ESTUARY FLATS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

## TABLE 2-8 ACTUAL ANALYTICAL PROGRAM—ESTUARY FLATS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |                                                                  |                                                          |                             |                                           |                                        |                        |                                    | Fie                                | ld Sample (                                  | Count and                      | Required                                                | OC                                                            |                                                                                        |                                                       |                                                              |                                                    |                                                         |                                                                  |                                      | Analytica                                        | l Interval                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------|------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |                                                                  |                                                          |                             |                                           |                                        | Chen                   | istry                              |                                    |                                              |                                |                                                         | <b>x</b> *                                                    |                                                                                        |                                                       |                                                              | Bioassay                                           |                                                         |                                                                  |                                      |                                                  |                                                |
| Sample Location/<br>Sample ID                                                                                                                                                                                                                                                                                                                                          | Sample Depth Interval (ft)                                                                                             | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | FCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Foxicity Testing (28-day +<br>4 hr UV light <i>Hyalella</i> )<br>EPA 100.4/ ASTM E1706 | Toxicity Testing (10-day<br>Chironomus )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day Lumbriculus)<br>EPA 100.3 | Mercury<br>(Lumbriculus tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
| Field Quality Control Sam                                                                                                                                                                                                                                                                                                                                              | ples                                                                                                                   |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                              |                                                    |                                                         |                                                                  |                                      |                                                  |                                                |
| Field Split / Duplicates (109                                                                                                                                                                                                                                                                                                                                          | % of samples)                                                                                                          | 0                                                                | 5                                                        | 4                           | 5                                         | 3                                      | 0                      | 1                                  | 5                                  | 2                                            | 4                              | 0                                                       | 0                                                             | 0                                                                                      | 0                                                     | 0                                                            | 0                                                  | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Matrix Spike / Matrix Spike                                                                                                                                                                                                                                                                                                                                            | Duplicates (5% of samples)                                                                                             | 0                                                                | 2                                                        | 2                           | 2                                         | 2                                      | 0                      | 0                                  | 2                                  | 0                                            | 0                              | 0                                                       | 0                                                             | 0                                                                                      | 0                                                     | 0                                                            | 0                                                  | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Total Field Quality Control                                                                                                                                                                                                                                                                                                                                            | ol Samples                                                                                                             | 0                                                                | 7                                                        | 6                           | 7                                         | 5                                      | 0                      | 1                                  | 7                                  | 2                                            | 4                              | 0                                                       | 0                                                             | 0                                                                                      | 0                                                     | 0                                                            | 0                                                  | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Total Samples                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        | 0                                                                | 50                                                       | 40                          | 50                                        | 36                                     | 0                      | 8                                  | 50                                 | 20                                           | 47                             | 0                                                       | 0                                                             | 0                                                                                      | 0                                                     | 0                                                            | 0                                                  | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| NOTES:<br>AES = Atomic emission spectr<br>ASTM = ASTM International<br>C8-C40 = 8 carbon-chain to 40<br>CLP = Contract Laboratory Pre<br>EPA = U.S. Environmental Pre<br>GC/MS = Gas chromatography<br>ICP = Inductively-coupled plas<br>PAH = Polycyclic aromatic hyp<br>PCB = Polychlorinated biphen;<br>TAL = Target Analyte List<br>** Sample added during field c | r carbon-chain<br>ogram<br>viction Agency<br>//mass spectrometry<br>ma<br>drocarbon<br>yl                              |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                       |                                                              |                                                    |                                                         |                                                                  |                                      |                                                  |                                                |
| phenanthrenes/anthracenes, c3                                                                                                                                                                                                                                                                                                                                          | eene, acenaphthylene, anthracene, ben<br>chrysenes, c3 fluorenes, c3-naphthale<br>-methylnaphthalene, acenaphthene, ac | nes, c3-pher                                                     | anthrenes/ant                                            | hracenes, c4                | chrysenes, c4                             | -naphthalenes                          | , c4-phenan            | hrenes/anthr                       | acenes, chrys                      | ene, dibenzo(                                | a,h)anthrace                   | ene, fluoranth                                          | iene, fluorene                                                | e, indeno(1,2,                                                                         | 3-cd)pyrene,                                          | naphthalene,                                                 | perylene, ph                                       | enanthrene, p                                           | yrene.                                                           |                                      |                                                  |                                                |

3. For matrix spike/matrix spike duplicate samples, double volume submitted for analysis.

#### TABLE 2-9 ACTUAL ANALYTICAL PROGRAM—CLOUGH ISLAND NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                          |                             |                                           |                                        |                        |                                    | Fie                                | eld Sample (                                 | Count and                      | Required (                                             | QC                                                            |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      | Analytical                                       | Interval                                       |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------|------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|--------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                          |                             |                                           |                                        | Chem                   | istry                              |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      | Bioassay                                                   |                                                         |                                                                  |                                      |                                                  |                                                |
| Sample Location/<br>Sample ID  | Sample Depth Interval (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP-<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C&C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyalella</i> )<br>EPA 100.4/ASTM E1706 | Toxicity Testing (10-day<br>Chironomus)<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
| ND20-CL01                      | surf         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      | 0                                                                    | 0.3                                                        |                                                         |                                                                  |                                      |                                                  |                                                |
| ND20-CL02                      | surf       1       1       1       1       1       1       1       1       1       5       5       5         surf       1       1       1       1       1       1       1       1       1       5       5       5         surf       1       1       1       1       1       1       1       1       1       5       5       5         surf       1       1       1       1       1       1       1       1       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      | 0                                                                    | 0.3                                                        |                                                         |                                                                  |                                      |                                                  |                                                |
| ND20-CL03                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        | 1                                  | 1                                  | 1                                            | 1                              |                                                        |                                                               | 1                                                                                     | 1                                                    | 1                                                                    | 5                                                          |                                                         | 5                                                                | 5                                    | 0                                                | 0.3                                            |
| ND20-CL04                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | 1                                                        |                             | 1                                         |                                        |                        | 1                                  | 1                                  | 1                                            | 1                              |                                                        |                                                               | 1                                                                                     | 1                                                    | 1                                                                    | -                                                          |                                                         | 5                                                                | 5                                    | 0                                                | 0.3                                            |
| ND20-CL05                      | surf       1       1       1       1       1       1       1       1       1       5       5       5         surf       1       1       1       1       1       1       1       1       5       5       5         surf       1       1       1       1       1       1       1       1       5       5       5         surf       1       1       1       1       1       1       1       1       5       5       5         surf       1       1       1       1       1       1       1       1       5       5       5       5         surf       1       1       1       1       1       1       1       1       5       5       5       5         surf       1       1       1       1       1       1       1       1       1       1       5       5       5       5         surf       1       1       1       1       1       1       1       1       1       1       5       5       5       5       5       5       5       5       5 <td>0</td> <td>0.3</td>                                                                                                                                  |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       | 0                                                    | 0.3                                                                  |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| ND20-CL06                      | surf       1       1       1       1       1       1       1       1       1       1       1       1       1       5       5       5         surf       1       1       1       1       1       1       1       1       1       5       5       5       5         surf       1       1       1       1       1       1       1       1       1       5       5       5       5         surf       1       1       1       1       1       1       1       1       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                      |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       | 0                                                    | 0.3                                                                  |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| ND20-CL07                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        | 1                                  | 1                                  | 1                                            | 1                              |                                                        |                                                               | 1                                                                                     | 1                                                    | 1                                                                    | 5                                                          |                                                         | 5                                                                | 5                                    | 0                                                | 0.3                                            |
| ND20-CL08                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | 1                                                        |                             | 1                                         |                                        |                        | 1                                  | 1                                  | 1                                            | 1                              |                                                        |                                                               | 1                                                                                     | 1                                                    | 1                                                                    | -                                                          |                                                         | -                                                                | -                                    | 0                                                | 0.3                                            |
| ND20-CL09                      | surf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  | 1                                                        |                             | 1                                         | 1                                      |                        | 1                                  | 1                                  | 1                                            | 1                              |                                                        |                                                               | 1                                                                                     | 1                                                    | 1                                                                    | 5                                                          |                                                         | 5                                                                | 5                                    | 0                                                | 0.3                                            |
| ND20-CL10                      | surf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  | 1                                                        |                             | 1                                         |                                        |                        | 1                                  | 1                                  | 1                                            | 1                              |                                                        |                                                               | 1                                                                                     | 1                                                    | 1                                                                    | 5                                                          |                                                         | 5                                                                | 5                                    | 0                                                | 0.3                                            |
| Total Sediment Samples         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                | 10                                                       | 0                           | 10                                        | 5                                      | 0                      | 10                                 | 10                                 | 10                                           | 10                             | 0                                                      | 0                                                             | 10                                                                                    | 10                                                   | 10                                                                   | 50                                                         | 0                                                       | 50                                                               | 50                                   |                                                  |                                                |
| Field Quality Control Sam      | ples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| Field Split / Duplicates (109  | 6 of samples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                | 2                                                        | 0                           | 2                                         | 2                                      | 0                      | 2                                  | 2                                  | 0                                            | 2                              | 0                                                      | 0                                                             | 0                                                                                     | 0                                                    | 0                                                                    | 0                                                          | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Matrix Spike / Matrix Spike    | Duplicates <sup>3</sup> (5% of samples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                | 1                                                        | 0                           | 1                                         | 1                                      | 0                      | 0                                  | 1                                  | 0                                            | 0                              | 0                                                      | 0                                                             | 0                                                                                     | 0                                                    | 0                                                                    | 0                                                          | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Total Field Quality Contro     | ol Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                | 3                                                        | 0                           | 3                                         | 3                                      | 0                      | 2                                  | 3                                  | 0                                            | 2                              | 0                                                      | 0                                                             | 0                                                                                     | 0                                                    | 0                                                                    | 0                                                          | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Total Samples                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                | 13                                                       | 0                           | 13                                        | 8                                      | 0                      | 12                                 | 13                                 | 10                                           | 12                             | 0                                                      | 0                                                             | 10                                                                                    | 10                                                   | 10                                                                   | 50                                                         | 0                                                       | 50                                                               | 50                                   |                                                  |                                                |
| NOTES:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| AES = Atomic emission spectro  | oscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| ASTM = ASTM International      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| C8-C40 = 8 carbon-chain to 40  | carbon-chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| CLP = Contract Laboratory Pro  | gram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| EPA = U.S. Environmental Pro   | tection Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| GC/MS = Gas chromatography     | mass spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| ICP = Inductively-coupled plas | ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| PAH = Polycyclic aromatic hyd  | Irocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| PCB = Polychlorinated bipheny  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| TAL = Target Analyte List      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                        |                                                               |                                                                                       |                                                      |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |

1. 34 PAHs include: acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(c)pyrene, benzo(c)fluoranthene, c1 chrysenes, c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c2-naphthalenes, c2-naphthalenes, c2-naphthalenes, c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-fluoranthenes/c1-f

2. SVOCs include 18 PAHS: 2-methylnaphthalene, acenaphthene, acenaphthene, benzo(a)anthracene, benzo(a)pyrene, benzo(c)pyrene, benzo(c)pyrene,

3. For matrix spike/matrix spike duplicate samples, double volume should be submitted for analysis

#### TABLE 2-10 ACTUAL ANALYTICAL PROGRAM—REFERENCE SITES NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                          |                             |                                           |                                        |                        |                                    | Fie                                | ld Sample C                                  | count and                      | Required (                                              | QC                                                            |                                                                                        |                                                              |                                                                      |                                                            |                                                         |                                                                  |                                      | Analytical                                       | l Interval                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------|------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                          |                             |                                           |                                        | Chem                   | istry                              |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              |                                                                      | Bioassay                                                   |                                                         |                                                                  |                                      |                                                  |                                                |
| Sample Location/<br>Sample ID Sa                                                                                                                                                                                                                                                                                                                                                                                                                | ample Depth Interval (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP<br>SOM02.4/SVOCS SIM | TAL Metals + Mercury<br>EPA CLP ISM02.4/ICP.<br>AES + HG | TCL VOCs<br>EPA SW846 8260D | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D | PCBs - Aroclors<br>EPA CLP SOM02.4/PCB | Organotin<br>GC/MS SIM | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(C8-C40) - GC/MS<br>Full Scan | Microscopic Analysis of<br>Coal Particles<br>Method OPT.023.3 | Toxicity Testing (28-day +<br>4 hr UV light <i>Hyalella</i> )<br>EPA 100.4/ ASTM E1706 | Toxicity Testing (10-day<br><i>Chironomus</i> )<br>EPA 100.2 | Bioaccumulation Testing<br>(28-day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>( <i>Lumbriculus</i> tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method | Start of Interval Below<br>Sediment Surface (ft) | End of Interval Below<br>Sediment Surface (ft) |
| ND20-SLBREF1                                                                                                                                                                                                                                                                                                                                                                                                                                    | e Do         Sample Depth Interval (ft)         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43         2 43 <th< td=""><td>0</td><td>0.3</td></th<> |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | 0                                                            | 0.3                                                                  |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| ND20-KBREF2                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID       Sample Depth Interval (ft)       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       2       6       3       6       0       0       0       0       1       1       1       1       1 <th1< td=""><td>0</td><td>0.3</td></th1<>                                                                                                                                                                                                                                                |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | 0                                                            | 0.3                                                                  |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
| ND20-LFREF3                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | 0                                                            | 0.3                                                                  |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SLBREF1       surf       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< td=""><td>0</td><td>0.3</td></th1<>                                                                                                                                                                                                                                                         |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | 0                                                            | 0.3                                                                  |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kBREF2       surf       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       <th1< th=""> <th1< t<="" td=""><td></td><td></td></th1<></th1<></th1<>                                                                                                                                                                                                                          |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kBREF2       surf       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       <th1< th=""> <th1< t<="" td=""><td></td><td></td></th1<></th1<></th1<>                                                                                                                                                                                                                          |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              |                                                                      |                                                            |                                                         |                                                                  |                                      |                                                  |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 0                                                        | 1                           | 1                                         | 0                                      | 1                      | 0                                  | 0                                  | 0                                            | 1                              | 1                                                       | 1                                                             | 0                                                                                      | 0                                                            | 0                                                                    |                                                            | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Matrix Spike / Matrix Spike Dup                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                | 0                                                        | 1                           | 1                                         | 0                                      | 1                      | 0                                  | 0                                  | 0                                            | 0                              | 0                                                       | 0                                                             | 0                                                                                      | 0                                                            | 0                                                                    | 0                                                          | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Total Field Quality Control Sa                                                                                                                                                                                                                                                                                                                                                                                                                  | amples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                | 0                                                        | 2                           | 2                                         | 0                                      | 2                      | 0                                  | 0                                  | 0                                            | 1                              | 1                                                       | 1                                                             | 0                                                                                      | 0                                                            | 0                                                                    | 0                                                          | 0                                                       | 0                                                                | 0                                    |                                                  |                                                |
| Total Samples<br>NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                | 4                                                        | 6                           | 6                                         | 4                                      | 6                      | 4                                  | 4                                  | 4                                            | 5                              | 5                                                       | 5                                                             | 4                                                                                      | 4                                                            | 4                                                                    | 20                                                         | 20                                                      | 20                                                               | 20                                   |                                                  |                                                |
| ACTES.<br>AES = Atomic emission spectroscop<br>ASTM = ASTM International<br>C8-C40 = 8 carbon-chain to 40 carb<br>CLP = Contract Laboratory Program<br>EPA = U.S. Environmental Protectic<br>GC/MS = Gas chromatography/mas<br>ICP = Inductively-coupled plasma<br>PAH = Polycyclic aromatic hydroca<br>PCB = Polychlorinated biphenyl<br>TAL = Target Analyte List<br>1. 34 PAHs include: acenaphthene,<br>phenanthrenes/anthracenes, c3 chrys | on-chain<br>n<br>on Agency<br>is spectrometry<br>arbon<br>acenaphthylene, anthracene, benz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                          |                             |                                           |                                        |                        |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              |                                                                      |                                                            |                                                         |                                                                  | , c2 fluorene:                       | i, c2-naphthal                                   | lenes, c2-                                     |

3. For matrix spike/matrix spike dupcliate samples, double volume should be submitted for analysis

#### TABLE 2-11 SUMMARY ACTUAL ANALYTICAL PROGRAM NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AOC, SUPERIOR, WISCONSIN

|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    | Fie                                | ld Sample (                                  | Count and                      | Required (                                              | )C                                                            |                                                                                        |                                                              |                                                                       |                                                    |                                                         |                                                                  |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------|------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  |                                                        |                                                 |                                             |                                                 | Chem                          | istry                              |                                    |                                              |                                |                                                         | -                                                             |                                                                                        |                                                              |                                                                       | Bioassay                                           |                                                         |                                                                  |                                      |
| Area                                                                                                                                                                                                                                                                                                                                   | Number of sample locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alkylated PAHs <sup>1</sup> (34)<br>EPA CLP SOM02.4/SVOCS<br>SIM | TAL Metals + Mercury<br>EPA CLP ISM024/ICP-AES +<br>HG | TCL VOCs<br>EPA SW846 8260D                     | TCL SVOCs <sup>2</sup><br>EPA SW846 8270D   | PCBs - Aroclors<br>EPA CLP SOM02.4/PCB          | Organotin<br>GC/MS SIM        | Dioxins/Furans<br>EPA Method 1613B | Total Organic Carbon<br>Lloyd Kahn | Grain Size<br>(with hydrometer)<br>ASTM D422 | Moisture Content<br>ASTM D2216 | Aliphatic Hydrocarbons<br>(CS-C40) - GC/MS<br>Full Scan | Microscopic Analysis of Coal<br>Particles<br>Method OPT.023.3 | Toxicity Testing (28-day + 4 hr<br>UV light <i>Hyalella</i> )<br>EPA 100.4/ ASTM E1706 | Toxicity Testing (10-day<br><i>Chironomus</i> )<br>EPA 100.2 | Bioaccumulation Testing (28-<br>day <i>Lumbriculus</i> )<br>EPA 100.3 | Mercury<br>(Lumbriculus tissue)<br>EPA CLP ISM02.4 | Organotins<br>( <i>Lumbriculus</i> tissue)<br>GC/MS SIM | Dioxin/Furans<br>( <i>Lumbriculus</i> tissue)<br>EPA Method 1613 | Percent Lipids<br>Gravimetric Method |
| Hallet Dock 8 Slip                                                                                                                                                                                                                                                                                                                     | et Dock 8 Slip     6     0     31     13     31     3     3     31     6     31     0     6     3     0     0     0     0     0     0       3arge Dock Slip     17     97     125     125     6     4     4     125     16     122     20     32     4     4     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              | 0                                                                     |                                                    |                                                         |                                                                  |                                      |
| Oil Barge Dock Slip                                                                                                                                                                                                                                                                                                                    | et Dock 8 Slip     6     0     31     13     31     3     3     3     31     6     31     0     6     3     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | 0                                                            |                                                                       |                                                    |                                                         |                                                                  |                                      |
| General Mills Slip                                                                                                                                                                                                                                                                                                                     | th Dock 8 Slip       6       0       31       13       31       3       3       31       6       31       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | 0                                                            |                                                                       |                                                    |                                                         |                                                                  |                                      |
| Tower Avenue Slip                                                                                                                                                                                                                                                                                                                      | Number of sample locations         Y Z Y L Y Z Y L Y Z Y L Y Z Y Z Y Z Y Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              |                                                                       |                                                    |                                                         |                                                                  |                                      |
| Estuary Flats                                                                                                                                                                                                                                                                                                                          | A       Number of sample locations       Image: Section of sample location of sample locations <td>-</td>  |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | -                                                            |                                                                       |                                                    |                                                         |                                                                  |                                      |
| Clough Island                                                                                                                                                                                                                                                                                                                          | And       Number of sample locations       Very and book of the sample locations |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              |                                                                       |                                                    |                                                         |                                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                                        | tock 8 Slip       6       0       31       13       31       3       3       3       31       6       31       0       6       3       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              |                                                                       |                                                    |                                                         |                                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                                        | Image Dock Slip       17       97       125       125       125       6       4       4       125       16       122       20       32       4       4       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | 70                                                           |                                                                       |                                                    |                                                         |                                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                                        | ge Dock Slip       17       97       125       125       125       6       4       4       125       16       122       20       32       4       4       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        | -                                                            |                                                                       |                                                    |                                                         |                                                                  |                                      |
| 1 1 1                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                | -                                                      |                                                 |                                             |                                                 |                               |                                    |                                    | _                                            | 42                             | 7                                                       | -                                                             |                                                                                        | 0                                                            | v                                                                     | •                                                  | v                                                       | v                                                                |                                      |
| Matrix Spike / Matrix Spike D                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                | 22                                                     | 15                                              | 23                                          | 10                                              | 10                            | 0                                  | 22                                 | 0                                            | 1                              | 0                                                       | 0                                                             | 0                                                                                      | 0                                                            | 0                                                                     | 0                                                  | 0                                                       | 0                                                                | 0                                    |
| Total Field Quality Control                                                                                                                                                                                                                                                                                                            | Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                               | 64                                                     | 41                                              | 66                                          | 27                                              | 26                            | 10                                 | 64                                 | 2                                            | 43                             | 7                                                       | 15                                                            | 0                                                                                      | 0                                                            | 0                                                                     | 0                                                  | 0                                                       | 0                                                                | 0                                    |
| Total Samples<br>NOTES:                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 137                                                              | 452                                                    | 244                                             | 455                                         | 139                                             | 132                           | 52                                 | 446                                | 92                                           | 422                            | 51                                                      | 97                                                            | 31                                                                                     | 31                                                           | 24                                                                    | 120                                                | 70                                                      | 70                                                               | 70                                   |
| ACS = Atomic emission spectros<br>ASTM = ASTM International<br>C8-C40 = 8 carbon-chain to 40 c<br>CLP = Contract Laboratory Prog<br>EPA = U.S. Environmental Prote<br>GC/MS = Gas chromatography/r<br>ICP = Inductively-coupled plasm<br>PAH = Polycyclic aromatic hydr<br>PCB = Polychlorinated biphenyl<br>TAL = Target Analyte List | arbon-chain<br>ram<br>ection Agency<br>nass spectrometry<br>ta<br>coarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                        |                                                 |                                             |                                                 |                               |                                    |                                    |                                              |                                |                                                         |                                                               |                                                                                        |                                                              |                                                                       |                                                    |                                                         |                                                                  |                                      |
| fluoranthenes/pyrenes, c1-naphth<br>phenanthrenes/anthracenes, c4 cl<br>2. SVOCs include 18 PAHS: 2-n<br>chrysene, dibenzo(a,h)anthracene                                                                                                                                                                                              | ne, acenaphthylene, anthracene, ben<br>halenes, c1-phenanthrenes/anthracen<br>rrysenes, c4-naphthalenes, c4-phena<br>nethylnaphthalene, acenaphthene, ac<br>e, fluoranthene, fluorene, indeno(1,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es, c2 chrys<br>inthrenes/an<br>cenaphthyle<br>2,3-c,d)pyre      | senes, c2 fluor<br>athracenes, chi<br>ne, anthracene   | renes, c2-nap<br>rysene, diben<br>e, benzo(a)an | hthalenes, c<br>zo(a,h)anth<br>thracene, be | 2-phenanthre<br>racene, fluora<br>enzo(a)pyrene | nes/anthrace<br>nthene, fluor | nes, c3 chrys<br>rene, indeno      | senes, c3 flue<br>(1,2,3-cd)pyr    | orenes, c3-na<br>rene, naphtha               | phthalenes,<br>lene, peryle    | c3-<br>ne, phenanth                                     | rene, pyrene                                                  |                                                                                        |                                                              |                                                                       |                                                    |                                                         |                                                                  |                                      |

3. For MS/MSD samples, double volume was submitted for analysis

## TABLE 4-1 SUMMARY OF SEDIMENT RESULTS - HALLET DOCK 8 SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                 | Total Number<br>of Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units | Maximum Location | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|-------------------------|-----------------------------------------|----------------------|--------------------------------------|-------|------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| VOCS                    |                                         |                      |                                      |       |                  |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 1,2,4-Trichlorobenzene  | 16                                      | 0                    | 160                                  | ug/kg | SW15-SLB02-SURF  | 8                | 13               | 18               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| 1,2-Dichlorobenzene     | 16                                      | 0                    | 120                                  | ug/kg | SW15-SLB02-SURF  | 23               |                  | 23               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| 1,4-Dichlorobenzene     | 16                                      | 0                    | 120                                  | ug/kg | SW15-SLB02-SURF  | 31               | 61               | 90               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Benzene                 | 16                                      | 0                    | 110                                  | ug/kg | SW15-SLB02-SURF  | 57               | 84               | 110              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Toluene                 | 16                                      | 1                    | 650                                  | ug/kg | SW15-SLB02-SURF  | 890              | 1,345            | 1,800            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Xylenes, total          | 16                                      | 0                    | 240                                  | ug/kg | SW15-SLB02-SURF  | 25               | 38               | 50               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| SVOCS                   |                                         |                      |                                      |       |                  |                  |                  |                  | •                                        | •                                        | •                                        |                                             |                                             |                                             |                                                     |                                            |
| 2,4-Dimethylphenol      | 36                                      | 25                   | 520                                  | ug/kg | ND20-HD04-2030   | 290              |                  | 290              | 3                                        |                                          | 3                                        | 8                                           | 0                                           | 8                                           | 2                                                   | 7                                          |
| 2-Methylnaphthalene     | 36                                      | 31                   | 2,400                                | ug/kg | ND20-HD04-2030   | 20               | 111              | 201              | 21                                       | 18                                       | 15                                       | 58                                          | 50                                          | 42                                          | 7                                                   | 7                                          |
| 2-Methylphenol          | 36                                      | 23                   | 320                                  | ug/kg | ND20-HD04-2030   | 6700             |                  | 6,700            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Acenaphthene            | 36                                      | 28                   | 370                                  | ug/kg | ND20-HD03-0310   | 6.7              | 48               | 89               | 20                                       | 11                                       | 9                                        | 56                                          | 31                                          | 25                                          | 7                                                   | 7                                          |
| Acenaphthylene          | 36                                      | 24                   | 300                                  | ug/kg | ND20-HD04-0310   | 5.9              | 67               | 128              | 16                                       | 4                                        | 1                                        | 44                                          | 11                                          | 3                                           | 6                                                   | 7                                          |
| Anthracene              | 36                                      | 30                   | 690                                  | ug/kg | ND20-HD03-0310   | 57.2             | 451              | 845              | 15                                       | 5                                        |                                          | 42                                          | 14                                          | 0                                           | 6                                                   | 7                                          |
| Benzo(a)anthracene      | 36                                      | 29                   | 1,600                                | ug/kg | ND20-HD03-0310   | 108              | 579              | 1,050            | 15                                       | 7                                        | 3                                        | 42                                          | 19                                          | 8                                           | 7                                                   | 7                                          |
| Benzo(a)pyrene          | 36                                      | 29                   | 1,400                                | ug/kg | ND20-HD03-0310   | 150              | 800              | 1,450            | 12                                       | 4                                        |                                          | 33                                          | 11                                          | 0                                           | 5                                                   | 7                                          |
| Benzo(b)fluoranthene    | 36                                      | 29                   | 1,500                                | ug/kg | ND20-HD01-SURF   | 240              | 6,820            | 13,400           | 12                                       |                                          |                                          | 33                                          | 0                                           | 0                                           | 5                                                   | 7                                          |
| Benzo(e)pyrene          | 31                                      | 28                   | 1,200                                | ug/kg | ND20-HD03-0310   | 150              | 800              | 1,450            | 11                                       | 2                                        |                                          | 35                                          | 6                                           | 0                                           | 4                                                   | 6                                          |
| Benzo(g,h,I)perylene    | 36                                      | 29                   | 940                                  | ug/kg | ND20-HD03-0310   | 170              | 1,685            | 3,200            | 12                                       |                                          |                                          | 33                                          | 0                                           | 0                                           | 5                                                   | 7                                          |
| Benzo(k)fluoranthene    | 36                                      | 29                   | 500                                  | ug/kg | ND20-HD01-SURF   | 240              | 6,820            | 13,400           | 6                                        |                                          |                                          | 17                                          | 0                                           | 0                                           | 4                                                   | 7                                          |
| Chrysene                | 36                                      | 29                   | 2,200                                | ug/kg | ND20-HD03-0310   | 166              | 728              | 1,290            | 12                                       | 7                                        | 3                                        | 33                                          | 19                                          | 8                                           | 5                                                   | 7                                          |
| Dibenz(a,h)anthracene   | 36                                      | 26                   | 440                                  | ug/kg | ND20-HD03-0310   | 33               | 84               | 135              | 13                                       | 10                                       | 5                                        | 36                                          | 28                                          | 14                                          | 6                                                   | 7                                          |
| Dibenzofuran            | 36                                      | 31                   | 540                                  | ug/kg | ND20-HD04-2030   | 150              | 365              | 580              | 7                                        | 2                                        |                                          | 19                                          | 6                                           | 0                                           | 3                                                   | 7                                          |
| Diethyl phthalate       | 36                                      | 7                    | 360                                  | ug/kg | ND20-HD04-3040   | 610              | 885              | 1,000            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Dimethyl phthalate      | 36                                      | 0                    | 75                                   | ug/kg | ND20-HD04-3040   | 530              |                  | 530              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Di-n-butyl phthalate    | 36                                      | 6                    | 450                                  | ug/kg | ND20-HD04-3040   | 2200             | 9,600            | 17,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Di-n-octyl phthalate    | 36                                      | 0                    | 590                                  | ug/kg | ND20-HD04-3040   | 580              | 22,790           | 45,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Fluoranthene            | 36                                      | 32                   | 3,200                                | ug/kg | ND20-HD01-SURF   | 423              | 1,327            | 2,230            | 11                                       | 6                                        | 2                                        | 31                                          | 17                                          | 6                                           | 5                                                   | 7                                          |
| Fluorene                | 36                                      | 30                   | 620                                  | ug/kg | ND20-HD03-0310   | 77.4             | 307              | 536              | 12                                       | 5                                        | 1                                        | 33                                          | 14                                          | 3                                           | 5                                                   | 7                                          |
| Indeno(1,2,3-c,d)pyrene | 36                                      | 29                   | 720                                  | ug/kg | ND20-HD01-SURF   | 200              | 1,700            | 3,200            | 10                                       |                                          |                                          | 28                                          | 0                                           | 0                                           | 4                                                   | 7                                          |
| Naphthalene             | 36                                      | 29                   | 1,700                                | ug/kg | ND20-HD04-2030   | 176              | 369              | 561              | 14                                       | 8                                        | 6                                        | 39                                          | 22                                          | 17                                          | 6                                                   | 7                                          |
| Pentachlorophenol       | 36                                      | 0                    | 1,600                                | ug/kg | ND20-HD04-3040   | 150              | 175              | 200              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Phenanthrene            | 36                                      | 32                   | 2,900                                | ug/kg | ND20-HD04-0310   | 204              | 687              | 1,170            | 12                                       | 9                                        | 6                                        | 33                                          | 25                                          | 17                                          | 5                                                   | 7                                          |
| Phenol                  | 36                                      | 18                   | 190                                  | ug/kg | ND20-HD04-2030   | 4200             | 8,100            | 12,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Pyrene                  | 36                                      | 29                   | 2,800                                | ug/kg | ND20-HD04-0310   | 195              | 858              | 1,520            | 14                                       | 8                                        | 4                                        | 39                                          | 22                                          | 11                                          | 6                                                   | 7                                          |
| Total PAH18 ND=1/2MDL   | 36                                      | 36                   | 22,090                               | ug/kg | ND20-HD03-0310   | 1610             | 12,205           | 22,800           | 15                                       | 6                                        |                                          | 42                                          | 17                                          | 0                                           | 7                                                   | 7                                          |
| PCB AROCLORS            |                                         |                      |                                      |       | •                |                  |                  |                  | •                                        | •                                        | •                                        |                                             |                                             |                                             |                                                     |                                            |
| Total PCBs ND=0         | 6                                       | 4                    | 47                                   | ug/kg | ND20-HD01-SURF   | 60               | 368              | 676              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| METALS                  |                                         |                      |                                      |       |                  |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| Antimony                | 36                                      | 0                    | 1                                    | mg/kg | ND20-HD05-2030   | 2                | 14               | 25               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Arsenic                 | 36                                      | 36                   | 7                                    | mg/kg | ND20-HD04-3040   | 9.8              | 21               | 33               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Cadmium                 | 36                                      | 27                   | 1                                    | mg/kg | SW15-SLB02-SURF  | 0.99             | 3                | 5                |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Chromium                | 36                                      | 36                   | 50                                   | mg/kg | ND20-HD01-0310   | 43               | 77               | 110              | 1                                        |                                          |                                          | 3                                           | 0                                           | 0                                           | 1                                                   | 7                                          |
| Copper                  | 36                                      | 36                   | 25                                   | mg/kg | ND20-HD05-2030   | 32               | 91               | 150              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Iron                    | 36                                      | 36                   | 28,700                               | mg/kg | SW15-SLB02-SURF  | 20000            | 30,000           | 40,000           | 2                                        |                                          |                                          | 6                                           | 0                                           | 0                                           | 2                                                   | 7                                          |
| Lead                    | 36                                      | 36                   | 106                                  | mg/kg | ND20-HD06-3040   | 36               | 83               | 130              | 1                                        | 1                                        |                                          | 3                                           | 3                                           | 0                                           | 1                                                   | 7                                          |
| Manganese               | 36                                      | 36                   | 1,420                                | mg/kg | ND20-HD01-0310   | 460              | 780              | 1,100            | 2                                        | 1                                        | 1                                        | 6                                           | 3                                           | 3                                           | 2                                                   | 7                                          |
| Mercury                 | 36                                      | 17                   | 0                                    | mg/kg | ND20-HD04-3040   | 0.18             | 1                | 1                | 1                                        |                                          |                                          | 3                                           | 0                                           | 0                                           | 1                                                   | 7                                          |
| Nickel                  | 36                                      | 36                   | 50                                   | mg/kg | ND20-HD06-2030   | 23               | 36               | 49               | 2                                        | 2                                        | 1                                        | 6                                           | 6                                           | 3                                           | 1                                                   | 7                                          |
| Silver                  | 36                                      | 0                    | 0                                    | mg/kg | ND20-HD05-2030   | 1.6              | 2                | 2                |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 7                                          |
| Zinc                    | 36                                      | 36                   | 141                                  | mg/kg | ND20-HD05-2030   | 120              | 290              | 460              | 2                                        |                                          |                                          | 6                                           | 0                                           | 0                                           | 2                                                   | 7                                          |

## TABLE 4-1 SUMMARY OF SEDIMENT RESULTS - HALLET DOCK 8 SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Number<br>of Submitted<br>Samples                                                                          | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units      | Maximum Location          | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|------------|---------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| DIOXINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                      |                                      |            |                           |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 2,3,7,8-TCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                | 3                    | 1                                    | pg/g       | ND20-HD01-SURF            | 1                | 11               | 22               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 3                                          |
| FISH TEQ (ND=1/2RL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                | 3                    | 5.89                                 | pg/g       | ND20-HD01-SURF            | 0.85             | 11               | 22               | 3                                        |                                          |                                          | 100                                         | 0                                           | 0                                           | 3                                                   | 3                                          |
| BUTYLTINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                      |                                      |            |                           |                  |                  |                  |                                          |                                          | •                                        | •                                           |                                             |                                             |                                                     |                                            |
| Tributyltin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                | 0                    | 3                                    | ug/kg      | ND20-HD01-SURF            | 0.52             | 2                | 3                |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 3                                          |
| NOTES:<br>a = Source: Consensus-Based<br>MEC = Midpoint Effect Conce<br>MDL = Method detection limi<br>mg/kg = Milligrams per kilogr<br>NA = Not applicable<br>ND = Non-detect<br>NSL = No screening level<br>pg/g = Picograms per gram<br>PAH = Polycyclic Aromatic H<br>PCB = Polychlorinated Bipher<br>PEC = Probable Effect Concer<br>RL = Reporting limit<br>SVOC = Semivolatile Organic<br>TCDD = Tetrachlorodibenzo-F<br>TEC = Threshold Effect Concer<br>TEQ = Toxicity Equivalency O<br>TOC = Total organic carbon<br>ug/kg = Micrograms per kilogi<br>VOC = Volatile Organic Comp | entration<br>t<br>am<br>lydrocarbon<br>nyl<br>ntration<br>c Compound<br>p-dioxin<br>entration<br>Quotient<br>ram | uidelines, Recor     | nmendations for U                    | Ise and Ap | plication, Publication No | . WT-732         | 2 2003, W        | VDNR D           | ecember 2003                             | 3                                        |                                          |                                             |                                             |                                             |                                                     |                                            |

## TABLE 4-2 SUMMARY OF SEDIMENT RESULTS - OIL BARGE DOCK NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| VNC         111         4         501         yets         NNESSMEN 12         4         110         yet         0         0         0           1-50-01 with seven of the seven of th                                                                                         | Analyte | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units  | Maximum Location | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total Number<br>of Locations<br>Sampled |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------|----------------------|--------------------------------------|--------|------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------------------------------|
| D15 Definitionsporte       131       8       330       q-lp       SW158 BR0.SRR       23       7       7       7       7       7       8       0       8       0       3         Labelia       330       q-lp       300       q-lp       SW158 BR0.SRR       0       1       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 121                                        | 4                    | 560                                  |        | NID20 DD02 1012  | 0                | 12               | 10               | 1                                        |                                          | 1                                        | 0                                           | 0                                           | 0                                           |                                                     | 10                                      |
| 1.4.16         8         300         why         SW10.5 MD1 SRBP         11         64         90         7         7         6         5         5         5         3           Datas         131         12         880         why         MD28 MD1 6000         130         120         1         7         6         6         5         5         4           Datas         131         122         810         why         MD28 MD1 6000         100         100         100         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                            | •                    |                                      |        |                  |                  | 15               |                  | 7                                        |                                          | 7                                        | •                                           | Ů                                           | 0                                           | 2                                                   | 18<br>18                                |
| Nervec         111         121         28         98/5         MP078-MP14400         77         84         100         7         6         6         S         5         S         4           Later         131         22         310         up18         NODE 00000         131         23         30         131         10         -1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                            | •                    |                                      |        |                  |                  | 61               |                  | 7                                        | 7                                        | 1                                        |                                             | •                                           | 5                                           |                                                     | 18                                      |
| Taken         131         25         3.00         9.02         NDD 000 5006, SW1 54.003 (200)         800         1.00         1.00         0.0         0.00           Colong, Jung         1.00         2.00         NDD 000 5006, SW1 54.003 (200)         25         25         10         10         10         10         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td></td> <td></td> <td></td> <td></td> <td>0 0</td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>6</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                            |                      |                                      | 0 0    |                  |                  |                  |                  | 7                                        | 6                                        |                                          | -                                           | -                                           | -                                           | -                                                   | 18                                      |
| Sylees, said1112521.010 $q_{2}^{1}q$ M 200 mW 2 |         |                                            |                      |                                      |        |                  |                  |                  |                  | /                                        | 0                                        | 0                                        | •                                           | 5                                           | 2                                           | 4                                                   | 18                                      |
| SYOCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                            |                      |                                      | 0 0    | ,                |                  |                  |                  | 19                                       | 18                                       | 17                                       |                                             | Ŭ                                           | 0                                           | 1                                                   | 18                                      |
| 21-Damach       132       194       2,00       9,70       9,70       9,70       7,00       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0       7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 151                                        | 20                   | 2,100                                | ug/kg  | ND20-BF05-8010   | 23               | 38               | 50               | 10                                       | 10                                       | 17                                       | 14                                          | 14                                          | 15                                          | 4                                                   | 10                                      |
| Sheenyahana         112         119         42.000         isplag         ND204B403-1021         20         111         101         01         72         04         090         050         04         00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 132                                        | 20                   | 730                                  | ug/kg  | ND20 BD10 0320   | 200              |                  | 200              | 3                                        |                                          | 3                                        | 2                                           | 0                                           | 2                                           | 2                                                   | 18                                      |
| Schedightand         12         47         860         pkg         NDS2B10-3000         670         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C        C         C <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>111</td><td></td><td>01</td><td>72</td><td>5</td><td>2<br/>60</td><td>55</td><td></td><td>18</td><td>18</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                            |                      |                                      |        |                  |                  | 111              |                  | 01                                       | 72                                       | 5                                        | 2<br>60                                     | 55                                          |                                             | 18                                                  | 18                                      |
| Accompletions         132         81         5.550         gkg         MODE BISS 03200         6.7         88         89         69         40         322         320         52         30         52         17           Aurhanze         132         130         1.30         gkg         MODE BPOS MERTON XDB PPOS MERTON                                                                                                                                                                                    |         |                                            |                      | ,                                    |        |                  | -                | 111              |                  | 91                                       | 12                                       | 04                                       |                                             |                                             | -                                           | 10                                                  | 18                                      |
| Name         172         57         230         upic         ND20-HPD2-XNRPTON, ND20-HPD2-AUPD, ZMP2, AUPD AUPD.         59         67         178         30         5         5         2         11           Authanssen         132         110         1.000         upic         ND20-HPD2-XNRP1         188         577         13         4         433         10         3         16           Runc/Authansen         132         110         2.000         upic         ND20-HPD2-XNRP1         1080         16.00         58         14         5         44         17         8         17           Runc/Authansen         132         104         2.000         upic         ND20-HP12-AD320         240         650         15.400         49         4         6         6         33         0         0         16           Runc/Authansen         132         104         5.00         upic         ND20-HP12-M320         240         680         13.00         4         4         17         44         13         13         14         13         14         13         14         13         14         13         14         13         14         13         14         13 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>/18</td> <td></td> <td>69</td> <td>40</td> <td>32</td> <td>•</td> <td>•</td> <td></td> <td>18</td> <td>18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                            |                      |                                      |        |                  |                  | /18              |                  | 69                                       | 40                                       | 32                                       | •                                           | •                                           |                                             | 18                                                  | 18                                      |
| Anthosené         132         101         1,200         upix         ND2A.BPG/30200         572         436         875         1.30         44         430         100         3.30         16           Bacax/anthone         132         103         2.000         upix         ND2A.BPG/35.CRF         150         800         1.600         66         62         1.60         60         44         12         2.00         126         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136 <td>1</td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>32</td> <td></td> <td></td> <td></td> <td></td> <td>18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1       |                                            |                      | ,                                    |        |                  |                  |                  |                  |                                          | -                                        | 32                                       |                                             |                                             |                                             |                                                     | 18                                      |
| Baser Appendix         Bits         2,000         up/kg         NNDDA BWDA BRF         108         6.78         LAB         2.20         1.1         5.00         1.72         8.0         1.72           Baser Abstract         133         0.14         2.000         up/kg         NDDA BWDA SRF         100         800         16.0         15.0         0.4         12.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                            |                      |                                      |        |                  |                  |                  |                  |                                          | ,                                        | 3                                        |                                             | 5                                           | 2                                           |                                                     | 18                                      |
| Binezolspreme         132         103         2,900         ugkz         ND20-BPI1-023         140         8.80         1.450         8.8         1.6         3         4.44         1.22         1.20         1.60           Beazob filtoranthene         132         0.40         0.300         ugkz         ND20-BPI1-0232         2.40         6.33         1.30         4.4         1.6         6.         3.5         1.3         5.0         1.45           Beazob filtoranthene         131         0.300         ugkz         ND20-BPI0-520RF         1.50         6.30         1.300         1.6         6.0         3.5         1.1         0.0         0.0         8.8           Beazob filtoranthene         132         101         ugkz         ND20-BPI0-520RF         1.0         1.50         0.2         2.1         1.40         0.0         8.8         1.15         0.2         2.1         1.40         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td></td> <td>+ 11</td> <td></td> <td>-</td> <td>5</td> <td></td> <td>18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            |                      |                                      |        |                  |                  |                  |                  |                                          |                                          | + 11                                     |                                             | -                                           | 5                                           |                                                     | 18                                      |
| Bannoflymonuhanen         132         101         2,000         upk         Physical Phy         |         |                                            |                      | ,                                    |        |                  |                  |                  |                  |                                          |                                          |                                          |                                             |                                             | ~                                           |                                                     | 18                                      |
| Banocicitypyrae         125         96         3.800         ug/s         ND20-BP03-SURF         150         8.00         1.46         6.0         35         13         5         14           Banocic Lipoyene         132         144         910         ug/s         ND20-BP03-SURF         170         16.55         3.200         94         4         77         14         0         0         8           Banocic Lipoyene         132         146         5.100         ug/s         ND20-BP03-SURF         166         728         1.200         12         14         0         0         8           Dibezor/arma         152         78         1.200         ug/s         ND20-BP03-SURF         33         84         135         61         41         29         46         31         22.2         18           Dibezor/arma         152         9         1.400         ug/s         ND20-BP03-5060         530         530         1         12         60         0         0         0           Dinchyl phihalate         152         9         1.500         ug/s         ND20-BP03-4060         530         230         24         160         60         61         61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                            |                      | ,                                    |        |                  |                  |                  |                  |                                          | 10                                       | 5                                        |                                             |                                             | 2                                           |                                                     | 18                                      |
| Bearods/Liboration         131         103         3.00         up/kg         ND20-BP1-020         240         6.80         14         0         0         8.8           Chrysens         132         106         5.100         up/kg         ND20-BP1-020         240         6.80         13.400         14         0         0         8.8           Chrysens         132         106         5.100         up/kg         ND20-BP0-SURF         38         4.135         61         41         29         450         31.1         17           Oberaci-handmarcene         132         99         4.100         up/kg         ND20-BP0-500F         101         365         580         38         27         19         29         20         14         122         18           Oberaci-handmarcene         132         0         220         up/kg         ND20-BP0-460         510         28         1000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td>16</td> <td>6</td> <td></td> <td>•</td> <td>-</td> <td></td> <td>17</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                            |                      |                                      |        |                  |                  |                  |                  |                                          | 16                                       | 6                                        |                                             | •                                           | -                                           |                                                     | 17                                      |
| Beach (Hubanahese         132         104         910         ug/kg         ND20-BP1-0420         240         6.820         13.40         18         1         1         1         0         0         8           Chrysne         132         106         5.100         ug/kg         ND20-BP05-SURF         33         84         135         61         41         29         46         31         22         18           Dheor/urm         132         94         1,00         ug/kg         ND20-BP05-SURF         33         84         135         61         41         29         46         31         22         18           Dheor/urp/hthalat         132         9         1,00         ug/kg         ND20-BP05-M060         580         58         500         -         60         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0        0 <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>_</td> <td>-</td> <td></td> <td>17</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                            |                      | ,                                    |        |                  |                  |                  |                  |                                          |                                          | 0                                        |                                             | _                                           | -                                           |                                                     | 17                                      |
| Chrysene         152         160         5.00         yg/kg         ND20-BP03-SURF         160         728         1.200         6.2         25         17         47         19         13         171           Diberox/aburnato         152         78         1.200         yg/kg         ND20-BP03-1012         150         38         21         4.1         4.9         2.0         4.10         2.2         1.100         yg/kg         ND20-BP03-1020         610         885         1.00         -         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                            |                      |                                      |        |                  |                  |                  | -                |                                          | 4                                        |                                          |                                             | 5                                           | -                                           |                                                     | 18                                      |
| Dihesofunghambracene         132         7.8         1.200         ugkg         ND20-PP03-SURP         38         84         135         6.1         4.10         2.9         4.60         31         2.2         18           Diebasofund         132         9.1         4.100         ugkg         ND20-PP03-1012         19         580         38         2.7         19         2.9         4.0         0         0         0           Dischyl phbalate         132         0         2.20         18.30         ugkg         ND20-PP03-4060         230         530         2.7         10         0         0         0         0           Dis-byl phbalate         132         0         1.300         ugkg         ND20-PP03-4060         230         530         2.7         10         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                            |                      |                                      |        |                  | -                |                  |                  |                                          | 25                                       | 17                                       |                                             | ÷                                           |                                             |                                                     | 18                                      |
| Diberoprimm         132         99         4.100         agkg         ND20-RPR3-f002         150         565         580         38         27         19         29         20         14         12           Diskryl phthalate         132         0         220         agkg         ND20-RPR3-600         530           0         0         0         0           Dis-nortyl phthalate         132         0         1,800         agkg         ND20-RPR3-600         220         6,600         172.00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       |                                            |                      | ,                                    |        |                  |                  |                  | -                |                                          |                                          |                                          |                                             |                                             | -                                           |                                                     | 18                                      |
| Diedry phthalae         132         21         1.100         log/kg         NN20-PB03-000         610         885         1.000         Image of the state of the                                             |         |                                            |                      |                                      | 00     |                  |                  |                  |                  |                                          |                                          | -                                        |                                             |                                             |                                             |                                                     | 18                                      |
| Dimetry phthalate         132         0         220         ug/kg         ND20eBP03-060         530         530         Image of the state of t                                     |         |                                            |                      | ,                                    |        |                  |                  |                  |                  | 30                                       | 21                                       | 19                                       |                                             | -                                           |                                             | 12                                                  | 18                                      |
| Dis-bulg plubalate         132         9         1.300         ug/kg         ND20-BP03-4060         2200         9.600         17.00          Image: Constraint of the state of the                                                                  |         |                                            |                      |                                      |        |                  |                  | 005              | -                |                                          |                                          |                                          | ,                                           | Ů                                           | ÷                                           |                                                     | 18                                      |
| Dispection         132         0         1.800         ugAg         ND20-BP03-000         580         22,790         45.000          0         0         0           Fluoranthene         132         119         4,500         ugAg         ND20-BP03-0320         77.4         307         336         52         33         2.8         399         2.5         2.1         15           Indenol, C_3, Sc, dipyrene         132         102         1,000         ugAg         ND20-BP03-0320         77.4         300         3.0          2.3         0         0         14           Naphthalene         132         102         1,000         ugAg         ND20-BP03-0320         71.6         369         561         62         46.0         38         47         35         2.92         16           Penduhrene         132         10         4,800         ugAg         ND20-BP03-0320.N20F         100         175         200          0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , I     |                                            | *                    |                                      | 0 0    |                  |                  | 0.600            |                  | 1                                        |                                          |                                          |                                             |                                             | 0                                           |                                                     | 18                                      |
| Fluoranthene         132         119         4,500         ugkg         ND20-BP11-0320         423         1327         220         46         15         6         35         11         55         15           Indeno(1,2,3-c,d)pyrene         132         100         ugkg         ND20-BP04-8010, ND20-BP04-3020         774         370         526         52         33         28         39         25         21         15           Naphthalene         132         102         1.300         ugkg         ND20-BP04-8010, ND20-BP04-3020         200         170         320         31         C         23         0         0         0         0         14           Naphthalene         132         119         12.000         ugkg         ND20-BP03-4060         150         15         200         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                            | ,                    |                                      |        |                  |                  |                  | -                | ·                                        |                                          |                                          |                                             | Ŭ                                           | 0                                           |                                                     | 18                                      |
| Fiburene         132         109         4,900         ug/kg         ND20-BP03-0320         77.4         307         536         52         33         28         39         25         21         15           Indeno(1,2,3-c,d)pyrene         132         119         12,000         ug/kg         ND20-BP04-8010, ND20-BP11-0320         200         31         23         0         0         0         14           Aphthalene         132         119         12,000         ug/kg         ND20-BP03-8060         150         175         200         -         -         0         0         0         0           Pentanthere         132         119         12,000         ug/kg         ND20-BP03-302, ND20-BP03-500.         204         687         1,170         59         39         33         45         30         25         16           Phenathere         132         119         12,000         ug/kg         ND20-BP03-302, ND20-BP03-500.         480         11,000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                            | -                    | ,                                    |        |                  |                  |                  |                  | 46                                       | 15                                       | 6                                        |                                             | ÷                                           |                                             | 15                                                  | 18                                      |
| Indeno(1,2,3-c,d)pyrene         132         102         1,300         ug/kg         ND20-BP04-8010, ND20-BP11-0320         200         1700         3200         31         23         0         0         14           Naphthalene         132         119         12,000         ug/kg         ND20-BP03-1012         176         369         561         62         46         38         47         35         29         16           Pentachlorophenol         132         0         4,800         ug/kg         ND20-BP03-4060         150         175         200         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                            | -                    | ,                                    |        |                  |                  |                  |                  |                                          |                                          | -                                        |                                             |                                             | Ũ                                           |                                                     | 18                                      |
| Naphthelme         132         119         12.000         ug/kg         ND20-BP03-1012         176         369         561         62         46         38         477         355         29         16           Pentachlorophenol         132         0         4.800         ug/kg         ND20-BP03-4060         150         175         200          0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                            |                      |                                      |        |                  |                  |                  |                  |                                          |                                          | 20                                       |                                             |                                             |                                             |                                                     | 18                                      |
| Pentachlorophenol         132         0         4.800         ug/kg         ND20-BP03-060         150         175         200         -         (n)         (n)         (n)         (n)           Phenanthrene         132         119         12,000         ug/kg         ND20-BP03-320, ND20-BP03-SURF         244         687         1,170         59         39         33         45         30         25         16           Phenol         132         18         910         ug/kg         ND20-BP03-4060         4200         8100         12,000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td>,</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>16</td> <td>38</td> <td></td> <td>•</td> <td></td> <td></td> <td>18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                            |                      | ,                                    |        | ,                |                  |                  |                  |                                          | 16                                       | 38                                       |                                             | •                                           |                                             |                                                     | 18                                      |
| Phenanthrane         132         119         12,000         ug/kg         ND20-BP03-0320, ND20-BP03-SURF         204         687         1,170         59         39         33         45         30         25         16           Phenol         132         18         910         ug/kg         ND20-BP03-4060         4200         8100         12,000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td>-</td><td>,</td><td></td><td></td><td></td><td></td><td></td><td>02</td><td>40</td><td>50</td><td></td><td></td><td>-</td><td>10</td><td>18</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                            | -                    | ,                                    |        |                  |                  |                  |                  | 02                                       | 40                                       | 50                                       |                                             |                                             | -                                           | 10                                                  | 18                                      |
| Phenol         132         18         910         ug/g         ND20-BP03-4060         4200         8100         12.00          0         0         0         0           Pyrene         132         110         5,000         ug/g         ND20-BP03-SURF         195         858         1,520         67         30         19         51         23         14         17           Total PAH18 ND=1/2MDL         132         132         93,410         ug/g         ND20-BP03-1012         1610         1225         230         19         55         23         14         18           PCB ROCLORS         Total PAH18 ND=1/2MDL         13         11         112         ug/g         SW15-SLB03-6800         60         368         67         2         15         0         0         0         2           METALS         ug/g         SW15-SLB03-6800         60         38         67         2         1         0         0         1         20         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       |                                            | -                    |                                      | 00     |                  |                  |                  |                  | 59                                       | 30                                       | 33                                       |                                             | •                                           |                                             | 16                                                  | 18                                      |
| Pyrene         132         110         5,000         ug/kg         ND20-BP03-1012, ND20-BP03-SURF         195         858         1,520         67         30         19         51         23         14         17           Total PAH18 ND=1/2MDL         132         132         93,410         ug/kg         ND20-BP03-1012         1610         12205         22800         72         30         19         55         23         14         18           CB AROCLORS         Total PCBs ND=0         13         11         112         ug/kg         SW15-SLB03-6080         60         368         676         2         15         0         0         2           Attimony         132         132         132         mg/kg         ND20-BP03-8010         2         13,5         25         1          1         0         0         1         2         1         4         1         0         0         1         2         1         1         0         0         1         1         0         0         1         2         1         1         0         0         1         1         1         0         0         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                            |                      | 7                                    |        |                  |                  |                  | -                | 55                                       | 37                                       |                                          | -                                           |                                             |                                             | 10                                                  | 18                                      |
| Total PAH18 ND=1/2MDL         132         132         93,410         ug/kg         ND20-BP03-1012         1610         12205         22800         72         30         19         55         23         14         18           PCB AROCLORS           Total PCBs ND=0         13         11         112         ug/kg         SW15-SLB03-6080         60         368         67         2         15         0         0         2           METALS           Antimony         132         132         132         mg/kg         ND20-BP03-8010         2         13.5         25         1         1         0         0         1           Artenic         132         132         132         mg/kg         ND20-BP03-8010         9.8         21.4         33         27         10         7         20         8         5         12           Cadmium         132         132         23         24         Mg/kg         ND20-BP0-SURF         43         7.65         110         7         20         8         5         12           Cadmium         132         132         70         mg/kg         ND20-BP06-SURF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                            |                      |                                      |        |                  |                  |                  | -                | 67                                       | 30                                       | 19                                       |                                             | 23                                          |                                             | 17                                                  | 18                                      |
| PCB AROCLORS       Total PCB ND=0       13       11       112       ug/kg       SW15-SLB03-6080       60       368       676       2       15       0       0       2         METALS       METALS       ND20-BP03-8010       2       13.5       2.5       1       1       0       0       1         Arimony       132       132       132       132       mg/kg       ND20-BP03-8010       9.8       21.4       33       2.7       10       7       2.0       8       5       1.2         Cadmium       132       132       123       2       mg/kg       SW15-SLB03-020.0       9.8       21.4       33       2.7       10       7       2.0       8       5       1.2         Cadmium       132       132       2.3       2       mg/kg       SW15-SLB03-020.0       9.8       21.4       33       2.7       10       7       2.0       8       5       12         Cadmium       132       132       132       5       mg/kg       ND20-BP06-SURF       43       76.5       110       7       0       0       0       43         Fron       132       132       132       75,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                            |                      |                                      |        |                  |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     | 18                                      |
| Total PCBs ND=0         13         11         112         ug/kg         SW15-SLB03-6080         60         368         676         2         15         0         0         2           METALS           Animony         132         22         2         mg/kg         ND20-BP03-8010         2         13.5         25         1          1         0         0         1           Arsenic         132         132         132         mg/kg         SW15-SLB03-8010         9.8         21.4         33         27         10         7         20         8         5         12           Cadmium         132         132         132         mg/kg         SW15-SLB03-0520, SW15-SLB03-02400         1         3.0         5         9         7         0         0         0         4           Chromium         132         132         56         mg/kg         ND20-BP06-SURF         43         76.5         110         7         5         0         0         0         6           Copper         132         132         70         mg/kg         ND20-BP03-8010         2000         3000         40000         54         21         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 152                                        | 152                  | <i>y3</i> ,410                       | ug/Kg  | ND20 BI 05 1012  | 1010             | 12205            | 22000            | 12                                       | 50                                       | 17                                       | 55                                          | 23                                          | 17                                          | 10                                                  | 10                                      |
| METALS           Antimony         132         22         2         mg/kg         ND20-BP03-8010         2         13.5         2.5         1         1         0         0         1           Arsenic         132         132         132         mg/kg         ND20-BP03-8010         9.8         21.4         33         2.7         10         7         2.0         8         5         12           Cadmium         132         123         2         mg/kg         SW15-SLB03-0520, SW15-SLB03-2040         1         3.0         5         9         7         0         0         4           Chronium         132         132         56         mg/kg         ND20-BP06-SURF         43         76.5         110         7         0         0         0         6           Copper         132         132         700         mg/kg         ND20-BP16-4060         32         91         150         26         20         0         0         0         133           Iron         132         132         75,000         mg/kg         ND20-BP05-0320         36         83         130         41         18         8         31         14         6 <td></td> <td>13</td> <td>11</td> <td>112</td> <td>110/ko</td> <td>SW15-SLB03-6080</td> <td>60</td> <td>368</td> <td>676</td> <td>2</td> <td></td> <td></td> <td>15</td> <td>0</td> <td>0</td> <td>2</td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 13                                         | 11                   | 112                                  | 110/ko | SW15-SLB03-6080  | 60               | 368              | 676              | 2                                        |                                          |                                          | 15                                          | 0                                           | 0                                           | 2                                                   | 5                                       |
| Antimony132222mg/kgND20-BP03-8010213.525111001Arsenic132132132mg/kgND20-BP03-80109.821.43327107208512Cadmium1321232mg/kgSW15-SLB03-0520, SW15-SLB03-204013.0597004Chronium13213256mg/kgND20-BP06-SURF4376.511075006Copper13213270mg/kgND20-BP06-SURF4376.51107208512Iron13213270mg/kgND20-BP06-SURF4376.51107006Copper13213270mg/kgND20-BP06-SURF329115026200013Iron13213275,00mg/kgND20-BP05-03203000300040005421124116916Lead1321321,610mg/kgND20-BP05-03203683130411883114614Manganese1321321,870mg/kgND20-BP06-SURF, ND20-BP09-03200.180.641.100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 10                                         |                      |                                      | 48/11B |                  | 00               | 200              | 070              |                                          |                                          |                                          | 10                                          | 0                                           | Ŭ                                           |                                                     | 0                                       |
| Arsenic132132132mg/kgND20-BP03-80109.821.43327107208512Cadmium1321232mg/kgSW15-SLB03-0520, SW15-SLB03-024013.0597004Chronium13213256mg/kgND20-BP06-SURF4376.511075006Copper13213270mg/kgND20-BP16-4060329115026200013Iron13213275,000mg/kgND20-BP03-80102000300040005421124116916Lead1321321,610mg/kgND20-BP05-03203683130411883114614Marganese1321321,870mg/kgND20-BP14-03204607801100401573011513Mercury132560mg/kgND20-BP06-SURF, ND20-BP09-03200.180.641.10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 132                                        | 22                   | 2                                    | mø/kø  | ND20-BP03-8010   | 2                | 13.5             | 25               | 1                                        |                                          |                                          | 1                                           | 0                                           | 0                                           | 1                                                   | 18                                      |
| Cadmium1321232mg/kgSW15-SLB03-0520, SW15-SLB03-204013.05907004Chromium13213256mg/kgND20-BP06-SURF4376.511075006Copper13213270mg/kgND20-BP16-4060329115026200013Iron13213275,000mg/kgND20-BP03-801020003000400005421124116916Lead1321321,610mg/kgND20-BP05-03203683130411883114614Marganese1321321,870mg/kgND20-BP14-03204607801100401573011513Mercury132560mg/kgND20-BP06-SURF, ND20-BP09-03200.180.641.10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,<br>,  |                                            |                      |                                      | ~ ~    |                  |                  |                  |                  | 27                                       | 10                                       | 7                                        | 20                                          | •                                           |                                             | 12                                                  | 18                                      |
| Chromium13213256mg/kgND20-BP06-SURF4376.511075006Copper13213270mg/kgND20-BP16-406032911502620200013Iron13213275,000mg/kgND20-BP03-801020003000400005421124116916Lead1321321,610mg/kgND20-BP05-03203683130411883114614Marganese1321321,870mg/kgND20-BP14-03204607801100401573011513Mercury132560mg/kgND20-BP09-03200.180.641.1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                            |                      |                                      |        |                  | 1                |                  |                  |                                          | 10                                       | ,                                        | -                                           | ů                                           | -                                           |                                                     | 18                                      |
| Copper13213270ng/kgND20-BP16-40603291150262620000013Iron13213275,000mg/kgND20-BP03-80102000300040005421124116916Lead1321321,610mg/kgND20-BP05-03203683130411883114614Marganese1321321,870mg/kgND20-BP14-03204607801100401573011513Mercury132560mg/kgND20-BP09-03200.180.641.10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                            |                      |                                      | 0 0    |                  | 43               |                  |                  | -                                        |                                          |                                          |                                             |                                             | -                                           |                                                     | 18                                      |
| Indication       132       132       75,000       mg/kg       ND20-BP03-8010       2000       3000       4000       54       21       12       41       16       9       16         Lead       132       132       1,610       mg/kg       ND20-BP05-0320       36       83       130       41       18       8       31       14       6       14         Manganese       132       132       1,870       mg/kg       ND20-BP04-0320       460       780       1100       40       15       7       30       11       5       13         Mercury       132       56       0       mg/kg       ND20-BP06-SURF, ND20-BP09-0320       0.18       0.64       1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                            |                      |                                      |        |                  |                  |                  |                  | -                                        |                                          |                                          | -                                           | -                                           | -                                           |                                                     | 18                                      |
| Lead         132         132         1,610         mg/kg         ND20-BP05-0320         36         83         130         41         18         8         31         14         6         14           Manganese         132         132         1,870         mg/kg         ND20-BP14-0320         460         780         1100         40         15         7         30         11         5         13           Mercury         132         56         0         mg/kg         ND20-BP09-0320         0.18         0.64         1.1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                            |                      |                                      | 0 0    |                  |                  |                  |                  |                                          | 21                                       | 12                                       |                                             | ÷                                           | -                                           |                                                     | 18                                      |
| Manganese         132         132         1,870         mg/kg         ND20-BP14-0320         460         780         1100         400         15         7         30         11         5         13           Mercury         132         56         0         mg/kg         ND20-BP06-SURF, ND20-BP09-0320         0.18         0.64         1.1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                            |                      | ,                                    |        |                  | -                |                  |                  |                                          |                                          |                                          |                                             |                                             | ~                                           |                                                     | 18                                      |
| Mercury         132         56         0         mg/kg         ND20-BP06-SURF, ND20-BP09-0320         0.18         0.64         1.1         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                            |                      |                                      |        |                  |                  |                  |                  |                                          |                                          | 7                                        |                                             |                                             | -                                           |                                                     | 18                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       |                                            |                      | ,                                    | ~ ~    |                  |                  |                  |                  | +0                                       | 1.5                                      | /                                        |                                             |                                             | -                                           | 15                                                  | 18                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                            |                      | -                                    |        |                  |                  |                  |                  | 28                                       | 3                                        |                                          | -                                           | ÷                                           | -                                           | 13                                                  | 18                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                            |                      |                                      |        |                  |                  |                  |                  | 20                                       | 3                                        |                                          |                                             | _                                           | ÷                                           | 15                                                  | 18                                      |
| Silver       132       14       0       mg/kg       ND20-BP11-0320       1.6       1.9       2.2       0       0       0         Zinc       132       132       289       mg/kg       ND20-BP14-2040       120       290       460       33       25       0       0       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                            |                      |                                      |        |                  |                  |                  |                  | 33                                       |                                          |                                          |                                             | ÷                                           | -                                           | 15                                                  | 18                                      |

### TABLE 4-2 SUMMARY OF SEDIMENT RESULTS - OIL BARGE DOCK NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total<br>Number of<br>Submitted<br>Samples |            | Maximum<br>Detected<br>Concentration | Units    | Maximum Location                                     | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Samples that | Samples That | Number of Sampling<br>Locations with<br>Exceedances | Total Number<br>of Locations<br>Sampled |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|--------------------------------------|----------|------------------------------------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|--------------|--------------|-----------------------------------------------------|-----------------------------------------|
| DIOXINS                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |            |                                      |          |                                                      |                  |                  |                  |                                          |                                          |                                          |                                             |              |              |                                                     |                                         |
| 2,3,7,8-TCDD                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                          | 2          | 1                                    | pg/g     | ND20-BP07-SURF                                       | 0.85             | 11.2             | 21.5             | 2                                        |                                          |                                          | 50                                          | 0            | 0            | 2                                                   | 4                                       |
| FISH TEQ (ND=1/2RL)                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                          | 4          | 13.6                                 | pg/g     | ND20-BP07-SURF                                       | 0.85             | 11               | 22               | 4                                        | 2                                        |                                          | 100                                         | 50           | 0            | 4                                                   | 4                                       |
| BUTYLTINS                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |            |                                      |          |                                                      |                  |                  | •                |                                          |                                          |                                          |                                             |              |              |                                                     |                                         |
| Tributyltin                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                          | 0          | 5                                    | ug/kg    | ND20-BP05-SURF                                       | 0.52             | 1.73             | 2.94             |                                          |                                          |                                          | 0                                           | 0            | 0            |                                                     | 4                                       |
| a = Source: Consensus-Based Sediment Qualit<br>MEC = Midpoint Effect Concentration<br>MDL = Method detection limit<br>mg/kg = Milligrams per kilogram<br>NA = Not applicable<br>ND = Non-detect<br>NSL = No screening level<br>pg/g = Picograms per gram<br>PAH = Polycyclic Aromatic Hydrocarbon<br>PCB = Polychlorinated Biphenyl<br>PEC = Probable Effect Concentration<br>RL = Reporting limit<br>SVOC = Semivolatile Organic Compound | ty Guidelines,                             | Recommenda | ations for Use and                   | Applicat | ion, Publication No. WT-732 2003, WDNR December 2003 |                  |                  |                  |                                          |                                          |                                          |                                             |              |              |                                                     |                                         |

SVOC = Semivolatile Organic Compoun TCDD = Tetrachlorodibenzo-p-dioxin TEC = Threshold Effect Concentration TEQ = Toxicity Equivalency Quotient TOC = Total organic carbon ug/kg = Micrograms per kilogram VOC = Volatile Organic Compound

## TABLE 4-3 SUMMARY OF SEDIMENT RESULTS - GENERAL MILLS SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                         | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units          | Maximum Location                                 | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|---------------------------------|--------------------------------------------|----------------------|--------------------------------------|----------------|--------------------------------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| VOCS                            |                                            |                      |                                      |                |                                                  |                  | 1                | -                |                                          |                                          |                                          |                                             |                                             | 1                                           |                                                     |                                            |
| 1,2,4-Trichlorobenzene          | 3                                          | 0                    | 11                                   | ug/kg          | ND20-GM02-SURF, ND20-GM04-SURF                   | 8                | 13               | 18               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 3                                          |
| 1,2-Dichlorobenzene             | 3                                          | 0                    | 6                                    | ug/kg          | ND20-GM02-SURF                                   | 23               |                  | 23               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 3                                          |
| 1,4-Dichlorobenzene             | 3                                          | 0                    | 3                                    | ug/kg          | ND20-GM02-SURF                                   | 31               | 61               | 90               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 3                                          |
| Benzene                         | 3                                          | 0                    | 6                                    | ug/kg          | ND20-GM02-SURF                                   | 57               | 84               | 110              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 3                                          |
| Toluene                         | 3                                          | 0                    | 5                                    | ug/kg          | ND20-GM02-SURF                                   | 890              | 1,345            | 1,800            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 3                                          |
| Xylenes, total                  | 3                                          | 0                    | 13                                   | ug/kg          | ND20-GM02-SURF, ND20-GM04-SURF                   | 25               | 37.5             | 50               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 3                                          |
| SVOCS                           |                                            | -                    |                                      |                |                                                  |                  |                  |                  |                                          | 1                                        | 1                                        | -                                           | -                                           | -                                           |                                                     |                                            |
| 2,4-Dimethylphenol              | 67                                         | 5                    | 79                                   | ug/kg          | ND20-GM01-2040                                   | 290              |                  | 290              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 14                                         |
| 2-Methylnaphthalene             | 67                                         | 62                   | 3,800                                | ug/kg          | ND20-GM07-4060                                   | 20.2             | 111              | 201              | 55                                       | 34                                       | 24                                       | 82                                          | 51                                          | 36                                          | 14                                                  | 14                                         |
| 2-Methylphenol                  | 67                                         | 4                    | 360                                  | ug/kg          | ND20-GM01-2040                                   | 6,700            | 10               | 6,700            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 14                                         |
| Acenaphthene                    | 67                                         | 60                   | 4,300                                | ug/kg          | ND20-GM07-4060                                   | 6.7              | 48               | 89               | 57                                       | 50                                       | 47                                       | 85                                          | 75                                          | 70                                          | 14                                                  | 14                                         |
| Acenaphthylene                  | 67                                         | 56                   | 690                                  | ug/kg          | ND20-GM04-4060                                   | 5.9              | 67               | 128              | 54                                       | 26                                       | 17                                       | 81                                          | 39                                          | 25                                          | 14                                                  | 14                                         |
| Anthracene                      | 67                                         | 59                   | 5,900                                | ug/kg          | ND20-GM07-4060                                   | 57.2             | 451              | 845              | 53                                       | 29                                       | 20                                       | 79                                          | 43                                          | 30                                          | 13                                                  | 14                                         |
| Benzo(a)anthracene              | 67                                         | 58                   | 9,400                                | ug/kg          | ND20-GM07-4060                                   | 108              | 579              | 1,050            | 53                                       | 34                                       | 21                                       | 79                                          | 51                                          | 31                                          | 13                                                  | 14                                         |
| Benzo(a)pyrene                  | 67                                         | 58                   | 8,000                                | ug/kg          | ND20-GM07-4060                                   | 150              | 800              | 1,450            | 50                                       | 20                                       | 16                                       | 75                                          | 30                                          | 24                                          | 13                                                  | 14                                         |
| Benzo(b)fluoranthene            | 67                                         | 58                   | 8,600                                | ug/kg          | ND20-GM07-4060                                   | 240              | 6,820            | 13,400           |                                          | 1                                        |                                          | 72                                          | 1                                           | 0                                           | 13                                                  | 14                                         |
| Benzo(e)pyrene                  | 67                                         | 58                   | 4,600                                | ug/kg          | ND20-GM07-4060                                   | 150              | 800              | 1,450            | 46                                       | 16                                       | 1                                        | 69                                          | 24                                          | 10                                          | 13                                                  | 14                                         |
| Benzo(g,h,I)perylene            | 67                                         | 57                   | 5,200                                | ug/kg          | ND20-GM07-4060                                   | 170              | 1,685            | 3,200            | 44                                       | 4                                        | 1                                        | 66                                          | 6                                           | 1                                           | 13                                                  | 14                                         |
| Benzo(k)fluoranthene            | 67                                         | 58                   | 2,100                                | ug/kg          | ND20-GM07-4060                                   | 240              | 6,820            | 13,400           | 30                                       | 21                                       | 20                                       | 45                                          | 0                                           | 0                                           | 10                                                  | 14                                         |
| Chrysene                        | 67                                         | 58                   | 9,600                                | ug/kg          | ND20-GM07-4060                                   | 166              | 728              | 1,290            | 51                                       | 31                                       | 20                                       | 76                                          | 46                                          | 30                                          | 13                                                  | 14                                         |
| Dibenz(a,h)anthracene           | 67                                         | 56                   | 1,300                                | ug/kg          | ND20-GM07-4060                                   | 33               | 84               | 135              | 52                                       | 44                                       | 28                                       | 78                                          | 66                                          | 42                                          | 13                                                  | 14                                         |
| Dibenzofuran                    | 67                                         | 61                   | 2,000                                | ug/kg          | ND20-GM07-4060                                   | 150              | 365              | 580              | 34                                       | 17                                       | 8                                        | 51                                          | 25                                          | 12                                          | 12                                                  | 14                                         |
| Diethyl phthalate               | 67                                         | 6                    | 440                                  | ug/kg          | ND20-GM01-2040                                   | 610              | 885              | 1,000            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 14                                         |
| Dimethyl phthalate              | 67                                         | 0                    | 94                                   | ug/kg          | ND20-GM01-2040                                   | 530              | 0.600            | 530              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 14                                         |
| Di-n-butyl phthalate            | 67                                         | 10                   | 550                                  | ug/kg          | ND20-GM01-2040                                   | 2,200            | 9,600            | 17,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 14                                         |
| Di-n-octyl phthalate            | 67                                         | 0                    | 740                                  | ug/kg          | ND20-GM01-2040                                   | 580              |                  | 45,000           |                                          | 27                                       |                                          | 0                                           | 0                                           | 0                                           | 10                                                  | 14                                         |
| Fluoranthene                    | 67                                         | 64                   | 19000                                | ug/kg          | ND20-GM07-4060                                   | 423              | 1,327            | 2,230            | 50                                       | 37                                       | 26                                       | 75                                          | 55                                          | 39                                          | 13                                                  | 14                                         |
| Fluorene                        | 67                                         | 62                   | 4700                                 | ug/kg          | ND20-GM07-4060                                   | 77.4             | 307              | 536              | 49                                       | 31                                       | 21                                       | 73                                          | 46                                          | 31                                          | 13                                                  | 14                                         |
| Indeno(1,2,3-c,d)pyrene         | 67                                         | 57                   | 4100                                 | ug/kg          | ND20-GM07-4060                                   | 200              | 1,700            | 3,200            | 42                                       | 3                                        | 1                                        | 63                                          | 4                                           | 1                                           | 13                                                  | 14                                         |
| Naphthalene                     | 67                                         | 58                   | 5100                                 | ug/kg          | ND20-GM07-4060                                   | 176              | 369              | 561              | 37                                       | 23                                       | 15                                       | 55                                          | 34                                          | 22                                          | 13                                                  | 14                                         |
| Pentachlorophenol               | 67                                         | 0                    | 2,000                                | ug/kg          | ND20-GM01-2040, ND20-GM02-4060, ND20-GM03-2040   | 150              | 175              | 200              | 50                                       | 40                                       | 22                                       | 0                                           | 0                                           | 0                                           | 12                                                  | 14                                         |
| Phenanthrene                    | 67                                         | 67                   | 26000                                | ug/kg          | ND20-GM07-4060                                   | 204              | 687              | 1,170            | 53                                       | 40                                       | 32                                       | 79                                          | 60                                          | 48                                          | 13                                                  | 14                                         |
| Phenol                          | 67                                         | 2                    | 380                                  | ug/kg          | ND20-GM01-2040                                   | 4,200            | 8,100            | 12,000           |                                          | 12                                       | 22                                       | 0                                           | 0                                           | 0                                           | 10                                                  | 14                                         |
| Pyrene                          | 67                                         | 61                   | 24000                                | ug/kg          | ND20-GM07-4060                                   | 195              | 858              | 1,520            | 55                                       | 42                                       | 33                                       | 82                                          | 63                                          | 49                                          | 13                                                  | 14                                         |
| Total PAH18 ND=1/2MDL           | 67                                         | 67                   | 146140                               | ug/kg          | ND20-GM07-4060                                   | 1,610            | 12,205           | 22,800           | 53                                       | 28                                       | 18                                       | 79                                          | 42                                          | 27                                          | 13                                                  | 14                                         |
| PCB AROCLORS<br>Total PCBs ND=0 | 22                                         | 20                   | 650                                  | na/ka          | ND20-GM05-2040                                   | 60               | 368              | 676              | 2                                        | 1                                        | 1                                        | 14                                          | 5                                           | 0                                           | 2                                                   | 8                                          |
|                                 | 22                                         | 20                   | 030                                  | ug/kg          | ND20-01/103-2040                                 | 00               | 308              | 070              | 5                                        | 1                                        |                                          | 14                                          | 5                                           | 0                                           | <u>L</u>                                            | <u> </u>                                   |
| METALS<br>Antimony              | 77                                         | 20                   | 2.2                                  | ma/ka          | SW15-SLB06-4060                                  | 2                | 13.5             | 25               | 1                                        |                                          |                                          | 1                                           | 0                                           | 0                                           | 1                                                   | 17                                         |
|                                 | 77                                         | 20                   | 2.2                                  | mg/kg<br>mg/kg | ND20-GM02-0320                                   | 9.8              | 21.4             | 33               | 1                                        |                                          |                                          | 0                                           | 0                                           | 0                                           | 1                                                   | 17                                         |
| Arsenic<br>Cadmium              | 77                                         | 77                   | 1.4                                  | mg/kg          | SW15-SLB06-4060                                  | 0.99             | 3                | 5                | 8                                        |                                          |                                          | 10                                          | 0                                           | 0                                           | 5                                                   | 17                                         |
| Chromium                        | 77                                         | 77                   | 41.5                                 | 00             | ND20-GM04-SURF                                   | 43               | 76.5             |                  | 0                                        |                                          |                                          | 0                                           | -                                           | 0                                           | 5                                                   | 17                                         |
| -                               | 77                                         | 77                   | 129                                  | mg/kg          | ND20-GM04-S0KF<br>ND20-GM08-0320                 | 32               | 91               | 110<br>150       | 44                                       | 3                                        |                                          | 57                                          | 0 4                                         | 0                                           | 12                                                  | 17                                         |
| Copper                          | 77                                         | 77                   | 36000                                | mg/kg          | ND20-GM08-0320<br>ND20-GM02-SURF, ND20-GM04-SURF | 20,000           | 91<br>30,000.0   |                  | 37                                       | 3                                        |                                          | 48                                          | 9                                           | 0                                           | 12                                                  | 17                                         |
| lron<br>Lond                    | 77                                         | 77                   | 36000                                | mg/kg          | ND20-GM02-SURF, ND20-GM04-SURF<br>ND20-GM02-6080 | 36               | 30,000.0<br>83   |                  | 37                                       | ,                                        | 5                                        | 48                                          | -                                           | -                                           |                                                     | 17                                         |
| Lead                            | 77                                         | 77                   | 345<br>1130                          | mg/kg          | ND20-GM02-6080<br>ND20-GM05-SURF                 | 460              | 83<br>780        | 130              | 22                                       | 10                                       | 5                                        | 43<br>29                                    | 13                                          | 6                                           | 12<br>16                                            | 17                                         |
| Manganese                       |                                            |                      |                                      | mg/kg          | ND20-GM05-SURF<br>ND20-GM02-4060                 |                  |                  | 1,100            |                                          | 3                                        | 1                                        | 29                                          |                                             | 1                                           | 9                                                   |                                            |
| Mercury                         | 77                                         | 40                   | 0.54                                 | mg/kg          |                                                  | 0.18             | 0.64             | 1.1              | 18                                       |                                          |                                          |                                             | 0                                           | 0                                           | -                                                   | 17                                         |
| Nickel                          | 77                                         | 77                   | 32.2                                 | mg/kg          | ND20-GM02-SURF                                   | 23               | 36               | 49               | 17                                       |                                          |                                          | 22                                          | 0                                           | 0                                           | 10                                                  | 17                                         |
| Silver                          | 77                                         | 22                   | 0.46                                 | mg/kg          | ND20-GM08-2040<br>SW15-SLB06-4060                | 1.6              | 1.9<br>290       | 2.2<br>460       | 27                                       | 2                                        |                                          | 0                                           | 0                                           | 0                                           | 11                                                  | 17                                         |
| Zinc                            | 77                                         | 77                   | 408                                  | mg/kg          | SW13-SLB00-4000                                  | 120              | 290              | 400              | 37                                       | 2                                        |                                          | 48                                          | 3                                           | 0                                           | 11                                                  | 17                                         |

#### TABLE 4-3 SUMMARY OF SEDIMENT RESULTS - GENERAL MILLS SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                   | Total<br>Number of<br>Submitted<br>Samples | Detects    | Maximum<br>Detected<br>Concentration | Units     | Maximum Location                                      | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|--------------------------------------|-----------|-------------------------------------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| DIOXINS                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |            |                                      |           |                                                       |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 2,3,7,8-TCDD                                                                                                                                                                                                                                                                                                                                                                                              | 3                                          | 3          | 2                                    | pg/g      | ND20-GM02-SURF                                        | 0.85             | 11.2             | 21.5             | 2                                        |                                          |                                          | 67                                          | 0                                           | 0                                           | 2                                                   | 3                                          |
| FISH TEQ (ND=1/2RL)                                                                                                                                                                                                                                                                                                                                                                                       | 3                                          | 3          | 65.4                                 | pg/g      | ND20-GM02-SURF                                        | 0.85             | 11               | 22               | 3                                        | 2                                        | 2                                        | 100                                         | 67                                          | 67                                          | 3                                                   | 3                                          |
| BUTYLTINS                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |            |                                      |           |                                                       |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| Tributyltin                                                                                                                                                                                                                                                                                                                                                                                               | 39                                         | 9          | 81                                   | ug/kg     | ND20-GM09-4060                                        | 0.52             | 1.73             | 2.94             | 9                                        | 8                                        | 7                                        | 23                                          | 21                                          | 18                                          | 5                                                   | 11                                         |
| NOTES:<br>a = Source: Consensus-Based Sediment Qua<br>MEC = Midpoint Effect Concentration<br>MDL = Method detection limit<br>mg/kg = Milligrams per kilogram<br>NA = Not applicable<br>ND = Non-detect<br>NSL = No screening level<br>pg/g = Picograms per gram<br>PAH = Polycyclic Aromatic Hydrocarbon<br>PCB = Polychlorinated Biphenyl<br>PEC = Probable Effect Concentration<br>RL = Reporting limit | lity Guidelines,                           | Recommenda | ations for Use and                   | ł Applica | tion, Publication No. WT-732 2003, WDNR December 2003 |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |

SVOC = Semivolatile Organic Compound TCDD = Tetrachlorodibenzo-p-dioxin

TEC = Threshold Effect Concentration

TEQ = Toxicity Equivalency Quotient TOC = Total organic carbon ug/kg = Micrograms per kilogram VOC = Volatile Organic Compound

North End District and Clough Island Sediment Characterization St. Louis River Area of Concern, Superior, Wisconsin

#### TABLE 4-4 SUMMARY OF SEDIMENT RESULTS - TOWER AVENUE SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                 | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units | Maximum Location               | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|-------------------------|--------------------------------------------|----------------------|--------------------------------------|-------|--------------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| VOCS                    |                                            |                      |                                      |       |                                |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 1,2,4-Trichlorobenzene  | 29                                         | 1                    | 320                                  | ug/kg | SW15-SLB14-SURF                | 8                | 13               | 18               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 12                                         |
| 1,2-Dichlorobenzene     | 29                                         | 1                    | 240                                  | ug/kg | SW15-SLB14-SURF                | 23               |                  | 23               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 12                                         |
| 1,4-Dichlorobenzene     | 29                                         | 0                    | 250                                  | ug/kg | SW15-SLB14-SURF                | 31               | 61               | 90               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 12                                         |
| Benzene                 | 29                                         | 0                    | 230                                  | ug/kg | SW15-SLB14-SURF                | 57               | 84               | 110              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 12                                         |
| Toluene                 | 29                                         | 4                    | 290                                  | ug/kg | SW15-SLB14-SURF                | 890              | 1,345            | 1,800            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 12                                         |
| Xylenes, total          | 29                                         | 3                    | 500                                  | ug/kg | SW15-SLB14-SURF                | 25               | 37.5             | 50               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 12                                         |
| SVOCS                   |                                            |                      |                                      |       |                                |                  |                  |                  | •                                        | •                                        | •                                        |                                             |                                             | •                                           |                                                     | •                                          |
| 2,4-Dimethylphenol      | 116                                        | 3                    | 410                                  | ug/kg | ND20-TB01-4060                 | 290              |                  | 290              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 25                                         |
| 2-Methylnaphthalene     | 116                                        | 106                  | 16,000                               | ug/kg | ND20-TB03-6080                 | 20.2             | 111              | 201              | 93                                       | 71                                       | 59                                       | 80                                          | 61                                          | 51                                          | 25                                                  | 25                                         |
| 2-Methylphenol          | 116                                        | 4                    | 1,900                                | ug/kg | ND20-TB01-4060                 | 6,700            |                  | 6,700            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 25                                         |
| Acenaphthene            | 116                                        | 100                  | 6,500                                | ug/kg | ND20-TB09-2040                 | 6.7              | 48               | 89               | 92                                       | 71                                       | 59                                       | 79                                          | 61                                          | 51                                          | 25                                                  | 25                                         |
| Acenaphthylene          | 116                                        | 85                   | 950                                  | ug/kg | ND20-TB01-6080                 | 5.9              | 67               | 128              | 81                                       | 46                                       | 25                                       | 70                                          | 40                                          | 22                                          | 23                                                  | 25                                         |
| Anthracene              | 116                                        | 103                  | 9,100                                | ug/kg | ND20-TB09-2040                 | 57.2             | 451              | 845              | 88                                       | 37                                       | 27                                       | 76                                          | 32                                          | 23                                          | 24                                                  | 25                                         |
| Benzo(a)anthracene      | 116                                        | 103                  | 15,000                               | ug/kg | ND20-TB09-2040                 | 108              | 579              | 1,050            | 92                                       | 57                                       | 41                                       | 79                                          | 49                                          | 35                                          | 24                                                  | 25                                         |
| Benzo(a)pyrene          | 116                                        | 101                  | 13,000                               | ug/kg | ND20-TB09-2040                 | 150              | 800              | 1,450            | 89                                       | 47                                       | 35                                       | 77                                          | 41                                          | 30                                          | 23                                                  | 25                                         |
| Benzo(b)fluoranthene    | 116                                        | 101                  | 14,000                               | ug/kg | ND20-TB09-2040                 | 240              | 6,820            | 13,400           | 84                                       | 8                                        | 1                                        | 72                                          | 7                                           | 1                                           | 22                                                  | 25                                         |
| Benzo(e)pyrene          | 109                                        | 94                   | 6,900                                | ug/kg | ND20-TB09-2040                 | 150              | 800              | 1,450            | 77                                       | 35                                       | 23                                       | 71                                          | 32                                          | 21                                          | 19                                                  | 22                                         |
| Benzo(g,h,I)perylene    | 116                                        | 101                  | 8,100                                | ug/kg | ND20-TB09-2040                 | 170              | 1,685            | 3,200            | 83                                       | 24                                       | 11                                       | 72                                          | 21                                          | 9                                           | 22                                                  | 25                                         |
| Benzo(k)fluoranthene    | 116                                        | 101                  | 5,500                                | ug/kg | ND20-TB09-2040                 | 240              | 6,820            | 13,400           | 59                                       |                                          |                                          | 51                                          | 0                                           | 0                                           | 17                                                  | 25                                         |
| Chrysene                | 116                                        | 104                  | 14,000                               | ug/kg | ND20-TB09-2040                 | 166              | 728              | 1,290            | 91                                       | 57                                       | 39                                       | 78                                          | 49                                          | 34                                          | 24                                                  | 25                                         |
| Dibenz(a,h)anthracene   | 116                                        | 93                   | 2,200                                | ug/kg | ND20-TB09-2040                 | 33               | 84               | 135              | 86                                       | 68                                       | 58                                       | 74                                          | 59                                          | 50                                          | 24                                                  | 25                                         |
| Dibenzofuran            | 116                                        | 88                   | 5,300                                | ug/kg | ND20-TB09-2040                 | 150              | 365              | 580              | 30                                       | 19                                       | 12                                       | 26                                          | 16                                          | 10                                          | 11                                                  | 25                                         |
| Diethyl phthalate       | 116                                        | 7                    | 2,300                                | ug/kg | ND20-TB01-4060                 | 610              | 885              | 1,000            |                                          | -                                        |                                          | 0                                           | 0                                           | 0                                           |                                                     | 25                                         |
| Dimethyl phthalate      | 116                                        | 2                    | 480                                  | ug/kg | ND20-TB01-4060                 | 530              |                  | 530              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 25                                         |
| Di-n-butyl phthalate    | 116                                        | 18                   | 2,900                                | ug/kg | ND20-TB01-4060                 | 2,200            | 9,600            | 17,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 25                                         |
| Di-n-octyl phthalate    | 116                                        | 1                    | 3,800                                | ug/kg | ND20-TB01-4060                 | 580              | 22,790           | 45,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 25                                         |
| Fluoranthene            | 116                                        | 106                  | 45000                                | ug/kg | ND20-TB09-2040                 | 423              | 1,327            | 2,230            | 83                                       | 54                                       | 40                                       | 72                                          | 47                                          | 34                                          | 21                                                  | 25                                         |
| Fluorene                | 116                                        | 102                  | 6700                                 | ug/kg | ND20-TB09-2040                 | 77.4             | 307              | 536              | 72                                       | 38                                       | 30                                       | 62                                          | 33                                          | 26                                          | 18                                                  | 25                                         |
| Indeno(1,2,3-c,d)pyrene | 116                                        | 101                  | 7300                                 | ug/kg | ND20-TB09-2040                 | 200              | 1,700            | 3,200            | 73                                       | 16                                       | 10                                       | 63                                          | 14                                          | 9                                           | 20                                                  | 25                                         |
| Naphthalene             | 116                                        | 103                  | 5500                                 | ug/kg | ND20-TB09-2040                 | 176              | 369              | 561              | 62                                       | 32                                       | 21                                       | 53                                          | 28                                          | 18                                          | 15                                                  | 25                                         |
| Pentachlorophenol       | 116                                        | 0                    | 10,000                               | ug/kg | ND20-TB01-4060                 | 150              | 175              | 200              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 25                                         |
| Phenanthrene            | 116                                        | 114                  | 51000                                | ug/kg | ND20-TB09-2040                 | 204              | 687              | 1,170            | 83                                       | 62                                       | 44                                       | 72                                          | 53                                          | 38                                          | 21                                                  | 25                                         |
| Phenol                  | 116                                        | 5                    | 2000                                 | ug/kg | ND20-TB01-4060                 | 4,200            | 8,100            | 12,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 25                                         |
| Pyrene                  | 116                                        | 105                  | 28000                                | ug/kg | ND20-TB09-2040                 | 195              | 858              | 1,520            | 93                                       | 63                                       | 46                                       | 80                                          | 54                                          | 40                                          | 24                                                  | 25                                         |
| Total PAH18 ND=1/2MDL   | 116                                        | 116                  | 239790                               | ug/kg | ND20-TB09-2040                 | 1,610            | 12,205           | 22,800           | 92                                       | 45                                       | 31                                       | 79                                          | 39                                          | 27                                          | 24                                                  | 25                                         |
| PCB AROCLORS            |                                            | -                    |                                      | 00    |                                | ,                | ,                | ,                |                                          |                                          | ļ                                        |                                             |                                             |                                             | ļ                                                   | 1                                          |
| Total PCBs ND=0         | 72                                         | 58                   | 4,140                                | ug/kg | ND20-TB03-0320                 | 60               | 368              | 676              | 39                                       | 1                                        | 1                                        | 54                                          | 1                                           | 1                                           | 13                                                  | 19                                         |
| METALS                  |                                            |                      | .,                                   |       |                                |                  |                  |                  |                                          |                                          | _                                        |                                             | _                                           | -                                           |                                                     |                                            |
| Antimony                | 133                                        | 61                   | 2.9                                  | mg/kg | ND20-TB01-6080                 | 2                | 13.5             | 25               | 4                                        |                                          |                                          | 3                                           | 0                                           | 0                                           | 4                                                   | 30                                         |
| Arsenic                 | 133                                        | 133                  | 11                                   | mg/kg | SW15-SLB13-SURF                | 9.8              | 21.4             | 33               | 2                                        |                                          |                                          | 2                                           | 0                                           | 0                                           | 2                                                   | 30                                         |
| Cadmium                 | 133                                        | 130                  | 3.3                                  | mg/kg | ND20-TB02-1416                 | 0.99             | 3                | 5                | 29                                       | 1                                        |                                          | 22                                          | 1                                           | 0                                           | 12                                                  | 30                                         |
| Chromium                | 133                                        | 133                  | 51.1                                 | mg/kg | ND20-TB01-0320                 | 43               | 76.5             | 110              | 20                                       | -                                        |                                          | 15                                          | 0                                           | 0                                           | 13                                                  | 30                                         |
| Copper                  | 133                                        | 133                  | 151                                  | mg/kg | SW15-SLB11-6080                | 32               | 91               | 150              | 94                                       | 15                                       | 1                                        | 71                                          | 11                                          | 1                                           | 23                                                  | 30                                         |
| Iron                    | 133                                        | 133                  | 46200                                | mg/kg | ND20-TB07-SURF                 | 20,000           |                  | 40,000           | 94                                       | 32                                       | 5                                        | 71                                          | 24                                          | 4                                           | 29                                                  | 30                                         |
| Lead                    | 133                                        | 133                  | 2070                                 | mg/kg | ND20-TB07-50Ki                 | 36               | 83               | 130              | 85                                       | 44                                       | 27                                       | 64                                          | 33                                          | 20                                          | 23                                                  | 30                                         |
| Manganese               | 133                                        | 133                  | 1190                                 | mg/kg | ND20-TB19-SURF                 | 460              | 780              | 1,100            | 67                                       | 17                                       | 27                                       | 50                                          | 13                                          | 20                                          | 30                                                  | 30                                         |
| Mercury                 | 133                                        | 88                   | 11.3                                 | mg/kg | ND20-TB01-8010                 | 0.18             | 0.64             | 1,100            | 53                                       | 28                                       | 18                                       | 40                                          | 21                                          | 14                                          | 14                                                  | 30                                         |
| Nickel                  | 133                                        | 133                  | 43.7                                 | mg/kg | ND20-TB15-1723                 | 23               | 36               | 49               | 77                                       | 14                                       | 10                                       | 58                                          | 11                                          | 0                                           | 25                                                  | 30                                         |
| Silver                  | 133                                        | 55                   | 5.5                                  | 0 0   | ND20-TB01-4060, ND20-TB03-6080 | 1.6              | 1.9              | 2.2              | 14                                       | 9                                        | 8                                        | 11                                          | 7                                           | 6                                           | 8                                                   | 30                                         |
| Zinc                    | 133                                        | 133                  |                                      | mg/kg | SW15-SLB11-6080                | 120              | 290              | 460              | 76                                       | 18                                       | 8                                        | 57                                          | 14                                          | 6                                           | 23                                                  | 30                                         |

#### TABLE 4-4 SUMMARY OF SEDIMENT RESULTS - TOWER AVENUE SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units      | Maximum Location                        | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|--------------------------------------|------------|-----------------------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| DIOXINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                      |                                      |            |                                         |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 2,3,7,8-TCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                         | 10                   | 3                                    | pg/g       | ND20-TB07-0320                          | 0.85             | 11.2             | 21.5             | 7                                        |                                          |                                          | 64                                          | 0                                           | 0                                           | 5                                                   | 7                                          |
| FISH TEQ (ND=1/2RL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                         | 11                   | 20.6                                 | pg/g       | ND20-TB07-SURF                          | 0.85             | 11               | 22               | 11                                       | 7                                        |                                          | 100                                         | 64                                          | 0                                           | 7                                                   | 7                                          |
| BUTYLTINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                      |                                      |            |                                         |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| Tributyltin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54                                         | 17                   | 64                                   | ug/kg      | ND20-TB16-0320                          | 0.52             | 1.73             | 2.94             | 17                                       | 14                                       | 12                                       | 31                                          | 26                                          | 22                                          | 10                                                  | 18                                         |
| a = Source: Consensus-Based Sediment Qual<br>MEC = Midpoint Effect Concentration<br>MDL = Method detection limit<br>mg/kg = Milligrams per kilogram<br>NA = Not applicable<br>ND = Non-detect<br>NSL = No screening level<br>pg/g = Picograms per gram<br>PAH = Polycyclic Aromatic Hydrocarbon<br>PCB = Polychlorinated Biphenyl<br>PEC = Probable Effect Concentration<br>RL = Reporting limit<br>SVOC = Semivolatile Organic Compound<br>TCDD = Tetrachlorodibenzo-p-dioxin<br>TEC = Threshold Effect Concentration<br>TEQ = Toxicity Equivalency Quotient<br>TOC = Total organic carbon | , Suidennes,                               |                      |                                      | a rippiica | uon, i uoneunon i vo: w 1 752 2005, w D |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |

VOC = Volatile Organic Compound

#### TABLE 4-5 SUMMARY OF SEDIMENT RESULTS - ESTUARY FLATS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                 | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units | Maximum Location               | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|-------------------------|--------------------------------------------|----------------------|--------------------------------------|-------|--------------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| VOCS                    |                                            |                      |                                      |       |                                |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 1,2,4-Trichlorobenzene  | 34                                         | 0                    | 16                                   | ug/kg | ND20-EF06-4060                 | 8                | 13               | 18               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 9                                          |
| 1,2-Dichlorobenzene     | 34                                         | 0                    | 9                                    | ug/kg | ND20-EF06-4060                 | 23               |                  | 23               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 9                                          |
| 1,4-Dichlorobenzene     | 34                                         | 0                    | 5                                    | ug/kg | ND20-EF06-4060                 | 31               | 61               | 90               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 9                                          |
| Benzene                 | 34                                         | 0                    | 9                                    | ug/kg | ND20-EF06-4060                 | 57               | 84               | 110              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 9                                          |
| Toluene                 | 34                                         | 0                    | 7                                    | ug/kg | ND20-EF06-4060                 | 890              | 1,345            | 1,800            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 9                                          |
| Xylenes, total          | 34                                         | 0                    | 19                                   | ug/kg | ND20-EF06-4060                 | 25               | 37.5             | 50               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 9                                          |
| SVOCS                   |                                            |                      |                                      |       |                                |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 2,4-Dimethylphenol      | 43                                         | 16                   | 100                                  | ug/kg | ND20-EF06-4060                 | 290              |                  | 290              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 18                                         |
| 2-Methylnaphthalene     | 43                                         | 35                   | 820                                  | ug/kg | ND20-EF04-SURF                 | 20.2             | 111              | 201              | 22                                       | 10                                       | 7                                        | 51                                          | 23                                          | 16                                          | 12                                                  | 18                                         |
| 2-Methylphenol          | 43                                         | 9                    | 460                                  | ug/kg | ND20-EF06-4060                 | 6,700            |                  | 6,700            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 18                                         |
| Acenaphthene            | 43                                         | 30                   | 230                                  | ug/kg | ND20-EF03-3550                 | 6.7              | 48               | 89               | 20                                       | 4                                        | 1                                        | 47                                          | 9                                           | 2                                           | 12                                                  | 18                                         |
| Acenaphthylene          | 43                                         | 29                   | 110                                  | ug/kg | ND20-EF07-4060                 | 5.9              | 67               | 128              | 17                                       | 1                                        |                                          | 40                                          | 2                                           | 0                                           | 12                                                  | 18                                         |
| Anthracene              | 43                                         | 33                   | 420                                  | ug/kg | ND20-EF03-3550                 | 57.2             | 451              | 845              | 8                                        |                                          |                                          | 19                                          | 0                                           | 0                                           | 5                                                   | 18                                         |
| Benzo(a)anthracene      | 43                                         | 34                   | 650                                  | ug/kg | ND20-EF07-4060                 | 108              | 579              | 1,050            | 17                                       | 1                                        |                                          | 40                                          | 2                                           | 0                                           | 11                                                  | 18                                         |
| Benzo(a)pyrene          | 43                                         | 33                   | 610                                  | ug/kg | ND20-EF07-4060                 | 150              | 800              | 1,450            | 10                                       |                                          |                                          | 23                                          | 0                                           | 0                                           | 6                                                   | 18                                         |
| Benzo(b)fluoranthene    | 43                                         | 34                   | 670                                  | ug/kg | ND20-EF07-4060                 | 240              | 6,820            | 13,400           | 6                                        |                                          |                                          | 14                                          | 0                                           | 0                                           | 3                                                   | 18                                         |
| Benzo(e)pyrene          | 43                                         | 34                   | 450                                  | ug/kg | ND20-EF04-SURF                 | 150              | 800              | 1,450            | 7                                        |                                          |                                          | 16                                          | 0                                           | 0                                           | 4                                                   | 18                                         |
| Benzo(g,h,I)perylene    | 43                                         | 30                   | 480                                  | ug/kg | ND20-EF08-4060                 | 170              | 1,685            | 3,200            | 7                                        |                                          |                                          | 16                                          | 0                                           | 0                                           | 4                                                   | 18                                         |
| Benzo(k)fluoranthene    | 43                                         | 34                   | 230                                  | ug/kg | ND20-EF07-4060                 | 240              | 6,820            | 13,400           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           | 5                                                   | 18                                         |
| Chrysene                | 43                                         | 34                   | 630                                  | ug/kg | ND20-EF07-4060                 | 166              | 728              | 1,290            | 9                                        |                                          |                                          | 21                                          | 0                                           | 0                                           | 8                                                   | 18                                         |
| Dibenz(a,h)anthracene   | 43                                         | 28                   | 200                                  | ug/kg | ND20-EF06-4060                 | 33               | 84               | 135              | 13                                       | 4                                        | 1                                        | 30                                          | 9                                           | 2                                           | 2                                                   | 18                                         |
| Dibenzofuran            | 43                                         | 35                   | 310                                  | ug/kg | ND20-EF03-3550                 | 150              | 365              | 580              | 2                                        |                                          |                                          | 5                                           | 0                                           | 0                                           |                                                     | 18                                         |
| Diethyl phthalate       | 43                                         | 18                   | 220                                  | ug/kg | ND20-EF07-4060                 | 610              | 885              | 1,000            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 18                                         |
| Dimethyl phthalate      | 43                                         | 0                    | 120                                  | ug/kg | ND20-EF06-4060                 | 530              |                  | 530              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 18                                         |
| Di-n-butyl phthalate    | 43                                         | 10                   | 700                                  | ug/kg | ND20-EF06-4060                 | 2,200            | 9,600            | 17,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 18                                         |
| Di-n-octyl phthalate    | 43                                         | 0                    | 930                                  | ug/kg | ND20-EF06-4060                 | 580              | 22,790           | 45,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 18                                         |
| Fluoranthene            | 43                                         | 36                   | 1000                                 | ug/kg | ND20-EF07-4060                 | 423              | 1,327            | 2,230            | 5                                        |                                          |                                          | 12                                          | 0                                           | 0                                           | 3                                                   | 18                                         |
| Fluorene                | 43                                         | 33                   | 390                                  | ug/kg | ND20-EF03-3550                 | 77.4             | 307              | 536              | 6                                        | 1                                        |                                          | 14                                          | 2                                           | 0                                           | 4                                                   | 18                                         |
| Indeno(1,2,3-c,d)pyrene | 43                                         | 33                   | 330                                  | ug/kg | ND20-EF07-4060                 | 200              | 1,700            | 3,200            | 2                                        |                                          |                                          | 5                                           | 0                                           | 0                                           | 2                                                   | 18                                         |
| Naphthalene             | 43                                         | 35                   | 680                                  | ug/kg | ND20-EF03-3550                 | 176              | 369              | 561              | 9                                        | 6                                        | 3                                        | 21                                          | 14                                          | 7                                           | 6                                                   | 18                                         |
| Pentachlorophenol       | 43                                         | 0                    | 2,600                                | ug/kg | ND20-EF06-4060                 | 150              | 175              | 200              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 18                                         |
| Phenanthrene            | 43                                         | 39                   | 1200                                 | ug/kg | ND20-EF03-3550                 | 204              | 687              | 1,170            | 9                                        | 1                                        | 1                                        | 21                                          | 2                                           | 2                                           | 6                                                   | 18                                         |
| Phenol                  | 43                                         | 4                    | 190                                  | ug/kg | ND20-EF07-4060                 | 4,200            | 8,100            | 12,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 18                                         |
| Pyrene                  | 43                                         | 36                   | 1300                                 | ug/kg | ND20-EF03-3550                 | 195              | 858              | 1,520            | 12                                       | 2                                        |                                          | 28                                          | 5                                           | 0                                           | 6                                                   | 18                                         |
| Total PAH18 ND=1/2MDL   | 43                                         | 43                   | 8850                                 | ug/kg | ND20-EF03-3550                 | 1,610            | 12,205           | 22,800           | 12                                       |                                          |                                          | 28                                          | 0                                           | 0                                           | 7                                                   | 18                                         |
| PCB AROCLORS            |                                            |                      |                                      |       |                                |                  |                  | , <u> </u>       |                                          |                                          | •                                        |                                             | 4                                           | •                                           | •                                                   | +                                          |
| Total PCBs ND=0         | 35                                         | 18                   | 170                                  | ug/kg | ND20-EF03-SURF                 | 60               | 368              | 676              | 1                                        |                                          |                                          | 3                                           | 0                                           | 0                                           | 1                                                   | 16                                         |
| METALS                  | I                                          |                      |                                      |       |                                |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| Antimony                | 50                                         | 3                    | 1.3                                  | mg/kg | ND20-EF03-3550                 | 2                | 13.5             | 25               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 19                                         |
| Arsenic                 | 50                                         | 50                   | 14                                   | mg/kg | ND20-EF03-0310                 | 9.8              | 21.4             | 33               | 1                                        |                                          |                                          | 2                                           | 0                                           | 0                                           | 1                                                   | 19                                         |
| Cadmium                 | 50                                         | 43                   | 1                                    | mg/kg | ND20-EF07-4060                 | 0.99             | 3                | 5                | 1                                        |                                          |                                          | 2                                           | 0                                           | 0                                           | 1                                                   | 19                                         |
| Chromium                | 50                                         | 50                   | 42.8                                 | mg/kg | ND20-EF07-4060                 | 43               | 76.5             | 110              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 19                                         |
| Copper                  | 50                                         | 50                   | 260                                  | mg/kg | ND20-EF03-SURF                 | 32               | 91               | 150              | 3                                        | 1                                        | 1                                        | 6                                           | 2                                           | 2                                           | 3                                                   | 19                                         |
| Iron                    | 50                                         | 50                   | 36800                                | mg/kg | ND20-EF07-4060                 | 20,000           | 30,000.0         |                  | 13                                       | 1                                        |                                          | 26                                          | 2                                           | 0                                           | 7                                                   | 19                                         |
| Lead                    | 50                                         | 50                   | 43.5                                 | mg/kg | ND20-EF07-4060                 | 36               | 83               | 130              | 3                                        |                                          |                                          | 6                                           | 0                                           | 0                                           | 2                                                   | 19                                         |
| Manganese               | 50                                         | 50                   | 1020                                 | mg/kg | ND20-EF15-SURF                 | 460              | 780              | 1,100            | 12                                       | 2                                        |                                          | 24                                          | 4                                           | 0                                           | 9                                                   | 19                                         |
| Mercury                 | 50                                         | 29                   | 0.28                                 | mg/kg | ND20-EF06-2040, ND20-EF07-4060 | 0.18             | 0.64             | 1.1              | 3                                        |                                          |                                          | 6                                           | 0                                           | 0                                           | 3                                                   | 19                                         |
| Nickel                  | 50                                         | 50                   | 33.1                                 | mg/kg | ND20-EF07-4060                 | 23               | 36               | 49               | 3                                        | 1                                        | 1                                        | 6                                           | 0                                           | 0                                           | 3                                                   | 19                                         |
| Silver                  | 50                                         | 2                    | 0.21                                 | mg/kg | ND20-EF15-SURF                 | 1.6              | 1.9              | 2.2              |                                          | 1                                        | 1                                        | 0                                           | 0                                           | 0                                           | -                                                   | 19                                         |
| Zinc                    | 50                                         | 50                   | 215                                  | mg/kg | ND20-EF07-4060                 | 120              | 290              | 460              | 4                                        | 1                                        | 1                                        | 8                                           | 0                                           | 0                                           | 2                                                   | 19                                         |

#### TABLE 4-5 SUMMARY OF SEDIMENT RESULTS - ESTUARY FLATS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                                   | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units     | Maximum Location                     | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|-------------------------------------------|--------------------------------------------|----------------------|--------------------------------------|-----------|--------------------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| DIOXINS                                   |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 2,3,7,8-TCDD                              | 7                                          | 6                    | 2.22                                 | pg/g      | ND20-EF15-SURF                       | 0.85             | 11.2             | 21.5             | 1                                        |                                          |                                          | 14                                          | 0                                           | 0                                           | 1                                                   | 7                                          |
| FISH TEQ (ND=1/2RL)                       | 7                                          | 7                    | 14.4                                 | pg/g      | ND20-EF09-SURF                       | 0.85             | 11.2             | 21.5             | 7                                        | 3                                        |                                          | 100                                         | 43                                          | 0                                           | 7                                                   | 7                                          |
| NOTES:                                    |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| a = Source: Consensus-Based Sediment Qual | ity Guidelines                             | , Recommenda         | ations for Use and .                 | Applicati | on, Publication No. WT-732 2003, WDI | NR Decemb        | ber 2003         |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| MEC = Midpoint Effect Concentration       |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| MDL = Method detection limit              |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| mg/kg = Milligrams per kilogram           |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| NA = Not applicable                       |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| ND = Non-detect                           |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| NSL = No screening level                  |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| pg/g = Picograms per gram                 |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| PAH = Polycyclic Aromatic Hydrocarbon     |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| PCB = Polychlorinated Biphenyl            |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| PEC = Probable Effect Concentration       |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| RL = Reporting limit                      |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| SVOC = Semivolatile Organic Compound      |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| TCDD = Tetrachlorodibenzo-p-dioxin        |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| TEC = Threshold Effect Concentration      |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| TEQ = Toxicity Equivalency Quotient       |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| TOC = Total organic carbon                |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| ug/kg = Micrograms per kilogram           |                                            |                      |                                      |           |                                      |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |

VOC = Volatile Organic Compound

#### TABLE 4-6 SUMMARY OF SEDIMENT RESULTS - CLOUGH ISLAND NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                 | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units | Maximum Location                               |        | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of<br>Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|-------------------------|--------------------------------------------|----------------------|--------------------------------------|-------|------------------------------------------------|--------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------|
| SVOCS                   |                                            | 1                    |                                      |       |                                                |        |                  | 1                |                                          |                                          |                                          |                                             |                                             |                                             |                                                        |                                            |
| 2,4-Dimethylphenol      | 10                                         | 0                    | 58                                   | ug/kg | ND20-CL06-SURF                                 | 290    |                  | 290              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| 2-Methylnaphthalene     | 10                                         | 10                   | 60                                   | ug/kg | ND20-CL08-SURF                                 | 20.2   | 111              | 201              | 6                                        |                                          |                                          | 60                                          | 0                                           | 0                                           | 6                                                      | 10                                         |
| 2-Methylphenol          | 10                                         | 0                    | 270                                  | ug/kg | ND20-CL06-SURF                                 | 6,700  |                  | 6,700            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Acenaphthene            | 10                                         | 6                    | 52                                   | ug/kg | ND20-CL07-SURF                                 | 6.7    | 48               | 89               | 6                                        |                                          |                                          | 60                                          | 0                                           | 0                                           | 6                                                      | 10                                         |
| Acenaphthylene          | 10                                         | 9                    | 180                                  | ug/kg | ND20-CL09-SURF                                 | 5.9    | 67               | 128              | 8                                        | 5                                        | 1                                        | 80                                          | 50                                          | 10                                          | 8                                                      | 10                                         |
| Anthracene              | 10                                         | 10                   | 520                                  | ug/kg | ND20-CL02-SURF                                 | 57.2   | 451              | 845              | 6                                        | 1                                        |                                          | 60                                          | 10                                          | 0                                           | 6                                                      | 10                                         |
| Benzo(a)anthracene      | 10                                         | 10                   | 1,300                                | ug/kg | ND20-CL02-SURF                                 | 108    | 579              | 1,050            | 7                                        | 3                                        | 1                                        | 70                                          | 30                                          | 10                                          | 7                                                      | 10                                         |
| Benzo(a)pyrene          | 10                                         | 10                   | 1,200                                | ug/kg | ND20-CL02-SURF                                 | 150    | 800              | 1,450            | 6                                        | 1                                        |                                          | 60                                          | 10                                          | 0                                           | 6                                                      | 10                                         |
| Benzo(b)fluoranthene    | 10                                         | 10                   | 1,300                                | ug/kg | ND20-CL02-SURF                                 | 240    | 6,820            | 13,400           | 6                                        |                                          |                                          | 60                                          | 0                                           | 0                                           | 6                                                      | 10                                         |
| Benzo(e)pyrene          | 10                                         | 10                   | 670                                  | ug/kg | ND20-CL02-SURF                                 | 150    | 800              | 1,450            | 6                                        |                                          |                                          | 60                                          | 0                                           | 0                                           | 6                                                      | 10                                         |
| Benzo(g,h,I)perylene    | 10                                         | 10                   | 840                                  | ug/kg | ND20-CL02-SURF                                 | 170    | 1,685            | 3,200            | 6                                        |                                          |                                          | 60                                          | 0                                           | 0                                           | 6                                                      | 10                                         |
| Benzo(k)fluoranthene    | 10                                         | 10                   | 480                                  | ug/kg | ND20-CL02-SURF                                 | 240    | 6,820            | 13,400           | 3                                        |                                          |                                          | 30                                          | 0                                           | 0                                           | 3                                                      | 10                                         |
| Chrysene                | 10                                         | 10                   | 1,100                                | ug/kg | ND20-CL02-SURF                                 | 166    | 728              | 1,290            | 6                                        | 1                                        |                                          | 60                                          | 10                                          | 0                                           | 6                                                      | 10                                         |
| Dibenz(a,h)anthracene   | 10                                         | 8                    | 220                                  | ug/kg | ND20-CL02-SURF                                 | 33     | 84               | 135              | 7                                        | 5                                        | 1                                        | 70                                          | 50                                          | 10                                          | 7                                                      | 10                                         |
| Dibenzofuran            | 10                                         | 10                   | 52                                   | ug/kg | ND20-CL09-SURF                                 | 150    | 365              | 580              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Diethyl phthalate       | 10                                         | 1                    | 330                                  | ug/kg | ND20-CL06-SURF                                 | 610    | 885              | 1,000            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Dimethyl phthalate      | 10                                         | 0                    | 69                                   | ug/kg | ND20-CL06-SURF                                 | 530    |                  | 530              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Di-n-butyl phthalate    | 10                                         | 1                    | 410                                  | ug/kg | ND20-CL06-SURF                                 | 2,200  | 9,600            | 17,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Di-n-octyl phthalate    | 10                                         | 0                    | 540                                  | ug/kg | ND20-CL06-SURF                                 | 580    | 22,790           | 45,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Fluoranthene            | 10                                         | 10                   | 2,800                                | ug/kg | ND20-CL02-SURF                                 | 423    | 1,327            | 2,230            | 6                                        | 2                                        | 1                                        | 60                                          | 20                                          | 10                                          | 6                                                      | 10                                         |
| Fluorene                | 10                                         | 10                   | 120                                  | ug/kg | ND20-CL09-SURF                                 | 77.4   | 307              | 536              | 1                                        |                                          |                                          | 10                                          | 0                                           | 0                                           | 1                                                      | 10                                         |
| Indeno(1,2,3-c,d)pyrene | 10                                         | 10                   | 760                                  | ug/kg | ND20-CL02-SURF                                 | 200    | 1,700            | 3,200            | 5                                        |                                          |                                          | 50                                          | 0                                           | 0                                           | 5                                                      | 10                                         |
| Naphthalene             | 10                                         | 10                   | 100                                  | ug/kg | ND20-CL05-SURF, ND20-CL06-SURF, ND20-CL08-SURF | 176    | 369              | 561              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Pentachlorophenol       | 10                                         | 0                    | 1,500                                | ug/kg | ND20-CL06-SURF, ND20-CL07-SURF                 | 150    | 175              | 200              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Phenanthrene            | 10                                         | 10                   | 630                                  | ug/kg | ND20-CL09-SURF                                 | 204    | 687              | 1,170            | 5                                        |                                          |                                          | 50                                          | 0                                           | 0                                           | 5                                                      | 10                                         |
| Phenol                  | 10                                         | 0                    | 280                                  | ug/kg | ND20-CL06-SURF, ND20-CL07-SURF                 | 4,200  | 8,100            | 12,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 10                                         |
| Pyrene                  | 10                                         | 10                   | 1900                                 | ug/kg | ND20-CL02-SURF                                 | 195    | 858              | 1,520            | 7                                        | 2                                        | 1                                        | 70                                          | 20                                          | 10                                          | 7                                                      | 10                                         |
| Total PAH18 ND=1/2MDL   | 10                                         | 10                   | 13832                                | ug/kg | ND20-CL02-SURF                                 | 1,610  | 12,205           | 22,800           | 7                                        | 1                                        |                                          | 70                                          | 10                                          | 0                                           | 7                                                      | 10                                         |
| PCB AROCLORS            | •                                          | •                    | •                                    |       |                                                |        |                  |                  |                                          |                                          |                                          | •                                           |                                             |                                             |                                                        |                                            |
| Total PCBs ND=0         | 19                                         | 13                   | 63                                   | ug/kg | SLR16-UR34-2040                                | 60     | 368              | 676              | 1                                        |                                          |                                          | 5                                           | 0                                           | 0                                           | 1                                                      | 9                                          |
| METALS                  | +                                          | •                    | ·                                    |       |                                                |        |                  | ••               |                                          |                                          | •                                        | •                                           | •                                           |                                             |                                                        | •                                          |
| Antimony                | 24                                         | 7                    | 2.6                                  | mg/kg | SLR16-UR31-0520                                | 2      | 13.5             | 25               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 14                                         |
| Arsenic                 | 24                                         | 24                   | 15                                   | mg/kg | SLR16-UR31-0520                                | 9.8    | 21.4             | 33               | 3                                        |                                          |                                          | 13                                          | 0                                           | 0                                           | 2                                                      | 14                                         |
| Cadmium                 | 24                                         | 23                   | 1.5                                  | mg/kg | SLR16-UR31-0520                                | 0.99   | 3                | 5                | 7                                        |                                          |                                          | 29                                          | 0                                           | 0                                           | 6                                                      | 14                                         |
| Chromium                | 24                                         | 24                   | 83.2                                 | mg/kg | SLR16-UR31-2040                                | 43     | 76.5             | 110              | 2                                        | 1                                        |                                          | 8                                           | 4                                           | 0                                           | 1                                                      | 14                                         |
| Copper                  | 24                                         | 24                   | 54.3                                 | mg/kg | SLR16-UR31-2040                                | 32     | 91               | 150              | 5                                        |                                          |                                          | 21                                          | 0                                           | 0                                           | 3                                                      | 14                                         |
| Iron                    | 24                                         | 24                   | 37000                                | mg/kg | SLR16-UR31-0520                                | 20,000 | 30,000.0         | 40,000           | 15                                       | 2                                        |                                          | 63                                          | 8                                           | 0                                           | 10                                                     | 14                                         |
| Lead                    | 24                                         | 24                   | 56.6                                 | mg/kg | SLR16-UR29-0520                                | 36     | 83               | 130              | 4                                        |                                          |                                          | 17                                          | 0                                           | 0                                           | 3                                                      | 14                                         |
| Manganese               | 24                                         | 24                   | 1390                                 | mg/kg | ND20-CL09-SURF                                 | 460    | 780              | 1,100            | 17                                       | 10                                       | 4                                        | 71                                          | 42                                          | 17                                          | 12                                                     | 14                                         |
| Mercury                 | 24                                         | 21                   | 1.1                                  | mg/kg | SLR16-UR29-0520                                | 0      | 1                | 1                | 9                                        | 1                                        |                                          | 38                                          | 4                                           | 0                                           | 7                                                      | 14                                         |
| Nickel                  | 24                                         | 24                   | 51.1                                 | mg/kg | SLR16-UR31-2040                                | 23     | 36               | 49               | 11                                       | 1                                        | 1                                        | 46                                          | 4                                           | 4                                           | 8                                                      | 14                                         |
| Silver                  | 24                                         | 6                    | 0.51                                 | mg/kg | SLR16-UR31-0520                                | 2      | 2                | 2                | -                                        |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                        | 14                                         |
| Zinc                    | 24                                         | 24                   | 236                                  | mg/kg | SLR16-UR29-0520                                | 120    | 290              | 460              | 11                                       |                                          |                                          | 46                                          | 0                                           | 0                                           | 8                                                      | 14                                         |

#### TABLE 4-6 SUMMARY OF SEDIMENT RESULTS - CLOUGH ISLAND NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte             |    | Number of<br>Submitted         Number of<br>Detects         Maximum<br>Detected         Maximum<br>Units |      | Maximum Location | TEC <sup>a</sup>               | MEC <sup>a</sup> | PEC <sup>a</sup> | Samples | Samples | Number of<br>Samples<br>Exceeding<br>PEC | Percentage<br>Samples th |     |
|---------------------|----|----------------------------------------------------------------------------------------------------------|------|------------------|--------------------------------|------------------|------------------|---------|---------|------------------------------------------|--------------------------|-----|
| DIOXINS             |    |                                                                                                          |      |                  |                                |                  |                  |         |         |                                          | -                        |     |
| 2,3,7,8-TCDD        | 19 | 16                                                                                                       | 2.6  | pg/g             | ND20-CL05-SURF, ND20-CL08-SURF | 1                | 11               | 22      | 10      |                                          |                          | 53  |
| FISH TEQ (ND=1/2RL) | 18 | 18                                                                                                       | 33.0 | pg/g             | ND20-CL06-SURF                 | 1                | 11               | 22      | 18      | 10                                       | 4                        | 100 |
| NOTES:              |    |                                                                                                          |      |                  |                                |                  |                  |         |         |                                          |                          |     |

a = Source: Consensus-Based Sediment Quality Guidelines, Recommendations for Use and Application, Publication No. WT-732 2003, WDNR December 2003

MEC = Midpoint Effect Concentration

MDL = Method detection limit

mg/kg = Milligrams per kilogram NA = Not applicable ND = Non-detect

- NSL = No screening level
- pg/g = Picograms per gram PAH = Polycyclic Aromatic Hydrocarbon
- PCB = Polychlorinated Biphenyl PEC = Probable Effect Concentration
- RL = Reporting limit
- SVOC = Semivolatile Organic Compound
- TCDD = Tetrachlorodibenzo-p-dioxin
- TEC = Threshold Effect Concentration
- TEQ = Toxicity Equivalency Quotient
- TOC = Total organic carbon
- ug/kg = Micrograms per kilogram VOC = Volatile Organic Compound

| ge of<br>that<br>FEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of<br>Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|----------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------|
|                      |                                             |                                             |                                                        |                                            |
|                      | 0 56                                        | 0 22                                        | 9<br>14                                                | 14<br>14                                   |
|                      | 50                                          | 22                                          | 14                                                     | 14                                         |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |
|                      |                                             |                                             |                                                        |                                            |

## TABLE 4-7 SUMMARY OF SEDIMENT RESULTS - REFERENCE LOCATIONS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                 | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units  | Maximum Location                      | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> | Number of<br>Samples<br>Exceeding<br>TEC | Number of<br>Samples<br>Exceeding<br>MEC | Number of<br>Samples<br>Exceeding<br>PEC | Percentage of<br>Samples that<br>Exceed TEC | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|-------------------------|--------------------------------------------|----------------------|--------------------------------------|--------|---------------------------------------|------------------|------------------|------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| VOCS                    |                                            |                      |                                      |        |                                       |                  |                  |                  |                                          |                                          |                                          |                                             |                                             |                                             |                                                     |                                            |
| 1,2,4-Trichlorobenzene  | 4                                          | 0                    | 13                                   | ug/kg  | ND20-SBREF4-SURF                      | 8                | 13               | 18               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| 1,2-Dichlorobenzene     | 4                                          | 0                    | 7                                    | ug/kg  | ND20-SBREF4-SURF                      | 23               |                  | 23               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| 1,4-Dichlorobenzene     | 4                                          | 0                    | 4                                    | ug/kg  | ND20-SBREF4-SURF                      | 31               | 61               | 90               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Benzene                 | 4                                          | 0                    | 7                                    | ug/kg  | ND20-SBREF4-SURF                      | 57               | 84               | 110              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Toluene                 | 4                                          | 0                    | 6                                    | ug/kg  | ND20-SBREF4-SURF                      | 890              | 1345             | 1800             |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Xylenes, total          | 4                                          | 0                    | 16                                   | ug/kg  | ND20-SBREF4-SURF                      | 25               | 37.5             | 50               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| SVOCS                   |                                            |                      | -                                    |        |                                       |                  |                  |                  |                                          | -                                        |                                          |                                             | -                                           |                                             |                                                     |                                            |
| 2,4-Dimethylphenol      | 4                                          | 0                    | 33                                   | ug/kg  | ND20-LFREF3-SURF                      | 290              |                  | 290              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| 2-Methylnaphthalene     | 4                                          | 4                    | 100                                  | ug/kg  | ND20-SBREF4-SURF                      | 20.2             | 111              | 201              | 4                                        |                                          |                                          | 100                                         | 0                                           | 0                                           | 4                                                   | 4                                          |
| 2-Methylphenol          | 4                                          | 0                    | 150                                  | ug/kg  | ND20-LFREF3-SURF                      | 6700             |                  | 6700             |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Acenaphthene            | 4                                          | 4                    | 58                                   | ug/kg  | ND20-SBREF4-SURF                      | 6.7              | 48               | 89               | 4                                        | 1                                        |                                          | 100                                         | 25                                          | 0                                           | 4                                                   | 4                                          |
| Acenaphthylene          | 4                                          | 4                    | 60                                   | ug/kg  | ND20-SBREF4-SURF                      | 5.9              | 67               | 128              | 4                                        |                                          |                                          | 100                                         | 0                                           | 0                                           | 4                                                   | 4                                          |
| Anthracene              | 4                                          | 4                    | 140                                  | ug/kg  | ND20-SBREF4-SURF                      | 57.2             | 451              | 845              | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Benzo(a)anthracene      | 4                                          | 4                    | 390                                  | ug/kg  | ND20-SBREF4-SURF                      | 108              | 579              | 1050             | 3                                        |                                          |                                          | 75                                          | 0                                           | 0                                           | 3                                                   | 4                                          |
| Benzo(a)pyrene          | 4                                          | 4                    | 370                                  | ug/kg  | ND20-SBREF4-SURF                      | 150              | 800              | 1450             | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Benzo(b)fluoranthene    | 4                                          | 4                    | 450                                  | ug/kg  | ND20-SBREF4-SURF                      | 240              | 6820             | 13400            | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Benzo(e)pyrene          | 4                                          | 4                    | 260                                  | ug/kg  | ND20-SBREF4-SURF                      | 150              | 800              | 1450             | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Benzo(g,h,I)perylene    | 4                                          | 4                    | 280                                  | ug/kg  | ND20-SBREF4-SURF                      | 170              | 1685             | 3200             | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Benzo(k)fluoranthene    | 4                                          | 4                    | 150                                  | ug/kg  | ND20-SBREF4-SURF                      | 240              | 6820             | 13400            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Chrysene                | 4                                          | 4                    | 430                                  | ug/kg  | ND20-SBREF4-SURF                      | 166              | 728              | 1290             | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Dibenz(a,h)anthracene   | 4                                          | 4                    | 130                                  | ug/kg  | ND20-SBREF4-SURF                      | 33               | 84               | 135              | 3                                        | 2                                        |                                          | 75                                          | 50                                          | 0                                           | 3                                                   | 4                                          |
| Dibenzofuran            | 4                                          | 4                    | 68                                   | ug/kg  | ND20-SBREF4-SURF                      | 150              | 365              | 580              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Diethyl phthalate       | 4                                          | 0                    | 190                                  | ug/kg  | ND20-LFREF3-SURF                      | 610              | 885              | 1000             |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Dimethyl phthalate      | 4                                          | 0                    | 39                                   | ug/kg  | ND20-LFREF3-SURF                      | 530              |                  | 530              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Di-n-butyl phthalate    | 4                                          | 1                    | 230                                  | ug/kg  | ND20-LFREF3-SURF                      | 2200             | 9600             | 17000            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Di-n-octyl phthalate    | 4                                          | 0                    | 310                                  | ug/kg  | ND20-LFREF3-SURF                      | 580              | 22790            | 45000            |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Fluoranthene            | 4                                          | 4                    | 820                                  | ug/kg  | ND20-SBREF4-SURF                      | 423              | 1327             | 2230             | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Fluorene                | 4                                          | 4                    | 89                                   | ug/kg  | ND20-SBREF4-SURF                      | 77.4             | 307              | 536              | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Indeno(1,2,3-c,d)pyrene | 4                                          | 4                    | 260                                  | ug/kg  | ND20-SBREF4-SURF                      | 200              | 1700             | 3200             | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Naphthalene             | 4                                          | 4                    | 140                                  | ug/kg  | ND20-SBREF4-SURF                      | 176              | 369              | 561              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Pentachlorophenol       | 4                                          | 0                    | 860                                  | ug/kg  | ND20-LFREF3-SURF                      | 150              | 175              | 200              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Phenanthrene            | 4                                          | 4                    | 460                                  | ug/kg  | ND20-SBREF4-SURF                      | 204              | 687              | 1,170            | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | l                                                   | 4                                          |
| Phenol                  | 4                                          | 0                    | 160                                  | ug/kg  | ND20-LFREF3-SURF                      | 4,200            | 8,100            | 12,000           |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Pyrene                  | 4                                          | 4                    | 730                                  | ug/kg  | ND20-SBREF4-SURF                      | 195              | 858              | 1,520            | 2                                        |                                          |                                          | 50                                          | 0                                           | 0                                           | 2                                                   | 4                                          |
| Total PAH18 ND=1/2MDL   | 4                                          | 4                    | 5317                                 | ug/kg  | ND20-SBREF4-SURF                      | 1,610            | 12,205           | 22,800           | 2                                        |                                          |                                          | 50                                          | 0                                           | 0                                           | 2                                                   | 4                                          |
| PCB AROCLORS            | 4                                          | 4                    | 52                                   | . /1 . | ND20 CDDEE4 CLIDE                     | 60               | 269              | (7)              | 1                                        |                                          | Т                                        | 0                                           | 0                                           | 0                                           |                                                     |                                            |
| Total PCBs ND=0         | 4                                          | 4                    | 53                                   | ug/kg  | ND20-SBREF4-SURF                      | 60               | 368              | 676              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| METALS                  | 4                                          | 0                    | 1                                    |        |                                       |                  | 12.5             | 25               | 1                                        |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     |                                            |
| Antimony                | 4                                          | 0                    | 1                                    |        | D20-KBREF2-SURF, ND20-SLBREF1-SURF    | 2                | 13.5             | 25               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Arsenic                 | 4                                          | 4                    | 7                                    | mg/kg  | ND20-SLBREF1-SURF                     | 9.8              | 21.4             | 33               |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           |                                                     | 4                                          |
| Cadmium                 | 4                                          | 4                    | 0.85                                 | mg/kg  | ND20-SBREF4-SURF                      | 0.99             | 3                | 5                | 1                                        |                                          |                                          | 0                                           | 0                                           | 0                                           | 1                                                   | 4                                          |
| Chromium                | 4                                          | 4                    | 46.9                                 | mg/kg  | ND20-SLBREF1-SURF                     | 43               | 76.5             | 110              | 1                                        |                                          |                                          | 25                                          | 0                                           | 0                                           | 1                                                   | 4                                          |
| Copper                  | 4                                          | 4                    | 35.1                                 | mg/kg  | ND20-SBREF4-SURF<br>ND20-SLBREF1-SURF | 32               | 91               | 150              | 2                                        | 1                                        |                                          | 50                                          | 0 25                                        | 0                                           | 2                                                   | 4                                          |
| Iron                    |                                            | 4                    | 40000                                | mg/kg  |                                       | ,                | 30,000.0         |                  | 3                                        | 1                                        |                                          | 75                                          | -                                           | 0                                           | 5                                                   | 4                                          |
| Lead                    | 4                                          | 4                    | 42.9                                 | mg/kg  | ND20-SBREF4-SURF                      | 36               | 83               | 130              | 1                                        | 2                                        | 1                                        | 25                                          | 0                                           | 0                                           |                                                     | 4                                          |
| Manganese               | 4                                          | 4                    | 1490                                 | mg/kg  | ND20-SLBREF1-SURF                     | 460              | 780              | 1,100            | 2                                        | 2                                        | 1                                        | 50                                          | 50                                          | 25                                          | 2                                                   | 4                                          |
| Mercury                 | 4                                          | 3                    | 0.41                                 | mg/kg  | ND20-SBREF4-SURF                      | 0.18             | 0.64             | 1.1              | 1                                        |                                          | }                                        | 25                                          | 0                                           | 0                                           |                                                     | 4                                          |
| Nickel                  | 4                                          | 4                    | 38.6                                 | mg/kg  | ND20-SLBREF1-SURF                     | 23               | 36               | 49               | 3                                        | 1                                        |                                          | 75                                          | 25                                          | 0                                           | 3                                                   | 4                                          |
| Silver                  | 4                                          | 3                    | 0.36                                 | mg/kg  | ND20-SBREF4-SURF                      | 1.6              | 1.9              | 2.2              |                                          |                                          |                                          | 0                                           | 0                                           | 0                                           | 2                                                   | 4                                          |
| Zinc                    | 4                                          | 4                    | 170                                  | mg/kg  | ND20-SBREF4-SURF                      | 120              | 290              | 460              | 2                                        |                                          |                                          | 50                                          | 0                                           | 0                                           | 2                                                   | 4                                          |

## TABLE 4-7 SUMMARY OF SEDIMENT RESULTS - REFERENCE LOCATIONS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Analyte                                                                                   | Total<br>Number of<br>Submitted<br>Samples | Number of<br>Detects | Maximum<br>Detected<br>Concentration | Units   | Maximum Location                                 | TEC <sup>a</sup> | MEC <sup>a</sup> | PEC <sup>a</sup> |   | Number of<br>Samples<br>Exceeding<br>MEC |   |     | Percentage of<br>Samples that<br>Exceed MEC | Percentage of<br>Samples That<br>Exceed PEC | Number of Sampling<br>Locations with<br>Exceedances | Total<br>Number of<br>Locations<br>Sampled |
|-------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|--------------------------------------|---------|--------------------------------------------------|------------------|------------------|------------------|---|------------------------------------------|---|-----|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| DIOXINS                                                                                   |                                            |                      |                                      |         |                                                  |                  |                  |                  |   |                                          |   |     |                                             |                                             |                                                     |                                            |
| 2,3,7,8-TCDD                                                                              | 4                                          | 4                    | 2.4                                  | pg/g    | ND20-SBREF4-SURF                                 | 0.85             | 11.2             | 21.5             | 2 |                                          |   | 50  | 0                                           | 0                                           | 2                                                   | 4                                          |
| FISH TEQ (ND=1/2RL)                                                                       | 4                                          | 4                    | 32.3                                 | pg/g    | ND20-SBREF4-SURF                                 | 0.85             | 11.2             | 21.5             | 4 | 1                                        | 1 | 100 | 25                                          | 25                                          | 4                                                   | 4                                          |
| BUTYLTINS                                                                                 |                                            | •                    |                                      |         | ·                                                |                  |                  |                  |   |                                          | • |     | •                                           | •                                           |                                                     | ·                                          |
| Tributyltin                                                                               | 4                                          | 0                    | 4                                    | ug/kg   | ND20-SBREF4-SURF                                 | 0.52             | 1.73             | 2.94             |   |                                          |   |     |                                             |                                             |                                                     | 4                                          |
| NOTES:<br>a = Source: Consensus-Based Sediment Qua<br>MEC = Midpoint Effect Concentration | lity Guidelines,                           | , Recommenda         | ntions for Use and                   | Applica | tion, Publication No. WT-732 2003, WDNR December | 2003             |                  |                  |   |                                          |   |     |                                             |                                             |                                                     |                                            |

MEC = Midpoint Effect Concentration MDL = Method detection limit

mg/kg = Milligrams per kilogramNA = Not applicable

ND = Non-detect

NSL = No screening level

pg/g = Picograms per gram PAH = Polycyclic Aromatic Hydrocarbon PCB = Polychlorinated Biphenyl

PEC = Probable Effect Concentration

RL = Reporting limit

SVOC = Semivolatile Organic Compound TCDD = Tetrachlorodibenzo-p-dioxin

TEC = Threshold Effect Concentration

TEQ = Toxicity Equivalency Quotient

TOC = Total organic carbon ug/kg = Micrograms per kilogram VOC = Volatile Organic Compound

# TABLE 4-8 MICROSCOPIC COAL RESULTS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                         | Death Lateral          |              | Time               |             |       |
|-------------------------|------------------------|--------------|--------------------|-------------|-------|
| Location Identification | Depth Interval<br>(ft) | Date Sampled | Sampled<br>(local) | Result (%)  | Units |
| Hallet Dock 8 Slip      | (11)                   | Dute Sumpieu | (local)            | Result (70) | Cints |
| ND20-HD01-SURF          | surf                   | 6/30/2020    | 15:35              | 11.0        | %     |
| ND20-HD01-1020          | 1.0-2.0                | 6/24/2020    | 10:00              | ND          | %     |
| ND20-HD03-SURF          | surf                   | 6/30/2020    | 16:50              | 25.0        | %     |
| ND20-HD03-1020          | 1.0-2.0                | 6/24/2020    | 7:45               | 32.0        | %     |
| ND20-HD05-SURF          | surf                   | 6/25/2020    | 8:55               | 27.0        | %     |
| ND20-HD05-1020          | 1.0-2.0                | 6/23/2020    | 15:25              | 8.0         | %     |
| Oil Barge Dock          |                        |              |                    |             |       |
| ND20-BP01-0320          | 0.3-2.0                | 6/27/2020    | 7:50               | 72.0        | %     |
| ND20-BP01-2040          | 2.0-4.0                | 6/27/2020    | 7:50               | 4.0         | %     |
| ND20-BP02-SURFTOX       | surf                   | 7/2/2020     | 17:42              | 85.0        | %     |
| ND20-BP02-0320          | 0.3-2.0                | 6/27/2020    | 9:30               | 69.0        | %     |
| ND20-BP02-2040          | 2.0-4.0                | 6/27/2020    | 9:30               | 74.0        | %     |
| ND20-BP03-SURFTOX       | surf                   | 7/2/2020     | 19:05              | 88.0        | %     |
| ND20-BP03-2040          | 2.0-4.0                | 6/26/2020    | 13:35              | 79.0        | %     |
| ND20-BP03-4060          | 4.0-6.0                | 6/26/2020    | 13:35              | 87.0        | %     |
| ND20-BP03-6080          | 6.0-8.0                | 6/26/2020    | 13:35              | 70.0        | %     |
| ND20-BP03-8010          | 8.0-10.0               | 6/26/2020    | 13:35              | 80.0        | %     |
| ND20-BP03-1012          | 10.0-12.0              | 6/26/2020    | 13:35              | 69.0        | %     |
| ND20-BP03-1214          | 12.0-14.0              | 6/26/2020    | 13:35              | 60.0        | %     |
| ND20-BP03-1618          | 16.0-18.0              | 6/26/2020    | 13:35              | 14.0        | %     |
| ND20-BP05-SURF          | surf                   | 7/1/2020     | 17:05              | 6.0         | %     |
| ND20-BP05-0320          | 0.3-2.0                | 6/27/2020    | 16:40              | 47.0        | %     |
| ND20-BP05-2040          | 2.0-4.0                | 6/27/2020    | 16:40              | 23.0        | %     |
| ND20-BP06-SURF          | surf                   | 6/25/2020    | 15:05              | 9.0         | %     |
| ND20-BP06-0320          | 0.3-2.0                | 6/27/2020    | 15:00              | 15.0        | %     |
| ND20-BP06-2040          | 2.0-4.0                | 6/27/2020    | 15:00              | 2.0         | %     |
| ND20-BP07-SURF          | surf                   | 7/1/2020     | 17:55              | 3.0         | %     |
| ND20-BP10-SURF          | surf                   | 6/25/2020    | 13:40              | 9.0         | %     |
| ND20-BP10-0320          | 0.3-2.0                | 6/25/2020    | 10:20              | 61.0        | %     |
| ND20-BP11-SURF          | surf                   | 6/25/2020    | 13:20              | 3.0         | %     |
| ND20-BP11-0320          | 0.3-2.0                | 6/25/2020    | 13:20              | 20.0        | %     |
| ND20-BP12-SURF          | surf                   | 6/25/2020    | 12:55              | 5.0         | %     |
| ND20-BP12-0320          | 0.3-2.0                | 6/28/2020    | 13:40              | 5.0         | %     |
| ND20-BP15-SURF          | surf                   | 6/25/2020    | 12:10              | 3.0         | %     |
| ND20-BP15-0320          | 0.3-2.0                | 6/25/2020    | 15:40              | 17.0        | %     |

## TABLE 4-8 MICROSCOPIC COAL RESULTS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Location Identification | Depth Interval<br>(ft) | Date Sampled | Time<br>Sampled<br>(local) | Result (%) | Units |
|-------------------------|------------------------|--------------|----------------------------|------------|-------|
| ND20-BP16-SURF          | surf                   | 6/25/2020    | 10:15                      | 4.0        | %     |
| ND20-BP16-0320          | 0.3-2.0                | 6/26/2020    | 8:55                       | 3.0        | %     |
| ND20-BP17-SURF          | surf                   | 6/25/2020    | 9:45                       | 4.0        | %     |
| ND20-BP17-0320          | 0.3-2.0                | 6/28/2020    | 15:30                      | 5.0        | %     |
| General Mills Slip      |                        |              |                            |            |       |
| ND20-GM01-SURF          | surf                   | 6/28/2020    | 14:15                      | 6.0        | %     |
| ND20-GM01-0320          | 0.3-2.0                | 7/2/2020     | 16:00                      | 8.0        | %     |
| ND20-GM01-2040          | 2.0-4.0                | 7/2/2020     | 16:00                      | 3.0        | %     |
| ND20-GM02-SURF          | surf                   | 7/1/2020     | 8:30                       | 7.0        | %     |
| ND20-GM02-0320          | 0.3-2.0                | 7/2/2020     | 16:40                      | 5.0        | %     |
| ND20-GM02-2040          | 2.0-4.0                | 7/2/2020     | 16:40                      | 3.0        | %     |
| ND20-GM04-SURF          | surf                   | 6/30/2020    | 18:20                      | 4.0        | %     |
| ND20-GM05-SURF          | surf                   | 6/28/2020    | 14:50                      | 4.0        | %     |
| ND20-GM05-0320          | 0.3-2.0                | 7/2/2020     | 10:40                      | 3.0        | %     |
| ND20-GM05-2040          | 2.0-4.0                | 7/2/2020     | 10:40                      | 4.0        | %     |
| ND20-GM07-SURF          | surf                   | 6/28/2020    | 15:20                      | 12.0       | %     |
| ND20-GM07-0320          | 0.3-2.0                | 7/2/2020     | 9:45                       | 2.0        | %     |
| ND20-GM07-2040          | 2.0-4.0                | 7/2/2020     | 9:45                       | 1.0        | %     |
| ND20-GM08-SURF          | surf                   | 6/29/2020    | 18:00                      | 5.0        | %     |
| ND20-GM12-SURF          | surf                   | 6/28/2020    | 16:25                      | 4.0        | %     |
| ND20-GM12-0320          | 0.3-2.0                | 7/2/2020     | 14:20                      | 2.0        | %     |
| ND20-GM14-SURF          | surf                   | 6/30/2020    | 19:00                      | 2.0        | %     |
| ND20-GM14-0320          | 0.3-2.0                | 7/2/2020     | 15:10                      | 2.0        | %     |
| Tower Avenue Slip       |                        |              |                            |            |       |
| ND20-TB01-SURF          | surf                   | 6/29/2020    | 14:10                      | 2.0        | %     |
| ND20-TB01-2040          | 2.0-4.0                | 6/30/2020    | 14:00                      | 2.0        | %     |
| ND20-TB02-SURF          | surf                   | 6/28/2020    | 10:35                      | 9.0        | %     |
| ND20-TB02-8010          | 8.0-10.0               | 6/30/2020    | 17:25                      | 9.0        | %     |
| ND20-TB03-SURF          | surf                   | 6/29/2020    | 15:05                      | 2.0        | %     |
| ND20-TB03-8010          | 8.0-10.0               | 7/1/2020     | 8:00                       | 5.0        | %     |
| ND20-TB04-SURF          | surf                   | 6/28/2020    | 10:55                      | 2.0        | %     |
| ND20-TB04-2040          | 2.0-4.0                | 7/1/2020     | 10:30                      | 7.0        | %     |
| ND20-TB05-SURF          | surf                   | 6/28/2020    | 11:35                      | 2.0        | %     |
| ND20-TB05-2040          | 2.0-4.0                | 6/29/2020    | 8:20                       | 1.0        | %     |

## TABLE 4-8 MICROSCOPIC COAL RESULTS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Location Identification                             | Depth Interval<br>(ft) | Date Sampled | Time<br>Sampled<br>(local) | Result (%) | Units |
|-----------------------------------------------------|------------------------|--------------|----------------------------|------------|-------|
| ND20-TB06-SURF                                      | surf                   | 6/29/2020    | 16:00                      | 5.0        | %     |
| ND20-TB06-2040                                      | 2.0-4.0                | 6/29/2020    | 9:30                       | 5.0        | %     |
| ND20-TB07-SURF                                      | surf                   | 6/29/2020    | 12:25                      | 4.0        | %     |
| ND20-TB07-2040                                      | 2.0-4.0                | 6/29/2020    | 11:00                      | 4.0        | %     |
| ND20-TB08-SURF                                      | surf                   | 6/28/2020    | 10:15                      | 5.0        | %     |
| ND20-TB08-2040                                      | 2.0-4.0                | 6/29/2020    | 12:30                      | 3.0        | %     |
| ND20-TB09-SURF                                      | surf                   | 6/28/2020    | 9:37                       | 6.0        | %     |
| ND20-TB09-2040                                      | 2.0-4.0                | 6/29/2020    | 14:20                      | 4.0        | %     |
| ND20-TB10-SURF                                      | surf                   | 6/29/2020    | 13:20                      | 1.0        | %     |
| ND20-TB10-2040                                      | 2.0-4.0                | 6/29/2020    | 7:45                       | 1.0        | %     |
| ND20-TB15-SURF                                      | surf                   | 6/29/2020    | 16:40                      | 2.0        | %     |
| ND20-TB20-SURF                                      | surf                   | 7/1/2020     | 10:05                      | 2.0        | %     |
| Reference Areas                                     |                        |              |                            |            |       |
| ND20-SLBREF1-SURF                                   | surf                   | 7/1/2020     | 7:45                       | ND         | %     |
| ND20-KBREF2-SURF                                    | surf                   | 6/30/2020    | 14:00                      | ND         | %     |
| ND20-LFREF3-SURF                                    | surf                   | 7/3/2020     | 17:35                      | 1.0        | %     |
| ND20-SBREF4-SURF                                    | surf                   | 7/1/2020     | 18:55                      | ND         | %     |
| NOTE: ft = Foot (feet).<br>ND = Result not detected |                        |              |                            |            |       |

#### TABLE 4-9 ALIPHATIC HYDROCARBON SUMMARY NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                               |                             |                                                                  | Ion 113                     |                                                                     |                |                              |                        |           |                |
|-------------------------------|-----------------------------|------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------|----------------|------------------------------|------------------------|-----------|----------------|
|                               |                             | n-                                                               | Ion 85<br>Alkanes (C8-C40)  | )                                                                   |                | Is                           | so-Alkanes and Isoj    | orenoids  |                |
| Sample Location/<br>Sample ID | Sample Depth Interval (ft)  | Compounds Identified<br>(key provided below) Retention Time Peak |                             | Compounds<br>Identified (key<br>provided below) Retention Time Peak |                |                              | eak                    |           |                |
| ND20-BP01                     | 0.3-2.0                     | C14-C19                                                          | 37.5-51.6                   | C15                                                                 | 32.7%          | I15-Ph                       | 33.9-49.6              | Pr        | 34.4%          |
|                               | 2.0-4.0                     | C14-C19                                                          | 37.5-51.4                   | C17                                                                 | 32.2%          | I13, I15-Ph                  | 33.2-49.3              | Pr        | 35.0%          |
| ND20-BP02                     | surftox**                   | C12-C27                                                          | 30.5-68.3                   | C14                                                                 | 19.8%          | I13-Ph                       | 33.1-49.4              | Pr        | 35.8%          |
|                               | <i>surftox**</i><br>2.0-4.0 | C13-C27,C29<br>C13-C19                                           | 33.3-68.3,71.7<br>32.6-50.0 | C25<br>C19                                                          | 24.9%<br>28.3% | I13-Ph<br>I14, I16-Ph        | 33.3-49.4<br>34.8-50   | Pr<br>Pr  | 31.2%<br>33.9% |
|                               | 4.0-6.0                     | C11,C12,C15-C21                                                  | 25.7-56.0                   | C19<br>C17                                                          | 28.5%          | I14, 116-Ph<br>I15-Ph        | 37.5-49.8              | Pr        | 38.8%          |
| ND20-BP03                     | 6.0-8.0                     | C13-C19                                                          | 33.7-51.5                   | C14                                                                 | 41.9%          | I13-I h<br>I14-Ph            | 33.7-49.4              | I16       | 23.7%          |
|                               | 8.0-10.0                    | C11-C19                                                          | 25.9-51.8                   | C17                                                                 | 20.3%          | I15-Ph                       | 37.6-49.8              | Pr        | 33.5%          |
|                               | 10.0-12.0                   | C9, C11-C19                                                      | 17.0-51.7                   | C17                                                                 | 18.6%          | I10,I11,I15-Ph               | 20.9-49.8              | Pr        | 33.5%          |
|                               | 12.0-14.0                   | C12-C19                                                          | 29.9-51.7                   | C15                                                                 | 25.60%         | I10,I11,I16-Ph               | 20.4-49.7              | Pr        | 37.6%          |
|                               | surf                        | C12,C17-C23,C25                                                  | 30.4-64.6                   | C17                                                                 | 27.0%          | I15-Ph                       | 37.5-49.3              | Pr        | 38.8%          |
|                               | surf (FS)                   | C14,C17,C18                                                      | 36.7-49.0                   | C14                                                                 | 36.4%          | I15-Ph                       | 37.6-49.4              | Pr        | 42.3%          |
| ND20-BP05                     | 0.3-2.0                     | C10-C19                                                          | 24.4-51.5                   | C17                                                                 | 25.3%          | I14-Ph                       | 33.4-49.5              | Pr        | 30.0%          |
|                               | 2.0-4.0                     | C12-C14, C16-C19                                                 | 31.2-51.5<br>31.2-54.0      | C14<br>C14                                                          | 23.0%<br>19.1% | I14-Ph<br>I13-Ph             | 33.4-49.4<br>33.4-49.4 | I14       | 29.8%<br>28.7% |
|                               | 2.0-4.0 (FS)<br>surf        | C12-C20                                                          | ND                          | C14                                                                 | 19.1%          | 113-Pfi<br>118-Pr            | 44.8-47.1              | I13<br>Pr | 78.3%          |
| ND20-BP07                     | surf (FD)                   | C17,C18                                                          | 46.3-49.0                   | C17                                                                 | 59.2%          | I18-Ph                       | 45.0-49.3              | I18       | 37.3%          |
|                               | surf                        | 017,010                                                          | ND                          | 017                                                                 | 07.270         | I18-Ph                       | 44.8-50.5              | Pr        | 39.2%          |
| ND20-BP10                     | 0.3-2.0                     | C12-C17                                                          | 30.2-46.6                   | C16                                                                 | 28.80%         | I15-I18                      | 37.1-44.3              | I18       | 37.3%          |
| ND20-BP12                     | surf                        |                                                                  | ND                          |                                                                     |                |                              | ND                     |           | •              |
| ND20-BF12                     | 0.3-2.0                     | C15-C18                                                          | 1.0-8.9                     | C17                                                                 | 40.0%          | I16-Ph                       | 4.9-9.4                | Pr        | 52.4%          |
| ND20-BP15                     | surf                        |                                                                  | ND                          |                                                                     |                |                              | ND                     |           |                |
|                               | 0.3-2.0                     | C14-C15, C17-C20                                                 | 37.6-53.9                   | C17                                                                 | 40.0%          | I13, I15-Ph                  | 33.2-49.4              | Pr        | 37.0%          |
|                               | surf (FS)                   | C14-C18, C23, C25,C27<br>C13-C19,C21, C25-<br>C27,C29, C31       | 37.4-68.3<br>34.1-75.0      | C25<br>C25                                                          | 16.8%<br>15.0% | I15-Ph<br>I15-Ph             | 36.8-49.4<br>36.8-49.4 | Pr<br>Pr  | 45.9%<br>47.1% |
| ND20-TB01                     | 0.3-2.0                     | C17-C20                                                          | 46.6-54.0                   | C18                                                                 | 40.5%          | I18,Ph                       | 44.8-49.4              | I18       | 50.5%          |
|                               | 0.3-2.0 (FD)                | C20                                                              | 53.9                        | C20                                                                 | 100.0%         | I18,Ph                       | 44.8-49.4              | I18       | 49.3%          |
|                               | 2.0-4.0                     | C14-C23                                                          | 36.7-61.2                   | ND                                                                  | ND             | I16-Ph                       | 39.5-49.4              | Ph        | 45.8           |
| ND20-TB03                     | surf                        | C14-<br>C21,C23,C25,C27,C29,C3<br>1                              | 37.6-75.0                   | C17                                                                 | 14.9%          | I18-Ph                       | 45.0-49.4              | Pr        | 41.3%          |
|                               | 6.0-8.0                     | C13-C20                                                          | 33.3-54.0                   | ND                                                                  | ND             | I13-Ph                       | 33.1-49.4              | I18       | 40.5%          |
|                               | 8.0-10.0                    | C14,C15,C17-C19                                                  | 36.8-51.5                   | C17                                                                 | 28.9%          | I13,I15-Ph                   | 33.3-49.4              | I18       | 31.7%          |
|                               | surf                        | C17-C18                                                          | 47.1-49.4                   | C17                                                                 | 76.1%          | I18-Ph                       | 44.8-49.4              | Pr        | 71.8%          |
| ND20-TB05                     | surf (FS)<br>0.3-2.0        | C13,C15,C17-C20                                                  | 34.8-53.7<br>37.6-66.7      | C17<br>C18                                                          | 25.8%<br>33.2% | I16-Ph<br>I13,I15-I18,Ph     | 39.5-49.4<br>33.2-50.0 | Pr<br>I18 | 55.1%<br>40.1% |
|                               | 2.0-4.0                     | C14-C26<br>C14-C25                                               | 37.6-64.7                   | C18                                                                 | 31.4%          | I13,I15-I18,Ph<br>I13,I15-Ph | 33.3-49.4              | Ph        | 28.9%          |
| ND20-TB06                     | surf                        | C13-C20,C25,C27                                                  | 34.5-68.3                   | C17                                                                 | 18.6%          | I15.Ph                       | 37.5-49.4              | Ph        | 37.3%          |
|                               | surf                        | C14-<br>C21,C23,C25,C27,C28                                      | 37.3-70.1                   | C17                                                                 | 13.1%          | I15-Ph                       | 37.3-49.4              | Pr        | 56.6%          |
| ND20-TB07                     | 0.3-2.0                     | C13-C25                                                          | 34.8-64.7                   | C18                                                                 | 32.50%         | I13-Ph                       | 33.3-49.4              | Ph        | 31.4%          |
|                               | 2.0-4.0                     | C14-C23                                                          | 37.7-61.2                   | C18                                                                 | 37.8%          | I13,I15-Ph                   | 33.3-49.5              | Ph        | 37.7%          |
|                               | surf                        | C14-C20,C25,C27                                                  | 37.3-68.3                   | C17                                                                 | 18.3%          | I13,I15-Ph                   | 32.9-49.4              | Ph        | 31.5%          |
| ND20-TB10                     | 0.3-2.0                     | C14-C23                                                          | 37.7-61.2                   | C18                                                                 | 37.8%          | I13,I15-Ph                   | 33.3-49.5              | Ph        | 37.7%          |
| ND20 TD15                     | 2.0-4.0                     | 014 001 000 005 007                                              | ND                          | 017                                                                 | 15.00/         | I18,Ph                       | 44.8-50.5              | Ph        | 75.9%          |
| ND20-TB15                     | surf                        | C14-C21,C23,C25-C27<br>C15-C23                                   | 37.3-68.3<br>40.6-60.6      | C17                                                                 | 15.0%          | I15-Ph<br>I18-Ph             | 37.3-49.4<br>44.8-49.4 | Ph<br>Pr  | 35.9%<br>59.4% |
| ND20-TB17                     | surf<br>0.3-2.0             | C15-C25                                                          | 40.6-60.6<br>ND             | C17                                                                 | 15.5%          | 118-Ph<br>I18-Ph             | 44.8-49.4              | Pr<br>Pr  | 59.4%          |
| ND20-TB20                     | surf                        |                                                                  | ND                          |                                                                     |                | I18-Pr                       | 44.4-49.4              | Pr        | 65.7%          |
| ND20-SLBREF1                  | surf                        | C21                                                              | 55.5                        | C21                                                                 | 100.0%         | I18-Pr                       | 44.8-47.1              | I18       | 50.5%          |
|                               | surf                        | C17,C18,C21                                                      | 47.1-55.5                   | C21                                                                 | 53.6%          | I18-Pr                       | 44.8-47.1              | Pr        | 51.5%          |
| ND20-KBREF2                   | surf (FS)                   | C15-C18,C21                                                      | 40.5-55.5                   | C21                                                                 | 30.7%          | I18-Pr                       | 44.8-47.1              | Pr        | 54.4%          |
| ND20-LFREF3                   | surf                        |                                                                  | ND                          |                                                                     |                | I18-Pr                       | 44.8-47.1              | Pr        | 53.4%          |
| ND20-SBREF4                   | surf                        | C17-C22                                                          | 46.6-57.1                   | C18                                                                 | 36.2%          | I16-Ph                       | 39.4-49.3              | Pr        | 43.4%          |

ND-Not Detected

| TID TIOL Delected                                                             |                     |                          |
|-------------------------------------------------------------------------------|---------------------|--------------------------|
|                                                                               | n-Alkanes (C8-C40)  |                          |
| n-Octane nC8                                                                  | n-Nonadecane nC19   | n-Triacontane nC30       |
| n-Nonane nC9                                                                  | n-icosane nC20      | n-Hentriacontane nC31    |
| n-Decane nC10                                                                 | n-Henicosane nC21   | n-Dotriacontane nC32     |
| n-Undecane nC11                                                               | n-Docosane nC22     | n-Tritriacontane nC33    |
| n-Dodecane nC12                                                               | n-Tricosane nC23    | n-Tetratriacontane nC34  |
| n-Tridecane nC13                                                              | n-Tetracosane nC24  | n-Pentatriacontane nC35  |
| n-Tetradecane nC14                                                            | n-Pentacosane nC25  | n-Hexatriacontane nC36   |
| n-Pentadecane nC15                                                            | n-Hexacosane nC26   | n -Heptatriacontane nC37 |
| n-Hexadecane nC16                                                             | n-Heptacosane nC27  | n -Octatriacontane nC38  |
| n-Heptadecane nC17                                                            | n-Octacosane nC28   | n -Nonatriacontane nC39  |
| n-Octadecane nC18<br>orth End District and Clou<br>t. Louis River Area of Con | n-Tetracontane nC40 |                          |
|                                                                               |                     |                          |

Iso-Alkanes and Isoprenoids (I9-Ph) Iso-alkane w/ 9 Carbon Atoms I-9 Iso-alkane w/ 10 Carbon Atoms I-10 Iso-alkane w/ 11 Carbon Atoms I-11 Iso-alkane w/ 12 Carbon Atoms I-12 Iso-alkane w/ 13 Carbon Atoms I-13 Iso-alkane w/ 14 Carbon Atoms I-14 Farnesane (Isoprenoid - C15) I-15 Iso-alkane w/ 18 Carbon Atoms I-18 Pristane (Isoprenoid - C19) Pr Phytane (Isoprenoid - C20) Ph

# TABLE 5-1: SUMMARY OF SURVIVAL AND GROWTH RESULTS FOR CHIRONOMOUS DILUTUS, NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Sample Identification | EA Accession<br>Number | 10-Day Survival<br>(percent) | Mean Ash Free Dry Weight as<br>mg/Organism (±SD) |
|-----------------------|------------------------|------------------------------|--------------------------------------------------|
| Control Sediments     |                        |                              |                                                  |
| Laboratory Control    | AT0-593                | 86                           | 1.184 (±0.174)                                   |
| Laboratory Control    | AT0-593                | 96                           | 1.229 (±0.254)                                   |
| Laboratory Control    | AT0-593                | 91                           | 1.125 (±0.370)                                   |
| Reference Sediments   |                        |                              |                                                  |
| ND20-KBREF2-SURFTOX   | AT0-537                | 81                           | 0.630 (±0.193)                                   |
| ND20-LFREF3-SURFTOX   | AT0-538                | 74                           | 0.925 (±0.198)                                   |
| ND20-SBREF4-SURFTOX   | AT0-539                | 78                           | 0.580 (±0.240)                                   |
| ND20-SLBREF1-SURFTOX  | AT0-540                | 83                           | 0.816 (±0.124)                                   |
| Site Sediments        |                        |                              |                                                  |
| ND20-BP02-SURFTOX     | AT0-517                | 74 <sup>abe</sup>            | 1.325 (±0.106)                                   |
| ND20-BP03-SURFTOX     | AT0-518                | $70^{abde}$                  | 1.206 (±0.247)                                   |
| ND20-BP05-SURFTOX     | AT0-519                | 66 <sup>abde</sup>           | 1.236 (±0.178)                                   |
| ND20-BP07-SURFTOX     | AT0-520                | $80^{\mathrm{a}}$            | 1.162 (±0.149)                                   |
| ND20-CL01-SURFTOX     | AT0-521                | 81                           | $0.991 (\pm 0.249)^{a}$                          |
| ND20-CL02-SURFTOX     | AT0-522                | 83                           | $0.982 (\pm 0.200)^{a}$                          |
| ND20-CL03-SURFTOX     | AT0-523                | 75 <sup>abe</sup>            | 1.189 (±0.156)                                   |
| ND20-CL04-SURFTOX     | AT0-524                | 81 <sup>a</sup>              | 1.078 (±0.171)                                   |
| ND20-CL05-SURFTOX     | AT0-525                | 68 <sup>abde</sup>           | 1.104 (±0.215)                                   |
| ND20-CL06-SURFTOX     | AT0-526                | 64 <sup>abcde</sup>          | $0.689 (\pm 0.185)^{\rm ac}$                     |
| ND20-CL07-SURFTOX     | AT0-527                | 65 <sup>abde</sup>           | 1.218 (±0.284)                                   |
| ND20-CL08-SURFTOX     | AT0-528                | 93                           | 1.163 (±0.136)                                   |
| ND20-CL09-SURFTOX     | AT0-529                | 71 <sup>abe</sup>            | 1.218 (±0.361)                                   |
| ND20-CL10-SURFTOX     | AT0-530                | 75 <sup>abe</sup>            | $1.008 (\pm 0.179)^{a}$                          |
| ND20-GM02-SURFTOX     | AT0-531                | 89 <sup>a</sup>              | $0.773 (\pm 0.168)^{a}$                          |
| ND20-GM04-SURFTOX     | AT0-532                | 91 <sup>a</sup>              | $1.005 (\pm 0.190)^{a}$                          |
| ND20-GM08-SURFTOX     | AT0-533                | $80^{a}$                     | 1.268 (±0.240)                                   |
| ND20-HD01-SURFTOX     | AT0-534                | 63 <sup>abcde</sup>          | $0.764 (\pm 0.191)^{a}$                          |
| ND20-HD03-SURFTOX     | AT0-535                | 36 <sup>abcde</sup>          | $0.826 (\pm 0.443)^{a}$                          |
| ND20-HD04-SURFTOX     | AT0-536                | 26 <sup>abcde</sup>          | 0.587 (±0.314) <sup>ace</sup>                    |
| ND20-TB01-SURFTOX     | AT0-541                | 20 <sup>abcde</sup>          | 0.504 (±0.198) <sup>ace</sup>                    |
| ND20-TB03-SURFTOX     | AT0-542                | 41 <sup>abcde</sup>          | $0.861 (\pm 0.424)^{a}$                          |
| ND20-TB06-SURFTOX     | AT0-543                | 55 <sup>abcde</sup>          | $0.714 (\pm 0.259)^{\rm ac}$                     |

| Sample Identification  | EA Accession<br>Number | 10-Day Survival<br>(percent) | Mean Ash Free Dry Weight as<br>mg/Organism (±SD) |
|------------------------|------------------------|------------------------------|--------------------------------------------------|
| Site Sediments (Cont.) |                        |                              |                                                  |
| ND20-TB07-SURFTOX      | AT0-544                | 41 <sup>abcde</sup>          | 1.031 (±0.312)                                   |
| ND20-TB10-SURFTOX      | AT0-545                | 53 <sup>abcde</sup>          | 0.802 (±0.421)                                   |
| ND20-TB15-SURFTOX      | AT0-546                | 61 <sup>abcde</sup>          | $0.791 \ (\pm 0.274)^{\rm a}$                    |
| ND20-TB20-SURFTOX      | AT0-570                | 86                           | 0.940 (±0.274)                                   |

(a) Significantly different (p=0.05) from laboratory control.
(b) Significantly different (p=0.05) from ND20-KBREF2-SURFTOX (AT0-537).
(c) Significantly different (p=0.05) from ND20-LBREF3-SURFTOX (AT0-538).
(d) Significantly different (p=0.05) from ND20-SBREF4-SURFTOX (AT0-539).
(e) Significantly different (p=0.05) from ND20-SLBREF1-SURFTOX (AT0-540).

# TABLE 5-2: SUMMARY OF SURVIVAL, GROWTH AND FECUNDITY RESULTSFOR HYALELLA AZTECA, NORTH END DISTRICT AND CLOUGH ISLANDSEDIMENT CHARACTERIZATIONST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Sample Identification | EA<br>Accession<br>Number | 28-Day<br>Survival<br>(percent) | Post UV<br>Survival<br>(percent) | Fecundity as<br>Percent<br>Females with<br>Eggs | Mean Dry Weight as<br>mg/Organism (±SD) |
|-----------------------|---------------------------|---------------------------------|----------------------------------|-------------------------------------------------|-----------------------------------------|
| Laboratory Control    | AT9-730                   | 94                              | 94                               | 71                                              | 0.282 (±0.041)                          |
| Reference Sediments   |                           |                                 |                                  |                                                 |                                         |
| ND20-KBREF2-SURFTOX   | AT0-537                   | 86                              | 86                               | 71                                              | 0.278 (±0.061)                          |
| ND20-LFREF3-SURFTOX   | AT0-538                   | 85                              | 85                               | 70                                              | 0.279 (±0.045)                          |
| ND20-SBREF4-SURFTOX   | AT0-539                   | 89                              | 89                               | 76                                              | 0.301 (±0.020)                          |
| ND20-SLBREF1-SURFTOX  | AT0-540                   | 84                              | 84                               | 70                                              | 0.293 (±0.063)                          |
| Site Sediments        |                           |                                 |                                  |                                                 |                                         |
| ND20-BP02-SURFTOX     | AT0-517                   | 91                              | 91                               | 67                                              | 0.399 (±0.040)                          |
| ND20-BP03-SURFTOX     | AT0-518                   | $80^{a}$                        | 80 <sup>a</sup>                  | 70                                              | 0.449 (±0.098)                          |
| ND20-BP05-SURFTOX     | AT0-519                   | 83 <sup>a</sup>                 | 83 <sup>a</sup>                  | 72                                              | 0.284 (±0.036)                          |
| ND20-BP07-SURFTOX     | AT0-520                   | 90                              | 90                               | 63 <sup>abcd</sup>                              | $0.258 (\pm 0.061)^{d}$                 |
| ND20-CL01-SURFTOX     | AT0-521                   | 79 <sup>a</sup>                 | 79 <sup>a</sup>                  | 50 <sup>abcde</sup>                             | $0.282 \ (\pm 0.023)^{d}$               |
| ND20-CL02-SURFTOX     | AT0-522                   | 71 <sup>abcde</sup>             | 71 <sup>abcde</sup>              | 51 <sup>abcde</sup>                             | $0.252 (\pm 0.055)^{d}$                 |
| ND20-CL03-SURFTOX     | AT0-523                   | 79 <sup>a</sup>                 | 79 <sup>a</sup>                  | 73                                              | 0.327 (±0.086)                          |
| ND20-CL04-SURFTOX     | AT0-524                   | 84 <sup>a</sup>                 | 81 <sup>ad</sup>                 | 67                                              | 0.288 (±0.054)                          |
| ND20-CL05-SURFTOX     | AT0-525                   | 86 <sup>a</sup>                 | 86 <sup>a</sup>                  | 63 <sup>d</sup>                                 | 0.334 (±0.051)                          |
| ND20-CL06-SURFTOX     | AT0-526                   | 73 <sup>abcde</sup>             | 73 <sup>abcde</sup>              | 64 <sup>abcd</sup>                              | 0.464 (±0.106)                          |
| ND20-CL07-SURFTOX     | AT0-527                   | 74 <sup>abcd</sup>              | 74 <sup>abcd</sup>               | 74                                              | 0.371 (±0.090)                          |
| ND20-CL08-SURFTOX     | AT0-528                   | 86                              | 86                               | 67                                              | 0.316 (±0.025)                          |
| ND20-CL09-SURFTOX     | AT0-529                   | $76^{ad}$                       | $76^{ad}$                        | 64 <sup>d</sup>                                 | 0.286 (±0.065)                          |
| ND20-CL10-SURFTOX     | AT0-530                   | 90                              | 90                               | 66 <sup>d</sup>                                 | 0.335 (±0.024)                          |
| ND20-GM02-SURFTOX     | AT0-531                   | $78^{abd}$                      | $78^{abd}$                       | 68                                              | 0.305 (±0.084)                          |
| ND20-GM04-SURFTOX     | AT0-532                   | 68 <sup>abcde</sup>             | 68 <sup>abcde</sup>              | 71                                              | 0.398 (±0.071)                          |
| ND20-GM08-SURFTOX     | AT0-533                   | 76 <sup>abcd</sup>              | $76^{abcd}$                      | 71                                              | 0.351 (±0.028)                          |
| ND20-HD01-SURFTOX     | AT0-534                   | 85 <sup>a</sup>                 | 85 <sup>a</sup>                  | 63 <sup>abcd</sup>                              | 0.304 (±0.043)                          |
| ND20-HD03-SURFTOX     | AT0-535                   | 65 <sup>abcde</sup>             | 65 <sup>abcde</sup>              | 62 <sup>d</sup>                                 | 0.285 (±0.066)                          |
| ND20-HD04-SURFTOX     | AT0-536                   | 71 <sup>abcde</sup>             | 71 <sup>abcde</sup>              | 42 <sup>abcde</sup>                             | 0.364 (±0.091)                          |
| ND20-TB01-SURFTOX     | AT0-541                   | 63 <sup>abcde</sup>             | 63 <sup>abcde</sup>              | 36 <sup>abcde</sup>                             | 0.225 (±0.051) <sup>abcde</sup>         |
| ND20-TB03-SURFTOX     | AT0-542                   | 76 <sup>abcd</sup>              | $76^{abd}$                       | 74                                              | $0.255 (\pm 0.088)^{d}$                 |
| ND20-TB06-SURFTOX     | AT0-543                   | 81 <sup>a</sup>                 | 81 <sup>a</sup>                  | 55 <sup>abcde</sup>                             | 0.214 (±0.045) <sup>abcde</sup>         |

| Sample Identification  | EA<br>Accession<br>Number | 28-Day<br>Survival<br>(percent) | Post UV<br>Survival<br>(percent) | Fecundity as<br>Percent<br>Females with<br>Eggs | Mean Dry Weight as<br>mg/Organism (±SD) |
|------------------------|---------------------------|---------------------------------|----------------------------------|-------------------------------------------------|-----------------------------------------|
| ND20-TB07-SURFTOX      | AT0-544                   | $78^{abd}$                      | $76^{\text{abcd}}$               | 50 <sup>abcde</sup>                             | 0.234 (±0.044) <sup>abcde</sup>         |
| Site Sediments (Cont.) |                           |                                 |                                  |                                                 |                                         |
| ND20-TB10-SURFTOX      | AT0-545                   | 61 <sup>abcde</sup>             | 59 <sup>abcde</sup>              | 45 <sup>abcde</sup>                             | $0.249 \ (\pm \ 0.049)^{d}$             |
| ND20-TB15-SURFTOX      | AT0-546                   | 90                              | 89                               | 68                                              | 0.285 (±0.049)                          |
| ND20-TB20-SURFTOX      | AT0-570                   | 84 <sup>a</sup>                 | 81 <sup>a</sup>                  | 72                                              | 0.305 (±0.072)                          |

(a) Significantly different (p=0.05) from laboratory control.

(b) Significantly different (p=0.05) from ND20-KBREF2-SURFTOX (AT0-537).

(c) Significantly different (p=0.05) from ND20-LBREF3-SURFTOX (AT0-538).

(d) Significantly different (p=0.05) from ND20-SBREF4-SURFTOX (AT0-539).

(e) Significantly different (p=0.05) from ND20-SLBREF1-SURFTOX (AT0-540)

# TABLE 5-3: MEAN LIPID CONCENTRATIONS (PERCENT OF TOTAL BODY WET WEIGHT) IN *LUMBRICULUS VARIEGATUS* NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

| Sample Identification | Worms |
|-----------------------|-------|
| Pre-test              | 0.68  |
| ND20-SLBREF1-SURFTOX  | 0.3   |
| ND20-KBREF2-SURFTOX   | 0.348 |
| ND20-LFREF3-SURFTOX   | 0.303 |
| ND20-SBREF4-SURFTOX   | 0.42  |
| ND20-GM02-SURFTOX     | 0.159 |
| ND20-GM04-SURFTOX     | 0.121 |
| ND20-GM08-SURFTOX     | 0.093 |
| ND20-TB01-SURFTOX     | 0.277 |
| ND20-TB03-SURFTOX     | 0.34  |
| ND20-TB06-SURFTOX     | 0.297 |
| ND20-TB07-SURFTOX     | 0.186 |
| ND20-TB10-SURFTOX     | 0.213 |
| ND20-TB15-SURFTOX     | 0.13  |
| ND20-TB20-SURFTOX     | 0.113 |
| ND20-CL01-SURFTOX     | 0.2   |
| ND20-CL02-SURFTOX     | 0.244 |
| ND20-CL03-SURFTOX     | 0.274 |
| ND20-CL04-SURFTOX     | 0.272 |
| ND20-CL05-SURFTOX     | 0.205 |
| ND20-CL06-SURFTOX     | 0.215 |
| ND20-CL07-SURFTOX     | 0.233 |
| ND20-CL08-SURFTOX     | 0.218 |
| ND20-CL09-SURFTOX     | 0.238 |
| ND20-CL10-SURFTOX     | 0.24  |

# TABLE 5-4A MEAN CONCENTRATIONS IN *LUMBRICULUS VARIEGATUS* TISSUES - GENERAL MILLS SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                  |       |                |                      | Reference Areas     |                     |                     |                    |  |
|------------------|-------|----------------|----------------------|---------------------|---------------------|---------------------|--------------------|--|
|                  |       | Pre-test       | ND20-SLBREF1-SURFTOX | ND20-KBREF2-SURFTOX | ND20-LFREF3-SURFTOX | ND20-SBREF4-SURFTOX | ND20-GM02-SURF     |  |
| Analyte          | Units | %Lipids = 0.68 | %Lipids = 0.3        | %Lipids = 0.348     | %Lipids = 0.303     | %Lipids = 0.42      | %Lipids = 0.159    |  |
| METALS           |       |                |                      |                     |                     |                     |                    |  |
| MERCURY          | mg/kg | <0.0197        | < 0.02               | < 0.0205            | 0.029               | 0.027               | < 0.0198           |  |
| ORGANOTINS       | -     |                |                      | ·                   |                     |                     |                    |  |
| MONOBUTYLTIN     | μg/kg | R              | 6.97                 | 56.0                | 44.0                | 11.0                | 17.2               |  |
| DIBUTYLTIN       | μg/kg | 0.97           | 1.13                 | 3,125               | 1,501               | 4.37                | 2,060 <sup>1</sup> |  |
| TRIBUTYLTIN      | μg/kg | <0.6           | <0.533               | 4.85                | 2.63                | <0.817              | 2.88               |  |
| TETRA-N-BUTYLTIN | µg/kg | <0.763         | <0.677               | <0.953              | <0.72               | <1.04               | <0.632             |  |
|                  |       |                |                      |                     |                     |                     |                    |  |

NOTES:

The mean concentrations presented on the table are not lipid-normalized.

RL = Reporting limit

pg/g = Picogram(s) per gram

mg/kg = Milligram(s) per kilogram

μg/kg = Microgram(s) per kilogram

R = Analyte may or may not be present; result is unusable and was not included in statistical analysis.

<sup>1</sup> = Analyte concentration is significantly higher than the St. Louis Bay Reference (SLBREF1)

<sup>2</sup> = Analyte concentration is significantly higher than the Kimballs Bay Reference (KBREF2)

<sup>3</sup> = Analyte concentration is significantly higher than the Loons Foot Landing Reference (LFREF3)

<sup>4</sup> = Analyte concentration is significantly higher than the Superior Bay Reference (SBREF4)

Analyte concentration is significantly higher than the pre-test tissue concentration (p<0.05)

EA Project No.:1598201 Revision: 00 Table 5-4a, Page 1 of 1 June 2021

|       | Sample Locations            |                   |  |  |  |  |  |  |  |
|-------|-----------------------------|-------------------|--|--|--|--|--|--|--|
| RFTOX | ND20-GM04-SURFTOX           | ND20-GM08-SURFTOX |  |  |  |  |  |  |  |
| 159   | %Lipids = 0.121             | %Lipids = 0.093   |  |  |  |  |  |  |  |
|       |                             |                   |  |  |  |  |  |  |  |
|       | < 0.0202                    | < 0.0206          |  |  |  |  |  |  |  |
|       |                             |                   |  |  |  |  |  |  |  |
|       | 15.2                        | 12.4              |  |  |  |  |  |  |  |
|       | <b>1,980</b> <sup>1,4</sup> | 864               |  |  |  |  |  |  |  |
|       | <b>2.71</b> <sup>1,4</sup>  | 10.8              |  |  |  |  |  |  |  |
|       | 1.84                        | <0.492            |  |  |  |  |  |  |  |
|       |                             |                   |  |  |  |  |  |  |  |

# TABLE 5-4B LIPID-NORMALIZED MEAN CONCENTRATIONS IN *LUMBRICULUS VARIEGATUS* TISSUES - GENERAL MILLS SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LUOIS RIVER AREA OF CONCEERN, SUPERIOR, WISCONSIN

|                  |       |                |                      | Reference Areas     |                     |                     |                       |  |  |
|------------------|-------|----------------|----------------------|---------------------|---------------------|---------------------|-----------------------|--|--|
|                  |       | Pre-test       | ND20-SLBREF1-SURFTOX | ND20-KBREF2-SURFTOX | ND20-LFREF3-SURFTOX | ND20-SBREF4-SURFTOX | ND20-GM02-SURF        |  |  |
| Analyte          | Units | %Lipids = 0.68 | %Lipids = 0.3        | %Lipids = 0.348     | %Lipids = 0.303     | %Lipids = 0.42      | %Lipids = 0.15        |  |  |
| ORGANOTINS       |       |                |                      |                     |                     |                     |                       |  |  |
| MONOBUTYLTIN     | µg/kg | R              | 19.8                 | 164                 | 135                 | 25.6                | 120                   |  |  |
| DIBUTYLTIN       | µg/kg | 1.76           | 4.29                 | 9,610               | 4,880               | 10.5                | 15,700 <sup>1,4</sup> |  |  |
| TRIBUTYLTIN      | µg/kg | <1.73          | <1.86                | 14.8                | 8.26                | <1.95               | 22.0                  |  |  |
| TETRA-N-BUTYLTIN | µg/kg | <2.19          | <2.36                | <2.75               | <2.43               | <2.48               | <4.57                 |  |  |
| NOTES            |       |                |                      |                     |                     |                     |                       |  |  |

NOTES:

The mean concentrations presented on the table are lipid-normalized.

RL = Reporting limit

pg/g = Picogram(s) per gram

mg/kg = Milligram(s) per kilogram

 $\mu g/kg = Microgram(s)$  per kilogram

R = Analyte may or may not be present; result is unusable and was not included in statistical analysis.

<sup>1</sup> = Analyte concentration is significantly higher than the St. Louis Bay Reference (SLBREF1)

<sup>2</sup> = Analyte concentration is significantly higher than the Kimballs Bay Reference (KBREF2)

<sup>3</sup> = Analyte concentration is significantly higher than the Loons Foot Landing Reference (LFREF3)

<sup>4</sup> = Analyte concentration is significantly higher than the Superior Bay Reference (SBREF4)

Analyte concentration is significantly higher than the pre-test tissue concentration (p<0.05)

|       | Sample Locations               |                            |
|-------|--------------------------------|----------------------------|
| RFTOX | ND20-GM04-SURFTOX              | ND20-GM08-SURFTOX          |
| 159   | %Lipids = 0.121                | %Lipids = 0.093            |
|       |                                |                            |
|       | 153 <sup>1,4</sup>             | 143 <sup>1,4</sup>         |
|       | <b>20,400</b> <sup>1,3,4</sup> | 10,100 <sup>1</sup>        |
|       | <b>28.7</b> <sup>1,4</sup>     | <b>79.1</b> <sup>1,4</sup> |
|       | 20.0                           | <5.92                      |
|       |                                |                            |

### TABLE 5-5A MEAN CONCENTRATIONS IN LUMBRICULUS VARIEGATUS TISSUES - TOWER AVENUE SLIP NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                  |       |                |                      | Referenc            | e Areas             |                     | Sample Locations  |                   |                   |                   |                   |                   |                    |  |  |  |
|------------------|-------|----------------|----------------------|---------------------|---------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--|--|--|
|                  |       | Pre-test       | ND20-SLBREF1-SURFTOX | ND20-KBREF2-SURFTOX | ND20-LFREF3-SURFTOX | ND20-SBREF4-SURFTOX | ND20-TB01-SURFTOX | ND20-TB03-SURFTOX | ND20-TB06-SURFTOX | ND20-TB07-SURFTOX | ND20-TB10-SURFTOX | ND20-TB15-SURFTOX | ND20-TB20-SURFTOX  |  |  |  |
| Analyte          | Units | %Lipids = 0.68 | %Lipids = 0.3        | %Lipids = 0.348     | %Lipids = 0.303     | %Lipids = 0.42      | %Lipids = 0.277   | %Lipids = 0.34    | %Lipids = 0.297   | %Lipids = 0.186   | %Lipids = 0.213   | %Lipids = 0.13    | %Lipids = 0.113    |  |  |  |
| METALS           |       |                |                      |                     |                     |                     |                   |                   |                   |                   |                   |                   |                    |  |  |  |
| MERCURY          | mg/kg | < 0.0197       | <0.02                | < 0.0205            | 0.029               | 0.027               | < 0.0197          | 0.043             | <0.02             | < 0.0206          | < 0.0208          | <0.021            | <0.0203            |  |  |  |
| ORGANOTINS       |       |                |                      | -                   |                     |                     |                   | •                 | •                 |                   |                   |                   | •                  |  |  |  |
| MONOBUTYLTIN     | µg/kg | R              | 6.97                 | 56.0                | 44.0                | 11.0                | 8.77              | 15.0              | 6.25              | 6.2               | 3.5               | 11.6              | 25.7               |  |  |  |
| DIBUTYLTIN       | µg/kg | 0.97           | 1.13                 | 3,130               | 1,500               | 4.37                | 2.73              | 2.91              | 2.53              | 1.77              | 1.93              | 405               | 2,370 <sup>1</sup> |  |  |  |
| TRIBUTYLTIN      | µg/kg | <0.6           | <0.533               | 4.85                | 2.63                | <0.817              | <0.497            | <0.477            | <0.44             | <0.512            | <0.545            | 2.33              | 4.2 <sup>1,4</sup> |  |  |  |
| TETRA-N-BUTYLTIN | µg/kg | < 0.763        | <0.677               | < 0.953             | <0.72               | <1.04               | <0.623            | <0.6              | <0.553            | <0.65             | <0.69             | <0.793            | <0.623             |  |  |  |
| NOTES:           |       |                | •                    | ·                   | •                   |                     |                   | •                 | •                 | •                 | •                 | •                 | •                  |  |  |  |

The mean concentrations presented on the table are not lipid-normalized.

RL = Reporting limit

pg/g = Picogram(s) per gram

mg/kg = Milligram(s) per kilogram

µg/kg = Microgram(s) per kilogram

R = Analyte may or may not be present; result is unusable and was not included in statistical analysis.

= Analyte concentration is significantly higher than the St. Louis Bay Reference (SLBREF1)

= Analyte concentration is significantly higher than the Kimballs Bay Reference (KBREF2)

= Analyte concentration is significantly higher than the Loons Foot Landing Reference (LFREF3)

= Analyte concentration is significantly higher than the Superior Bay Reference (SBREF4)

nalyte concentration is significantly higher than the pre-test tissue concentration ( $p \le 0.05$ )

# TABLE 5-5B LIPID-NORMALIZED MEAN CONCENTRATIONS IN LUMBRICULUS VARIEGATUS TISSUES - TOWER AVENUE SLIPNORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATIONST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                               |                                                                      |                |                      | Referenc            | e Areas             |                     | Sample Locations  |                   |                   |                   |                   |                   |                            |  |  |
|-------------------------------|----------------------------------------------------------------------|----------------|----------------------|---------------------|---------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------|--|--|
|                               |                                                                      | Pre-test       | ND20-SLBREF1-SURFTOX | ND20-KBREF2-SURFTOX | ND20-LFREF3-SURFTOX | ND20-SBREF4-SURFTOX | ND20-TB01-SURFTOX | ND20-TB03-SURFTOX | ND20-TB06-SURFTOX | ND20-TB07-SURFTOX | ND20-TB10-SURFTOX | ND20-TB15-SURFTOX | ND20-TB20-SURFTOX          |  |  |
| Analyte                       | Units                                                                | %Lipids = 0.68 | %Lipids = 0.3        | %Lipids = 0.348     | %Lipids = 0.303     | %Lipids = 0.42      | %Lipids = 0.277   | %Lipids = 0.34    | %Lipids = 0.297   | %Lipids = 0.186   | %Lipids = 0.213   | %Lipids = 0.13    | %Lipids = 0.113            |  |  |
| ORGANOTINS                    |                                                                      |                |                      |                     |                     |                     |                   |                   |                   |                   |                   |                   |                            |  |  |
| MONOBUTYLTIN                  | µg/kg                                                                | R              | 19.8                 | 164                 | 135                 | 25.6                | 31.8              | 36.2              | 16.3              | 56.4              | 26.9              | 113               | 221 <sup>1,4</sup>         |  |  |
| DIBUTYLTIN                    | µg/kg                                                                | 1.76           | 4.29                 | 9,610               | 4,880               | 10.5                | 10.2              | 8.47              | 9.03              | 12.6              | 10.7              | 3,950             | 20,500 <sup>1,4</sup>      |  |  |
| TRIBUTYLTIN                   | µg/kg                                                                | <1.73          | <1.86                | 14.8                | 8.26                | <1.95               | <1.78             | <1.76             | <2.11             | <3.15             | <2.94             | 21.3              | <b>38.1</b> <sup>1,4</sup> |  |  |
| TETRA-N-BUTYLTIN              | µg/kg                                                                | <2.19          | <2.36                | <2.75               | <2.43               | <2.48               | <2.24             | <2.22             | <2.66             | <3.99             | <3.71             | <7.05             | <6.08                      |  |  |
| NOTES:                        |                                                                      |                |                      |                     |                     |                     |                   |                   |                   |                   |                   |                   |                            |  |  |
| The mean concentrations prese | The mean concentrations presented on the table are lipid-normalized. |                |                      |                     |                     |                     |                   |                   |                   |                   |                   |                   |                            |  |  |
| RL = Reporting limit          |                                                                      |                |                      |                     |                     |                     |                   |                   |                   |                   |                   |                   |                            |  |  |

RL = Reporting limit

pg/g = Picogram(s) per gram

mg/kg = Milligram(s) per kilogram

µg/kg = Microgram(s) per kilogram

R = Analyte may or may not be present; result is unusable and was not included in statistical analysis.

= Analyte concentration is significantly higher than the St. Louis Bay Reference (SLBREF1)

= Analyte concentration is significantly higher than the Kimballs Bay Reference (KBREF2)

<sup>3</sup> = Analyte concentration is significantly higher than the Loons Foot Landing Reference (LFREF3)

<sup>4</sup> = Analyte concentration is significantly higher than the Superior Bay Reference (SBREF4) Analyte concentration is significantly higher than the pre-test tissue concentration (p<0.05)

#### TABLE 5-6A MEAN CONCENTRATIONS IN LUMBRICULUS VARIEGATUS TISSUES - CLOUGH ISLAND NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                         |       |                |                      | Reference           | e Areas            |                     | Sample Locations |                     |                   |                   |                   |                   |                   |                   |                   |                  |  |  |
|-------------------------|-------|----------------|----------------------|---------------------|--------------------|---------------------|------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|--|--|
|                         |       | Pre-test       | ND20-SLBREF1-SURFTOX | ND20-KBREF2-SURFTOX | ND20-LFREF3-SURFTO | ND20-SBREF4-SURFTOX | ND20-CL01-SURFTO | X ND20-CL02-SURFTOX | ND20-CL03-SURFTOX | ND20-CL04-SURFTOX | ND20-CL05-SURFTOX | ND20-CL06-SURFTOX | ND20-CL07-SURFTOX | ND20-CL08-SURFTOX | ND20-CL09-SURFTOX | ND20-CL10-SURFTO |  |  |
| Analyte                 | Units | %Lipids = 0.68 | %Lipids = 0.3        | %Lipids = 0.348     | %Lipids = 0.303    | %Lipids = 0.42      | %Lipids = 0.2    | %Lipids = 0.244     | %Lipids = 0.274   | %Lipids = 0.272   | %Lipids = 0.205   | %Lipids = 0.215   | %Lipids = 0.233   | %Lipids = 0.218   | %Lipids = 0.238   | %Lipids = 0.24   |  |  |
| METALS                  |       |                | ·                    |                     | -                  |                     |                  | -                   | ·                 |                   |                   |                   | -                 | -                 |                   |                  |  |  |
| MERCURY                 | mg/kg | < 0.0197       | < 0.02               | < 0.0205            | 0.029              | 0.027               | < 0.02           | < 0.0198            | < 0.0202          | < 0.021           | < 0.0205          | < 0.0203          | < 0.0205          | 0.0254            | < 0.0208          | < 0.0207         |  |  |
| DIOXINS                 |       |                | ·                    |                     |                    |                     |                  |                     |                   |                   |                   |                   |                   |                   |                   |                  |  |  |
| 2,3,7,8-TCDD            | pg/g  | <1.2           | 0.103                | 0.12                | 0.112              | 0.12                | 0.093            | 0.153               | 0.13              | 0.115             | <0.92             | 0.18 1,2,4        | 0.127             | 0.157             | 0.138             | <1.07            |  |  |
| 1,2,3,7,8-PECDD         | pg/g  | <6.03          | <6.73                | 0.437               | 0.3                | 0.65                | 0.22             | 0.257               | <6.16             | 0.273             | 0.247             | 0.272             | 0.27              | 0.362 1           | 0.23              | 0.205            |  |  |
| 1,2,3,4,7,8-HXCDD       | pg/g  | <6.03          | <6.73                | 0.27                | <6.8               | 0.42                | 0.19             | 0.24                | 0.12              | <15.2             | <4.6              | <4.83             | <5.2              | <4.88             | 0.206             | <5.43            |  |  |
| 1,2,3,6,7,8-HXCDD       | pg/g  | <6.03          | 0.637                | 0.603               | 0.618              | 0.983               | 0.71             | 0.977               | 0.5               | 0.86              | 0.47              | 0.503             | 0.49              | 0.642             | 0.61              | 0.36             |  |  |
| 1,2,3,7,8,9-HXCDD       | pg/g  | <6.03          | 0.38                 | 0.385               | 0.38               | 0.693               | 0.21             | 1.4                 | 0.22              | 0.26              | 0.31              | 0.36              | 0.32              | 0.247             | 0.28              | 0.18             |  |  |
| 1,2,3,4,6,7,8-HPCDD     | pg/g  | 0.167          | 4.17                 | 11.8                | 6.85               | 5.0                 | 2.54             | 6.25                | 2.06              | 4.15              | 3.18              | 3.1               | 3.5               | 5.42              | 3.66              | 1.9              |  |  |
| OCDD                    | pg/g  | <12            | 32.6                 | 141                 | 56.3               | 28.5                | 14.7             | 45.3                | 12.8              | 30.9              | 21.1              | 19.5              | 21.3              | 43.5              | 26.5              | 9.93             |  |  |
| 2,3,7,8-TCDF            | pg/g  | 0.149          | 0.387                | 0.423               | 0.493              | 0.7                 | 0.18             | 0.35                | 0.233             | 0.25              | 0.257             | 0.353             | 0.31              | 0.48              | 0.476             | 0.19             |  |  |
| 1,2,3,7,8-PECDF         | pg/g  | <6.03          | <6.73                | <7.83               | <6.8               | <9.4                | <15.4            | <17.3               | <6.16             | 0.088             | <4.6              | 0.215             | 0.21              | 0.27              | <5.4              | <5.43            |  |  |
| 2,3,4,7,8-PECDF         | pg/g  | <6.03          | 0.293                | 0.28                | 0.29               | 0.583               | 0.197            | 0.12                | 0.088             | 0.155             | 0.16              | 0.205             | 0.21              | 0.247             | 0.179             | 0.13             |  |  |
| 1,2,3,4,7,8-HXCDF       | pg/g  | <6.03          | 0.483                | 0.425               | 0.377              | 0.655               | 0.303            | 0.29                | <6.16             | 0.407             | 0.283             | 0.318             | 0.33              | 0.458             | 0.323             | 0.22             |  |  |
| 1,2,3,6,7,8-HXCDF       | pg/g  | 0.2            | 3.13                 | 2.55                | 3.9                | 5.17                | 1.27             | 1.75                | 0.978             | 1.35              | 1.43              | 1.63              | 1.8               | 2.44              | 1.96              | 1.17             |  |  |
| 2,3,4,6,7,8-HXCDF       | pg/g  | <6.03          | 0.15                 | <7.83               | <6.8               | 0.31                | <15.4            | <17.3               | <6.16             | <15.2             | <4.6              | <4.83             | <5.2              | <4.88             | <5.4              | <5.43            |  |  |
| 1,2,3,7,8,9-HXCDF       | pg/g  | <6.03          | <6.73                | <7.82               | <6.8               | <9.4                | <15.4            | <17.3               | <6.16             | <15.1             | <4.6              | <4.82             | <5.2              | <4.88             | <5.4              | <5.43            |  |  |
| 1,2,3,4,6,7,8-HPCDF     | pg/g  | <6.03          | 9.16                 | 5.55                | 8.33               | 15.0                | 6.56             | 9.67                | 4.43              | 9.11              | 5.42              | 5.75              | 5.83              | 7.92              | 5.9               | 3.6              |  |  |
| 1,2,3,4,7,8,9-HPCDF     | pg/g  | <6.03          | <6.73                | 0.25                | 0.19               | 0.31                | <15.4            | 0.27                | <6.16             | 0.2               | <4.6              | <4.83             | <5.2              | <4.88             | 0.14              | <5.43            |  |  |
| OCDF                    | pg/g  | <12            | 3.59                 | 4.48                | 4.15               | 4.3                 | <30.6            | 3.6                 | <12.4             | 8.32              | 3.76              | 2.63              | 4.16              | 3.9               | 2.54              | <10.7            |  |  |
| BIRD TEQ (ND=0)         | pg/g  | 0.106          | 1.29                 | 1.13                | 1.18               | 2.12                | 0.647            | 0.93                | 0.455             | 0.716             | 0.796             | 1.11              | 1.03              | 1.43              | 1.35              | 0.521            |  |  |
| BIRD TEQ (ND=1/2RL)     | pg/g  | 8.89           | 5.78                 | 7.93                | 7.13               | 7.57                | 13.4             | 18.7                | 7.51              | 18.8              | 3.94              | 3.31              | 4.04              | 3.88              | 2.29              | 4.28             |  |  |
| FISH TEQ (ND=0)         | pg/g  | 0.012          | 0.746                | 0.807               | 0.744              | 1.39                | 0.499            | 0.573               | 0.268             | 0.537             | 0.517             | 0.7               | 0.678             | 0.875             | 0.874             | 0.352            |  |  |
| FISH TEQ (ND=1/2RL)     | pg/g  | 8.04           | 6.58                 | 6.88                | 6.91               | 7.79                | 12.7             | 16.6                | 6.96              | 16.9              | 3.61              | 3.27              | 3.82              | 3.84              | 1.68              | 4.38             |  |  |
| WHO TEQ_2005 (ND=0)     | pg/g  | 0.018          | 0.842                | 0.975               | 0.871              | 1.44                | 0.546            | 0.782               | 0.33              | 0.626             | 0.611             | 0.789             | 0.791             | 1.0               | 0.898             | 0.387            |  |  |
| WHO TEQ_2005 (ND=1/2RL) | pg/g  | 6.73           | 5.26                 | 5.37                | 5.59               | 6.37                | 9.67             | 12.5                | 5.81              | 13.7              | 2.49              | 2.25              | 2.47              | 2.82              | 1.65              | 3.38             |  |  |
| WHO TEQ_2005 (ND=RL)    | pg/g  | 13.4           | 9.69                 | 9.77                | 10.3               | 11.3                | 18.8             | 24.2                | 11.3              | 26.8              | 4.37              | 3.7               | 4.15              | 4.63              | 2.4               | 6.38             |  |  |

The mean concentrations presented on the table are not lipid-normalized.

RL = Reporting limit

pg/g = Picogram(s) per gram

mg/kg = Milligram(s) per kilogram

µg/kg = Microgram(s) per kilogram

= Analyte concentration is significantly higher than the St. Louis Bay Reference (SLBREF1)

= Analyte concentration is significantly higher than the Kimballs Bay Reference (KBREF2)

= Analyte concentration is significantly higher than the Loons Foot Landing Reference (LFREF3)

= Analyte concentration is significantly higher than the Superior Bay Reference (SBREF4)

#### TABLE 5-6B LIPID-NORMALIZED MEAN CONCENTRATIONS IN *LUMBRICULUS VARIEGATUS* TISSUES - CLOUGH ISLAND NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                         |       |                |                      | Referenc            | e Areas             |                     |                   |                   |                   |                   | Sample            | Locations         |                   |                              |                   |                   |
|-------------------------|-------|----------------|----------------------|---------------------|---------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------|-------------------|-------------------|
|                         | ĺ     | Pre-test       | ND20-SLBREF1-SURFTOX | ND20-KBREF2-SURFTOX | ND20-LFREF3-SURFTOX | ND20-SBREF4-SURFTOX | ND20-CL01-SURFTOX | ND20-CL02-SURFTOX | ND20-CL03-SURFTOX | ND20-CL04-SURFTOX | ND20-CL05-SURFTOX | ND20-CL06-SURFTOX | ND20-CL07-SURFTOX | ND20-CL08-SURFTOX            | ND20-CL09-SURFTOX | ND20-CL10-SURFTOX |
| Analyte                 | Units | %Lipids = 0.68 | %Lipids = 0.3        | %Lipids = 0.348     | %Lipids = 0.303     | %Lipids = 0.42      | %Lipids = 0.2     | % Lipids = 0.244  | %Lipids = 0.274   | %Lipids = 0.272   | %Lipids = 0.205   | %Lipids = 0.215   | %Lipids = 0.233   | %Lipids = 0.218              | %Lipids = 0.238   | %Lipids = 0.24    |
| DIOXINS                 |       |                |                      |                     |                     | -                   | -                 | -                 |                   | -                 | -                 |                   | -                 | -                            |                   |                   |
| 2,3,7,8-TCDD            | pg/g  | <3.23          | 0.367                | 0.429               | 0.448               | 0.364               | 0.465             | 0.656             | 0.489             | 0.407             | <4.49             | 0.789 1,2,4       | 0.517             | 0.725 1,2,4                  | 0.587             | <4.46             |
| 1,2,3,7,8-PECDD         | pg/g  | <16.4          | <22.4                | 1.27                | 0.811               | 1.23                | 1.10              | 1.28              | <22.5             | 0.959             | 1.21              | 1.270             | 1.17              | 1.66 1.2,3,4                 | 1.02              | 0.797             |
| 1,2,3,4,7,8-HXCDD       | pg/g  | <16.4          | <22.4                | 0.964               | <22.5               | 1.27                | 0.950             | 1.20              | 0.444             | <59.4             | <22.4             | <22.4             | <22.4             | <22.4                        | 0.893             | <22.7             |
| 1,2,3,6,7,8-HXCDD       | pg/g  | <16.4          | 2.29                 | 1.81                | 2.02                | 2.52                | 3.55              | 4.07              | 1.82              | 3.07              | 2.31              | 2.30              | 2.09              | 2.92                         | 2.64              | 1.69              |
| 1,2,3,7,8,9-HXCDD       | pg/g  | <16.4          | 1.36                 | 1.24                | 1.81                | 1.66                | 1.05              | 6.76              | 0.815             | 0.813             | 1.55              | 1.57              | 1.33              | 1.12                         | 1.23              | 0.90              |
| 1,2,3,4,6,7,8-HPCDD     | pg/g  | 0.405          | 15.6                 | 39.1                | 23.7                | 12.4                | 12.7              | 27.3 <sup>4</sup> | 7.72              | 14.9              | 15.6              | 14.1              | 14.7              | 24.7 <sup>4</sup>            | 15.9              | 7.92              |
| OCDD                    | pg/g  | <32.3          | 121                  | 478                 | 196                 | 72.2                | 73.4              | 197 <sup>4</sup>  | 47.1              | 114               | 104               | 88.5              | 89.2              | 198 <sup>4</sup>             | 115               | 42.1              |
| 2,3,7,8-TCDF            | pg/g  | 0.218          | 1.38                 | 1.27                | 1.82                | 1.92                | 0.9               | 1.6               | 0.9               | 0.9               | 1.3               | 1.6               | 1.3               | 2.19                         | 2.10              | 0.9               |
| 1,2,3,7,8-PECDF         | pg/g  | <16.4          | <22.4                | <22.5               | <22.5               | <22.3               | <77               | <76.3             | <22.5             | 0.28              | <22.4             | 0.93              | 0.84              | 1.2 <sup>1,2,3,4</sup>       | <22.7             | <22.7             |
| 2,3,4,7,8-PECDF         | pg/g  | <16.4          | 0.976                | 1.000               | 0.820               | 1.410               | 0.98              | 0.60              | 0.36              | 0.56              | 0.80              | 0.87              | 0.84              | 1.10                         | 0.78              | 0.55              |
| 1,2,3,4,7,8-HXCDF       | pg/g  | <16.4          | 1.77                 | 1.3                 | 1.36                | 1.64                | 1.52              | 1.31              | <22.5             | 1.41              | 1.38              | 1.45              | 1.44              | <b>2.09</b> <sup>2,3,4</sup> | 1.42              | 0.96              |
| 1,2,3,6,7,8-HXCDF       | pg/g  | 0.133          | 11.4                 | 7.47                | 13.5                | 12.9                | 6.33              | 7.46              | 3.62              | 4.90              | 6.98              | 7.42              | 7.75              | 11.2                         | 8.56              | 4.90              |
| 2,3,4,6,7,8-HXCDF       | pg/g  | <16.4          | 0.625                | <22.5               | <22.5               | 0.939               | <77               | <76.3             | <22.5             | <59.4             | <22.4             | <22.4             | <22.4             | <22.4                        | <22.7             | <22.7             |
| 1,2,3,7,8,9-HXCDF       | pg/g  | <16.3          | <22.4                | <22.5               | <22.4               | <22.3               | <77               | <76.3             | <22.4             | <59.4             | <22.4             | <22.4             | <22.3             | <22.3                        | <22.6             | <22.6             |
| 1,2,3,4,6,7,8-HPCDF     | pg/g  | <16.4          | 33.7                 | 16.6                | 29.1                | 37.3                | 32.8              | 42.1 <sup>2</sup> | 16.3              | 32.4              | 26.7              | 26.2              | 24.5              | 36 <sup>2</sup>              | 26.5              | 15.0              |
| 1,2,3,4,7,8,9-HPCDF     | pg/g  | <16.4          | <22.4                | 0.893               | 0.655               | 0.939               | <77               | 1.4               | <22.5             | 0.7               | <22.4             | <22.4             | <22.4             | <22.4                        | 0.7               | <22.7             |
| OCDF                    | pg/g  | <32.3          | 13.5                 | 14.3                | 14.8                | 10.7                | <153              | 15.1              | <45.1             | 27.7              | 18.8              | 11.4              | 16.6              | 17.5                         | 11.7              | <44.6             |
| BIRD TEQ (ND=0)         | pg/g  | 0.15           | 4.59                 | 3.42                | 4.06                | 5.26                | 3.23              | 4.27              | 1.70              | 2.54              | 3.90              | 4.98              | 4.40              | 6.52                         | 5.92              | 2.21              |
| BIRD TEQ (ND=1/2RL)     | pg/g  | 24.4           | 19.5                 | 22.1                | 24.9                | 18.7                | 66.9              | 78.8              | 27.0              | 75.40             | 19.2              | 15.8              | 17.7              | 17.9                         | 9.86              | 18.4              |
| FISH TEQ (ND=0)         | pg/g  | 0.012          | 2.67                 | 2.44                | 2.51                | 3.38                | 2.49              | 2.61              | 1.0               | 1.91              | 2.53              | 3.18              | 2.89              | 4.0                          | 3.82              | 1.44              |
| FISH TEQ (ND=1/2RL)     | pg/g  | 22.0           | 22.0                 | 19.0                | 23.8                | 18.9                | 63.4              | 70.3              | 25.2              | 67.4              | 17.6              | 15.40             | 16.6              | 17.6                         | 7.20              | 18.9              |
| WHO TEQ_2005 (ND=0)     | pg/g  | 0.023          | 3.04                 | 2.97                | 2.98                | 3.50                | 2.73              | 3.54              | 1.23              | 2.23              | 3.0               | 3.59              | 3.37              | 4.57                         | 3.93              | 1.61              |
| WHO TEQ_2005 (ND=1/2RL) | pg/g  | 18.4           | 17.7                 | 15.0                | 19.2                | 15.9                | 48.4              | 52.1              | 21.1              | 55.0              | 12.1              | 10.6              | 10.7              | 12.9                         | 7.08              | 14.6              |
| WHO TEQ_2005 (ND=RL)    | pg/g  | 36.9           | 32.3                 | 27.1                | 35.4                | 28.2                | 94.0              | 101               | 40.9              | 108               | 21.3              | 17.6              | 18.1              | 21.3                         | 10.2              | 27.6              |

NOTES:

The mean concentrations presented on the table are lipid-normalized.

RL = Reporting limit

pg/g = Picogram(s) per gram

mg/kg = Milligram(s) per kilogram

μg/kg = Microgram(s) per kilogram

<sup>1</sup> = Analyte concentration is significantly higher than the St. Louis Bay Reference (SLBREF1)

= Analyte concentration is significantly higher than the Kimballs Bay Reference (KBREF2)

= Analyte concentration is significantly higher than the Loons Foot Landing Reference (LFREF3)

= Analyte concentration is significantly higher than the Superior Bay Reference (SBREF4)

Analyte concentration is significantly higher than the pre-test tissue concentration (p<0.05)

#### TABLE 6-1 SUMMARY OF FINDINGS NORTH END DISTRICT AND CLOUGH ISLAND SEDIMENT CHARACTERIZATION ST. LOUIS RIVER AREA OF CONCERN, SUPERIOR, WISCONSIN

|                       | Chironomus dilutu<br>TES     |                              |                              | Hyalella azteca 28-DA           | Y TOXICITY TESTING           |                              |     | sc     | QG Exceed | ance (Sur | face) <sup>2</sup> |     | Lumbriculus va | riegatus 28-DAY<br>TEST | BIOACCUMULATION | Microscopic Coal<br>Results |
|-----------------------|------------------------------|------------------------------|------------------------------|---------------------------------|------------------------------|------------------------------|-----|--------|-----------|-----------|--------------------|-----|----------------|-------------------------|-----------------|-----------------------------|
|                       | Significant <sup>1</sup> for | Significant <sup>1</sup> for | Significant <sup>1</sup> for | Significant <sup>1</sup> for UV | Significant <sup>1</sup> for | Significant <sup>1</sup> for |     | Metals |           |           | Organics           |     |                | Significance            | 1               |                             |
| Sample Identification | SURVIVAL                     | GROWTH                       | SURVIVAL                     | SURVIVAL                        | FECUNDITY                    | GROWTH                       | TEC | MEC    | PEC       | TEC       | MEC                | PEC | Mercury        | Dioxins <sup>3</sup>    | Organotin⁵      | %                           |
| ND20-SLBREF1-SURFTOX  | Reference                    | Reference                    | Reference                    | Reference                       | Reference                    | Reference                    | Х   | Х      | Х         | Х         |                    |     | No             | No                      | No              | Not detected                |
| ND20-KBREF2-SURFTOX   | Reference                    | Reference                    | Reference                    | Reference                       | Reference                    | Reference                    | Х   | Х      |           | Х         | Х                  | Х   | No             | No                      | No              | Not detected                |
| ND20-LFREF3-SURFTOX   | Reference                    | Reference                    | Reference                    | Reference                       | Reference                    | Reference                    |     |        |           | Х         |                    |     | No             | No                      | No              | 1                           |
| ND20-SBREF4-SURFTOX   | Reference                    | Reference                    | Reference                    | Reference                       | Reference                    | Reference                    | Х   |        |           | Х         | Х                  | Х   | No             | No                      | No              | Not detected                |
| Hallet Dock Slip      |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                |                         |                 |                             |
| ND20-HD01-SURFTOX     | Yes                          | No                           | No                           | No                              | Yes                          | No                           |     |        |           | Х         | Х                  |     | Not tested     | Not tested              | Not tested      | 11                          |
| ND20-HD03-SURFTOX     | Yes                          | No                           | Yes                          | Yes                             | Yes                          | No                           |     |        |           | х         |                    |     | Not tested     | Not tested              | Not tested      | 25                          |
| ND20-HD04-SURFTOX     | Yes                          | Yes                          | Yes                          | Yes                             | Yes                          | No                           |     |        |           | х         |                    |     | Not tested     | Not tested              | Not tested      | Not tested                  |
| Oil Barge Dock        |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                |                         |                 |                             |
| ND20-BP02-SURFTOX     | Yes                          | No                           | No                           | No                              | No                           | No                           |     |        |           | Х         | Х                  | Х   | Not tested     | Not tested              | Not tested      | 85                          |
| ND20-BP03-SURFTOX     | Yes                          | No                           | No                           | No                              | No                           | No                           |     |        |           | Х         | Х                  | Х   | Not tested     | Not tested              | Not tested      | 88                          |
| ND20-BP05-SURFTOX     | Yes                          | No                           | No                           | No                              | No                           | No                           | Х   | Х      | Х         | Х         | Х                  |     | Not tested     | Not tested              | Not tested      | 6                           |
| ND20-BP07-SURFTOX     | No                           | No                           | No                           | No                              | Yes                          | Yes                          |     |        |           |           |                    |     | Not tested     | Not tested              | Not tested      | 3                           |
| General Mills Slip    |                              | 1                            |                              |                                 |                              |                              |     |        | 1         |           |                    | 1   |                |                         |                 |                             |
| ND20-GM02-SURFTOX     | No                           | No                           | Yes                          | Yes                             | No                           | No                           | х   | Х      |           | Х         | Х                  | Х   | No             | Not tested              | Yes             | 7                           |
| ND20-GM04-SURFTOX     | No                           | No                           | Yes                          | Yes                             | No                           | No                           | х   | х      |           | х         | X                  | х   | No             | Not tested              | Yes             | 4                           |
| ND20-GM08-SURFTOX     | No                           | No                           | Yes                          | Yes                             | No                           | No                           | х   |        |           | х         |                    |     | No             | Not tested              | Yes             | 5                           |
| Tower Avenue Slip     |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                |                         |                 | -                           |
| ND20-TB01-SURFTOX     | Yes                          | Yes                          | Yes                          | Yes                             | Yes                          | Yes                          | х   | Х      |           | х         | Х                  |     | No             | Not tested              | No              | 2                           |
| ND20-TB03-SURFTOX     | Yes                          | Yes                          | Yes                          | Yes                             | No                           | Yes                          | X   | ~      |           | x         | X                  |     | No             | Not tested              | No              | 2                           |
| ND20-TB06-SURFTOX     | Yes                          | Yes                          | No                           | No                              | Yes                          | Yes                          | x   | х      | х         | X         |                    |     | No             | Not tested              | No              | 5                           |
| ND20-TB07-SURFTOX     | Yes                          | No                           | Yes                          | Yes                             | Yes                          | Yes                          | X   | X      | X         | x         | X                  |     | No             | Not tested              | No              | 4                           |
| ND20-TB10-SURFTOX     | Yes                          | No                           | Yes                          | Yes                             | Yes                          | Yes                          | x   | X      | ~         | X         | X                  |     | No             | Not tested              | No              | 1                           |
| ND20-TB10-SURFTOX     | Yes                          | NO                           | No                           | No                              | No                           | No                           | x   | X      |           | x         | ^                  |     | No             | Not tested              | No              | 2                           |
| ND20-TB10-SURFTOX     | No                           | No                           | No                           | No                              | No                           | No                           | x   | ^      |           | x         | -                  |     | No             | Not tested              | Yes             | 2                           |
| Clough Island         | INU                          | INU                          | INU                          | NU                              | INU                          | INU                          | ^   |        |           | ^         |                    |     | INU            | Not tested              | Tes             | 2                           |
| ND20-CL01-SURFTOX     | No                           | No                           | No                           | No                              | No.                          | V                            | х   | X      | Х         | V         |                    |     | No             | No                      | Not to stand    | Not tested                  |
| ND20-CL01-SURFICX     | NO                           | NO                           | NO                           | NO                              | Yes                          | Yes                          | ×   | X      | X         | х         |                    |     | No             | Some                    | Not tested      | Not tested                  |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                |                         |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | individual              |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | dioxin                  |                 |                             |
| ND20-CL02-SURFTOX     | No                           | No                           | Yes                          | Yes                             | Yes                          | Yes                          | X   |        |           | X         | X                  |     | No             | congeners               | Not tested      | Not tested                  |
| ND20-CL03-SURFTOX     | Yes                          | No                           | No                           | No                              | No                           | No                           | х   | Х      |           | х         | Х                  |     | No             | No                      | Not tested      | Not tested                  |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | Some                    |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | individual              |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | dioxin                  |                 |                             |
| ND20-CL04-SURFTOX     | No                           | No                           | No                           | Yes                             | No                           | No                           | Х   | Х      |           | Х         | Х                  |     | No             | congeners <sup>4</sup>  | Not tested      | Not tested                  |
| ND20-CL05-SURFTOX     | Yes                          | No                           | No                           | No                              | Yes                          | No                           | х   | Х      | Х         |           |                    |     | No             | No                      | Not tested      | Not tested                  |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | Some                    |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | individual              |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | dioxin                  |                 |                             |
| ND20-CL06-SURFTOX     | Yes                          | Yes                          | Yes                          | Yes                             | Yes                          | No                           | х   | х      |           | х         | х                  | х   | No             | congeners               | Not tested      | Not tested                  |
| ND20-CL07-SURFTOX     | Yes                          | No                           | Yes                          | Yes                             | No                           | No                           | х   |        |           | х         | Х                  | Х   | No             | No                      | Not tested      | Not tested                  |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | Some                    |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | individual              |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | dioxin                  |                 |                             |
| ND20-CL08-SURFTOX     | No                           | No                           | No                           | No                              | No                           | No                           | х   |        |           | х         | х                  | х   | No             | congeners               | Not tested      | Not tested                  |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | Some                    |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     | 1              | individual              |                 |                             |
|                       |                              |                              |                              |                                 |                              |                              |     |        |           |           |                    |     |                | dioxin                  |                 |                             |
| ND20-CL09-SURFTOX     | Yes                          | No                           | Yes                          | Yes                             | Yes                          | No                           | x   | х      | х         | x         | x                  |     | No             | congeners               | Not tested      | Not tested                  |
|                       | Yes                          | No                           | No                           | No                              | Yes                          | No                           |     |        |           | x         |                    |     | No             | No                      | Not tested      | Not tested                  |

Notes:

1. Statistically different from one or more reference locations.

2. Exceeds Consensus-Based Sediment Quality Guidelines (SQG), Recommendations for Use and Application, Publication No. WT-732 2003, WDNR December 2003

3. Bird, fish and WHO TEQ considered as well as individual dioxin compounds.

4. Non-lipid normalized results.

5. Yes if one or more organotins (monobutyltin, dibutyltin, tributyltin, tetra-n-butyltin) showed significance.

Shading indicates significant result or result exceeding screening criteria.

MEC = Midpoint Effect Concentration

PEC = Probable Effect Concentration

TEC = Threshold Effect Concentration

TEQ = Toxicity Equivalency Quotient

WHO = World Health Organization

# Table 6-2 Maximum Depth of PEC and MEC Exceedance Elevations for Volume<br/>CalculationsNorth End District and Clough Island Sediment Characterization<br/>St. Louis River Area of Concern, Superior, Wisconsin

| Sample Identification | PEC Exceedance Elevation<br>(IGLD85 feet) | MEC Exceedance Elevation<br>(IGLD85 feet) |  |  |  |  |
|-----------------------|-------------------------------------------|-------------------------------------------|--|--|--|--|
| Hallet Dock 8         |                                           | · · · · · · · · · · · · · · · · · · ·     |  |  |  |  |
| ND20-HD01             | 593.38                                    | 593.38                                    |  |  |  |  |
| ND20-HD02             | 582.60                                    | 582.60                                    |  |  |  |  |
| ND20-HD03             | 580.15                                    | 578.15                                    |  |  |  |  |
| ND20-HD04             | 581.61                                    | 578.61                                    |  |  |  |  |
| ND20-HD05             | 579.35                                    | 579.35                                    |  |  |  |  |
| ND20-HD06             | 576.60                                    | 575.60                                    |  |  |  |  |
| Oil Barge Dock        | -                                         | •                                         |  |  |  |  |
| ND20-BP01             | 601.00                                    | 587.00                                    |  |  |  |  |
| ND20-BP02             | 587.00                                    | 587.00                                    |  |  |  |  |
| ND20-BP03             | 585.00                                    | 583.00                                    |  |  |  |  |
| ND20-BP04             | 578.32                                    | 578.32                                    |  |  |  |  |
| ND20-BP05             | 584.53                                    | 584.53                                    |  |  |  |  |
| ND20-BP06             | 581.76                                    | 581.76                                    |  |  |  |  |
| ND20-BP07             | 583.92                                    | 582.22                                    |  |  |  |  |
| ND20-BP08             | 581.53                                    | 581.53                                    |  |  |  |  |
| ND20-BP09             | 582.00                                    | 570.30                                    |  |  |  |  |
| ND20-BP10             | 581.36                                    | 581.36                                    |  |  |  |  |
| ND20-BP11             | 580.40                                    | 580.40                                    |  |  |  |  |
| ND20-BP12             | 579.00                                    | 577.30                                    |  |  |  |  |
| ND20-BP13             | 580.30                                    | 574.30                                    |  |  |  |  |
| ND20-BP14             | 582.90                                    | 582.90                                    |  |  |  |  |
| ND20-BP15             | 595.28                                    | 594.98                                    |  |  |  |  |
| ND20-BP16             | 579.59                                    | 579.59                                    |  |  |  |  |
| ND20-BP17             | 581.87                                    | 581.87                                    |  |  |  |  |
| SW15-SLB03            | 583.73                                    | 583.73                                    |  |  |  |  |
| General Mills Slip    |                                           |                                           |  |  |  |  |
| ND20-GM01             | 584.75                                    | 584.75                                    |  |  |  |  |
| ND20-GM02             | 577.24                                    | 577.24                                    |  |  |  |  |
| ND20-GM03             | 575.99                                    | 575.99                                    |  |  |  |  |
| ND20-GM04             | 577.82                                    | 577.82                                    |  |  |  |  |
| ND20-GM05             | 577.70                                    | 574.00                                    |  |  |  |  |
| ND20-GM06             | 574.15                                    | 574.15                                    |  |  |  |  |
| ND20-GM07             | 575.00                                    | 575.00                                    |  |  |  |  |
| ND20-GM08             | 579.15                                    | 573.15                                    |  |  |  |  |
| ND20-GM09             | 568.83                                    | 568.83                                    |  |  |  |  |
| ND20-GM10             | 575.44                                    | 575.44                                    |  |  |  |  |
| ND20-GM11             | 565.00                                    | 565.00                                    |  |  |  |  |
| ND20-GM12             | 571.20                                    | 571.20                                    |  |  |  |  |
| ND20-GM13             | 571.61                                    | 571.61                                    |  |  |  |  |
| ND20-GM14             | 580.56                                    | 578.56                                    |  |  |  |  |

| Sample Identification | PEC Exceedance Elevation<br>(IGLD85 feet) | MEC Exceedance Elevation<br>(IGLD85 feet) |
|-----------------------|-------------------------------------------|-------------------------------------------|
| SW15-SLB05            | 578.67                                    | 578.67                                    |
| SW15-SLB06            | 583.46                                    | 577.46                                    |
| Tower Avenue          |                                           |                                           |
| ND20-TB01             | 579.00                                    | 579.00                                    |
| ND20-TB02             | 585.00                                    | 585.00                                    |
| ND20-TB03             | 581.47                                    | 581.47                                    |
| ND20-TB04             | 585.75                                    | 585.75                                    |
| ND20-TB05             | 581.51                                    | 581.51                                    |
| ND20-TB06             | 580.98                                    | 578.98                                    |
| ND20-TB07             | 580.34                                    | 580.34                                    |
| ND20-TB08             | 577.19                                    | 577.19                                    |
| ND20-TB09             | 578.40                                    | 574.40                                    |
| ND20-TB10             | 582.11                                    | 581.81                                    |
| ND20-TB11             | 577.07                                    | 573.07                                    |
| ND20-TB12             | 580.14                                    | 579.84                                    |
| ND20-TB13             | 575.86                                    | 572.86                                    |
| ND20-TB14             | 576.88                                    | 574.88                                    |
| ND20-TB15             | 567.82                                    | 565.52                                    |
| ND20-TB16             | 574.58                                    | 574.58                                    |
| ND20-TB17             | 569.38                                    | 569.38                                    |
| ND20-TB18             | 576.84                                    | 574.84                                    |
| ND20-TB19             | 572.05                                    | 572.05                                    |
| ND20-TB20             | 585.62                                    | 585.62                                    |
| ND20-TB21             | 568.31                                    | 568.31                                    |
| ND20-TB22             | 570.57                                    | 570.57                                    |