

1 North Commerce Park Dr. Suite 130 Cincinnati, OH 45215-3187

T (513) 898-9430

www.sme-usa.com

April 23, 2020

Ms. Terese Van Donsel United States Environmental Protection Agency (USEPA) Region 5

Mail Code: SR-6J

77 West Jackson Boulevard Chicago, Illinois 60604-3507

Via Email: vandonsel.terese@epa.gov

RE: Serial Letter #61

Sheboygan River and Harbor Superfund Site – EPA Review of Remedial

Action Plan for Tecumseh Falls and Maryland Avenue Sites

SME Project No. 069638.00.051.000

Dear Ms. Van Donsel:

SME is providing the following information in response to your letter of March 25, 2020. We appreciate your expeditious review of the RAP for the Tecumseh Falls and Maryland Avenue sites.

USEPA Comment 1: Tecumseh – Given the amount of time that this project has been under study, it is concerning that such significant contamination has been found at the Tecumseh facility. EPA requests that Pollution Risk Services (PRS) undertake a Data Gap Analysis to assess the adequacy of past investigations. As part of this study, PRS shall conduct a detailed evaluation of past surface and subsurface sampling and outline the horizontal and vertical extent of any soil removal actions. Areas not previously sampled or insufficiently sampled shall be highlighted for discussion.

SME Response: The Data Gap Analysis report is enclosed. In addition to addressing comments provided in your letter, we have incorporated pertinent information we have gained from our conversations during the analysis.

USEPA Comment 2: Tecumseh – Utilizing the results of the Tecumseh Falls Data Gap Analysis, EPA requests that PRS design a sampling program to investigate those areas where surface and subsurface soil data are not available or are inadequate. The goal of this effort is to make sure that all parties have a complete understanding of residual contamination so that the follow-up remedial action can be appropriately scoped. In other words, we want the follow-up remedial work to be a "one and done" action.

The primary focus of the investigation shall be Polychlorinated Biphenyls (PCBs); however, recommendations for Polycyclic Aromatic Hydrocarbon (PAH) sampling shall also be proposed based on historic aerials and information about past plant operations.

PRS shall use the Visual Sample Program (VSP) or a technical equivalent to develop a statistically defensible Sampling and Analysis Plan (SAP) for the areas of the property that have not been sufficiently investigated. The SAP shall clearly identify the statistical framework and decisions underpinning the sampling approach.

SME Response: A SAP is being prepared and will be submitted within the next 10 days. We have used VSP to help in the design.

USEPA Comment 3: Tecumseh – EPA guidance on Principal Threat Wastes (PTW) generally sets the PTW threshold for PCBs at 500 parts per million (ppm) for industrial areas and 100 ppm for residential areas. Given the location (adjacent to the river) and the anticipated future recreational use of the property, EPA believes that the 100 ppm PTW threshold is appropriate for the Tecumseh location. While the recent groundwater data has not been problematic, the PTW guidance is very clear that the PTW determination is not just based on mobility, but also on toxicity. See also:

a. Section K in the 2000 Record of Decision.

b. From the definition of PTW in OSWER Directive 9380.3-06FS (page 2)

"Principal threat wastes are those source materials considered to be highly toxic or highly mobile that generally cannot be reliably contained or would present a significant risk to human health or the environment should exposure occur. They include liquids and other highly mobile materials (e.g., solvents) or materials having high concentrations of toxic compounds. No "threshold level" of toxicity/risk has been established to equate to "principal threat"." However, where toxicity and mobility of source material combine to pose a potential risk of 10⁻³ or greater, generally treatment alternatives should be evaluated."

c. From Highlight 3 of OSWER Directive 9380.3-06FS (in the box on page 2).

"Wastes that generally will be considered principal threats include, but are not limited to... (3rd bullet) Highly-toxic source material – buried drummed non-liquid wastes, buried tanks containing non-liquid wastes, or soils containing significant concentrations of highly toxic materials".

d. From the Executive Summary in OSWER Directive 9355.4-01 FS (page iv)

"The Superfund program expectations should be considered in developing appropriate response options for the identified area over which some action must take place. In particular, the expectation that principal threats at the site should be treated, whenever practicable, and that consideration should be given to containment of low-threat material, forms the basis for assembling alternatives. Principal threats will generally include material contaminated at concentrations exceeding 100 ppm for sites in residential areas and concentrations exceeding 500 ppm for sites in industrial areas reflecting concentrations that are 1 to 2 orders of magnitude higher than the preliminary remediation goals. Where concentrations are below 100 ppm, treatment is less likely to be practicable unless the volume of contaminated material is relatively low."

SME Response: Since most of the impact recently identified that exceeds this threshold is found in the near surface soil which would have to be removed to facilitate the engineering control, we are not objecting to the threshold. However, considering some of the impact greater than 100 ppm is below the point of compliance and the cap will eliminate exposure, we propose that any impact below 4 feet that is less than 500 ppm be allowed to remain in place.

We will revise the RAP as appropriate after the other work discussed in this letter is completed.

As discussed in the Institutional Control, Implementation, and Management Plan, the former building slab/dewatering pad acts as an engineering control for the soil impact beneath it. SME will evaluate the integrity of the control and provide feedback to the agency.

USEPA Comment 4: Tecumseh – Sections 5.3 and 5.4 – There is a typo in the cost for soil removal in Sections 5.3 and 5.4 making it unclear whether the cost is estimated at \$10M or \$1M. When we get to the point of reassessing costs (after the follow-up investigation), please correct.

SME Response: The RAP will be revised, as needed, after the investigation.

USEPA Comment 5: Tecumseh – Table 1 – When we get to the point of reassessing costs (after the follow-up investigation), please also provide detailed information to support the soil excavation cost estimate. \$10M seems very high given the current soil volume estimate.

SME Response: We will provide detailed information. The estimate was based on removing all of the impacted soil. Based on the concentrations, we assumed all soil removed would be considered to have greater than 500 ppm PCBs. We used the cost of the removal, transportation, and disposal of the soil removed by PRS in 2005 adjusted for inflation. A remedial company provided the estimated mob costs and the oversight and management costs were based on the anticipated duration of the removal action. Of course, a contingency factor was applied to the costs for both remedial scenarios.

USEPA Comment 6: Tecumseh – Ultimately, once additional data is available to confirm that we fully understand the extent of contamination on the property, EPA would like to see a hybrid (excavation / containment) alternative evaluated for PCB-contaminated soil. The hybrid alternative would remove PTW but allow for containment of lesser-contaminated soils. Whether this is practical and a cost saving measure will depend on the distribution of contamination.

SME Response: We believe the approach is cheaper than removing all of the impacted soil. It also reduces exposure to the public and the potential for accidental releases during transportation.

USEPA Comment 7: Tecumseh – PRS is requesting a modification of the PAH cleanup standards. Changes in cleanup standards will need to be selected in a new decision document. This request will not be evaluated until EPA and the Wisconsin Department of Natural Resources (WDNR) are confident that the full extent and significance of the contamination are understood.

SME Response: We were not proposing a change in standards but correcting a mistake. We had used the 10⁻⁶ carcinogenic Regional Screening Level (RSL) rather than 10⁻⁵. The 10⁻⁵ risk level is found in the National Contingency Plan (NCP), Section 300.430(e)(2) where it falls within the recommended risk range. OSWER Directive 9355.0-30 specifically lists 10⁻⁵ when providing instructions to USEPA staff. We note that the states within Region V use 10⁻⁵ risk for calculating direct contact standards. The 0.5 ppm sediment SWAC goal is based on a 10⁻⁴ risk according to the ROD. We believe the 10⁻⁵ risk is applicable to PAHs.

EPA Comment 8: Tecumseh – EPA does not agree with the scoring of the removal and containment alternatives, and we would like to revisit the alternatives evaluation once a full data set is available for the property.

SME Response: The scoring can be revised once more information is obtained. SME requests specific input on the differences the EPA has from what was used.

USEPA Comment 9: Maryland Ave – Whatever is decided regarding the PAH contamination at the Tecumseh Falls facility, EPA will need to issue either a ROD Amendment of an ESD to memorialize the selection of cleanup goals and the remedial action.

SME Response: We note the comment.

USEPA Comment 10: Maryland Ave – Section 3.2 – Did PRS utilize data from all intervals for the calculation of the Exposure Point Concentration? If yes, it is inappropriate to average in subsurface data with surface because some of the potential exposure scenarios will be primarily limited to contact with surface soils. What is presented is not a "reasonable estimate of the concentration over time" when looking at several potentially applicable exposure scenarios.

SME Response: SME followed WDNR guidelines for calculating the concentration within the point of compliance due to the insistence of WDNR on our conducting an investigation of the dewatering sites in accordance with NR700 requirements. As discussed in Section 3.2 of the 2018 RAP, SME did not use the

average but the 95% UCL of the sample results within the POC based on only using the results above the reporting limit. Using the non-detects does not significantly change the Exposure Point Concentration (EPC). Regardless of EPC used, they are below the carcinogenic risk of 10⁻⁵ and THQ of 1.0 RSLs. SME followed guidance and industry practices when calculating the representative concentration within a POC.

Please note, SME found little evidence of impact from dewatering activities at the Maryland Avenue site. There were very few detections of PCBs. None of the impact was in an area affected by the dewatering bag release. Other than the higher levels of PAHs found around the Waste Water Treatment Plant containment system¹, there were only very low levels of PAHs around the dewatering pad or in the area of the release northeast of the pad. The chemicals found at the Maryland Avenue site appear to be from the historical use of the site and not from a Superfund related release. A Phase I Environmental Site Assessment of the site showed the historical occupants were the American Folding Bed Company and Ellinger's Woodworking. One area of elevated PAHs was formerly occupied by railroad tracks and the other area was in the heart of the former manufacturing area.

USEPA Comment 11: Maryland Ave – Section 3.2, Sample Depth Interval data – It appears that a significant reduction in the contaminant load at the property could have been effectuated by the removal of the top 6 inches of soil. However, based on recent discussions, it seems that the property has since been filled and regraded. Please provide EPA with detailed information regarding all recent excavation, disposal, filling, and regrading actions at the property.

SME Response: SME provided a report of the Maryland Avenue site restoration activities in Serial Letter 56 dated July 11, 2019 which I have recently forwarded to you. I believe the report provides the information you seek. Figure 1 shows the cut and fill depths compared to sample locations of concern. Of the four samples that exceeded the 10⁻⁶ Regional Screening Levels, the impacted soil at two locations (B1 and B11W) are now encountered at a depth to 3 to 4 feet below ground surface (bgs). The impacted soil at the two other locations was removed during grading and buried deeper at the Property. None of the PAHs that exceeded the 10⁻⁶ RSL exceeded the 10⁻⁵ RSL.

Please don't hesitate to contact me at (513) 319-8918 if you have any questions. Thank you for your help, it is greatly appreciated.

Sincerely,

SME

Aaron Lammers, E.I.T. Senior Staff Engineer

Keith Egan, CP Chief Consultant

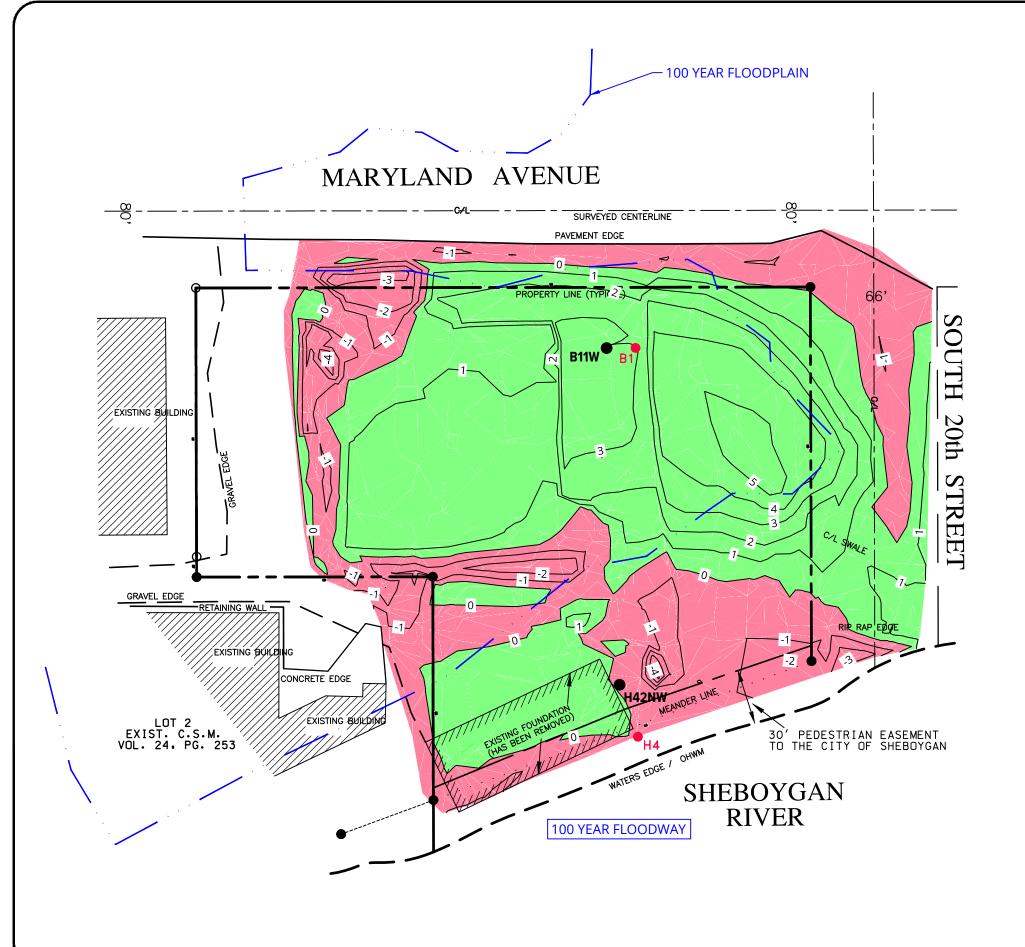
Attachments: Figure No. 1

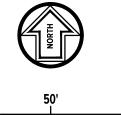
Data Gap Analysis Report

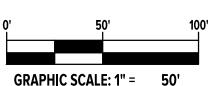
Distribution: Mr. Richard Nagle, USEPA via email (nagle.richard@epa.gov)

Ms. Jennifer Elkins, USEPA via email (elkins.jennifer@epa.gov)

Mr. Jason Smith, Tecumseh Products Company via email (Jason.smith@tecumseh.com)


Ms. Debbie McMillan, PRS via email (dmcmillan@grhdevelopment.com)
Mr. Tom Wentland, Wisconsin Department of Natural Resources via email


(Thomas.wentland@wisconsin.gov)


Mr. Peter Johnson, Johnson-Wright via email (pjohnson@johnsonwright.net)

¹ The containment walls were approximately 3 feet high and there were no releases from the WWTP tanks into this containment system during operation.

LEGEND

APPR PROF

APPROXIMATE PROPERTY BOUNDARY FEMA FLOOD PLAIN AT ELEVATION 586.7

AREA CUT - AREAS BELOW EXISTING GRADE AREA FILL - AREAS ABOVE EXISTING GRADE

ORIGINAL SOIL SAMPLE LOCATION

STEP OUT SAMPLE LOCATION

NOTE:

- EXISTING DRAWING INFORMATION TAKEN FROM TOPOGRAPHIC SURVEY DATED
 5-28-15, PREPARED BY APLULLOFF LAND SURVEY, LLC.
- 2. FEMA FLOODPLAIN LINE TAKEN FROM FEMA FLODPLAIN MAP NUMBER 55117C0351F, EFFECTIVE DATE APRIL 2, 2009.
- 3. SURFACE COMPARISON SHOWN WAS CREATED USING THE EXISTING DRAWING INFORMATION AND AN AS-BUILT SURVEY PROVIDED BY WAGNER EXCAVATING. DRAWING TITLED DEWATERING AREA SME, DATED 6/26/19.
- I. SURFACE COMPARISON IS FOR VISUAL REPRESENTATION ONLY. SOME AREAS HAVE BEEN INTERPRETED BASED ON EXISTING, AND AS-BUILT SURFACE INFORMATION.

Project

SHEBOYGAN RIVER SUPERFUND SITE

Project Location

SHEBOYGAN COUNTY, WISCONSIN

Sheet Name

PROPOSED GRADING VOLUME WITH FEMA FLOODPLAIN OUTLINE

No.	Revision Date
Date	04-09-2020
CADE	SRP
Desig	ner KE
Scale	1" = 50'
Proje	^{ct} 069638.00.051
Figur	e No.
	1
	NG NOTE: SCALE DEPICTED IS MEANT FOR 11" X 17" WILL SCALE INCORRECTLY IF PRINTED ON ANY

1

1 North Commerce Park Dr. Suite 130 Cincinnati, OH 45215-3187

T (513) 898-9430

www.sme-usa.com

April 23, 2020

Ms. Terese Van Donsel United States Environmental Protection Agency (USEPA) Region 5

Mail Code: SR-6J

77 West Jackson Boulevard Chicago, Illinois 60604-3507

Via Email: vandonsel.terese@epa.gov

RE: SME Serial Letter #62

Sheboygan River and Harbor Superfund Site

Tecumseh Products Company Site, Sheboygan Falls, WI

SME Project No. 069638.00.051

Dear Ms. Van Donsel:

Pursuant to your request, SME has reviewed readily available historical information and historical assessment reports for the former Tecumseh Products Company Site (Site, Figure 1). The objective of our review was to evaluate the completeness of the historical investigations in assessing soil on the Site with a primary focus on the presence of polychlorinated biphenyls (PCBs). Your request was initiated by SME's discovery of PCB-impacted soil located north, east and northeast of the foundation slab of the former manufacturing building.

HISTORICAL INFORMATION REVIEW

We reviewed historical information from the following readily available historical information sources:

- Previous Site Assessment Reports
- Aerial Photographs
- Historical Fire Insurance Maps

HISTORICAL BACKGROUND INFORMATION FROM HISTORICAL SITE ASSESSMENT REPORTS

The original manufacturing facility on the Site was constructed by the Diecast Corporation in 1957. A fire in the plant in 1959 destroyed portions of the building. The fire in the building was caused due to the use of non-fire retardant hydraulic oil in foundry equipment. In 1960, hydraulic oil in equipment on the Site was replaced with PCB-containing, fire-retardant hydraulic oil. Early in the facility operations, spent oil absorbent materials were reportedly incinerated in a burn pit on the Site and later disposed on the Site. Absorbent materials stored in on-site pits were also removed and disposed at the Sheboygan Falls demolition fill landfill (located in the area of the east-adjoining Rochester Park). During plant expansion, some contaminated soil was moved to fill low spots on the Site and used for flood control along the Sheboygan River. Portions of the plant expansion were also reportedly constructed on areas of contaminated soil.

Diecast Corporation owned and operated the manufacturing facility until 1966, when the Tecumseh Products Company acquired the facility and continued die casting operations. In 1972, hydraulic oil in equipment on the Site was replaced with non-PCB-containing, water-based hydraulic oil.

AERIAL PHOTOGRAPHS

We reviewed aerial photographs, obtained from Historical Information Gathers (HIG), dated 1941, 1950, 1952, 1962, 1967, 1973, 1978, 1981, 1992, 2005, 2008, 2013 and 2018. The aerial photographs are included in the Attachments. A summary of our review is provided below.

	AERIAL PHOTOGRAPH SUMMARY
YEAR(S)	COMMENTS
	Site: The Site was undeveloped grass-covered and wooded land.
1941, 1950, 1952	Off-site: The area to the east of the Site was developed with a wastewater treatment plant (WWTP) prior to 1941. By 1950, garden plots were present in the area east of the Site and south of the WWTP. By 1950, ground disturbances indicative of potential landfilling activities were present to the east and northeast of the Site and north of the WWTP. This area is consistent with the Sheboygan Falls demolition landfill noted in other historical sources.
	Site: The central and northern portion of the Site was developed with a manufacturing facility. The western portion of the site was a parking area. The eastern portion was a roadway to the east-adjoining WWTP and garden plots on the east-adjoining site extended onto the Site.
1962	Wooded area areas are present along the Sheboygan River along the southern and western portions of the Site.
	Off-site: The WWTP remained present and the garden plots were present in the area east of the Site and south of the WWTP. Ground disturbances indicative of potential landfilling activities were present to the east of the Site and north and east of the WWTP. This area is consistent with the Sheboygan Falls demolition landfill noted in other historical sources.
	Site: The central and northern portions of the Site were developed with the manufacturing facility. The western portion of the Site was a parking area. The manufacturing facility had been expanded on the southern and northwestern sides. The eastern portion of the Site was cleared and may have been regraded.
1967	Wooded areas are present along the Sheboygan River which borders the southern and western portions of the Site.
	Off-site: The WWTP remained present and the garden plots were present in the area east of the Site and south of the WWTP. Ground disturbances indicative of potential landfilling activities were present to the east of the Site and north and east of the WWTP. This area is consistent with the Sheboygan Falls demolition landfill noted in other historical sources.

	AERIAL PHOTOGRAPH SUMMARY
YEAR(S)	COMMENTS
	Site: The central and northern portions of the Site were developed with the manufacturing facility. The western portion of the Site was a parking area. The eastern portion of the Site was cleared and appeared to be used for storage.
1973,	Wooded area areas are present along the Sheboygan River which borders the southern and western portions of the Site.
1978, 1981	Off-site: In 1973, the WWTP remained present and the garden plots were present in the area east of the Site and south of the WWTP. The WWTP, the garden plot area and the Sheboygan Falls demolition landfill were no longer present by 1978. The former WWTP and garden plot areas appeared to be in the process of being regraded. The area of the former demolition landfill was replaced with a tennis court and athletic field (now the location of Rochester Park).
1992	Site: The central and northern portions of the Site were developed with the manufacturing facility. The western portion of the Site was a parking area. The manufacturing facility was expanded and covered the majority of the eastern portion of the Site. The remaining area of the eastern portion of the Site appeared to be used for loading/unloading and storage. A Sediment Management Facility (SMF) was present in the western portion of the Site and the Confined Treatment Facility (CFT) was present in the southwestern portion of the Site.
	Wooded area areas are present along the Sheboygan River which borders the southern and western portions of the Site.
	Off-site: The park area was expanded south and covered the area east of the Site.
0005	Site: The manufacturing building was no longer present on the Site. The building was removed; however, the building floor slabs and the paved parking areas remained. The SMF in the western portion was no longer present but the CTF remained present.
2005	Wooded areas are present along the Sheboygan River which borders southern and western portions of the Site.
	Off-site: The athletic fields and park covered the area east of the Site.
2008,	Site: The central portion of the former building floor slab was repaved by 2008 and was used for sediment remedial activities being conducted on the Sheboygan River.
2013,	The paved parking area in the western portion of the Site and the CTF remained present.
2018	Off-site: The athletic fields and park covered the area east of the Site.

FIRE INSURANCE MAPS

We reviewed fire insurance maps for the area of the Site. Fire insurance maps were available for the Sheboygan Falls area for the years 1884, 1887, 1891, 1903, 1910, 1918, 1921, 1922, 1938, 1940, 1941, 1943, and 1955. However, no fire insurance map coverage was available for the Site which is typical for areas without structures and consistent with the historical aerials and the reported construction of the facility in 1957.

SUMMARY OF HISTORICAL INFORMATION

The original manufacturing facility on the Site was constructed in 1957 and was located on the central portion of the Site with parking areas west of the building. In 1960, hydraulic oil in equipment on the Site was replaced with PCB-containing, fire-retardant hydraulic oil. In 1972, hydraulic oil in equipment on the

Site was replaced with non-PCB-containing, water-based hydraulic oil. The facility was expanded to the south and east sometime between 1962 and 1967 and again sometime between 1987 and 1992. The SMF and CTF were present on the Site by 1992. The SMF was removed by 2005 and the CTF remains on the Site. In 2003, the facility closed and by 2005 the above grade structure of the building was removed but the floor slabs remained. The central portion of the building floor slab was used during the sediment dewatering operations associated with the Sheboygan River cleanup. The central area was paved with asphalt and an asphalt dike was constructed around the paved area for containment of water prior to treatment and discharge to the river.

HISTORICAL SITE ASSESSMENTS REVIEW

Assessments were completed on the Site from 1978 through 1999. The emphasis of these investigations was to identify the "preferential pathways" for PCBs to enter the Sheboygan River. Only the 1999 investigation included samples outside of the areas adjoining the river. Remedial excavations were conducted in 1978 and 2004. Assessment and remedial excavations were primarily focused in the southern portion of the Site and two areas in the eastern portion of the Site. Brief summaries of the assessments and remedial excavations are discussed in the following sections.

1978 ASSESSMENT SUMMARY

Soil sampling was completed in 1978 on the southern portion of the Site and between the former building and the Sheboygan River. In September 1978, forty-eight soil samples (discrete and composite) were collected from the upper 3 feet of soil from the flood control berm located along the Sheboygan River. Some sampling locations were collected and analyzed as discrete samples from one sampling location; however, many of the samples were collected individually but then composited with the sample from the opposite side of the flood control berm and analyzed as a composite sample. The soil samples were analyzed for PCBs. PCB concentrations ranged from 0.44 ppm to 32,011 ppm.

Also in September 1978, eighty soil samples (discrete and composite) were collected from a grid pattern across the southern portion of the southern portion of the Site and between the former building and the flood control berm. Some sampling locations were analyzed as discrete samples from one sampling location; however, many of the samples were collected individually but then composited in grid pairs and analyzed as a composite sample. Soil sample names were a combination of the row number and column number based on the established grid pattern. The soil samples were analyzed for PCBs. PCB concentrations ranged from 1.1 ppm to 10,928 ppm.

In December 1978, forty-two soil samples were collected from select locations within the previous grid pattern at 0.5-foot intervals within the upper 3.5 feet of soil with the majority of the samples being collected from the 1-foot to 1.5-foot interval. Each soil sample was a collected and analyzed as a discrete sample. Soil sample names were a combination of the row number and column number based on the established grid pattern. The soil samples were analyzed for PCBs. PCB concentrations ranged from non-detect (less than 1 part per million (ppm)) to 10,263 ppm.

PCB-impacted soil was identified on the south portion of the Site between the building and the Sheboygan River including the flood control berm. Four monitoring wells were installed on the Site and PCBs were also identified in groundwater samples collected from these monitoring wells.

Two soil samples were collected from the ground surface of the southeast adjoining portion of Rochester Park. PCBs were measured at concentrations of 4 and 8 ppm in the soil samples. Four fruit and vegetable samples were also collected from the community garden. PCBs were measured at concentrations from non-detect to 0.123 ppm in the fruit and vegetable samples. The locations of these off-site samples were not documented.

Results of the 1978 soil sampling activities are shown on Figure 2A (September 1978) and Figure 2B (December 1978). The 1978 assessment data is tabulated in Table 1. Excerpts of the historical reports are also included in the Attachments.

1978/1979 REMEDIAL SOIL EXCAVATION SUMMARY

Limited remedial excavation activities were conducted on the Site in July 1978. Approximately 74 cubic yards of PCB-contaminated soil was removed from the southern portion of the Site. Expanded remedial excavation activities were conducted on the Site in October and November of 1979 and approximately 6,681 cubic yards of PCB-contaminated soil was removed from the southern portion of the Site and in the flood control dike with a cleanup goal of 50 ppm. The areas of impacted soil removal with varying excavation depths were depicted on the historical figures included in Attachment B. The areas of the 1979 remedial excavations are shown on Figure 8A.

1999 ASSESSMENT SUMMARY

Blasland, Bouck & Lee, Inc. (BB&L) conducted an assessment in 1999 which was documented in a November 1999 External Source Assessment Technical Memorandum. The assessment included evaluation of potential preferential pathways on the Site; soil sampling activities; and groundwater monitoring well installation and sampling. Eleven hand auger borings and eighteen soil borings were completed on the Site. Three existing monitoring wells on the Site were abandoned and replaced, four new monitoring wells were installed on the Site and one new monitoring well was installed on the north side of Cleveland Street. Sixty-six soil borings were also completed in a grid pattern on the southern portion of the Site. The soil samples were collected at two foot intervals from the borings and the samples were composited such that sets of two to four grid locations with the same sample depths were composited into a single composite sample.

Soil samples were collected from each hand auger boring, each soil boring and each new monitoring well borehole. Groundwater samples were collected from the ten (existing, replaced and new) monitoring wells. Soil and groundwater samples were analyzed for PCBs.

PCB-impacted soil was identified below the building floor; in the area east of the building; in the area southwest of the building; and in the area south of the building up to the Sheboygan River including on the flood control berm. PCBs were not detected in the groundwater samples. Soil sample locations from soil boring and monitoring well installation activities on the Site in 1999 are shown on Figure 3A. Riverbank sample locations are shown on Figure 3A. Composite sample locations from 1999 are shown on Figure 3B.

Assessment activities included sampling of the Sheboygan riverbank along the Site and along the riverbank downstream of the Site. The assessment also included limited sampling (3 surficial soil samples) on the east-adjoining site, near the Site boundary, and several samples at the location of the east-adjoining wastewater treatment plant discharge to the Sheboygan River. Soil samples were analyzed for PCBs. The samples collected on the riverbank and on the east-adjoining site detected low levels (less than 4 ppm) of PCBs. Soil sample locations on the east-adjoining site in 1999 are shown on Figure 6. The 1999 assessment data is tabulated in Table 1.

Excerpts of the 1999 Technical Memorandum are included in the Attachments.

2004 REMEDIAL SOIL EXCAVATION ACTIVITIES

In accordance with the Upper River Phase I and II Remedial Action Work Plan, excavation activities were conducted at the Site in September and October 2004 by PRS. Approximately 5,440 tons of PCB-impacted soil was removed from the following preferential pathway areas:

- the "source area" noted south and east of the former building;
- the former flood control berm and riverbank;
- a preferential pathway located south of the former building;
- a preferential pathway located southwest of the former building; and
- a trench associated with installation of a groundwater monitoring/ interceptor trench (GMIT).

Confirmatory soil samples were collected from each of the excavated areas with the exception of two areas excavated within the eastern portion of the former building. These two areas were reportedly excavated to the depth of encountered groundwater.

The plant source (PS) areas were excavated to a depth of 1 foot bgs. Twenty-seven confirmatory soil samples were collected from the PS area as discrete samples (14 sidewall and floor samples primarily in the western portion of the Site) or composite samples (13 floor samples) and were analyzed for PCBs. The former flood control berm and riverbank (RB) area was excavated to a depth of 1 foot bgs. Thirty-five discrete confirmatory soil samples were collected from the RB area and were analyzed for PCBs.

The preferential pathway located southwest of the former building (PP1) was excavated to a depth of 1 foot bgs. The preferential pathway located south of the former building (PP2) was excavated to the depth of the water table, which ranged in depth from 1 foot to 7 feet bgs. Fifteen discrete confirmatory soil samples were collected from the PP1 area and five discrete confirmatory soil samples were collected from the PP2 area and were analyzed for PCBs.

Excavation target areas (PS/RB and PS/RB/PP1) overlapped and had the same excavation target depth of 1 foot bgs. The overlapped areas were excavated to a depth of 1 foot; however, confirmatory soil sampling was conducted as separate areas. Excavation target areas (PS/RB/PP2) overlapped but had different excavation target depths (PS/RB target of 1 foot bgs and PP2 target of the depth of the water table). The overlapped area was excavated to the depth of the encountered water table, which ranged in depth from 1 foot to 7 feet bgs. Confirmatory soil sampling was conducted as separate areas.

PCBs measured in each of the confirmatory samples were less than 20 ppm and with an average of 2.1 ppm. Soil sample locations from the 2004 confirmatory sampling activities are shown on Figures 4A, 4B, and 4C. The areas of the 2004 remedial excavations are shown on Figure 8B. The 2004 assessment data is tabulated in Table 1. Excerpts of the historical reports are included in the Attachments.

2016/2018 PHASE II ESA SUMMARY

SME completed Phase II Environmental Site Assessments on the Site in 2016 and 2018 to determine if the river sediment dewatering operations on the Site resulted in exacerbation of PCB impact. During dewatering, there were releases of dredging water/slurry from the containment area onto the adjacent land. SME performed the investigations in the areas where the dredging water/slurry was released.

SME completed 138 soil borings on the Site. The soil borings were completed in the area of the former confined treatment facility; in the area of the former sediment management facility; in the area along the west side of the former building (area of a former preferential pathway); and along the northern, eastern and southeastern sides of the former dewatering pad. The 2016 soil samples were analyzed for PCBs, polycyclic aromatic hydrocarbons (PAHs), and/or select metals (cadmium, total chromium, copper, lead, mercury, nickel, silver, and zinc). Soil samples identified with indications of potential volatile organic compounds (VOCs) from field screening were also analyzed for VOCs.

Based on soil sample results having PCBs and PAHs at concentrations above the screening levels established in the USEPA-approved SAP, SME completed step-out borings in 2018 in an attempt to delineate the horizontal and vertical extent of PCB- and PAH-impacted soil on the Site. Step out borings were analyzed for PCBs or PAHs, depending on the location of the step-out boring. Results of the 2016 initial and step out borings identified previously unidentified PCB-impacted soil on the eastern and

northern portions of the site. PCB-impacted soil was also identified in an area west of the former dewatering pad. The PCB-impacted soil in this area was vertically and horizontally delineated with the 2016 borings. The results of the 2016 initial and step out borings on the western and southern portions of the Site also identified previously unidentified PAH-impacted soil. PAH-impacted soil was limited in extent and was vertically and horizontally delineated. VOCs were not detected above the laboratory reporting limits in the analyzed samples. Selected metals were detected above the laboratory reporting limits but less than the Regional Screening Levels (RSLs).

In 2018, additional soil borings were completed on the northern and eastern portions of the Site in an attempt to delineate the previously unidentified PCB-impacted soil. Based on the results, PCB-impacted soil was identified in a limited area on the north side of the former dewatering pad at concentrations up to 1,570 ppm. PCB-impacted soil was identified covering much of the east portion of the Site and the impact extended to the eastern Site boundary. PCBs were measured at concentrations up to 15,200 ppm. Soil sample locations from the 2016 and 2018 soil sampling activities are shown on Figure 5 and the associated data is tabulated in Table 1 (PCBs) and Table 2 (PAHs).

Soil borings were also completed on the east adjoining Rochester Park in an attempt to determine if rainfall to exposed soil on the Site caused PCB-impacted soil to runoff the Site and onto the adjoining park. Ten soil borings were completed at the Rochester Park including two borings on the east side of Hickory Street; four borings in the area southeast of the Site near the roadway to the Pump House building on the Park property; two borings located between the Pump House and the Sheboygan River; and two borings along the Rochester Park soccer field. Soil samples were collected from each boring at depths between 0 and 0.5 feet bgs. Based on results, PCBs were measured in each of the samples at concentrations less than 7 ppm with an average concentration of 2.07 ppm. Soil sample locations from the 2016 and 2018 soil sampling activities on the adjoining site are shown on Figure 6 and the associated data is tabulated in Table 1.

CUMULATIVE SUMMARY OF PREVIOUS ASSESSMENTS AND DATA GAPS

The area to the south of the former building was evaluated during multiple assessments completed in 1978 and 1999 and PCB-impacted soil was removed from this area during remedial excavations in 1978/1979 and 2004. The eastern portion of the former building; the eastern portion of the Site; the area north of the former building; the area along the west side of the building; the area of the former sediment management facility; and the area of the former confined treatment facility were evaluated during previous assessments. The cumulative sample locations from all historical assessments off-site are shown on Figure 7. The cumulative areas that were historically remediated are shown on Figures 8A and 8B. The cumulative soil sample results are tabulated in Table 1 (PCBs) and Table 2 (PAHs).

Based on review of the cumulative assessment information, we identified six Data Gaps. A Data Gap was defined as an area (either on the Site, or off-site) with limited information or areas that were not historically evaluated. These data gap areas are shown on Figure 9 and summarized below.

DATA GAP #1

Evaluation of the area of the former and current parking lot located on the western portion of the Site was not completed as part of previous assessment activities. The absence of assessment of this area of the Site represents a gap in available data. Since previously unidentified impacts were found during the 2016/2018 Phase II ESAs in areas with no previous assessment activities, this data gap area should be evaluated to ensure no additional previously unidentified impacts are present at the Site.

DATA GAP #2

Evaluation of the potential for PCBs to extend off-site and into the Cleveland Street right of way (ROW) located north and/or the Hickory Street ROW located to the east was not completed as part of previous

assessment activities. Impacted soil was identified up to the Site boundary on the north and east sides of the Site in 2016/2018. The absence of assessment along the Cleveland Street and Hickory Street ROWs represents a gap in available data. This data gap area should be evaluated to identify the limits of PCB-impacted soil along the northern and eastern Site boundaries and to ascertain if impact extends into parkways and under the street pavements Cleveland Street and Hickory Street.

DATA GAP #3

Limited information was available regarding soil conditions below the former building slab used for the dewatering operations. In the several borings completed in this area, PCB-impacted soil was identified at multiple depth intervals; however, the PCB-impacted soil was not at concentrations above the USEPA Principal Threat Waste (PTW) criteria. While information is limited, PCB-impacted soil is assumed to be present beneath this area of the Site. Asphalt pavement was placed on a portion of the former building slab to facilitate the dewatering containment area used during the river dredging operations. The former building slab and dewatering pad pavements are currently acting as an engineering control to prevent direct contact and infiltration as described in the Institutional Control, Implementation, and Management Plan. At the time of the 2018 assessment activities, the former building slab and dewatering pad pavements appeared to be in good condition; however, a pavement condition assessment has not been conducted. The thickness of the former building slab is unknown and the integrity of the former floor slab and pavement system has not been evaluated. The current condition and integrity of the former building slab and dewatering pad pavements represents a data gap. This data gap should be evaluated with a condition assessment of the former floor slab and pavement system.

DATA GAP #4

Extensive sampling was conducted in the eastern portion of the Site and identified PCB-impacted soil across most of this area. In 2016 and 2018, the PCB results were compared to the Wisconsin Department of Natural Resources (WDNR) industrial clean-up level of 8.66 mg/kg, which was used to determine if the Site was impacted at concentrations that would require additional remedial activities. The PCB-impacted soil on the Site was determined to be contaminated to levels that would require remediation. SME evaluated the remedial needs in their 2018 Remedial Action Plan (RAP) assessing either soil removal or capping. Based on those remedies, the impact was sufficiently delineated. However, the USEPA has indicated after review of the RAP that a combination of targeted soil removal on the Site and construction of an engineering control on the Site will be the likely remedy.

For this data gap analysis, PCB results were compared to the PTW criteria of 100 ppm for residential uses and 500 ppm for industrial uses. The future use of the Site may include recreational uses; therefore, the residential PTW criteria was selected as the target criteria for targeted soil removal activities at the Site. The area of PCB-impacted soil above the PTW located north of the former dewatering containment area and at the southeast corner of the former dewatering containment area were delineated. The area of PCB-impacted soil above the PTW criteria on the eastern portion of the Site was partially delineated; however, gaps in the available data in this area limit the ability to effectively determine limits of PCB-impacted soil above the PTW criteria for targeted remedial efforts. This data gap should be evaluated to determine the limits of PCB-impacted soil above the PTW criteria to optimally remediate the Site.

DATA GAPS #5 AND #6

Limited assessment has been completed on the east-adjoining Rochester Park. Limited soil sampling was conducted in 1978, 1999 and 2016/2018. PCBs were detected at concentrations above the laboratory reporting limits in each of the soil samples collected from Rochester Park at concentrations ranging from 0.246 ppm to 8 ppm. Historical sampling was conducted for screening purposes regarding run-off of PCB-impacted soil. The northern portion of Rochester Park was also historically a landfill where waste from the Site was reportedly disposed. No evaluation has been conducted on this portion of the park. The limited sampling on Rochester Park represents a gap in available data. The park areas were divided into two

units; the northern portion of the park where the landfill was historically located, which is identified as Data Gap #5 and the southern portion of the park, which is identified as Data Gap #6. These data gaps should be evaluated to ensure no additional areas of impacted soil from historical disposal in the landfill or surficial deposition are present on Rochester Park.

CONCLUSIONS AND RECOMMENDATIONS

We conclude that the previous investigations of the Property were not sufficient to characterize the Site and were focused on identifying the preferential pathways to the river. The post-remedial investigations in 2016 and 2018 demonstrate there is still PCB-impacted soil at the Site that poses a risk to receptors. SME recommends that a Sampling and Analysis Plan (SAP) be prepared to assess the data gaps. To that end, we have begun the SAP.

Please feel free to contact Keith Egan with any questions regarding this analysis at (513) 898-9430.

Respectfully,

SME

Aaron J. Lammers, EIT Docu Sign

Senior Staff Engineer

Keith Egan, OEPA C

Chief Consultant

Figures Attachments:

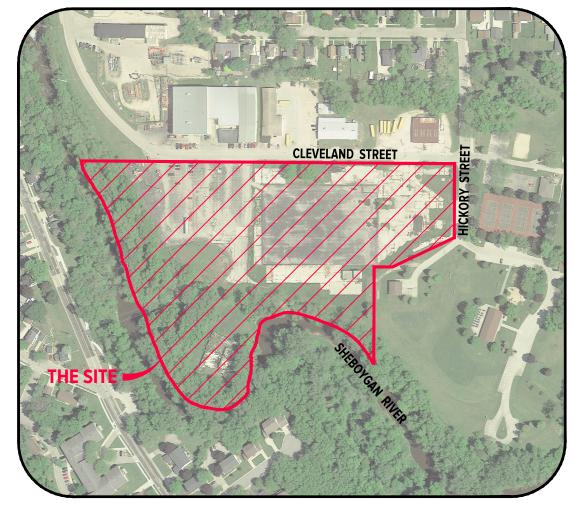
Tables

Attachment A – Aerial Photographs Attachment B – Historical Report Excerpts

Distribution: Mr. Jason Smith, Tecumseh Products Company via email (Jason.smith@tecumseh.com)

> Ms. Debbie McMillan, PRS via email (dmcmillan@grhdevelopment.com) Mr. Tom Wentland, Wisconsin Department of Natural Resources via email

(Thomas.wentland@wisconsin.gov)


Mr. Peter Johnson, Johnson-Wright via email (pjohnson@johnsonwright.net)

FIGURES

FIGURE 1:	PROPERTY LOCATION COVER SHEET
FIGURE 2A:	SEPTEMBER 1978 ASSESSMENT SAMPLE LOCATIONS
FIGURE 2B:	DECEMBER 1978 ASSESSMENT SAMPLE LOCATIONS
FIGURE 3A:	1999 SITE AND RIVERBANK ASSESSMENT SAMPLE LOCATIONS
FIGURE 3B:	1999 SITE COMPOSITE ASSESSMENT SAMPLE LOCATIONS
FIGURE 4A:	2004 PLANT SOURCE (PS) CONFIRMATORY SAMPLE LOCATIONS
	WITH REMEDIATION AREA BOUNDARIES
FIGURE 4B:	2004 RIVERBANK (RB) CONFIRMATORY SAMPLE LOCATIONS WITH
	REMEDIATION AREA BOUNDARY
FIGURE 4C:	2004 PREFERENTIAL PATHWAY (PP) CONFIRMATORY SAMPLE
	LOCATIONS WITH REMEDIATION AREA BOUNDARIES
FIGURE 5:	2016 / 2018 ASSESSMENT SAMPLE LOCATIONS
FIGURE 6:	SUMMARY OF HISTORICAL OFF-SITE ASSESSMENT SAMPLE
	LOCATIONS
FIGURE 7:	SUMMARY OF HISTORICAL SITE AND NEAR SITE ASSESSMENT
	SAMPLE LOCATIONS
FIGURE 8A:	AREAS OF 1979 REMEDIATION ACTIVITIES
FIGURE 8B:	AREAS OF 2004 REMEDIATION ACTIVITIES
EIGHDE O.	DATA CAD APEAS

SHEBOYGAN RIVER SUPERFUND SITE

FORMER TECUMSEH SITE SHEBOYGAN FALLS, WISCONSIN

NOT TO SCALE

LICT OF DDAWINGS

ri21 Ot	- DRAWINGS
FIGURE No.	SHEET TITLE
1.	Cover Sheet
2A.	September 1978 Assessment Sample Locations
2B.	December 1978 Assessment Sample Locations
3A.	1999 Site and Riverbank Assessment Sample
	Locations
3B.	1999 Site Composite Assessment Sample
	Locations
4A.	2004 Plant Source (PS) Confirmatory Sample
	Locations with Remediation Area Boundary
4B.	2004 Riverbank (RB) Confirmatory Sample
	Locations with Remedial Area Boundary

2016/2018 Assessment Sample Locations

2004 Preferential Pathway (PP) Confirmatory

Sample Locations with Remedial Area Boundary

- Summary of Historical Off-Site Assessment Sample Locations
- Summary of Historical Site and Near Site **Assessment Sample Locations**
- Areas of 1979 Remediation Activities
- Areas of 2004 Remediation Activities
- Data Gap Areas

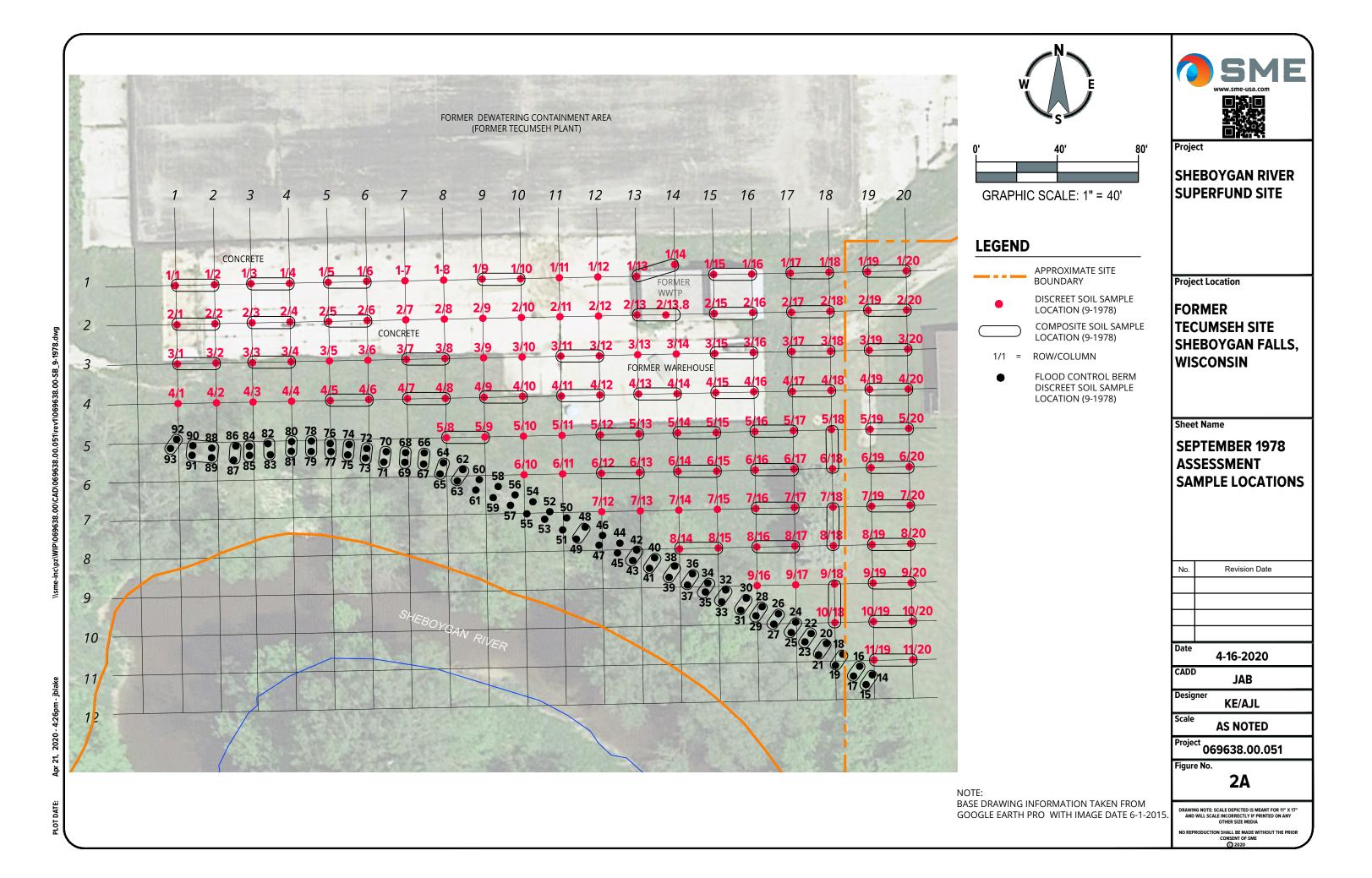
SHEBOYGAN RIVER SUPERFUND SITE

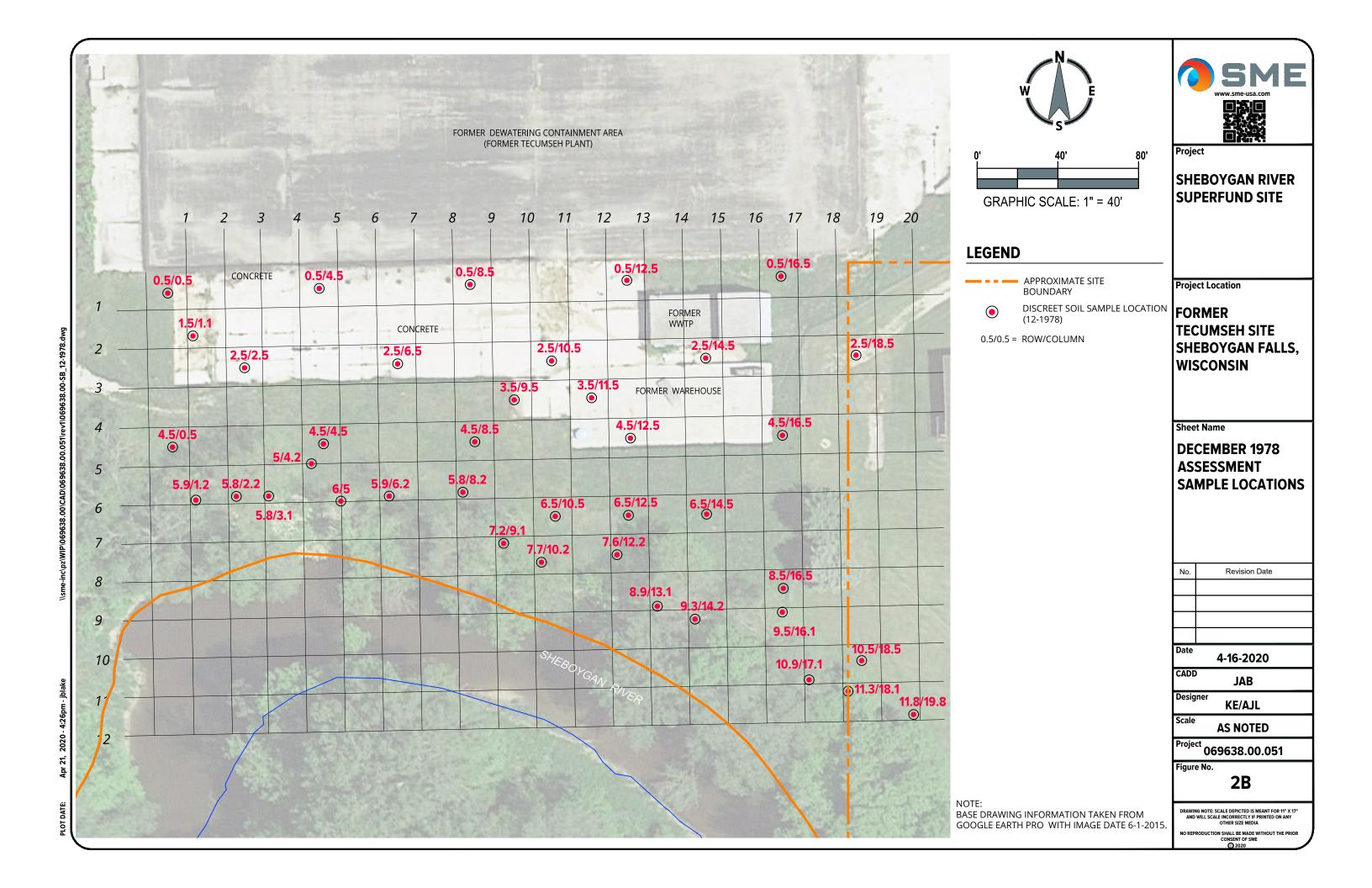
Project Location

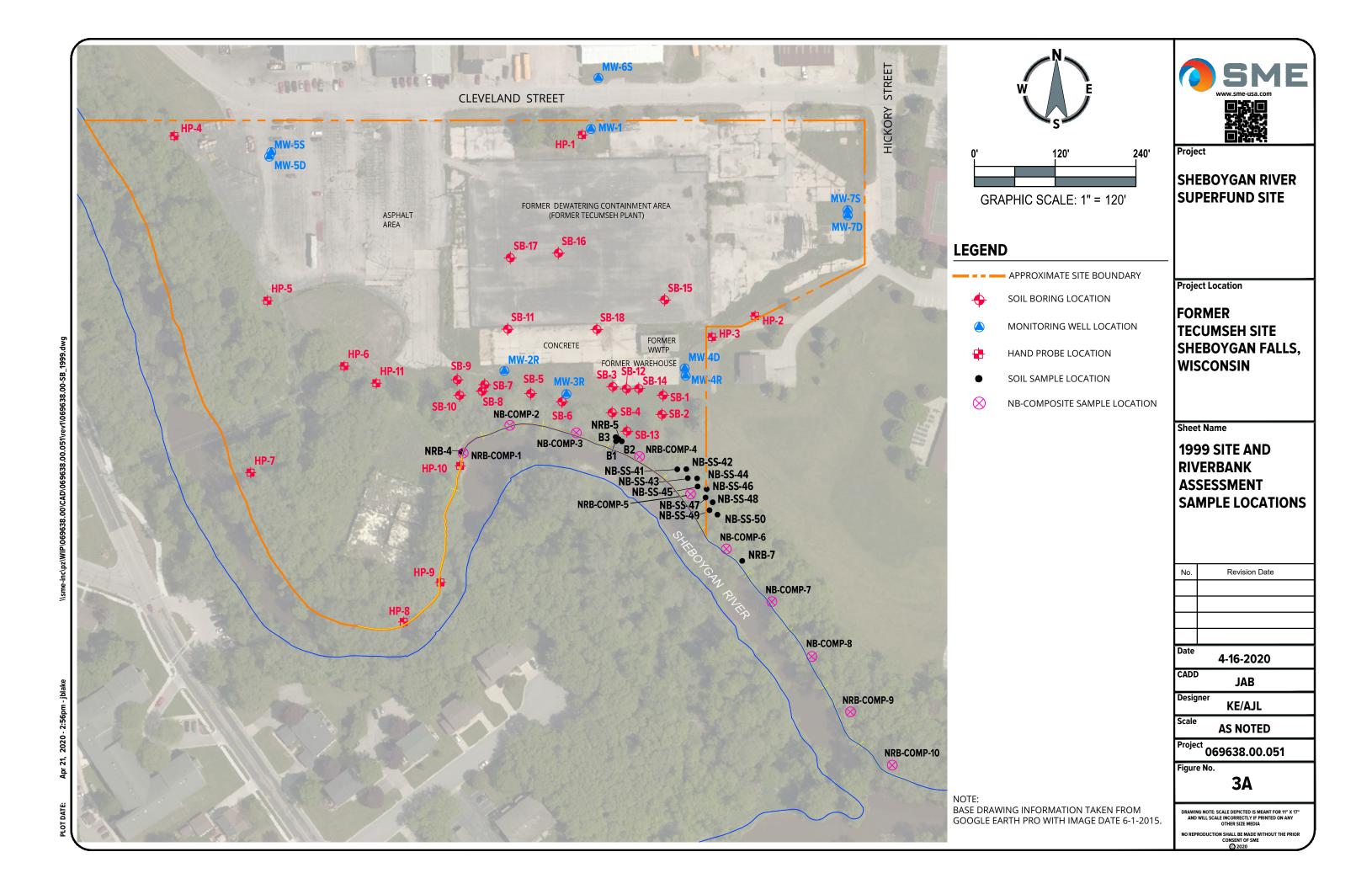
IFORMER TECUMSEH SITE SHEBOYGAN FALLS. WISCONSIN

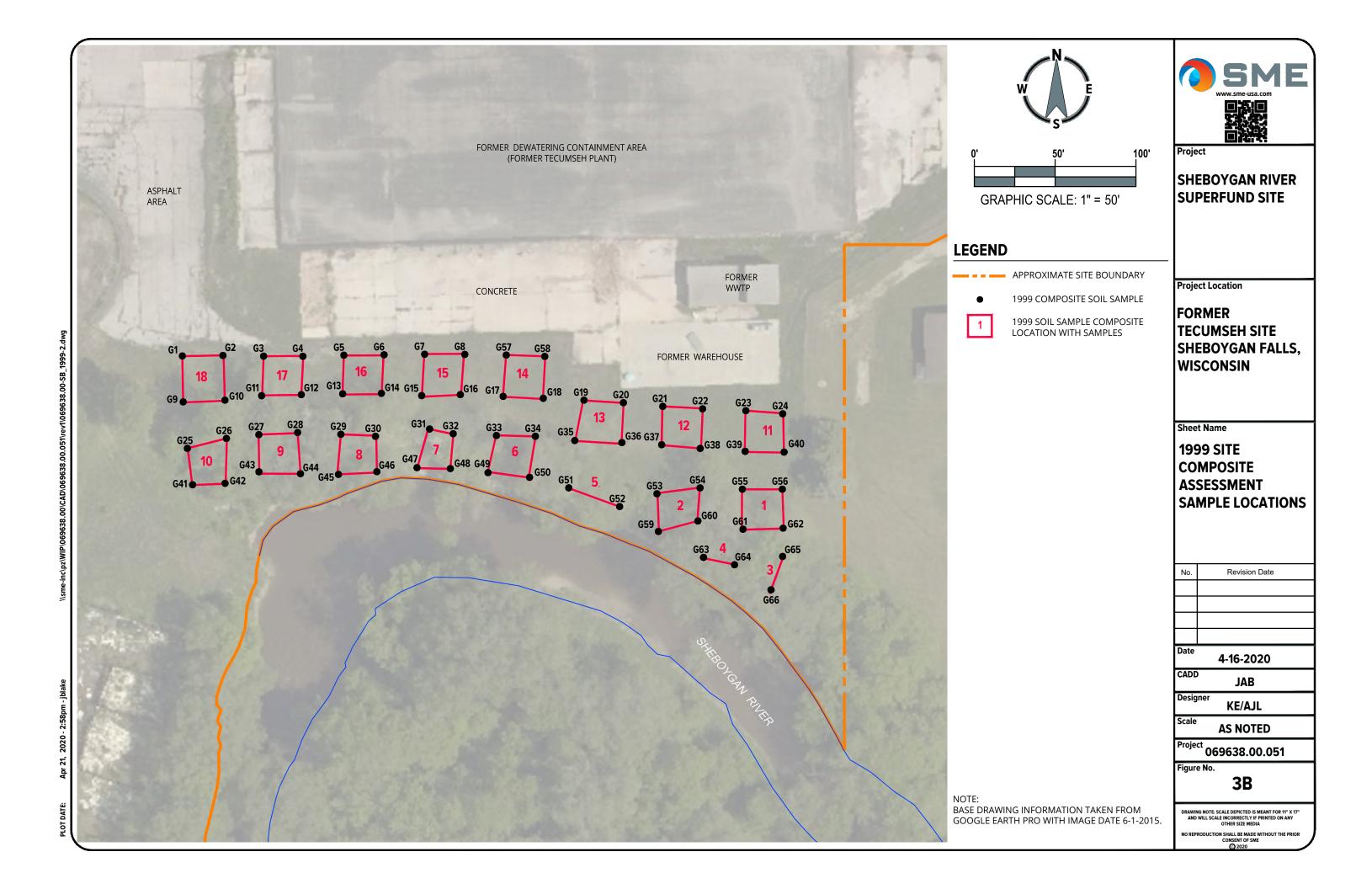
Sheet Name

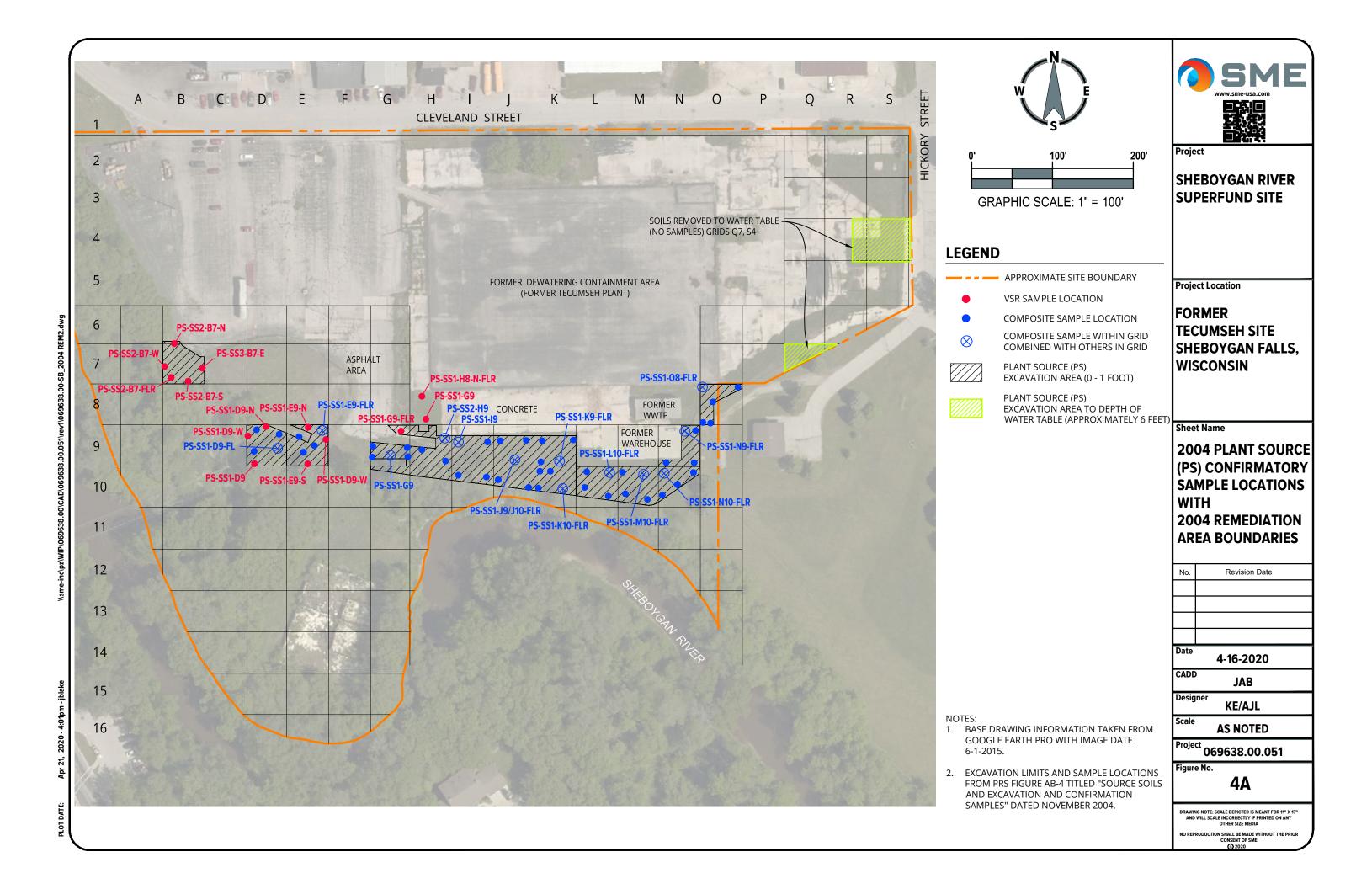
COVER SHEET

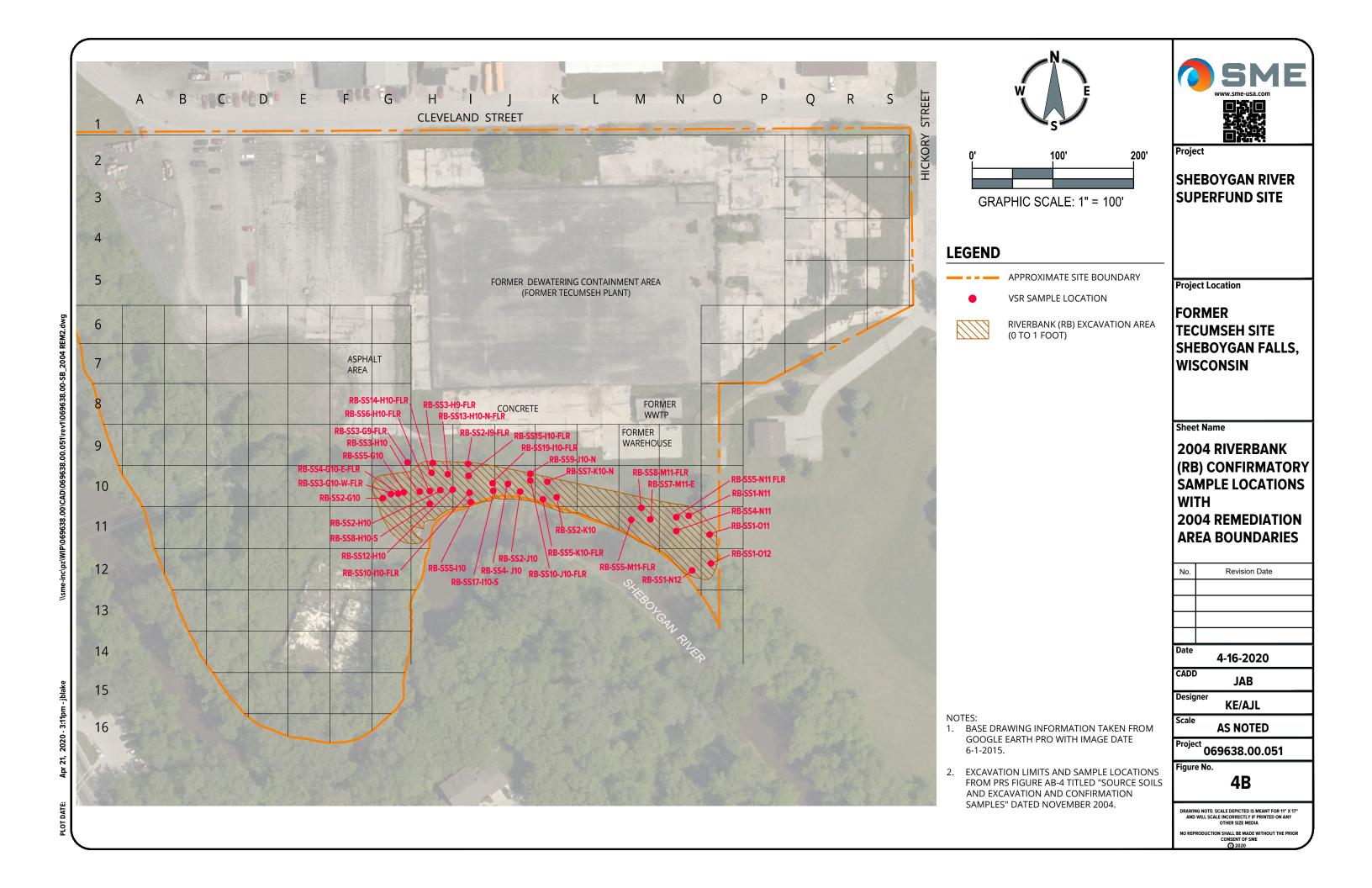

No.	Revision Date
Date	4-16-2020

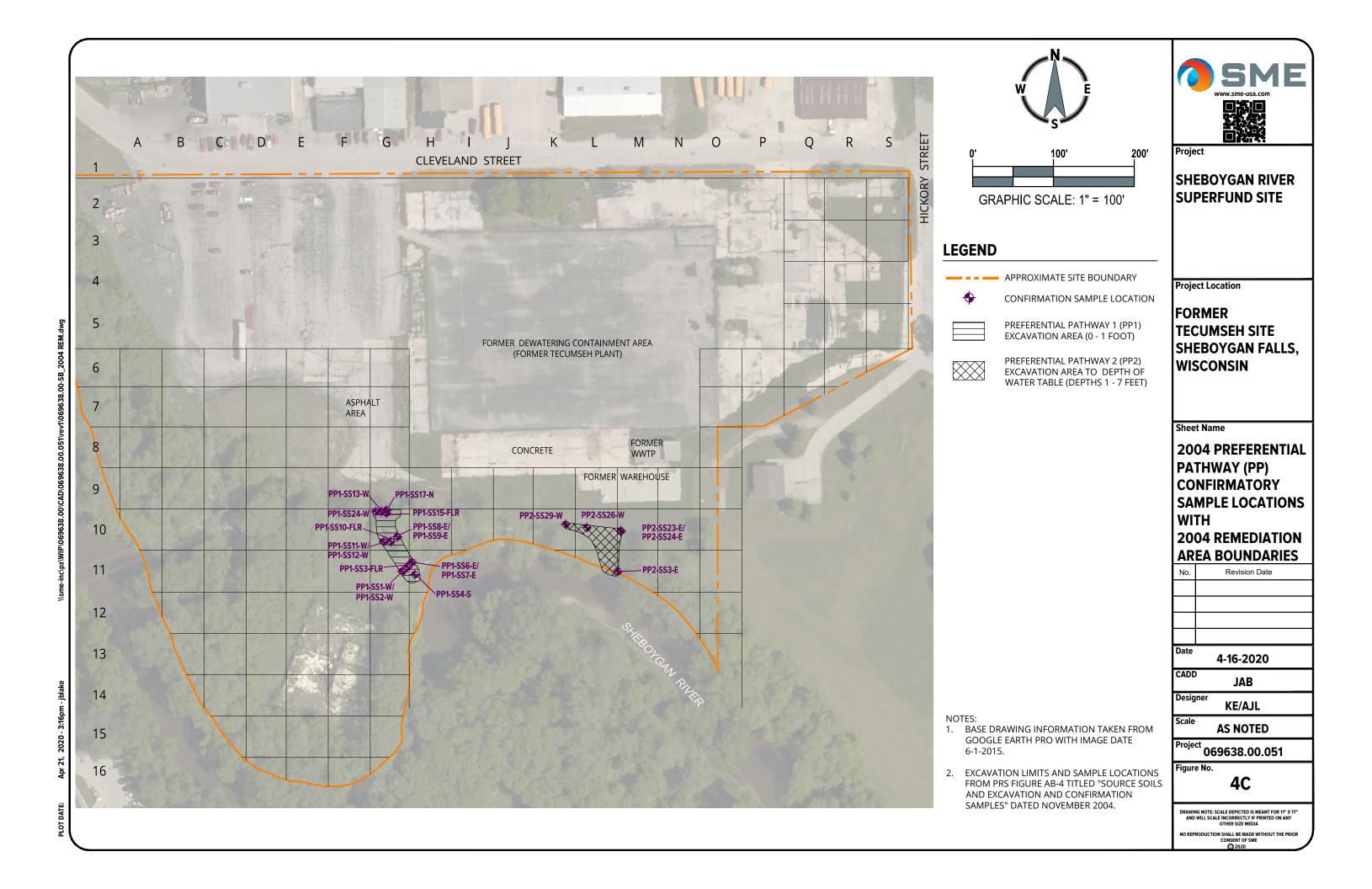

CADD JAB

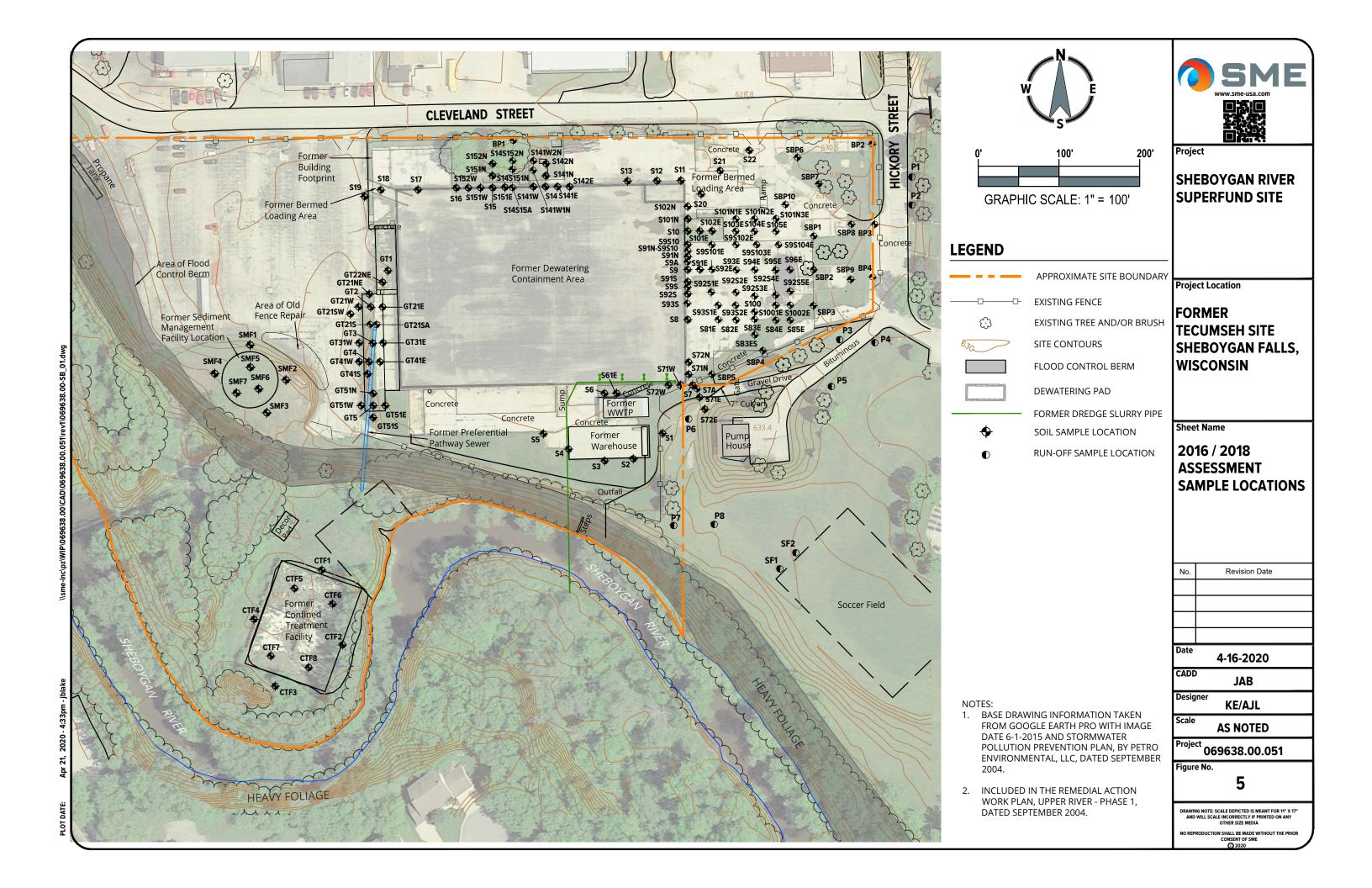

KE/AJL

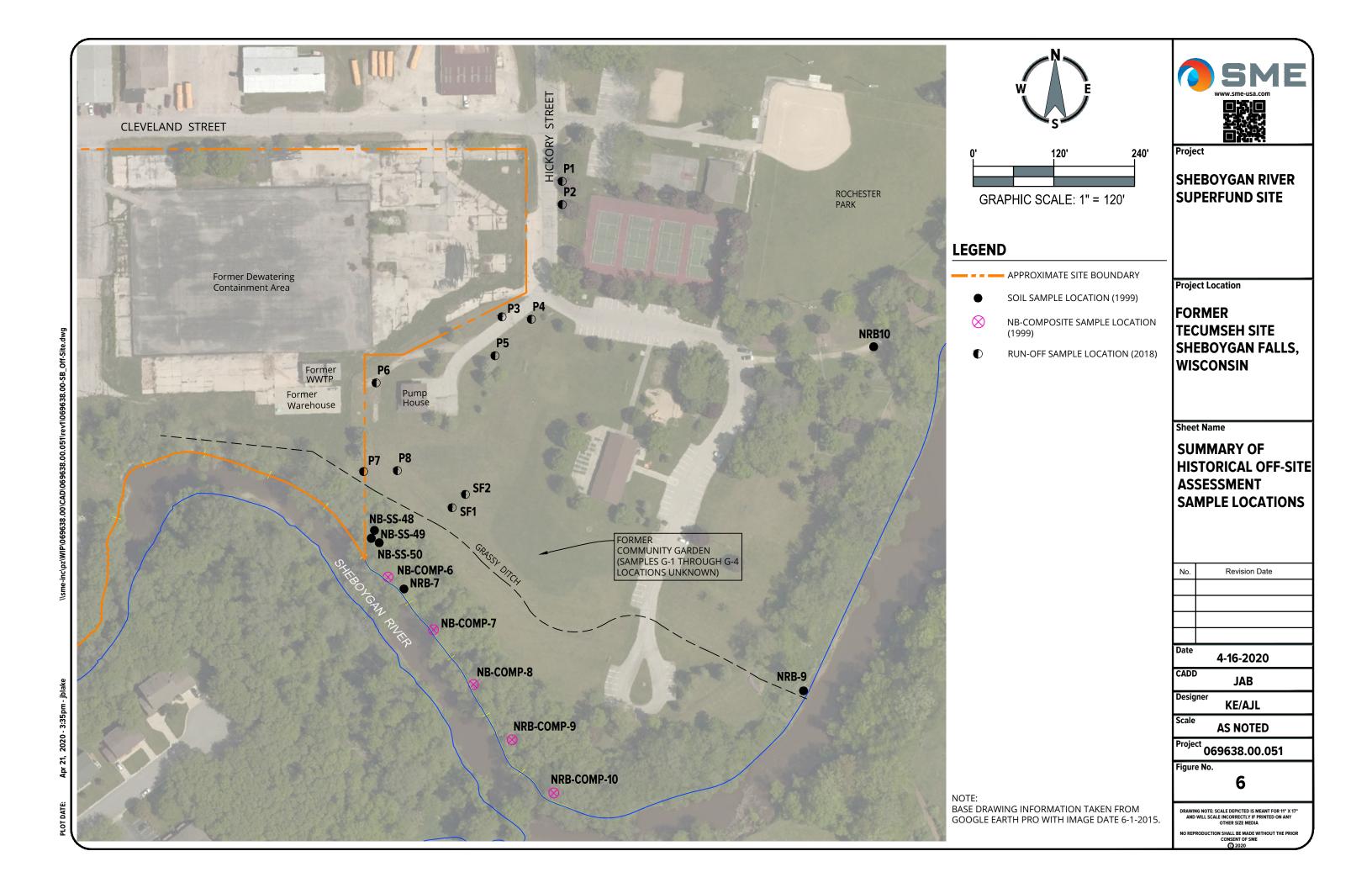

AS NOTED

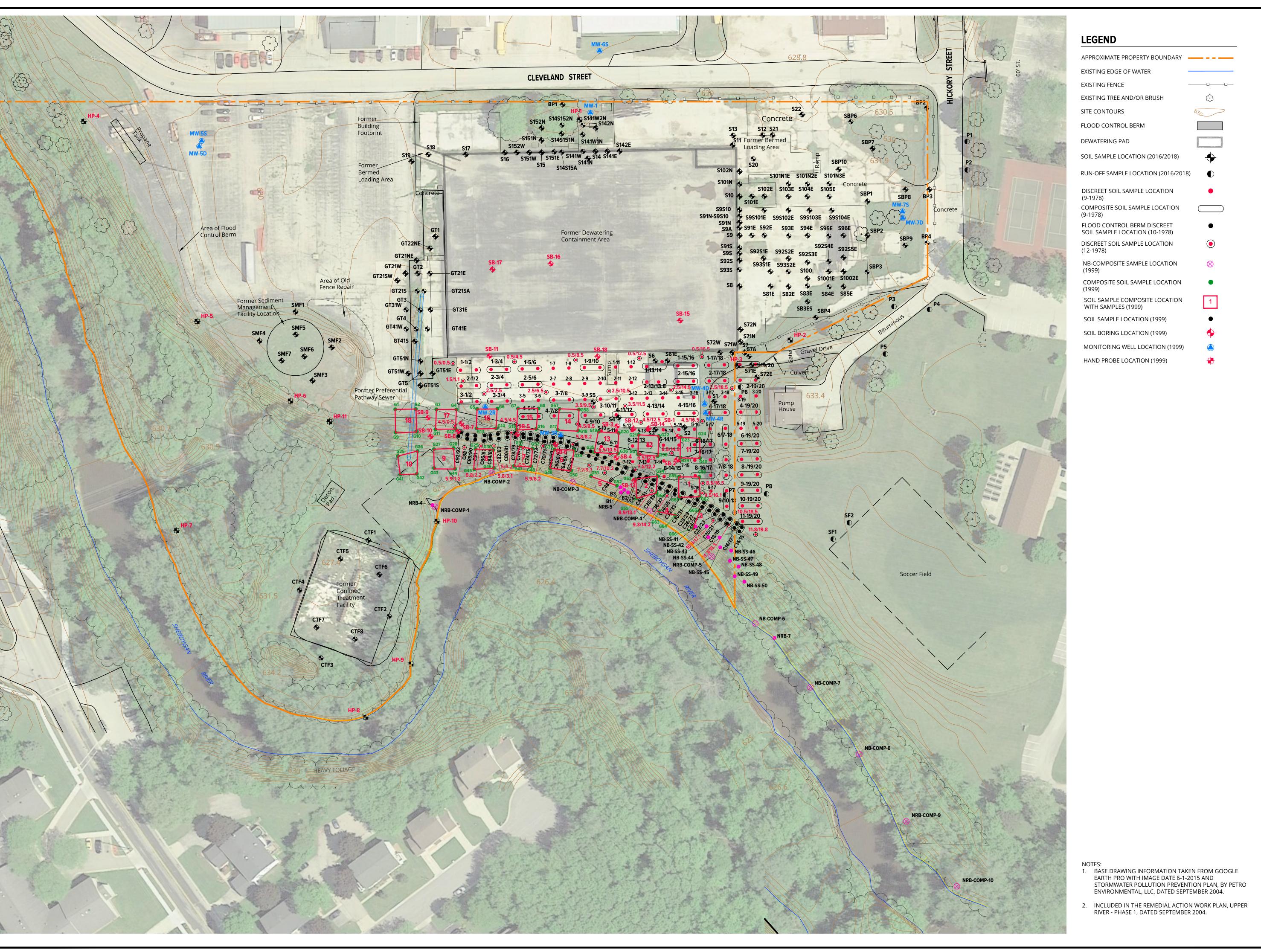

Project 069638.00.051











5ME

Orientation

Scale

O' 50'

GRAPHIC SCALE: 1" = 50'

Project

SHEBOYGAN RIVER SUPERFUND SITE

Project Location

FORMER TECUMSEH SITE SHEBOYGAN FALLS, WISCONSIN

Sheet Nam

SUMMARY OF SITE AND NEAR SITE ASSESSMENT SAMPLE LOCATIONS

Engineer's Seal

Re	Revisions												
REV	ISSUED FOR	DATE	BY										

6-10-2020

SME Project No.

069638.00.051

KE/AJL

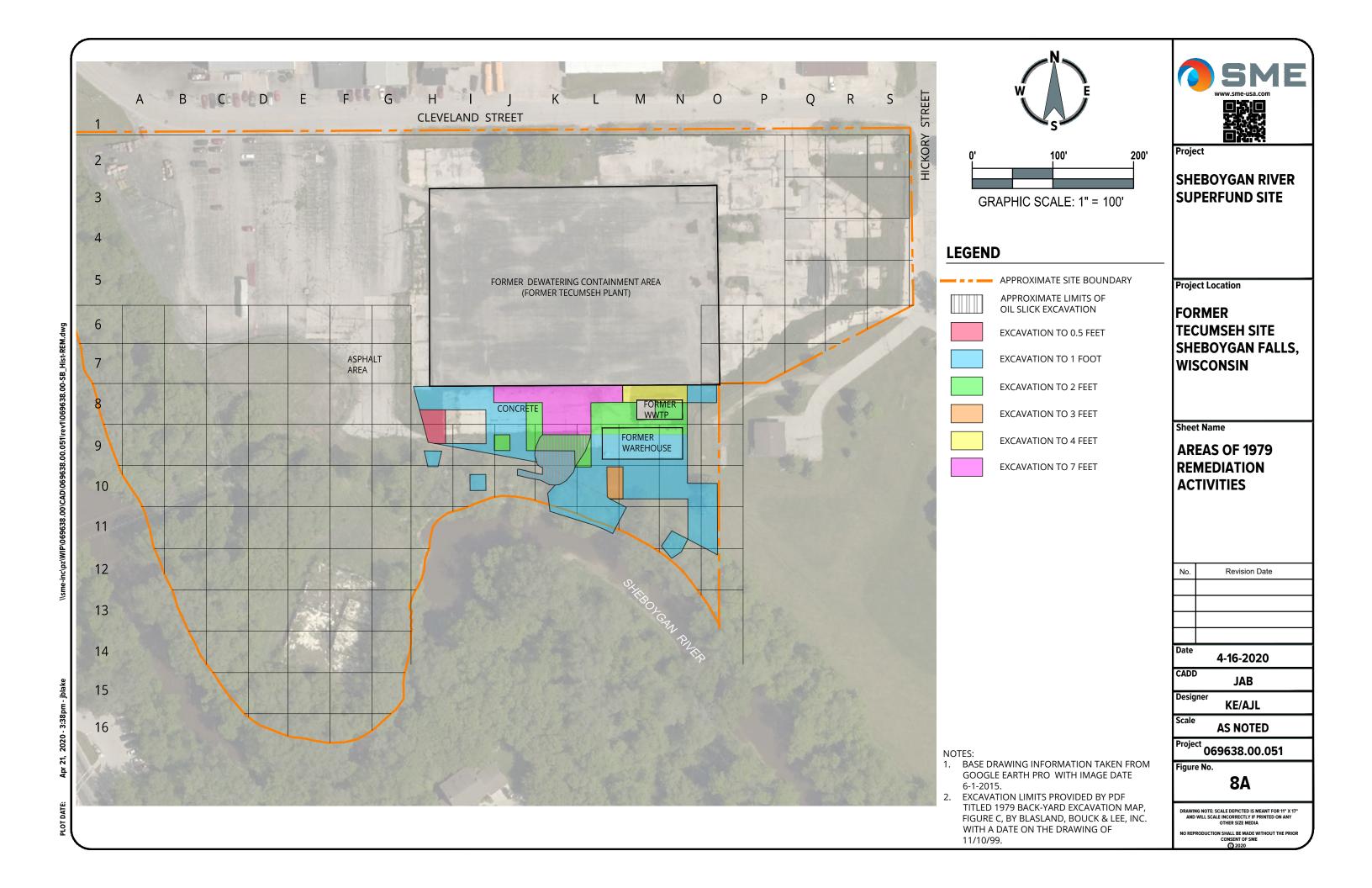
Project Manager:

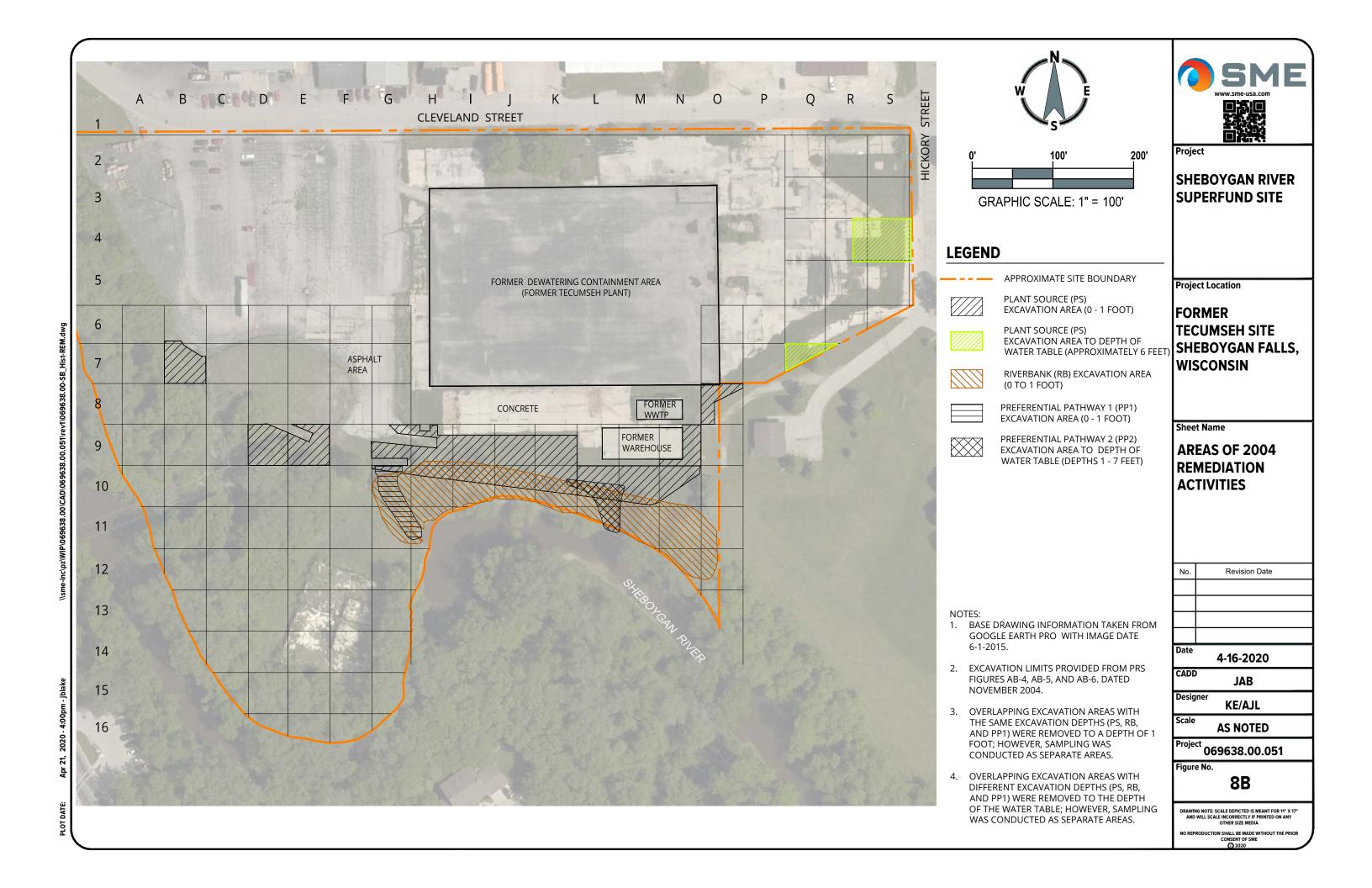
Designer:

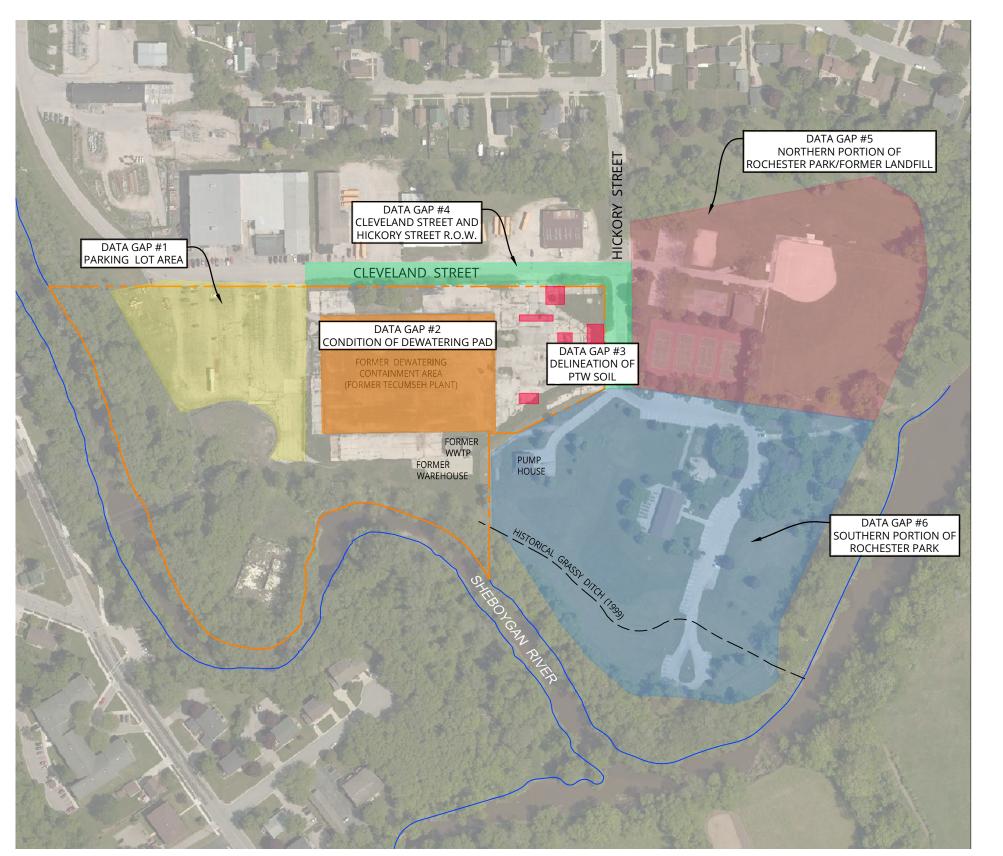
CADD:

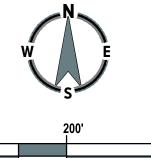
Checked By:

K


igure No.


7


DRAWING NOTE: SCALE DEPICTED IS MEANT FOR 24" X 36" AND WILL SCALE INCORRECTLY IF PRINTED ON ANY OTHER SIZE MEDIA


NO REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR CONSENT OF SME

© 2020

9' 200' 400' GRAPHIC SCALE: 1" = 200'

LEGEND

APPROXIMATE SITE BOUNDARY

Project

SHEBOYGAN RIVER SUPERFUND SITE

Project Location

FORMER
TECUMSEH SITE
SHEBOYGAN FALLS,
WISCONSIN

Sheet Name

DATA GAP AREAS

No.	Revision Date
Date	4-16-2020
CADD	JAB
Desig	ner KE/AJL
Scale	AS NOTED
Proje	^{ct} 069638.00.051

NOTE: BASE DRAWING INFORMATION TAKEN FROM GOOGLE EARTH PRO WITH IMAGE DATE 6-1-2015.

DRAWING NOTE: SCALE DEPICTED IS MEANT FOR 11" X 17" AND WILL SCALE INCORRECTLY IF PRINTED ON ANY OTHER SIZE MEDIA

NO REPRODUCTION SHALL BE MADE WITHOUT THE PRIO CONSENT OF SME

TABLE 1: SUMMARY OF PCB ANALYSIS RESULTS – SOIL TABLE 2: SUMMARY OF PAH ANALYSIS RESULTS – SOIL

© 2020 SME 069638.00.051+042320+LRPT-62

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	IAL	AL	SAMPLE LOCATION	C14/15	C16/17	C18/19	C20/21	C22/23	C24/25	C26/27	C28/29	C30/31	C32/33	C34/35	C36/37	C38/39	C40/41
	Number	RESIDENTIAL	INDUSTRIA	SAMPLE DEPTH (FEET BGS)	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3
		RES	INDI	SAMPLE DATE	9/14/1978	9/14/1978	9/14/1978	9/14/1978	9/14/1978	9/15/1978	9/15/1978	9/15/1978	9/15/1978	9/15/1978	9/15/1978	9/15/1978	9/15/1978	9/15/197
CBs PCB, Total	1336-36-3	100	500		297	140	183	1,487	187	360	441	742	NE	410	NE	126	451	50
	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION		CHEMICAL ANALYSES RESULTS (mg/kg)												
ANALYTE	Abstract Service	TIAL	IAL	SAMPLE LOCATION	C42/43	C44	C45	C46	C47	C48/49	C50	C51	C52	C53	C54	C55	C56	C57
	Number	RESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3
		RES	N ON	SAMPLE DATE	9/15/1978	9/15/1978	9/15/1978	9/15/1978	9/15/1978	9/15/1978	9/19/1978	9/19/1978	9/19/1978	9/19/1978	9/19/1978	9/19/1978	9/19/1978	9/19/197
PCBs PCB, Total	1336-36-3	100	500		11.7	3,240	6,024	674	32,011	5,994	380	14,793	793	1,633	479	2,617	NE	15,140
						11.7 3,240 6,024 674 32,011 5,994 380 14,793 793 1,633 479 2,617 CHEMICAL ANALYSES RESULTS (mg/kg)												
	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSE	ES RESULTS (I	ng/kg)					
ANALYTE	Chemical Abstract Service	WASTE TH	HRESHOLD (g/kg)		C58/59	C60	C61	C62/63	C64/65	CHEM C66/67	C68/69	ES RESULTS (i	mg/kg) C72/73	C74/75	C76/77	C78/79	C80/81	C82/83
ANALYTE	Abstract	WASTE TH	HRESHOLD (g/kg)	INFORMATION	C58/59 0 - 3	C60 0 - 3	C61 0 - 3	C62/63 0 - 3	C64/65 0 - 3					C74/75 0 - 3	C76/77 0 - 3	C78/79 0 - 3	C80/81 0 - 3	C82/83 0 - 3
ANALYTE	Abstract Service	WASTE TH	HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH			-			C66/67	C68/69	C70/71	C72/73					C82/83 0 - 3 9/20/197
	Abstract Service	WASTE TH	HRESHOLD (g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	C66/67 0 - 3	C68/69 0 - 3	C70/71 0 - 3	C72/73 0 - 3	0 - 3	0 - 3	0 - 3	0 - 3	0 - 3
^P CBs	Abstract Service Number	WASTE THE (mg	INDUSTRIAL (kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0 - 3 9/19/1978	0 - 3 9/19/1978	0 - 3 9/19/1978	0 - 3 9/19/1978	0 - 3 9/19/1978 14.8	C66/67 0 - 3 9/19/1978 1.87	C68/69 0 - 3 9/19/1978	C70/71 0 - 3 9/19/1978 20,253	C72/73 0 - 3 9/20/1978	0 - 3	0 - 3 9/20/1978	0 - 3 9/20/1978	0 - 3 9/20/1978	0 - 3 9/20/197
^P CBs	Abstract Service Number	WASTE THE (mg	HRESHOLD (3/kg) INDOSTRIBLE THREAT HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE	0 - 3 9/19/1978	0 - 3 9/19/1978	0 - 3 9/19/1978	0 - 3 9/19/1978	0 - 3 9/19/1978 14.8	C66/67 0 - 3 9/19/1978 1.87	C68/69 0 - 3 9/19/1978 2.4	C70/71 0 - 3 9/19/1978 20,253	C72/73 0 - 3 9/20/1978	0 - 3	0 - 3 9/20/1978	0 - 3 9/20/1978	0 - 3 9/20/1978	0 - 3 9/20/197

PCBs - Polychlorinated Biphenyls.

1336-36-3

100

PCBs

Results above RL are shown in **bold**. Results exceeding one or more criteria are shaded, as are the criteria which were exceeded. Refer to the analytical report for the full list of PCB analytes.

SAMPLE DATE

9/20/1978

4.7

9/20/1978

5,134

9/20/1978

60

9/20/1978

1,686

9/20/1978

ND

9/20/1978

8.5

Unknown

ND

Unknown

0.052

Unknown

0.020

Unknown

0.123

Unknown

4.0

Unknown

8.0

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION			CHEMICAL ANALYSES RESULTS (mg/kg)											
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	1-1/2	1-3/4	1-5/6	1-7	1-8	1-9/10	1-11	1-12	1-13/14	1-15/16	1-17/18	1-19/20	2-1/2	2-3/4
	Number	RESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1
		RES	QNI	SAMPLE DATE	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978
PCBs PCB, Total	1336-36-3	100	500		257	93	192	2,338	89.4	2,233	766	113	190	459	41.9	118	3.7	8.7
	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYS	ES RESULTS (mg/kg)					
ANALYTE	Service	TIAL	IAL	SAMPLE LOCATION	2-5/6	2-7	2-8	2-9	2-10	2-11	2-12	2-13/14	2-15/16	2-17/18	2-19/20	3-1/2	3-3/4	3-5
	Number	RESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1
		RES	IND	SAMPLE DATE	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978
PCBs PCB, Total	1336-36-3	100	500		265	2,864	1,945	9,671	4,622	2,360	266	56	NE	24.5	7.60	48.8	6.25	526.0
Chemi		PRINCIPAL THREAT WASTE THRESHOLD (mg/kg)																
	Chemical	WASTE TH	HRESHOLD	SAMPLE INFORMATION						CHEM	ICAL ANALYS	ES RESULTS (mg/kg)					
ANALYTE	Chemical Abstract Service	WASTE TH	HRESHOLD g/kg)		3-6	3-7/8	3-9	3-10	3-11/12	CHEM 3-13	ICAL ANALYS	3-15/16	mg/kg) 3-17/18	3-19/20	4-1	4-2	4-3	4-4
ANALYTE	Abstract	WASTE TH	HRESHOLD g/kg)	INFORMATION	3-6 0 - 1	3-7/8 0 - 1	3-9 0 - 1	3-10 0 - 1	3-11/12 0 - 1			Ì		3-19/20 0 - 1	4-1 0 - 1	4-2 0 - 1	4-3 0 - 1	4-4 0 - 1
	Abstract Service	WASTE TH	HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH						3-13	3-14	3-15/16	3-17/18					
ANALYTE PCBs PCB, Total	Abstract Service	WASTE THE CONTRACT (MG)	HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	3-13 0 - 1	3-14 0 - 1	3-15/16 0 - 1	3-17/18 0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1
PCBs	Abstract Service Number	WASTE THE (mg	INDUSTRIAL (NDUSTRIAL)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	3-13 0 - 1 9/1978	3-14 0 - 1 9/1978 464	3-15/16 0 - 1 9/1978	3-17/18 0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978
PCBs	Abstract Service Number	WASTE THE (mg	HRESHOLD (3/kg) 500 L THREAT HRESHOLD (3/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	3-13 0 - 1 9/1978	3-14 0 - 1 9/1978 464	3-15/16 0 - 1 9/1978	3-17/18 0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978	0 - 1 9/1978
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract	WASTE THE (mg	HRESHOLD (3/kg) 500 L THREAT HRESHOLD (3/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	0 - 1 9/1978 10,928	0 - 1 9/1978 28.4	0 - 1 9/1978 7,516	0 - 1 9/1978 6,667	0 - 1 9/1978 NE	3-13 0 - 1 9/1978 12.8	3-14 0 - 1 9/1978 464 ICAL ANALYS	3-15/16 0 - 1 9/1978 121 ES RESULTS (3-17/18 0 - 1 9/1978 34 mg/kg)	0 - 1 9/1978 2.23	0 - 1 9/1978 1,303	0 - 1 9/1978 4,538	0 - 1 9/1978 1,242	0 - 1 9/1978 8,406
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract Service	WASTE THE (mg	HRESHOLD (3/kg) INDICATE OF THE ATHRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE DEPTH	0 - 1 9/1978 10,928 4-5/6	0 - 1 9/1978 28.4 4-7/8	0 - 1 9/1978 7,516 4-9/10	0 - 1 9/1978 6,667 4-11/12	0 - 1 9/1978 NE 4-13/14	3-13 0 - 1 9/1978 12.8 CHEM	3-14 0 - 1 9/1978 464 ICAL ANALYS	3-15/16 0 - 1 9/1978 121 ES RESULTS (3-17/18 0 - 1 9/1978 34 mg/kg)	0 - 1 9/1978 2.23	0 - 1 9/1978 1,303	0 - 1 9/1978 4,538 5-12/13	0 - 1 9/1978 1,242 5-14/15	0 - 1 9/1978 8,406

PCBs - Polychlorinated Biphenyls.

Results above RL are shown in **bold**. Results exceeding one or more criteria are shaded, as are the criteria which were exceeded. Refer to the analytical report for the full list of PCB analytes.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	WASTE TI	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION	CHEMICAL ANALYSES RESULTS (mg/kg)															
ANALYTE	Abstract IV	IAL	SAMPLE LOCATION	5-18 & 6-18	5-19/20	6-10	6-11	6-12/13	6-14/15	6-16/17	6-19/20	7-12	7-13	7-14	7-15	7-16/17	7-18 & 8-18		
	Number	SIDEN	USTR	SAMPLE DEPTH (FEET BGS)	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	
			RES	N N	SAMPLE DATE	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978
PCBs																			
PCB, Total	1336-36-3	100	500		6.35	2.99	516	3,321	NE	3.38	137	7.06	990	165	41.6	24.9	25.3	43.2	

Chemical	PRINCIPAL THREAT WASTE THRESHOLD (mg/kg)		SAMPLE INFORMATION		CHEMICAL ANALYSES RESULTS (mg/kg)													
ANALYTE	Abstract Service	TIAL	IIAL	IIAL	LIAL.	ΠAL	NAL	SAMPLE LOCATION	7-19/20	8-14/15	8-16/17	8-19/20	9-16	9-17	9-18 & 10-18	9-19/20	10-19/20	11-19/20
	Number		USTE	SAMPLE DEPTH (FEET BGS)	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1				
		RES	QNI	SAMPLE DATE	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978	9/1978				
PCBs																		
PCB, Total	1336-36-3	100	500		40	4.26	2.2	78.2	2.61	1.7	307	14.5	2.85	13.9				

PCBs - Polychlorinated Biphenyls.

Results above RL are shown in **bold**. Results exceeding one or more criteria are shaded, as are the criteria which were exceeded. Refer to the analytical report for the full list of PCB analytes.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	GRID - 0.5/0.5	GRID - 0.5/4.5	GRID - 0.5/8.5	GRID - 0.5/8.5	GRID - 0.5/8.5	GRID - 0.5/12.5	GRID - 0.5/16.5	GRID - 2.5/2.5	GRID - 2.5/6.5	GRID - 2.5/10.5	GRID - 2.5/14.5	GRID - 2.5/18.5	GRID - 3.5/9.5	GRID - 3.5/11.5
	Number	IDEN	USTR	SAMPLE DEPTH (FEET BGS)	1 - 1 .5	1 - 1 .5	1 - 1 .5	2 - 2.5	3 - 3.5	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5
		RES	N ON	SAMPLE DATE	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978
PCBs																		
PCB, Total	1336-36-3	100	500		ND	13.7	17.3	598	ND	1,166	1,265	ND	ND	10,263	95.2	ND	1.0	ND

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSE	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	ΓΙΑL	IAL	SAMPLE LOCATION	GRID - 4.5/0.5	GRID - 4.5/4.5	GRID - 4.5/8.5	GRID - 4.5/12.5	GRID - 4.5/16.5	GRID - 5.0/4.2	GRID - 5.0/4.2	GRID - 5.8/3.1	GRID - 5.8/2.2	GRID - 5.9/6.2	GRID - 5.9/1.2	GRID - 6.0/5.0	GRID - 6.5/10.5	GRID - 6.5/12.5
	Number	DEN.	USTR	SAMPLE DEPTH (FEET BGS)	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5	1 - 1 .5	2 - 2.5	1 - 1 .5	1 - 1 .5	1 - 1 .5	0.5 - 1	0.5 - 1	1 - 1 .5	1 - 1 .5
		RES	<u>Q</u>	SAMPLE DATE	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978
PCBs																		
PCB, Total	1336-36-3	100	500		ND	ND	ND	ND	23.8	ND	ND	2.9	7.8	ND	ND	1.2	ND	ND

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSE	ES RESULTS (r	ng/kg)					
ANALYTE	Abstract Service	IAL	IAL	SAMPLE LOCATION	GRID - 6.5/12.5	GRID - 6.5/14.5	GRID - 7.2/9.1	GRID - 7.7/10.2	GRID - 7.6/12.2	GRID - 7.6/12.2	GRID - 8.5/16.5	GRID - 8.9/13.1	GRID - 9.3/14.2	GRID - 9.5/16.1	GRID - 10.5/18.5	GRID - 10.9/17.1	GRID - 11.2/18.1	GRID - 11.8/19.8
	Number	IDENT	USTR	SAMPLE DEPTH (FEET BGS)	1 - 1 .5	1 - 1 .5	0.5 - 1	1 - 1 .5	1 - 1 .5	2 - 2.5	1 - 1 .5	0.5 - 1	1 - 1 .5	1 - 1 .5	1 - 1 .5	0.5 - 1	1 - 1 .5	1 - 1 .5
		RES	ND N	SAMPLE DATE	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978	12/28/1978
PCBs																		
PCB, Total	1336-36-3	100	500		55.2	9.6	3,779	5.1	1,926	ND	ND	20.5	1.13	ND	ND	ND	ND	ND

PCBs - Polychlorinated Biphenyls.

Results above RL are shown in **bold**. Results exceeding one or more criteria are shaded, as are the criteria which were exceeded.

Refer to the analytical report for the full list of PCB analytes.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD J/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	TIAL	IJAL	SAMPLE LOCATION	HP-1	HP-1	HP-2	HP-2	HP-3	HP-3	HP-4	HP-4	HP-5	HP-5	HP-6	HP-6	HP-7	HP-7
	Number	RESIDENTIAL	INDUSTRI	SAMPLE DEPTH (FEET BGS)	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1
		RES	<u>S</u>	SAMPLE DATE	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999
PCBs PCB, Total	1336-36-3	100	500		3.5	0.175	11	48	38	63	0.057	ND	0.89	1.8	3.3	0.53	ND	ND
	Chemical	WASTE TH	L THREAT HRESHOLD J/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	TIAL	RIAL	SAMPLE LOCATION	HP-8	HP-8	HP-9	HP-9	HP10	HP10	HP-11	HP-11	HP-12	HP-12	HP-13	HP-13	HP-14	HP-14
	Number	RESIDENTIAL	INDUSTR	SAMPLE DEPTH (FEET BGS)	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1
		RES	IND	SAMPLE DATE	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999
PCBs PCB, Total	1336-36-3	100	500		ND	ND	ND	ND	0.264	2.9	52	160	8.9	1.4	14.5	11.8	8.9	3.4
	Chemical	WASTE TH	L THREAT HRESHOLD J/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	TIAL	IIAL	SAMPLE LOCATION	SB-1	SB-1	SB-1	SB-2	SB-2	SB-2	SB-2	SB-2	SB-2	SB-2	SB-2	SB-2	SB-3	SB-3
	Number	RESIDENTIAL	INDUSTRI	SAMPLE DEPTH (FEET BGS)	0 - 2	2 - 4	6 - 8	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	10 - 12	12 - 14	14 - 16	16 - 18	0 - 2	2 - 4
		RES	QN I	SAMPLE DATE	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999		7/00/4000	7/00/4000	7/20/1999	7/20/1999	7/20/1999	7/00/4000	7/20/1999	7/20/1999
									1720/1000	7/20/1999	7/20/1999	7/20/1999	7720/1999	7720/1999	1120/1999	7/20/1999	7720/1999	0
PCBs PCB, Total	1336-36-3	100	500		15.5	0.90	19	22.7	99	7/20/1999 5.6	26.3	7/20/1999 ND	7/20/1999 ND	0.75	3.6	9.3	58	3.9
	1336-36-3 Chemical	PRINCIPA WASTE TH	L THREAT	SAMPLE INFORMATION						5.6		ND	ND					
	Chemical Abstract Service	PRINCIPA WASTE TH	L THREAT HRESHOLD J/kg)							5.6	26.3	ND	ND					
PCB, Total	Chemical Abstract	PRINCIPA WASTE TH	L THREAT HRESHOLD J/kg)	INFORMATION	15.5	0.90	19	22.7	99	5.6 CHEM	26.3	ND ES RESULTS (I	ND mg/kg)	0.75	3.6	9.3	58	3.9
PCB, Total	Chemical Abstract Service	PRINCIPA WASTE TH	L THREAT HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH	15.5 SB-3	0.90 SB-3	19 SB-4	22.7 SB-4	99 SB-4	5.6 CHEM	26.3 ICAL ANALYSI SB-5	ND ES RESULTS (I SB-5	ND mg/kg) SB-5	0.75 SB-5	3.6 SB-5	9.3 SB-6	58 SB-6	3.9 SB-6

PCBs - Polychlorinated Biphenyls.

Results above RL are shown in **bold**. Results exceeding one or more criteria are shaded, as are the criteria which were exceeded. Refer to the analytical report for the full list of PCB analytes.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSE	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	IIAL	<u>A</u>	SAMPLE LOCATION	SB-6	SB-6	SB-7	SB-7	SB-7	SB-7	SB-7	SB-7	SB-7	SB-8	SB-8	SB-8	SB-8	SB-8
	Number	RESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	6 - 8	8 - 10	0 - 2	2 -4	4 - 6	6 - 8	8 - 10	10 - 12	12 - 14	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10
		RESI	ND	SAMPLE DATE	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999	7/20/1999
PCBs PCB, Total	1336-36-3	100	500		ND	0.19	1.7	2.22	0.67	23	1.62	0.17	3.9	0.092	0.41	60	6.7	6.2
	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	SB-8	SB-9	SB-9	SB-9	SB-9	SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11
	Number	RESIDENTIAL	USTR	SAMPLE DEPTH (FEET BGS)	10 - 12	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	0 - 2	2 -4	4 - 6	6 - 8	8 - 10	0 - 2	2 - 4	4- 6
		RESI	INDUSTRIAL	SAMPLE DATE	7/20/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999	7/21/1999
PCBs PCB, Total	1336-36-3	100	500		33	19.6	NE	11.7	1.8	7.1	7.4	51	4.5	6.7	0.35	5.1	14.2	0.52
									1.0	7.1	1.7	0.1	7.0	VII		•		V.V-
	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION					1.0			ES RESULTS (I					. 112	
ANALYTE	Chemical Abstract Service	WASTE THE	HRESHOLD g/kg)		SB-11	SB-11	SB-11	SB-12	SB-12					SB-13	SB-13	SB-13	SB-14	SB-14
ANALYTE	Abstract	WASTE THE	HRESHOLD g/kg)	INFORMATION		SB-11 8 -10				CHEM	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	WASTE TH	HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH	SB-11		SB-11	SB-12	SB-12	CHEMI SB-12	ICAL ANALYSI SB-12	ES RESULTS (I	mg/kg) SB-13	SB-13	SB-13	SB-13	SB-14	SB-14
ANALYTE PCBs PCB, Total	Abstract Service	WASTE THE	HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	SB-11 6 - 8	8 -10	SB-11 10 - 12	SB-12 0 - 2	SB-12 2 - 4	SB-12 4 - 6	SB-12	SB-13 0 - 2	mg/kg) SB-13 2 - 4	SB-13 4 - 6	SB-13 6 - 8	SB-13 8 - 10	SB-14 0 - 2	SB-14 2 - 4
PCBs	Abstract Service Number	WASTE THE (mg	HRESHOLD (g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	SB-11 6 - 8 7/21/1999	8 -10 7/21/1999	SB-11 10 - 12 7/21/1999	SB-12 0 - 2 7/21/1999	SB-12 2 - 4 7/21/1999	SB-12 4 - 6 7/21/1999 23.3	SB-12 6 - 8 7/21/1999	SB-13 0 - 2 7/21/1999	mg/kg) SB-13 2 - 4 7/21/1999	SB-13 4 - 6 7/21/1999	SB-13 6 - 8 7/21/1999	SB-13 8 - 10 7/21/1999	SB-14 0 - 2 7/29/1999	SB-14 2 - 4 7/29/1999
PCBs	Abstract Service Number	WASTE THE (mg	HRESHOLD (g/kg) 500 AL THREAT HRESHOLD (g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE	SB-11 6 - 8 7/21/1999	8 -10 7/21/1999	SB-11 10 - 12 7/21/1999	SB-12 0 - 2 7/21/1999	SB-12 2 - 4 7/21/1999	SB-12 4 - 6 7/21/1999 23.3	SB-12 6 - 8 7/21/1999	SB-13 0 - 2 7/21/1999	mg/kg) SB-13 2 - 4 7/21/1999	SB-13 4 - 6 7/21/1999	SB-13 6 - 8 7/21/1999	SB-13 8 - 10 7/21/1999	SB-14 0 - 2 7/29/1999	SB-14 2 - 4 7/29/1999
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract	WASTE THE (mg	HRESHOLD (g/kg) 500 AL THREAT HRESHOLD (g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	SB-11 6 - 8 7/21/1999 0.207	8 -10 7/21/1999 1.06	SB-11 10 - 12 7/21/1999 0.58	SB-12 0 - 2 7/21/1999 106	SB-12 2 - 4 7/21/1999 0.60	SB-12 4 - 6 7/21/1999 23.3	SB-12 6 - 8 7/21/1999 3.32	SB-13 0 - 2 7/21/1999 ND	mg/kg) SB-13 2 - 4 7/21/1999 ND	SB-13 4 - 6 7/21/1999 ND	SB-13 6 - 8 7/21/1999 NR	SB-13 8 - 10 7/21/1999 0.073	SB-14 0 - 2 7/29/1999 47.2	SB-14 2 - 4 7/29/1999 13.1
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract Service	WASTE THE (mg	HRESHOLD (g/kg) SOO AL THREAT HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE DEPTH	SB-11 6 - 8 7/21/1999 0.207	8 -10 7/21/1999 1.06	SB-11 10 - 12 7/21/1999 0.58	SB-12 0 - 2 7/21/1999 106	SB-12 2 - 4 7/21/1999 0.60	SB-12 4 - 6 7/21/1999 23.3 CHEMI	SB-12 6 - 8 7/21/1999 3.32 ICAL ANALYSI SB-16	SB-13 0 - 2 7/21/1999 ND ES RESULTS (I	mg/kg) SB-13 2 - 4 7/21/1999 ND mg/kg) SB-16	SB-13 4 - 6 7/21/1999 ND	SB-13 6 - 8 7/21/1999 NR	SB-13 8 - 10 7/21/1999 0.073	SB-14 0 - 2 7/29/1999 47.2	SB-14 2 - 4 7/29/1999 13.1

PCBs - Polychlorinated Biphenyls.

Results above RL are shown in **bold**. Results exceeding one or more criteria are shaded, as are the criteria which were exceeded. Refer to the analytical report for the full list of PCB analytes.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEMI	ICAL ANALYSI	ES RESULTS (1	mg/kg)					
ANALYTE	Abstract Service	TIAL	IAL	SAMPLE LOCATION	SB-18	SB-18	SB-18	SB-18	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D
	Number	SIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	3 - 5	5 - 7	7 - 9	9 - 11	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	10 - 12	12 - 14	14 - 16	16 - 18	18 - 20
		RES	IND	SAMPLE DATE	7/29/1999	7/29/1999	7/29/1999	7/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999
PCBs PCB, Total	1336-36-3	100	500		44.6	42	62	166	8.7	3.09	ND	2.68	NA	1.49	0.30	NA	ND	ND
	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEMI	ICAL ANALYSI	ES RESULTS (1	mg/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-5D	MW-5D	MW-5D	MW-5D
	Number	SIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	20 - 22	22 - 24	24 - 26	26 - 28	28 - 30	30 - 32	32 - 34	34 - 36	36 - 38	38 - 40	1 - 3	3 - 5	5 - 7	7 - 9
		RES	IND	SAMPLE DATE	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/29/1999	3/30/1999	3/30/1999	3/30/1999	3/30/1999
PCBs PCB, Total	1336-36-3	100	500		NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE	ND	ND
		PRINCIPA	I THREAT															
	Chemical		HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSI	ES RESULTS (1	mg/kg)					
ANALYTE	Chemical Abstract Service	(mg	HRESHOLD g/kg)		MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	CHEMI	MW-5D	MW-5D	mg/kg) MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D
ANALYTE	Abstract	(mg	HRESHOLD g/kg)	INFORMATION	MW-5D 9 - 11	MW-5D 12 - 14	MW-5D 14 - 16	MW-5D 16 - 18	MW-5D 18 - 20					MW-5D 28 - 30	MW-5D 30 - 32	MW-5D 32 - 34	MW-5D 34 - 36	MW-5D 36 - 38
	Abstract Service		HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH						MW-5D	MW-5D	MW-5D	MW-5D	-				_
ANALYTE PCBs PCB, Total	Abstract Service	(mg	HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	9 - 11	12 - 14	14 - 16	16 - 18	18 - 20	MW-5D 20 - 22	MW-5D 22 - 24	MW-5D 24 - 26	MW-5D 26 - 28	28 - 30	30 - 32	32 - 34	34 - 36	36 - 38
PCBs	Abstract Service Number	LESIDENTIAL 100 PRINCIPAL WASTE TH	HRESHOLD (kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	9 - 11	12 - 14	14 - 16 3/30/1999	16 - 18 3/30/1999	18 - 20 3/30/1999	MW-5D 20 - 22 3/30/1999 ND	MW-5D 22 - 24 3/30/1999 ND	MW-5D 24 - 26 3/30/1999	MW-5D 26 - 28 3/30/1999 ND	28 - 30 3/30/1999	30 - 32 3/30/1999	32 - 34 3/30/1999	34 - 36 3/30/1999	36 - 38 3/30/1999
PCBs	Abstract Service Number	LESIDENTIAL RESIDENTIAL 100 PRINCIPA WASTE TH	HRESHOLD g/kg) 500 L THREAT HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE	9 - 11	12 - 14	14 - 16 3/30/1999	16 - 18 3/30/1999	18 - 20 3/30/1999	MW-5D 20 - 22 3/30/1999 ND	MW-5D 22 - 24 3/30/1999 ND	MW-5D 24 - 26 3/30/1999 ND	MW-5D 26 - 28 3/30/1999 ND	28 - 30 3/30/1999	30 - 32 3/30/1999	32 - 34 3/30/1999	34 - 36 3/30/1999	36 - 38 3/30/1999
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract	LESIDENTIAL RESIDENTIAL 100 PRINCIPA WASTE TH	HRESHOLD g/kg) 500 L THREAT HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	9 - 11 3/30/1999 ND	12 - 14 3/30/1999 NE	14 - 16 3/30/1999 NE	16 - 18 3/30/1999 ND	18 - 20 3/30/1999 ND	MW-5D 20 - 22 3/30/1999 ND CHEMI	MW-5D 22 - 24 3/30/1999 ND	MW-5D 24 - 26 3/30/1999 ND	MW-5D 26 - 28 3/30/1999 ND	28 - 30 3/30/1999 ND	30 - 32 3/30/1999 ND	32 - 34 3/30/1999 ND	34 - 36 3/30/1999 ND	36 - 38 3/30/1999 ND
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract Service	LESIDENTIAL 100 PRINCIPAL WASTE TH	HRESHOLD (kg) SOO SOO L THREAT HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE LOCATION	9 - 11 3/30/1999 ND	12 - 14 3/30/1999 NE	14 - 16 3/30/1999 NE MW-7D	16 - 18 3/30/1999 ND	18 - 20 3/30/1999 ND	MW-5D 20 - 22 3/30/1999 ND CHEMI	MW-5D 22 - 24 3/30/1999 ND ICAL ANALYSI MW-7D	MW-5D 24 - 26 3/30/1999 ND ES RESULTS (I	MW-5D 26 - 28 3/30/1999 ND mg/kg)	28 - 30 3/30/1999 ND	30 - 32 3/30/1999 ND	32 - 34 3/30/1999 ND	34 - 36 3/30/1999 ND	36 - 38 3/30/1999 ND

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

TABLE 1

	Chemical	PRINCIPA WASTE TH (mg		SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (1	mg/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D	COMP-1	COMP-1	COMP-1	COMP-1	COMP-1	COMP-2	COMP-2	COMP-2
	Number	RESIDENTIAL	INDUSTRI	SAMPLE DEPTH (FEET BGS)	28 - 30	30 - 32	32 - 34	34 - 36	36 - 38	38 - 40	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	0 - 2	2 - 4	4 - 6
		RESI	INDI	SAMPLE DATE	3/31/1999	3/31/1999	3/31/1999	3/31/1999	3/31/1999	3/31/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999
PCBs PCB, Total	1336-36-3	100	500		ND	ND	ND	0.15	NA	ND	5.4	3.4	3.2	0.1	ND	ND	14.9	0.192
	Chemical	PRINCIPA WASTE TH (mg		SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (1	mg/kg)					
ANALYTE	Abstract Service	ITIA	IAL	SAMPLE LOCATION	COMP-2	COMP-2	COMP-3	COMP-3	COMP-3	COMP-3	COMP-3	COMP-4	COMP-4	COMP-4	COMP-5	COMP-5	COMP-5	COMP-6
	Number	RESIDENTIA L	NDUSTRIA	SAMPLE DEPTH (FEET BGS)	6 -8	8 - 10	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	0 - 2	2 - 4	4 - 6	0 - 2	2 - 4	4 - 6	0-2
		RES	QNI	SAMPLE DATE	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999
PCBs PCB, Total	1336-36-3	100	500		0.80	0.51	0.60	0.29	ND	0.44	ND	1.51	1.08	1.37	0.90	7.70	0.35	ND
	Chemical	PRINCIPA WASTE TH		SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE		(ilig	/kg)	INI ORMATION														
ANALITE	Abstract Service			SAMPLE LOCATION	COMP-6	COMP-6	COMP-6	COMP-6	COMP-7	COMP-7	COMP-7	COMP-7	COMP-7	COMP-8	COMP-8	COMP-8	COMP-9	COMP-9
AVALITE					COMP-6 2 - 4	COMP-6 4 - 6	COMP-6 6 - 8	COMP-6 8 - 10	COMP-7 0 - 2	COMP-7 2 - 4	COMP-7 4 - 6	COMP-7 6 - 8	COMP-7 8 - 10	COMP-8 0 - 2	COMP-8 2 - 4	COMP-8 4 - 6	COMP-9 0 - 2	COMP-9 2 - 4
ANALITE	Service	RESIDENTIAL	(69/	SAMPLE LOCATION SAMPLE DEPTH					_		_	_						
PCBs PCB, Total	Service			SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	2 - 4	4 - 6	6 - 8	8 - 10	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	0 - 2	2 - 4	4 - 6	0 - 2	2 - 4
PCBs	Service Number	100 PRINCIPA WASTE TH	NDUSTRIAL	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	2 - 4	4 - 6	6 - 8 8/10/1999	8 - 10 8/10/1999	0 - 2	2 - 4 8/10/1999 0.57	4 - 6 8/10/1999 3.50	6 - 8	8 - 10 8/10/1999 0.61	0 - 2	2 - 4	4 - 6 8/10/1999	0 - 2	2 - 4
PCBs	Service Number	100 PRINCIPA WASTE TH (mg	500 L THREAT IRESHOLD //kg)	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE	2 - 4	4 - 6	6 - 8 8/10/1999	8 - 10 8/10/1999	0 - 2	2 - 4 8/10/1999 0.57	4 - 6 8/10/1999 3.50	6 - 8 8/10/1999 ND	8 - 10 8/10/1999 0.61	0 - 2	2 - 4	4 - 6 8/10/1999	0 - 2	2 - 4
PCBs PCB, Total	Service Number 1336-36-3 Chemical Abstract	100 PRINCIPA WASTE TH (mg	500 L THREAT IRESHOLD //kg)	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	2 - 4 8/10/1999 0.23	4 - 6 8/10/1999 3.13	6 - 8 8/10/1999 2.46	8 - 10 8/10/1999 0.015	0 - 2 8/10/1999 1.28	2 - 4 8/10/1999 0.57	4 - 6 8/10/1999 3.50	6 - 8 8/10/1999 ND	8 - 10 8/10/1999 0.61 mg/kg)	0 - 2 8/10/1999 55	2 - 4 8/10/1999 11.1	4 - 6 8/10/1999 102	0 - 2 8/10/1999 2.20	2 - 4 8/10/1999 2.72
PCBs PCB, Total	Service Number 1336-36-3 Chemical Abstract Service	100 PRINCIPA WASTE TH	500 L THREAT IRESHOLD	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE DEPTH	2 - 4 8/10/1999 0.23	4 - 6 8/10/1999 3.13	6 - 8 8/10/1999 2.46	8 - 10 8/10/1999 0.015	0 - 2 8/10/1999 1.28 COMP-11	2 - 4 8/10/1999 0.57 CHEM	4 - 6 8/10/1999 3.50 ICAL ANALYSI	6 - 8 8/10/1999 ND ES RESULTS (I	8 - 10 8/10/1999 0.61 mg/kg)	0 - 2 8/10/1999 55	2 - 4 8/10/1999 11.1 COMP-12	4 - 6 8/10/1999 102 COMP-12	0 - 2 8/10/1999 2.20	2 - 4 8/10/1999 2.72 COMP-13

PCBs - Polychlorinated Biphenyls.

Results above RL are shown in **bold**. Results exceeding one or more criteria are shaded, as are the criteria which were exceeded. Refer to the analytical report for the full list of PCB analytes.

SME

TABLE 1

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT IRESHOLD /kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	ΓΙΑL	IAL	SAMPLE LOCATION	COMP-13	COMP-13	COMP-14	COMP-14	COMP-14	COMP-14	COMP-14	COMP-15	COMP-15	COMP-15	COMP-15	COMP-16	COMP-16	COMP-16
	Number	SIDEN	USTR	SAMPLE DEPTH (FEET BGS)	4 - 6	6 - 8	0 - 2	2 - 4	4 - 6	6 - 8	8 -10	0 - 2	2 - 4	4 - 6	6 - 8	0 - 2	2 -4	4 - 6
		RES		SAMPLE DATE	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999
PCBs																		
PCB, Total	1336-36-3	100	500		85	34.3	18.8	19.8	26.4	17	1,800	4.2	10.9	21.4	3.8	3.0	3.8	23

	Chemical	WASTE TH	L THREAT IRESHOLD /kg)	SAMPLE INFORMATION				CHEMICAL AI	NALYSES RES	ULTS (mg/kg)			
ANALYTE	Abstract Service	IIAL	NTIA	SAMPLE LOCATION	COMP-16	COMP-17	COMP-17	COMP-17	COMP-18	COMP-18	COMP-18	COMP-18	COMP-18
	Number	Ż	USTR	SAMPLE DEPTH (FEET BGS)	6 - 8	0 - 2	2 -4	4 - 6	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10
		RESIDE	N N	SAMPLE DATE	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999	8/10/1999
PCBs													
PCB, Total	1336-36-3	100	500		13.5	0.94	2.6	2.0	28.0	450	16.0	ND	ND

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSE	ES RESULTS (r	ng/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	NRB-4	NRB-5	NRB-7	NRB-9	NRB-10	B1	B2	B2	В3	В3	В3	В3	В3	В3
	Number	IDENT	USTR	SAMPLE DEPTH (FEET BGS)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	6-8	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	2.5-3
		RES	ND IND	SAMPLE DATE	4/1/1999	4/1/1999	4/1/1999	4/1/1999	4/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999
PCBs																		
PCB, Total	1336-36-3	100	500		0.56	2,700	ND	0.73	0.12	1,100	380	100	0.36	0.42	NA	690	38	33

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSE	S RESULTS (r	ng/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	NB-COMP-1	NB-COMP-2	NB-COMP-3	NB-COMP-4	NB-COMP-5	NB-COMP-6	NB-COMP-7	NB-COMP-8	NB-COMP-9	NB-COMP-10	NB-SS-41	NB-SS-42	NB-SS-43	NB-SS-44
	Number	IDEN	USTR	SAMPLE DEPTH (FEET BGS)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
		RESI	ND IN	SAMPLE DATE	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999
PCBs																		
PCB, Total	1336-36-3	100	500		2.3	0.77	0.64	2.1	39	2.6	2.8	3.5	1.6	1.9	7.2	7.3	13	31

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT IRESHOLD /kg)	SAMPLE INFORMATION		CHEM	ICAL ANALYSE	ES RESULTS (I	ng/kg)	
ANALYTE	TE Abstract Service	ΓΙΑL	IAL	SAMPLE LOCATION	NB-SS-45	NB-SS-46	NB-SS-47	NB-SS-48	NB-SS-49	NB-SS-50
	Number	RESIDENTIA	USTRI	SAMPLE DEPTH (FEET BGS)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
		RES	INDUS.	SAMPLE DATE	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999	5/1/1999
PCBs										
PCB, Total	1336-36-3	100	500		12	17	5.8	3.3	0.25	83

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD n/kg)	SAMPLE INFORMATION						СНЕМІ	CAL ANALYSI	ES RESULTS (1	ng/kg)					
ANALYTE	Abstract Service	IAL	IAL	SAMPLE LOCATION	RB-SS2, G10. 0 - 1	RB-SS3, G10, W Floor	RB-SS4, G10. E Floor	RB-SS5, G10, 0 - 1	RB-SS3, G9, Floor	RB-SS4, H9, Floor	RB-SS3, H10. 0 - 1	RB-SS6, H10, Floor	RB-SS12, H10, 0 - 1	RB-SS8, H10, 0 - 1	RB-SS2, H10. 0 - 1	RB-SS13, H10, N Floor	RB-SS14, H10, Floor	RB-SS5, I10, 0 - 1
	Number	IDENI	USTR	SAMPLE DEPTH (FEET BGS)	0 - 1	1	1	0 - 1	1	1	0 - 1	1	0 - 1	0 - 1	0 - 1	1	1	0 - 1
		RES	N N	SAMPLE DATE	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/12/2004	10/12/2004	10/8/2004	10/8/2004	10/12/2004	10/7/2004	10/8/2004	10/12/2004	10/12/2004	10/7/2004
PCBs																		
PCB, Total	1336-36-3	100	500		0.12	0.228	0.79	0.057	1.9	0.70	0.65	7.7	0.84	ND	0.53	1.5	5.1	0.22

	Chemical		L THREAT IRESHOLD /kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSI	ES RESULTS (n	ng/kg)					
ANALYTE	Abstract	ΑL	ų	SAMPLE LOCATION	RB-SS10,	RB-SS15,	RB-SS17,	RB-SS19,	, ,	, ,	RB-SS4, J10,	RB-SS9, J10,	,	, ,	, ,	RB-SS7, K10,	,	RB-SS7,
	Service	Ê	۷		I10, Floor	I10, Floor	I10, S(0 - 1)	l10, Floor	Floor	0 - 1	0 - 1	N(0 - 1)	J10, Floor	0 - 1	Floor	0 - 1 North	M11, Floor	M11, E(0 - 1)
	Number	IDEN	USTF	SAMPLE DEPTH (FEET BGS)	1	1	0 - 1	1	1	0 - 1	0 - 1	0 - 1	1	0 - 1	1	0 - 1	1	0 - 1
		RES	IND	SAMPLE DATE	10/8/2004	10/8/2004	10/12/2004	10/12/2004	10/12/2004	10/7/2004	10/7/2004	10/12/2004	10/12/2004	10/7/2004	10/8/2004	10/8/2004	10/12/2004	10/12/2004
PCBs																		
PCB, Total	1336-36-3	100	500		3.3	ND	0.67	2.0	0.021	0.21	0.18	0.80	ND	0.18	0.84	0.044	1.1	0.16

	Chemical	WASTE TH	L THREAT HRESHOLD I/kg)	SAMPLE INFORMATION			CHEMICAL A	NALYSES RES	ULTS (mg/kg)		
ΔΝΔΙ ΥΤΕ	ANALYTE Abstract Service	7		SAMPLE LOCATION	RB-SS8,	RB-SS1,	RB-SS5,	RB-SS4, N11,	RB-SS1, O11,	RB-SS1, O12,	RB-SS1, N12,
ANALITE			RIA	CAIM EE ECCATION	M11, Floor	N11, 0 - 1	N11, Floor	0 - 1	0 - 1	0 - 1	0 - 1
	Number	RESIDEN	_	SAMPLE DEPTH (FEET BGS)	1	0 - 1	1	0 - 1	0 - 1	0 - 1	0 - 1
		RES	.SNQNI	SAMPLE DATE	10/12/2004	10/7/2004	10/8/2004	10/7/2004	10/22/2004	10/22/2004	10/22/2004
PCBs											
PCB, Total	1336-36-3	100	500		2.3	0.05	0.44	ND	0.31	ND	0.27

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD I/kg)	SAMPLE INFORMATION						СНЕМІ	ICAL ANALYSE	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	NTIAL	IAL	SAMPLE LOCATION	PS-SS2, B7, Floor	PS-SS2, B7, N(0 - 1)	PS-SS2, B7, S(0 - 1)	PS-SS2, B7, W(0 - 1)	PS-SS3, B7, E(0 - 1)	PS-SS1, D9, Floor	PS-SS1, D9, N(0 - 1)	PS-SS1, D9, W(0 - 1)	PS-SS1, E9, E(0 - 1)	PS-SS1, E9, N(0 - 1)	PS-SS1, E9, Floor	PS-SS3, D9, (0 - 1)	PS-SS2, E9, S(0 - 1)	PS-SS1, G9
	Number	SIDEN	USTRIAL	SAMPLE DEPTH (FEET BGS)	1	0 - 1	0 - 1	0 - 1	0 - 1	1	0 - 1	0 - 1	0 - 1	0 - 1	1	0 - 1	0 - 1	0 - 1
		RES	<u>R</u>	SAMPLE DATE	10/21/2004	10/21/2004	10/21/2004	10/21/2004	10/22/2004	10/20/2004	10/20/2004	10/20/2004	10/20/2004	10/20/2004	10/20/2004	10/22/2004	10/21/2004	10/12/2004
PCBs																		
PCB, Total	1336-36-3	100	500		0.89	0.69	0.32	ND	0.082	0.82	ND	0.45	ND	0.05	0.82	ND	ND	1.4
-																		
	Chemical	WASTE TH	L THREAT HRESHOLD I/kg)	SAMPLE INFORMATION						CHEMICAL AN	NALYSES RES	ULTS (mg/kg)						
ANALYTE	Chemical Abstract Service	WASTE TH (mg	HRESHOLD J/kg)		PS-SS1, G9, Floor	PS-SS1, H8, N Floor	PS-SS2, H8, S Floor	PS-SS2, H9	PS-SS1 I9	CHEMICAL AN PS-SS1, J9/J10, Floor		ULTS (mg/kg) PS-SS1, K10, Floor		PS-SS1, M10, Floor	PS-SS1, N10, Floor	PS-SS1, N9, Floor	PS-SS1, O8, Floor	
ANALYTE	Abstract	WASTE THE COMMENT OF	USTRIAL USTRIAL (A)	INFORMATION	, ,	, ,		PS-SS2, H9	PS-SS1 I9	PS-SS1,	PS-SS1, K9,	PS-SS1, K10,	PS-SS1, L10,	, ,	, ,	, ,	, ,	
ANALYTE	Abstract Service	WASTE TH (mg	RESHOLD (/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH	, ,	, ,		PS-SS2, H9 1 10/20/2004	PS-SS1 I9	PS-SS1,	PS-SS1, K9,	PS-SS1, K10,	PS-SS1, L10,	, ,	, ,	, ,	, ,	
ANALYTE PCBs PCB, Total	Abstract Service	SIDENTIAL SIDENTIAL	DUSTRIAL DUSTRIAL	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	Floor 1	N Floor	S Floor	1	PS-SS1, I9	PS-SS1, J9/J10, Floor 1	PS-SS1, K9, Floor	PS-SS1, K10, Floor	PS-SS1, L10, Floor	Floor 1	Floor 1	Floor 1	Floor 1	

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD I/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSE	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	IAL	AL	SAMPLE LOCATION	PPI-SS1-W (0 - 1)	PPI-SS2-W (0 - 1)	PPI-SS3- Floor	PPI-SS4-S (0 -	PPI-SS6-E (0 -	PPI-SS7-E (0	PPI-SS8-E (0 - 1)	PPI-SS9-E (0 -	PPI-SS10- Floor	PPI-SS11-W (0 - 1)	PPI-SS12-W (0 - 1)	PPI-SS13-W (0 - 1)	PPI-SS15- Floor	PPI-SS17-N (0 - 1)
	Number	IDENT	USTRI	SAMPLE DEPTH (FEET BGS)	0 - 1	0 - 1	3	0 - 1	0 - 1	0 - 1	0 - 1	0 - 1	3	0 - 1	0 - 1	0 - 1	7	0 - 1
		RES	2	SAMPLE DATE	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004	10/6/2004
PCBs																		
PCB, Total	1336-36-3	100	500		0.58	0.27	4.3	3.8	ND	ND	3.5	0.32	0.41	6.9	1.95	3.1	0.48	ND

	Chemical	WASTE TH	L THREAT HRESHOLD n/kg)	SAMPLE INFORMATION		CHEM	ICAL ANALYSE	ES RESULTS (mg/kg)	
ANALYTE	Abstract Service	IAL	IAL	SAMPLE LOCATION	PPI-SS24-W (0 - 1)	PP2-SS3-E (0 - 1)	PP2-SS23-E (0 - 1)	PP2-SS24-E (5 - 7)	PP2-SS26-W (0 - 1)	PP2-SS29-W (5 - 7)
	Number	IDEN	USTRI	SAMPLE DEPTH (FEET BGS)	0 - 1	0 - 1	0 - 1	5 - 7	0 - 1	5 - 7
		RESIDE	INDUS.	SAMPLE DATE	10/8/2004	10/8/2004	10/18/2004	10/18/2004	10/18/2004	10/20/2004
PCBs										
PCB, Total	1336-36-3	100	500		ND	0.37	0.17	0.07	0.028	27

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	TIAL	IIAL	SAMPLE LOCATION	S1	S2	S3	S4	S5	S6	S6	S6	S6-1E	S 7	S7	S 7	S7-1N	S7-2N
	Number	RESIDENTIAL	INDUSTRI	SAMPLE DEPTH (FEET BGS)	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'
		RES	IND	SAMPLE DATE	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	11/10/2016
PCBs PCB, Total	1336-36-3	100	500		4.75	0.75	0.826	0.489	0.176	6.73	NA	NA	NA	18.2	426	55.2	NA	4.5
	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	TIAL	IIAL	SAMPLE LOCATION	S7-2W	\$7-2SE	S8	S9	S9	S9	S9-1N	S9-1N	S9-1N	S9-1E	S9-1E	S9-1E	S9-2E	S9-2E
	Number	IDEN.	E P	SAMPLE DEPTH (FEET BGS)	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'
		RES	IND	SAMPLE DATE	11/10/2016	11/10/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
PCBs PCB, Total	1336-36-3	100	500		5.61	0.686	2.72	9,060	5,430	513	525	2,090	661	15,200	5,360	1,570	7,180	3,720
	Chamian	PRINCIPA WASTE TH	AL THREAT	SAMPLE						CHEM	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
	Chemical	(mg	g/kg)	INFORMATION														
ANALYTE	Abstract Service		g/kg)	SAMPLE LOCATION	S9-2E	S9-1S	S9-1S	S9-1S	S9-2S	S9-2S	S9-2S	S9-S10	S9-S10	S9-S10	\$10	\$10	\$10	S10-1N
ANALYTE	Abstract		g/kg)		S9-2E 1.5' - 3.5'	S9-1S 0 - 0.5'	S9-1S 0.5' - 1.5'	S9-1S 1.5' - 3.5'	\$9-2\$ 0 - 0.5'		S9-2S 1.5' - 3.5'	S9-S10 0 - 0.5'	S9-S10 0.5'-1.5	S9-S10 1.5' - 3.5'	S10 0 - 0.5'	S10 0.5' - 1.5'	\$10 1.5' - 3.5'	\$10-1N 0 - 0.5'
ANALYTE	Abstract Service	RESIDENTIAL (m)	g/kg)	SAMPLE LOCATION SAMPLE DEPTH						S9-2S								
ANALYTE PCBs PCB, Total	Abstract Service		g/kg)	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	\$9-2\$ 0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5'-1.5	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'
PCBs	Abstract Service Number	100 PRINCIPA WASTE TH	industrial	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	1.5' - 3.5' 11/10/2016	0 - 0.5'	0.5' - 1.5' 11/10/2016	1.5' - 3.5' 11/10/2016	0 - 0.5'	\$9-2\$ 0.5' - 1.5' 11/10/2016 1,200	1.5' - 3.5' 11/10/2016 90.4	0 - 0.5' 11/10/2016	0.5'-1.5 11/10/2016 6,640	1.5' - 3.5' 11/10/2016	0 - 0.5' 9/28/2016	0.5' - 1.5' 9/28/2016	1.5' - 3.5' 9/28/2016	0 - 0.5'
PCBs	Abstract Service Number 1336-36-3 Chemical Abstract	100 PRINCIPA WASTE TH (mg	g/kg) S00 AL THREAT HRESHOLD g/kg)	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE	1.5' - 3.5' 11/10/2016	0 - 0.5'	0.5' - 1.5' 11/10/2016	1.5' - 3.5' 11/10/2016	0 - 0.5'	\$9-2\$ 0.5' - 1.5' 11/10/2016 1,200	1.5' - 3.5' 11/10/2016 90.4	0 - 0.5' 11/10/2016 6,270	0.5'-1.5 11/10/2016 6,640	1.5' - 3.5' 11/10/2016	0 - 0.5' 9/28/2016	0.5' - 1.5' 9/28/2016	1.5' - 3.5' 9/28/2016	0 - 0.5'
PCBs PCB, Total	Abstract Service Number	100 PRINCIPA WASTE TH (mg	g/kg) S00 AL THREAT HRESHOLD g/kg)	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	1.5' - 3.5' 11/10/2016 9.59	0 - 0.5' 11/10/2016 223	0.5' - 1.5' 11/10/2016 2,030	1.5' - 3.5' 11/10/2016 470	0 - 0.5' 11/10/2016 102	S9-2S 0.5' - 1.5' 11/10/2016 1,200	1.5' - 3.5' 11/10/2016 90.4	0 - 0.5' 11/10/2016 6,270 ES RESULTS (0.5'-1.5 11/10/2016 6,640 mg/kg)	1.5' - 3.5' 11/10/2016 6,840	0 - 0.5' 9/28/2016 24.8	0.5' - 1.5' 9/28/2016 11.2	1.5' - 3.5' 9/28/2016 7.28	0 - 0.5' 11/10/2016 8.48
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract Service	100 PRINCIPA WASTE TH	g/kg) INDOSTRIAL S00 AL THREAT HRESHOLD	SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE DEPTH	1.5' - 3.5' 11/10/2016 9.59 \$10-2N	0 - 0.5' 11/10/2016 223 \$10-1E	0.5' - 1.5' 11/10/2016 2,030 S10-2E	1.5' - 3.5' 11/10/2016 470	0 - 0.5' 11/10/2016 102 \$12	\$9-2\$ 0.5' - 1.5' 11/10/2016 1,200 CHEM	1.5' - 3.5' 11/10/2016 90.4 ICAL ANALYSI	0 - 0.5' 11/10/2016 6,270 ES RESULTS (1) \$14	0.5'-1.5 11/10/2016 6,640 mg/kg)	1.5' - 3.5' 11/10/2016 6,840 S14-1N	0 - 0.5' 9/28/2016 24.8 S14-2N	0.5' - 1.5' 9/28/2016 11.2 S14-1E	1.5' - 3.5' 9/28/2016 7.28	0 - 0.5' 11/10/2016 8.48 \$14-1E

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (1	ng/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	S14-2E	S14-2E	S14-2E	S14-1W	S14-1W	S14-1W	S14-S15	S14-S15	S14-S15	S15	S15	S15	S15-1N	S15-2N
	Number	RESIDENTIAL	INDUSTRI	SAMPLE DEPTH (FEET BGS)	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'
		RES	<u>N</u>	SAMPLE DATE	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	11/10/2016
PCBs PCB, Total	1336-36-3	100	500		19	12.2	0.0349	151	22	0.716	878	616	791	423	56.1	0.0907	8.56	3.89
	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	IIAL	RIAL	SAMPLE LOCATION	S15-1E	S15-1E	S15-1E	S15-1W	S15-1W	S15-1W	S15-2W	S15-2W	S15-2W	S16	S17	S18	S19	S20
	Number	RESIDENTIAL	INDUSTR	SAMPLE DEPTH (FEET BGS)	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'
		RES	ND ND	SAMPLE DATE	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016
PCBs PCB, Total	1336-36-3	100	500		1,570	468	2.41	1,030	22.1	0.938	136	19.5	1.05	0.0801	0.83	0.0829	2.82	0.0263
	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (1	ng/kg)					
ANALYTE	Chemical Abstract Service	WASTE TH	HRESHOLD g/kg)		S21	S22	GT1	GT2	G T3	CHEM	ICAL ANALYSI GT4	ES RESULTS (I	ng/kg) GT4-1E	GT4-1S	GT4-1W	GT5	SMF1	SMF2
ANALYTE	Abstract	WASTE TH	HRESHOLD g/kg)	INFORMATION	\$21 0 - 0.5'	S22 0 - 0.5'	GT1 0 - 0.5'	GT2 0 - 0.5'	GT3 0 - 0.5'					GT4-1S 0 - 0.5'	GT4-1W 0 - 0.5'	GT5 0 - 0.5'	SMF1 0 - 0.5'	SMF2 0 - 0.5'
	Abstract Service	WASTE TH	HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH		_				GT4	GT4	GT4	GT4-1E				_	
ANALYTE PCBs PCB, Total	Abstract Service	ESIDENTIAL	DUSTRIAL DUSTRIAL	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	GT4 0 - 0.5'	GT4 0.5' - 1.5'	GT4 1.5' - 3.5'	GT4-1E 0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'
PCBs	Abstract Service Number	WASTE THE (mg	HRESHOLD (kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	GT4 0 - 0.5' 9/28/2016 9.33	GT4 0.5' - 1.5' 9/28/2016	GT4 1.5' - 3.5' 9/28/2016 1.44	GT4-1E 0 - 0.5' 11/10/2016	0 - 0.5'	0 - 0.5'	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016
PCBs	Abstract Service Number	WASTE THE (mg	HRESHOLD g/kg) 500 L THREAT HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	GT4 0 - 0.5' 9/28/2016 9.33	GT4 0.5' - 1.5' 9/28/2016 59.6	GT4 1.5' - 3.5' 9/28/2016 1.44	GT4-1E 0 - 0.5' 11/10/2016	0 - 0.5'	0 - 0.5'	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016	0 - 0.5' 9/28/2016
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract	WASTE THE (mg	HRESHOLD g/kg) 500 L THREAT HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	0 - 0.5' 9/28/2016 3.73	0 - 0.5' 9/28/2016 4.79	0 - 0.5' 9/28/2016 0.6	0 - 0.5' 9/28/2016 1.28	0 - 0.5' 9/28/2016 3.2	GT4 0 - 0.5' 9/28/2016 9.33 CHEMICAL A	GT4 0.5' - 1.5' 9/28/2016 59.6 NALYSES RES	GT4 1.5' - 3.5' 9/28/2016 1.44 ULTS (mg/kg)	GT4-1E 0 - 0.5' 11/10/2016 0.758	0 - 0.5' 11/10/2016 3.12	0 - 0.5' 11/10/2016 3.2	0 - 0.5' 9/28/2016 0.531	0 - 0.5' 9/28/2016 0.188	0 - 0.5' 9/28/2016
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract Service	WASTE THE (mg	HRESHOLD (kg) SOO SOO L THREAT HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE LOCATION	0 - 0.5' 9/28/2016 3.73	0 - 0.5' 9/28/2016 4.79	0 - 0.5' 9/28/2016 0.6	0 - 0.5' 9/28/2016 1.28	0 - 0.5' 9/28/2016 3.2 SMF7	GT4 0 - 0.5' 9/28/2016 9.33 CHEMICAL AI	GT4 0.5' - 1.5' 9/28/2016 59.6 NALYSES RES	GT4 1.5' - 3.5' 9/28/2016 1.44 ULTS (mg/kg) CTF3	GT4-1E 0 - 0.5' 11/10/2016 0.758	0 - 0.5' 11/10/2016 3.12 CTF5	0 - 0.5' 11/10/2016 3.2 CTF6	0 - 0.5' 9/28/2016 0.531	0 - 0.5' 9/28/2016 0.188	0 - 0.5' 9/28/2016

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION			CHEMICAL AI	NALYSES RES	ULTS (mg/kg)		
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	DUP-SOIL 1	DUP-SOIL 4	DUP-SOIL 5	DUP-SOIL 6	DUP-SOIL 1A	DUP-SOIL 2A	DUP SOIL 3A
	Number	SIDEN	USTRI	SAMPLE DEPTH (FEET BGS)	GT4 (0 - 0.5')	S9 (0-0.05)	S9 (0.5' - 1.5')	S9 (1.5' - 3.5')	S6-1E (0 - 0.5")	S71-SE (0 - 0.5")	GT4-1S (0 - 0.5")
		RES	INDUS.	SAMPLE DATE	9/28/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	11/10/2016	11/10/2016
PCBs											
PCB, Total	1336-36-3	100	500		3.9	11,200	5,820	1,050	NA	1.62	6.77

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TI	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (1	ng/kg)					
ANALYTE	Abstract Service	TIAL	IIAL	SAMPLE LOCATION	S7A	S7A	S9A	S9A	S9-2EA	S9-2EA	Duplicate Soil - 3	S9-1N-S9S10	S9-1N-S9S10	Duplicate Soil - 4	S9-1N-S9S10	S9-1S-S9-2S	S9-1S-S9-2S	S9-1S-S9-2S
	Number	SIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	4 - 6	6 - 7	4 - 6	6 - 8	4 - 6	6 - 8	S9-2EA (6-8)	4 - 6	6 - 8	S9-1N-S9S10 (6-8)	8 - 10	4 - 6	6 - 8	8 - 10
		RES	<u>N</u>	SAMPLE DATE	5/9/2018	5/9/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/9/2018	5/9/2018	5/9/2018
PCBs PCB, Total	1336-36-3	100	500		0.067	<0.030	2.26	2.39	266	18.9	3.64	8,690	7,580	11,600	6,430	12.6	12.3	0.783
	Chemical	WASTE T	AL THREAT HRESHOLD g/kg)	SAMPLE LOCATION S						СНЕМ	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	TIAL	IIAL	SAMPLE LOCATION	Duplicate Soil- 2	S9-1S-S9-2S	S9-2S-1E	S9-2S-1E	S9-2S-1E	S9-2S-1E	S9-2S-1E	S9-2S-1E	S9-2S-1E	S9-2S-2E	S9-2S-2E	S9-2S-2E	S9-2S-2E	S9-2S-2E
	Number	DEN	RESIDENTIAL	SAMPLE DEPTH (FEET BGS)	S9-1S-S9-2S (8 - 10)	10.0 - 10.5	0 - 0.5	0.5 - 2.0	2 - 4	4 - 6	6 - 8	8 - 10	10.0 - 11.5	0 - 0.5	0.5 - 2.0	2 - 4	4 - 6	6 - 8
		RES	IND	SAMPLE DATE	5/9/2018	5/9/2018	5/9/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018
PCBs PCB, Total	1336-36-3	100	500		0.484	<0.043	14.2	1,050	7.88	64.7	9.08	0.298	0.082	16.3	3.81	1.21	2,400	184
	Chemical	WASTE T	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSI	ES RESULTS (I	mg/kg)					
ANALYTE	Abstract Service	TIAL	IIAL	SAMPLE LOCATION	S9-2S-2E	S9-2S-2E	S9-2S-3E	S9-2S-3E	S9-2S-3E	S9-2S-3E	S9-2S-4E	S9-2S-4E	S9-2S-4E	S9-2S-4E	Duplicate Soil - 6	S9-3S	S9-3S	S9-3S
	Number	ESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	8 - 10	10.0 - 10.5	0 - 2	2 - 4	4 - 6	6 - 8	0 - 2	2 - 4	4 - 6	6 - 8	S9-2S-4E (6 - 8)	0 - 0.5	0.5 - 2.0	2 - 4
		RES		SAMPLE DATE	5/8/2018	5/8/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018
DCPa										3/9/2010	3/3/2010	3/3/2010	0/0/2010					
PCBs PCB, Total	1336-36-3	100	100 500 PRINCIPAL THREAT WASTE THRESHOLD		0.557	<0.0404	6.97	0.216	199	5.86	35.1	0.207	14.3	204	155	5.23	9.89	155
-	1336-36-3 Chemical	PRINCIPA WASTE TI	AL THREAT	SAMPLE INFORMATION	0.557	<0.0404	6.97	0.216	199	5.86	35.1		14.3	204	155	5.23	9.89	155
-		PRINCIPA WASTE TI (mg	AL THREAT HRESHOLD g/kg)		0.557 S9-3S	<0.0404 \$9-3\$	6.97 S9-3E	0.216 S9-3E	199 S9-3E	5.86	35.1	0.207	14.3	204 S9-4E	155 S9-4E	5.23 S9-4E	9.89 S9-5E	155 S9-5E
PCB, Total	Chemical Abstract	PRINCIPA WASTE TI (mg	AL THREAT HRESHOLD g/kg)	INFORMATION						5.86 CHEM	35.1	0.207 ES RESULTS (I	14.3 mg/kg)					
PCB, Total	Chemical Abstract Service	PRINCIPA WASTE TI	AL THREAT HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH	S9-3S	S9-3S	S9-3E	S9-3E	S9-3E	5.86 CHEM S9-3E	35.1 ICAL ANALYSI S9-3E	0.207 ES RESULTS (I	14.3 mg/kg)	\$9-4E	S9-4E	S9-4E	S9-5E	S9-5E

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSE	ES RESULTS (r	mg/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	S9-5E	S9-5E	S9-5E	S9-6E	S9-6E	S9-6E	S9-S10-1E	S9-S10-1E	S9-S10-1E	S9-S10-1E	S9-S10-1E	S9-S10-1E	S9-S10-2E	S9-S10-2E
	Number	SIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	2 - 3.75	4 - 6	6 - 8	0 - 2	4 - 6	6 - 8	0 - 0.5	0.5 - 2.0	2 - 4	4 - 6	6 - 8	8 - 9	0 - 0.5	0.5 - 2.0
		RES	N ON	SAMPLE DATE	5/8/2018	5/8/2018	5/8/2018	5/9/2018	5/9/2018	5/9/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018
PCBs PCB, Total	1336-36-3	100	500		256	8,740	18.1	0.136	1.39	0.335	44.2	348	1.52	0.127	0.04	172	7.31	205
	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSE	ES RESULTS (1	mg/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	S9-S10-2E	S9-S10-2E	S9-S10-2E	S9-S10-3E	S9-S10-3E	S9-S10-3E	S9-S10-3E	S9-S10-4E	S9-S10-4E	S9-S10-4E	S14-S15A	S14-S15A	S14-S15A	S14-S15A-1N
	Number	ESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	2 - 4	4 - 6	6 - 8	0 - 2	2 - 4	4 - 6	6 - 8	0 - 2	4 - 6	6 - 8	4 - 6	6 - 8	8 - 10	0 - 2
		RES	ON IND	SAMPLE DATE	5/8/2018	5/8/2018	5/8/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018	5/7/2018	5/7/2018	5/7/2018	5/9/2018
PCBs PCB, Total	1336-36-3	100	500		8.98	0.11	0.127	4.24	117	9.08	0.175	1.96	1.83	0.102	0.935	61.8	185	392
																		_
	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (r	ng/kg)					
ANALYTE	Chemical Abstract Service	WASTE TH	HRESHOLD g/kg)		S14-S15A-1N	S14-S15A-1N	\$100	S100	Duplicate Soil - 7	CHEMI S100	ICAL ANALYSI SF1	ES RESULTS (r SF2	ng/kg) P1	P2	Р3	P4	P5	P6
ANALYTE	Abstract	WASTE TH	HRESHOLD g/kg)	INFORMATION	S14-S15A-1N 4 - 6	S14-S15A-1N 6 - 8	\$100 0 - 2	\$100 4 - 6	•					P2 0 - 0.5	P3 0 - 0.5	P4 0 - 0.5	P5 0 - 0.5	P6 0 - 0.25
	Abstract Service	WASTE TH	HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH					Soil - 7	S100	SF1	SF2	P1					
ANALYTE PCBs PCB, Total	Abstract Service	WASTE TH	HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	4 - 6	6 - 8	0 - 2	4 - 6	Soil - 7 S100 (4 - 6)	S100 6 - 8	SF1 0 - 0.5	SF2 0 - 0.5	P1 0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.25
PCBs	Abstract Service Number	WASTE TH (mg TWING THE MENT OF THE MENT O	INDUSTRIAL INDUSTRIAL	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	4 - 6 5/9/2018	6 - 8	0 - 2 5/9/2018	4 - 6 5/9/2018	Soil - 7 S100 (4 - 6) 5/9/2018	\$100 6 - 8 5/9/2018 0.309	SF1 0 - 0.5 5/9/2018 0.385	SF2 0 - 0.5 5/9/2018	P1 0 - 0.5 5/9/2018 2.87	0 - 0.5 5/9/2018	0 - 0.5 5/9/2018	0 - 0.5	0 - 0.5 5/9/2018	0 - 0.25 5/9/2018
PCBs	Abstract Service Number	WASTE TH (mg	HRESHOLD (J/kg) 500 L THREAT (HRESHOLD (J/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE	4 - 6 5/9/2018	6 - 8	0 - 2 5/9/2018	4 - 6 5/9/2018	Soil - 7 S100 (4 - 6) 5/9/2018	\$100 6 - 8 5/9/2018 0.309	SF1 0 - 0.5 5/9/2018 0.385	SF2 0 - 0.5 5/9/2018	P1 0 - 0.5 5/9/2018 2.87	0 - 0.5 5/9/2018	0 - 0.5 5/9/2018	0 - 0.5	0 - 0.5 5/9/2018	0 - 0.25 5/9/2018
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract	WASTE TH (mg	HRESHOLD (J/kg) 500 L THREAT (HRESHOLD (J/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	4 - 6 5/9/2018 7.26	6 - 8 5/9/2018 7.55	0 - 2 5/9/2018 534	4 - 6 5/9/2018 67.8	Soil - 7 \$100 (4 - 6) 5/9/2018	\$100 6 - 8 5/9/2018 0.309	SF1 0 - 0.5 5/9/2018 0.385	SF2 0 - 0.5 5/9/2018 6.11	P1 0 - 0.5 5/9/2018 2.87	0 - 0.5 5/9/2018 6.89	0 - 0.5 5/9/2018 0.246	0 - 0.5 5/9/2018 0.372	0 - 0.5 5/9/2018 0.407	0 - 0.25 5/9/2018 0.834
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract Service	WASTE TH (mg TWING THE MENT OF THE MENT O	HRESHOLD (kg) INDICATE STATE STATE SHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE DEPTH	4 - 6 5/9/2018 7.26	6 - 8 5/9/2018 7.55 Duplicate Soil - 5	0 - 2 5/9/2018 534 P8	4 - 6 5/9/2018 67.8 BP1	Soil - 7 \$100 (4 - 6) 5/9/2018 105	S100 6 - 8 5/9/2018 0.309 CHEMI	SF1 0 - 0.5 5/9/2018 0.385 ICAL ANALYSE	SF2 0 - 0.5 5/9/2018 6.11 ES RESULTS (I	P1 0 - 0.5 5/9/2018 2.87 mg/kg)	0 - 0.5 5/9/2018 6.89	0 - 0.5 5/9/2018 0.246	0 - 0.5 5/9/2018 0.372	0 - 0.5 5/9/2018 0.407	0 - 0.25 5/9/2018 0.834

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD I/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSE	ES RESULTS (1	mg/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	BP3	BP4	BP4	DUP-SOIL #8	BP4	S1001E	S1001E	S1001E	S1001E	S1002E	S1002E	S1002E	S1002E	S1002E
	Number	RESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	4 - 5	0 - 0.5	0.5 - 2	BP4 (0.5-2)	2 - 4	0.66 - 1.75	2.5 - 4	4 - 6	6 - 7.5	0 - 0.5	0.5 - 2	2 - 4	4 - 5	6 - 8
		RES	QNI	SAMPLE DATE	08/02/2018	08/02/2018	08/02/2018	08/02/2018	08/02/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018
PCBs PCB, Total	1336-36-3	100	500		83.0	2.15	1.57	1.47	1.06	501	0.305	146	15.1	1.19	887	64.9	6.62	63.3
	Chemical	WASTE TH	L THREAT HRESHOLD I/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSE	ES RESULTS (1	mg/kg)					
ANALYTE	Abstract Service	TIAL	IAL	SAMPLE LOCATION	DUP-SOIL #2	S101N1E	S101N1E	S101N1E	S101N1E	S101N2E	S101N2E	S101N2E	S101N2E	S101N3E	S101N3E	S101N3E	DUP-SOIL #3	S101N3E
	Number	RESIDENTIAL	DUSTRIAL	SAMPLE DEPTH (FEET BGS)	S1002E (6-8)	0.75 - 2	2 - 4	4 - 6	6 - 8	0.75 - 2	2 - 4	4 - 6	6 - 7.5	0.75 - 2	2 - 4	4 - 6	S101N3E (4-6)	6 - 7
		RES	IND	SAMPLE DATE	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018
PCBs PCB, Total	1336-36-3	100	500		17.5	489	42.7	0.819	1.53	31.2	78.2	0.046	<0.0289	203	3.21	5.33	121	0.386
	Chemical	WASTE TH	L THREAT IRESHOLD I/kg)	SAMPLE INFORMATION						CHEM	ICAL ANALYSE	ES RESULTS (I	mg/kg)					
ANALYTE	Chemical Abstract Service	WASTE TH (mg	HRESHOLD (/kg)		S103E	\$103E	\$103E	S103E	S104E	CHEM S104E	ICAL ANALYSE S104E	ES RESULTS (1	mg/kg) S105E	\$105E	\$105E	S105E	S141W1N	S141W1N
ANALYTE	Abstract	WASTE TH (mg	HRESHOLD (/kg)	INFORMATION	\$103E 0.75 - 2	\$103E 2 - 4	S103E 4 - 6	\$103E 6 - 7	S104E 0.75 - 2					\$105E 2 - 4	S105E 4 - 6	\$105E 6 - 7	\$141W1N 0 - 0.5	\$141W1N 0.5 - 2
	Abstract Service	WASTE TH	IRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH						S104E	S104E	S104E	S105E					
ANALYTE PCBs PCB, Total	Abstract Service	WASTE TH (mg	HRESHOLD (/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0.75 - 2	2 - 4	4 - 6	6 - 7	0.75 - 2	\$104E 2 - 4	\$104E 4 - 6	S104E 6 - 7	S105E 0.75 - 2	2 - 4	4 - 6	6 - 7	0 - 0.5	0.5 - 2
PCBs	Abstract Service Number	WASTE TH (mg TV LOO PRINCIPA WASTE TH	RESHOLD (/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0.75 - 2 08/01/2018	2 - 4	4 - 6	6 - 7	0.75 - 2 08/01/2018	\$104E 2 - 4 08/01/2018 2,280	\$104E 4 - 6 08/01/2018	S104E 6 - 7 08/01/2018	\$105E 0.75 - 2 08/01/2018	2 - 4	4 - 6	6 - 7	0 - 0.5 8/2/2018	0.5 - 2 8/2/2018
PCBs	Abstract Service Number	WASTE TH (mg THE STATE OF THE	HRESHOLD (/kg) TO STATE OF THE SHOLD (/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE	0.75 - 2 08/01/2018	2 - 4	4 - 6	6 - 7	0.75 - 2 08/01/2018	\$104E 2 - 4 08/01/2018 2,280	\$104E 4 - 6 08/01/2018 2.65	S104E 6 - 7 08/01/2018	\$105E 0.75 - 2 08/01/2018	2 - 4	4 - 6	6 - 7	0 - 0.5 8/2/2018	0.5 - 2 8/2/2018
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract	WASTE TH (mg THE STATE OF THE	HRESHOLD (/kg) TO STATE OF THE SHOLD (/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	0.75 - 2 08/01/2018 0.664	2 - 4 08/01/2018 7.34	4 - 6 08/01/2018 14.2	6 - 7 08/01/2018 0.356	0.75 - 2 08/01/2018 11,600	\$104E 2 - 4 08/01/2018 2,280 CHEM	\$104E 4 - 6 08/01/2018 2.65	S104E 6 - 7 08/01/2018 1.99	\$105E 0.75 - 2 08/01/2018 213	2 - 4 08/01/2018 0.788	4 - 6 08/01/2018 0.344	6 - 7 08/01/2018 1.87	0 - 0.5 8/2/2018 6.65	0.5 - 2 8/2/2018 0.0725
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract Service	WASTE TH (mg TV LOO PRINCIPA WASTE TH	HRESHOLD (/kg) TAILLESHOLD THREAT HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE LOCATION	0.75 - 2 08/01/2018 0.664 S141W1N	2 - 4 08/01/2018 7.34 S141W1N	4 - 6 08/01/2018 14.2 S141W2N	6 - 7 08/01/2018 0.356	0.75 - 2 08/01/2018 11,600 S141W2N	\$104E 2 - 4 08/01/2018 2,280 CHEM \$141W2N	\$104E 4 - 6 08/01/2018 2.65 ICAL ANALYSE \$14\$152N	\$104E 6 - 7 08/01/2018 1.99 ES RESULTS (I	\$105E 0.75 - 2 08/01/2018 213 mg/kg) \$14\$152N	2 - 4 08/01/2018 0.788	4 - 6 08/01/2018 0.344	6 - 7 08/01/2018 1.87 S81E	0 - 0.5 8/2/2018 6.65	0.5 - 2 8/2/2018 0.0725

PCBs - Polychlorinated Biphenyls.

SME

TABLE 1

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	L THREAT HRESHOLD (/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	S82E	S82E	S82E	S83E	S83E	S83E	S83ES	S83ES	DUP SOIL #1	S83ES	S83ES	S83ES	S84E	S84E
	Number	RESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	2 - 4	4 - 6	6 - 7	0.66 - 2	2 - 4	4 - 6	0 - 0.5	0.5 - 2	S83ES (0.5-2)	2 - 4	4 - 6	6 - 7.5	0 - 0.5	0.5 - 2
		RESI	ND	SAMPLE DATE	07/31/2018	07/31/2018	07/31/2018	07/31/2018	07/31/2018	07/31/2018	07/31/2018	07/31/2018	07/31/2018	07/31/2018	07/31/2018	07/31/2018	08/01/2018	08/01/2018
PCBs	4000.00.0	400	500		40.0	4.40	0.404		0.0007	0.00	0.000				0.75	4.70	0.10	0.00
PCB, Total	1336-36-3	100	500		13.2	4.40	0.484	32.2	0.0367	3.99	0.869	0.0342	0.0661	8.83	3.75	4.79	2.48	8.66
	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSI	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	IIAL	IAL	SAMPLE LOCATION	S84E	S84E	S84E	S85E	S85E	S85E	S85E	S92S5E	S92S5E	S92S5E	S92S5E	S93S1E	S93S1E	S93S1E
	Number	RESIDENTIAL	DUSTRIAL	SAMPLE DEPTH (FEET BGS)	2 - 4	4 - 6	6 - 7.5	0 - 0.5	0.5 - 2	2 - 4	4 - 6	0.66 - 2	2 - 4	4 - 6	6 - 7	0.66 - 2	2 - 4	4 - 6
		RES	<u>N</u>	SAMPLE DATE	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	07/31/2018	07/31/2018	07/31/2018
PCBs																		
PCB, Total	1336-36-3	100	500		7.04	0.856	0.509	1.30	0.553	0.620	28.2	72.3	0.454	27.2	14.5	437	113	1.99
	Chemical	WASTE TH	L THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						СНЕМ	ICAL ANALYSE	ES RESULTS (I	mg/kg)					
ANALYTE	Chemical Abstract Service	WASTE TH	HRESHOLD g/kg)		\$93\$2E	S93S2E	S93S2E	SBP1	SBP1	CHEM SBP1	ICAL ANALYSI SBP2	ES RESULTS (I	ng/kg) SBP2	SBP3	SBP3	SBP3	SBP3	SBP3
ANALYTE	Abstract	WASTE TH	HRESHOLD g/kg)	INFORMATION	S93S2E 0.5 - 2	S93S2E 2 - 4	S93S2E 4 - 6	SBP1 1 - 2	SBP1 2 - 4					SBP3 0 - 0.5	SBP3 0.5 - 2	SBP3 2 - 4	SBP3 4 - 6	SBP3 6 - 7.5
	Abstract Service	WASTE TH	HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH						SBP1	SBP2	SBP2	SBP2					
ANALYTE PCBs PCB, Total	Abstract Service	esiDential	HRESHOLD g/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0.5 - 2	2 - 4	4 - 6	1 - 2	2 - 4	SBP1 4 - 6	SBP2 1 - 2	SBP2 2 - 4	SBP2 4 - 6	0 - 0.5	0.5 - 2	2 - 4	4 - 6	6 - 7.5
PCBs	Abstract Service Number	WASTE THE (mg	HRESHOLD J/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS)	0.5 - 2 07/31/2018	2 - 4	4 - 6 07/31/2018	1 - 2 8/1/2018	2 - 4	SBP1 4 - 6 8/1/2018 33.5	SBP2 1 - 2 8/1/2018	SBP2 2 - 4 8/1/2018 0.183	SBP2 4 - 6 8/1/2018	0 - 0.5	0.5 - 2 8/1/2018	2 - 4	4 - 6 8/1/2018	6 - 7.5 8/1/2018
PCBs	Abstract Service Number	WASTE THE (mg	HRESHOLD (/kg) 500 L THREAT HRESHOLD (/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE	0.5 - 2 07/31/2018	2 - 4	4 - 6 07/31/2018	1 - 2 8/1/2018	2 - 4	SBP1 4 - 6 8/1/2018 33.5	SBP2 1 - 2 8/1/2018 3.88	SBP2 2 - 4 8/1/2018 0.183	SBP2 4 - 6 8/1/2018	0 - 0.5	0.5 - 2 8/1/2018	2 - 4	4 - 6 8/1/2018	6 - 7.5 8/1/2018
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract	WASTE THE (mg	HRESHOLD (/kg) 500 L THREAT HRESHOLD (/kg)	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION	0.5 - 2 07/31/2018 697	2 - 4 07/31/2018 90.8	4 - 6 07/31/2018 511	1 - 2 8/1/2018 0.828	2 - 4 8/1/2018 1.86	SBP1 4 - 6 8/1/2018 33.5 CHEM	SBP2 1 - 2 8/1/2018 3.88	SBP2 2 - 4 8/1/2018 0.183 ES RESULTS (SBP2 4 - 6 8/1/2018 1.50	0 - 0.5 8/1/2018 0.613	0.5 - 2 8/1/2018 0.034	2 - 4 8/1/2018 16.9	4 - 6 8/1/2018 18.1	6 - 7.5 8/1/2018 4.56
PCBs PCB, Total	Abstract Service Number 1336-36-3 Chemical Abstract Service	WASTE THE (mg	HRESHOLD J/kg) 500 L THREAT HRESHOLD	INFORMATION SAMPLE LOCATION SAMPLE DEPTH (FEET BGS) SAMPLE DATE SAMPLE INFORMATION SAMPLE LOCATION SAMPLE LOCATION	0.5 - 2 07/31/2018 697 SBP4	2 - 4 07/31/2018 90.8 SBP4	4 - 6 07/31/2018 511 SBP4	1 - 2 8/1/2018 0.828	2 - 4 8/1/2018 1.86	SBP1 4 - 6 8/1/2018 33.5 CHEM	SBP2 1 - 2 8/1/2018 3.88 ICAL ANALYSE SBP5	SBP2 2 - 4 8/1/2018 0.183 ES RESULTS (6) SBP5	SBP2 4 - 6 8/1/2018 1.50 mg/kg) SBP6	0 - 0.5 8/1/2018 0.613	0.5 - 2 8/1/2018 0.034	2 - 4 8/1/2018 16.9 DUP-SOIL #4 SBP6	4 - 6 8/1/2018 18.1 SBP6	6 - 7.5 8/1/2018 4.56

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PCB ANALYSIS RESULTS - SOIL TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	WASTE TH	AL THREAT HRESHOLD g/kg)	SAMPLE INFORMATION						CHEM	IICAL ANALYSE	S RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	IIAL	<u>A</u> L	SAMPLE LOCATION	SBP7	SBP7	SBP7	SBP7	SBP8	SBP8	DUP-SOIL #5	SBP8	SBP8	SBP9	SBP9	SBP9	SBP10	SBP10
	Number	IDENI	USTR	SAMPLE DEPTH (FEET BGS)	0 - 0.5	0.5 - 2	2 - 4	4 - 6	0 - 0.5	0.5 - 2	SBP8 (0.5-2)	2 - 4	4 - 6	0 - 0.5	0.5 - 2	2 - 4	0.75 - 2	2 - 4
	RESIDE INDUS.	SAMPLE DATE	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018		
PCBs																		
PCB, Total	1336-36-3	100	500		1.77	11.8	0.244	0.379	2.16	70.6	60.1	4.97	14.6	26.8	11.8	1.55	0.139	14.8

	Chemical	WASTE TH	L THREAT IRESHOLD /kg)	SAMPLE INFORMATION	CHEMICAL RESULTS	
ANALYTE	Abstract Service	TIAL	IAL	SAMPLE LOCATION	SBP10	SBP10
	Number	RESIDENTIAL	INDUSTRIAL	SAMPLE DEPTH (FEET BGS)	4 - 6	6 - 7
		RES	ND ND	SAMPLE DATE	08/01/2018	6/7/2018
PCBs						
PCB, Total	1336-36-3	100	500		49.2	0.39

PCBs - Polychlorinated Biphenyls.

SUMMARY OF PAH ANALYSIS RESULTS - SOIL (2016/2018) TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	SAMPLE INFORMATION						CHEM	IICAL ANALYSI	ES RESULTS (I	ng/kg)					
ANALYTE	Abstract Service	SAMPLE LOCATION	S1	S2	S3	S4	S5	S6	S6	S6	S6-1E	S 7	S7-1N	S7-1W	S7-1W	S7-1W
	Number	SAMPLE DEPTH (FEET BGS)	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'
		SAMPLE DATE	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	9/28/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
PAHs																
1-Methylnaphthalene	90-12-0		< 0.0049	0.0085	<0.0048	< 0.0043	<0.0044	< 0.393	< 0.0047	<0.0046	NA	<0.0880	NA	NA	NA	NA
2-Methylnaphthalene	91-57-6		< 0.0061	0.0126	<0.0060	< 0.0054	< 0.0055	< 0.489	<0.0058	< 0.0057	NA	<0.109	NA	NA	NA	NA
Acenaphthene	83-32-9		<0.0048	< 0.0045	< 0.0046	< 0.0042	0.0061	0.561	< 0.0045	<0.0044	< 0.0910	0.113	< 0.0041	0.225	< 0.0043	<0.0044
Acenaphthylene	208-96-8		<0.0040	<0.0038	< 0.0039	< 0.0036	0.0062	< 0.322	<0.0038	< 0.0037	< 0.0773	< 0.0721	< 0.0035	< 0.0726	< 0.0037	< 0.0037
Anthracene	120-12-7		< 0.0070	0.0079	0.0166	< 0.0062	0.0306	2.64	0.0154	<0.0065	0.188	0.375	< 0.0060	0.734	< 0.0063	<0.0064
Benzo(a)anthracene	56-55-3		0.0265	0.0617	0.147	< 0.0034	0.241	8.81	0.0854	0.0086	1.43	1.73	< 0.0033	4.41	0.0136	<0.0036
Benzo(a)pyrene	50-32-8		0.0454	0.0924	0.237	< 0.0027	0.452	10.4	0.123	0.009	1.81	2.22	<0.0026	5.59	0.0195	<0.0028
Benzo(b)fluoranthene	205-99-2		0.0627	0.135	0.361	< 0.0031	0.795	17.9	0.177	0.0133	2.84	3.18	< 0.0030	10.1	0.0612	0.0033
Benzo(g,h,i)perylene	191-24-2		0.0372	0.0752	0.149	< 0.0022	0.414	3.09	0.103	0.0141	1.85	1.71	< 0.0021	2.58	0.0348	< 0.0023
Benzo(k)fluoranthene	207-08-9		0.0294	0.0607	0.146	< 0.0027	0.273	8.13	0.0708	0.0063	1.15	1.48	< 0.0026	2.92	0.0241	<0.0028
Chrysene	218-01-9		0.0485	0.107	0.193	< 0.0036	0.483	12.5	0.135	0.0146	1.97	2.93	< 0.0035	5.31	0.0402	<0.0038
Dibenz(a,h)anthracene	53-70-3		0.0063	0.0145	0.035	< 0.0024	0.081	0.748	0.0225	<0.0025	0.28	0.375	< 0.0023	0.75	0.0069	<0.0025
Fluoranthene	206-44-0		0.0817	0.176	0.331	<0.0056	0.793	26.9	0.228	0.0148	3.97	6.32	< 0.0055	13.3	0.0703	< 0.0059
Fluorene	86-73-7		<0.0051	< 0.0047	< 0.0050	<0.0045	0.0083	0.74	<0.0048	< 0.0047	< 0.0970	0.149	< 0.0043	0.277	<0.0046	< 0.0047
Indeno(1,2,3-cd)pyrene	193-39-5		0.0308	0.0601	0.139	<0.0024	0.359	3.11	0.083	0.0061	1.51	1.4	<0.0023	2.43	0.0263	< 0.0025
Naphthalene	91-20-3		< 0.0103	0.0108	< 0.0101	<0.0091	< 0.0093	<0.824	<0.0098	<0.0096	< 0.197	<0.184	<0.0088	<0.186	< 0.0093	< 0.0095
Phenanthrene	85-01-8		0.0277	0.0715	0.102	<0.0126	0.247	14.3	0.0798	< 0.0132	1.46	3.21	<0.0122	5.94	0.0155	< 0.0131
Pyrene	129-00-0		0.0622	0.137	0.273	< 0.0049	0.6	25	0.175	0.0131	2.74	4.77	< 0.0047	9.11	0.0332	< 0.0051

SUMMARY OF PAH ANALYSIS RESULTS - SOIL (2016/2018) TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	SAMPLE INFORMATION						CHEM	ICAL ANALYS	ES RESULTS (r	ng/kg)					
ANALYTE	Abstract Service	SAMPLE LOCATION	S7-1SE	S7-1SE	S8	S9	S10	S11	S12	S13	S14	S16	S17	S18	S19	S20
	Number	SAMPLE DEPTH (FEET BGS)	0 - 0.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'
		SAMPLE DATE	11/10/2016	11/10/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016
PAHs																
1-Methylnaphthalene	90-12-0		NA	NA	< 0.0043	<0.0444	< 0.0360	<0.0044	< 0.0043	<0.0046	< 0.0102	<0.0044	< 0.0043	< 0.0042	< 0.0041	< 0.0042
2-Methylnaphthalene	91-57-6		NA	NA	< 0.0053	< 0.0553	< 0.0447	< 0.0055	< 0.0054	< 0.0057	< 0.0126	< 0.0055	< 0.0054	< 0.0053	0.0055	< 0.0052
Acenaphthene	83-32-9		0.165	< 0.0043	< 0.0041	< 0.0429	0.042	< 0.0043	< 0.0042	<0.0044	0.0113	< 0.0043	< 0.0042	< 0.0041	<0.0040	< 0.0041
Acenaphthylene	208-96-8		< 0.0737	< 0.0037	< 0.0035	< 0.0364	< 0.0295	< 0.0036	< 0.0035	<0.0038	< 0.0083	< 0.0036	< 0.0036	< 0.0035	< 0.0034	< 0.0035
Anthracene	120-12-7		0.743	0.0068	< 0.0061	< 0.0631	0.179	< 0.0063	< 0.0061	< 0.0065	0.052	< 0.0063	< 0.0062	< 0.0060	< 0.0059	< 0.0060
Benzo(a)anthracene	56-55-3		3.02	0.0314	< 0.0034	< 0.0350	0.783	< 0.0035	< 0.0034	< 0.0036	0.271	0.0038	< 0.0034	< 0.0033	0.0057	< 0.0033
Benzo(a)pyrene	50-32-8		3.51	0.039	< 0.0027	< 0.0277	0.965	<0.0028	< 0.0027	< 0.0029	0.377	<0.0028	< 0.0027	0.0033	0.0038	< 0.0026
Benzo(b)fluoranthene	205-99-2		5.78	0.0843	< 0.0030	< 0.0312	1.39	< 0.0031	< 0.0030	< 0.0032	0.702	< 0.0031	< 0.0030	0.0031	0.0068	< 0.0030
Benzo(g,h,i)perylene	191-24-2		1.73	0.0442	< 0.0022	< 0.0224	0.725	< 0.0022	< 0.0022	< 0.0023	0.115	0.003	< 0.0022	0.0024	0.0041	< 0.0021
Benzo(k)fluoranthene	207-08-9		1.91	0.0374	< 0.0027	< 0.0277	0.563	< 0.0027	< 0.0027	< 0.0029	0.285	<0.0028	< 0.0027	0.0029	<0.0026	< 0.0026
Chrysene	218-01-9		3.18	0.0713	<0.0036	< 0.0372	1.15	< 0.0037	<0.0036	< 0.0039	0.407	< 0.0037	<0.0036	0.0038	0.01	< 0.0035
Dibenz(a,h)anthracene	53-70-3		0.456	0.0101	< 0.0024	< 0.0247	0.147	< 0.0025	<0.0024	<0.0026	0.0286	<0.0025	< 0.0024	< 0.0023	<0.0023	< 0.0023
Fluoranthene	206-44-0		7.87	0.118	<0.0055	< 0.0575	2.27	< 0.0057	<0.0056	<0.0060	0.746	< 0.0057	<0.0056	0.0072	0.0222	<0.0055
Fluorene	86-73-7		0.196	<0.0046	<0.0044	<0.0457	0.047	<0.0045	<0.0044	<0.0047	0.0131	<0.0045	<0.0045	<0.0043	<0.0043	<0.0043
Indeno(1,2,3-cd)pyrene	193-39-5		1.51	0.0385	<0.0023	<0.0243	0.614	<0.0024	<0.0024	<0.0025	0.115	<0.0024	<0.0024	<0.0023	<0.0023	< 0.0023
Naphthalene	91-20-3		<0.188	<0.0094	<0.0089	<0.0930	<0.0753	<0.0092	<0.0090	<0.0097	<0.0213	<0.0092	<0.0091	<0.0088	<0.0087	<0.0088
Phenanthrene	85-01-8		3.65	0.0496	<0.0124	<0.129	0.953	<0.0128	<0.0125	<0.0134	0.308	<0.0128	<0.0126	<0.0122	0.0259	<0.0122
Pyrene	129-00-0		5.8	0.0835	<0.0048	<0.0498	1.75	< 0.0049	<0.0048	<0.0052	0.699	< 0.0049	< 0.0049	0.0059	0.0135	< 0.0047

SUMMARY OF PAH ANALYSIS RESULTS - SOIL (2016/2018) TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

ANALYTE	Chemical	SAMPLE INFORMATION	CHEMICAL ANALYSES RESULTS (mg/kg)														
	Abstract Service	SAMPLE LOCATION	S21	S22	GT1	GT2	GT2	GT2	GT2-1N	GT2-1NE	GT2-1E	GT2-1E	GT2-1E	GT2-1S	GT2-1S	GT2-1S	
	Number	SAMPLE DEPTH (FEET BGS)	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	
		SAMPLE DATE	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	
PAHs																	
1-Methylnaphthalene	90-12-0		< 0.0043	< 0.0042	<0.0086	<0.478	< 0.0192	<0.0048	NA	NA	NA	NA	NA	NA	NA	NA	
2-Methylnaphthalene	91-57-6		< 0.0053	< 0.0052	< 0.0107	< 0.594	<0.0238	< 0.0059	NA	NA	NA	NA	NA	NA	NA	NA	
Acenaphthene	83-32-9		< 0.0041	< 0.0040	0.0361	0.896	< 0.0185	<0.0046	0.0795	0.0161	0.991	0.0084	< 0.0046	2.27	0.6	0.56	
Acenaphthylene	208-96-8		< 0.0035	< 0.0034	< 0.0070	< 0.391	< 0.0157	< 0.0039	< 0.0138	< 0.0035	< 0.382	< 0.0039	< 0.0039	<0.868	< 0.379	< 0.417	
Anthracene	120-12-7		< 0.0061	< 0.0060	0.0696	3.25	0.0551	<0.0068	0.149	0.0302	2.86	0.0301	<0.0068	8.01	2.86	< 0.723	
Benzo(a)anthracene	56-55-3		< 0.0034	< 0.0033	0.236	21.8	0.511	<0.0038	0.0688	0.0155	13.5	0.164	0.0094	65.1	20.7	14	
Benzo(a)pyrene	50-32-8		< 0.0027	< 0.0026	0.264	30.2	0.761	< 0.0030	0.0443	0.0217	15.4	0.192	0.0083	82.6	29.7	17.6	
Benzo(b)fluoranthene	205-99-2		< 0.0030	0.0029	0.42	47.4	1.06	< 0.0033	0.0865	0.0411	27.9	0.328	0.0203	160	51.7	29.2	
Benzo(g,h,i)perylene	191-24-2		<0.0022	0.0029	0.16	16.4	0.432	0.0027	0.033	0.02	8.96	0.176	0.0112	47.6	27.6	14.6	
Benzo(k)fluoranthene	207-08-9		<0.0027	< 0.0026	0.175	18.5	0.454	< 0.0030	0.0224	0.0086	9.17	0.124	0.0102	49.5	17.6	11.7	
Chrysene	218-01-9		< 0.0036	< 0.0035	0.35	31.7	0.75	< 0.0040	0.205	0.0735	17	0.245	0.0171	80.9	34.5	22	
Dibenz(a,h)anthracene	53-70-3		<0.0024	< 0.0023	0.0464	4.92	0.122	< 0.0026	0.0097	0.0066	2.53	0.0433	0.0027	14.8	5.64	3.82	
Fluoranthene	206-44-0		<0.0056	< 0.0054	0.701	61.2	1.02	< 0.0062	0.284	0.0482	44.8	0.462	0.0228	186	66	44.4	
Fluorene	86-73-7		<0.0044	< 0.0043	0.0235	1.22	< 0.0197	< 0.0049	0.0943	0.0221	1.38	0.0116	<0.0049	2.91	0.81	0.76	
Indeno(1,2,3-cd)pyrene	193-39-5		<0.0023	<0.0023	0.149	16.3	0.417	<0.0026	<0.0092	0.0035	8.02	0.153	0.0094	47.7	22.2	12.7	
Naphthalene	91-20-3		<0.0090	<0.0088	<0.0179	<1.00	<0.0401	<0.0100	0.0786	0.0197	< 0.977	<0.0100	<0.0100	<2.22	< 0.969	<1.07	
Phenanthrene	85-01-8		<0.0124	<0.0121	0.406	25.2	0.21	<0.0138	0.784	0.15	24.8	0.222	<0.0138	72.8	22.9	18.6	
Pyrene	129-00-0		<0.0048	< 0.0047	0.585	46.6	0.813	< 0.0053	0.156	0.0334	31.4	0.317	0.0166	123	43.5	31.1	

SUMMARY OF PAH ANALYSIS RESULTS - SOIL (2016/2018) TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

	Chemical	SAMPLE INFORMATION	CHEMICAL ANALYSES RESULTS (mg/kg)													
ANALYTE	Abstract Service	SAMPLE LOCATION	GT21SA	GT21SA	GT21SA	GT2-1SW	GT2-1W	GT3	GT3	GT3	GT3-1E	GT3-1E	GT3-1E	GT3-1W	GT4	GT4
	Number	SAMPLE DEPTH (FEET BGS)	4 - 6	6 - 8	8 - 10	0 - 0.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'
		SAMPLE DATE	5/7/2018	5/7/2018	5/7/2018	11/10/2016	11/10/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	9/28/2016	9/28/2016
PAHs																
1-Methylnaphthalene	90-12-0		< 0.0053	< 0.0053	0.0057	NA	NA	< 0.431	<0.0058	< 0.0050	NA	NA	NA	NA	< 0.387	< 0.0047
2-Methylnaphthalene	91-57-6		<0.0066	<0.0066	< 0.0061	NA	NA	< 0.536	< 0.0073	<0.0062	NA	NA	NA	NA	<0.482	< 0.0059
Acenaphthene	83-32-9		< 0.0051	< 0.0051	< 0.0047	< 0.0042	< 0.0041	< 0.416	<0.0056	<0.0048	<0.0046	< 0.0045	< 0.0046	0.025	< 0.374	< 0.0046
Acenaphthylene	208-96-8		< 0.0043	< 0.0043	<0.0040	< 0.0036	< 0.0035	< 0.353	<0.0048	0.0119	<0.0039	<0.0038	< 0.0039	< 0.0137	< 0.317	0.0042
Anthracene	120-12-7		<0.0075	< 0.0075	< 0.0070	<0.0062	<0.0060	1.57	<0.0083	0.0091	<0.0068	<0.0066	<0.0068	0.0432	1.2	0.0078
Benzo(a)anthracene	56-55-3		0.0492	<0.0042	<0.0039	0.011	0.025	11.7	0.0215	0.0242	0.0152	0.0269	0.0152	0.0945	8.98	0.044
Benzo(a)pyrene	50-32-8		0.0708	<0.0033	< 0.0031	0.0177	0.0365	14.6	0.0271	0.0326	0.0138	0.0297	0.0138	0.1	11.2	0.0664
Benzo(b)fluoranthene	205-99-2		0.119	<0.0037	<0.0034	0.032	0.0632	18.9	0.0385	0.0494	0.0364	0.0801	0.0364	0.18	13.9	0.101
Benzo(g,h,i)perylene	191-24-2		0.0653	<0.0027	0.0032	0.0359	0.028	11	0.0188	0.0231	0.0207	0.0419	0.0207	0.0494	8.22	0.0448
Benzo(k)fluoranthene	207-08-9		0.0427	<0.0033	<0.0031	0.0142	0.0246	14.3	0.0197	0.0257	0.0146	0.0267	0.0146	0.0583	10.8	0.0437
Chrysene	218-01-9		0.0798	<0.0044	<0.0041	0.019	0.0366	17.4	0.0328	0.0411	0.0316	0.0566	0.0316	0.128	13.4	0.0819
Dibenz(a,h)anthracene	53-70-3		0.0139	<0.0029	<0.0027	0.0039	0.0049	3.84	0.0046	0.0057	0.0039	0.0089	0.0039	0.0138	2.89	0.0108
Fluoranthene	206-44-0		0.135	<0.0068	<0.0064	0.0188	0.0414	32.8	0.0473	0.0659	0.0382	0.0814	0.0382	0.276	26.1	0.103
Fluorene	86-73-7		<0.0054	<0.0054	<0.0050	<0.0045	<0.0044	0.507	<0.0060	<0.0051	<0.0049	<0.0048	<0.0049	<0.0172	0.495	<0.0049
Indeno(1,2,3-cd)pyrene	193-39-5		0.052	<0.0029	<0.0027	0.0247	0.0209	10.4	0.015	0.0196	0.0152	0.0337	0.0152	0.0412	7.73	0.0376
Naphthalene	91-20-3		<0.0110	<0.1110	<0.0103	<0.0092	<0.0089	<0.902	<0.0122	<0.0104	<0.0100	<0.0098	<0.0100	<0.0350	<0.811	<0.0099
Phenanthrene	85-01-8		0.0412	< 0.0153	<0.0142	<0.0127	0.0159	13.5	<0.0169	0.0279	0.0192	0.0311	0.0192	0.228	11.8	0.0386
Pyrene	129-00-0		0.0943	< 0.0059	<0.0055	0.0131	0.0404	22.6	0.0379	0.0456	0.0289	0.0585	0.0289	0.203	17.8	0.0865

SUMMARY OF PAH ANALYSIS RESULTS - SOIL (2016/2018) TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

ANALYTE	Chemical	SAMPLE INFORMATION	CHEMICAL ANALYSES RESULTS (mg/kg)													
	Abstract Service	SAMPLE LOCATION	GT4	GT4-1E	GT4-1S	GT4-1S	GT4-1S	GT4-1W	GT5	GT5	GT5	GT5-1N	GT5-1E	GT5-1S	GT5-1W	SMF1
	Number	SAMPLE DEPTH (FEET BGS)	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0.5' - 1.5'	1.5' - 3.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'
		SAMPLE DATE	9/28/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	9/28/2016	9/28/2016	9/28/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016	9/28/2016
PAHs																
1-Methylnaphthalene	90-12-0		< 0.0390	NA	NA	NA	NA	NA	<0.0918	< 0.0093	< 0.0049	NA	NA	NA	NA	< 0.0047
2-Methylnaphthalene	91-57-6		< 0.0485	NA	NA	NA	NA	NA	< 0.114	< 0.0116	< 0.0061	NA	NA	NA	NA	< 0.0059
Acenaphthene	83-32-9		< 0.0376	< 0.0231	0.724	< 0.0046	< 0.0046	0.0115	0.142	< 0.0090	< 0.0047	< 0.0897	< 0.0177	0.0126	< 0.0044	0.0049
Acenaphthylene	208-96-8		< 0.0320	<0.0196	< 0.307	< 0.0039	< 0.0039	<0.0035	0.0895	< 0.0076	<0.0040	< 0.0762	< 0.0150	< 0.0035	< 0.0037	< 0.0039
Anthracene	120-12-7		0.0918	0.101	2.57	0.0087	<0.0068	0.016	0.652	0.0466	0.009	0.22	0.0563	0.0207	< 0.0064	0.0093
Benzo(a)anthracene	56-55-3		0.63	0.746	18.4	0.0466	0.012	0.0531	5.41	0.35	0.0272	1.27	0.388	0.0264	0.0188	0.0137
Benzo(a)pyrene	50-32-8		0.948	1.06	23.3	0.0623	0.0167	0.0826	8.5	0.584	0.0322	1.96	0.594	0.0252	0.0209	0.0105
Benzo(b)fluoranthene	205-99-2		1.43	1.87	45.3	0.102	0.0314	0.14	9.48	0.849	0.0427	4.28	1.11	0.043	0.0426	0.0155
Benzo(g,h,i)perylene	191-24-2		0.654	0.512	11.4	0.0361	0.0141	0.036	7.52	0.519	0.0226	1.32	0.326	0.0132	0.0126	0.0091
Benzo(k)fluoranthene	207-08-9		0.585	0.621	14.7	0.0481	0.0135	0.0446	8.26	0.377	0.0177	1.54	0.38	0.0146	0.0172	0.0055
Chrysene	218-01-9		1.02	0.964	22.6	0.0846	0.0252	0.0855	8.58	0.608	0.0413	2.15	0.517	0.0402	0.0262	0.0189
Dibenz(a,h)anthracene	53-70-3		0.161	0.151	3.49	0.01	0.0031	0.0108	2.84	0.12	0.0055	0.315	0.0919	0.0036	0.0035	<0.0026
Fluoranthene	206-44-0		1.76	1.78	51.9	0.14	0.0316	0.104	13.3	0.96	0.0524	3.8	1.0	0.0699	0.0463	0.05
Fluorene	86-73-7		< 0.0401	< 0.0246	0.906	< 0.0049	< 0.0049	0.0083	0.205	0.0107	<0.0051	< 0.0957	<0.0189	0.0075	< 0.0047	0.0052
Indeno(1,2,3-cd)pyrene	193-39-5		0.604	0.501	10.8	0.0299	0.0099	0.0297	6.65	0.446	0.0178	1.16	0.301	0.0084	0.0102	0.0061
Naphthalene	91-20-3		<0.0817	< 0.0501	<0.784	<0.0100	<0.0100	0.0097	<0.192	<0.0195	< 0.0103	<0.195	<0.0384	<0.0089	<0.0095	<0.0099
Phenanthrene	85-01-8		0.629	0.55	21.7	0.0595	0.0141	0.0992	4.78	0.285	0.027	1.36	0.37	0.109	<0.0131	0.0689
Pyrene	129-00-0		1.32	1.32	35.9	0.0906	0.0226	0.0819	10	0.699	0.0496	2.85	0.721	0.0511	0.0375	0.0341

SUMMARY OF PAH ANALYSIS RESULTS - SOIL (2016/2018) TECUMSEH SITE SHEBOYGAN FALLS, WI 069638.00.051

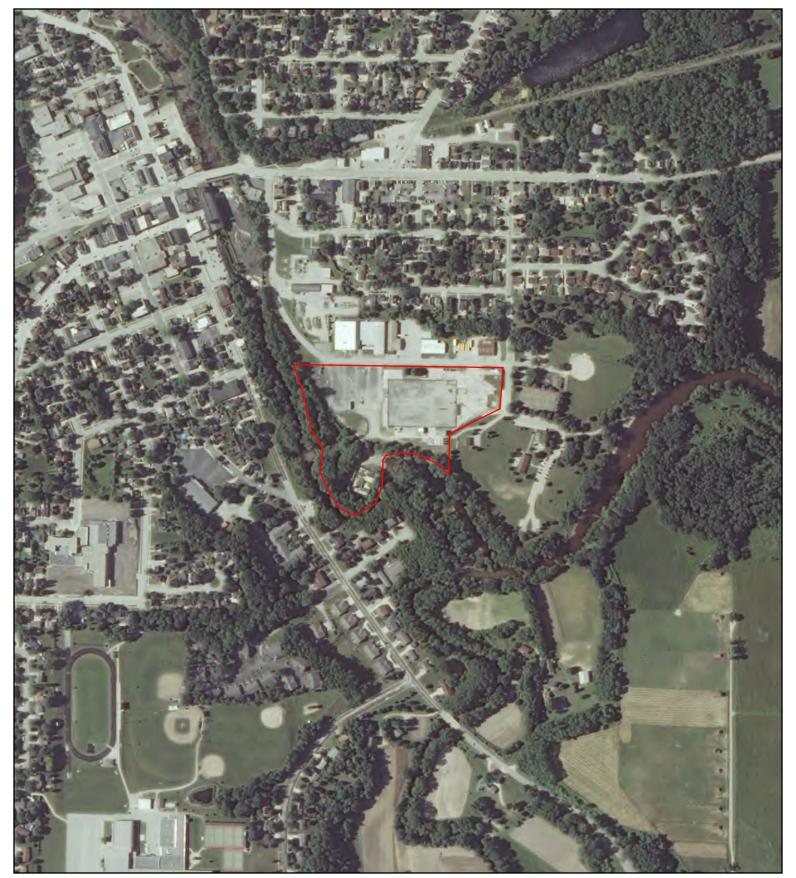
ANALYTE	Chemical	SAMPLE INFORMATION	CHEMICAL ANALYSES RESULTS (mg/kg)													
	Abstract Service	SAMPLE LOCATION	SMF2	SMF3	SMF4	SMF5	SMF6	SMF7	CTF1	CTF2	CTF3	CTF4	CTF5	CTF6	CTF7	CTF8
	Number	SAMPLE DEPTH (FEET BGS)	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'	0 - 0.5'
		SAMPLE DATE	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/28/2016	9/29/2016	9/29/2016	9/28/2016	9/29/2016	9/29/2016	9/29/2016	9/29/2016
PAHs																
1-Methylnaphthalene	90-12-0		<0.0044	< 0.0047	< 0.0053	< 0.0053	<0.0050	< 0.0050	< 0.0043	<0.0048	< 0.0064	<0.0048	< 0.0049	< 0.0047	< 0.0049	<0.0048
2-Methylnaphthalene	91-57-6		< 0.0055	<0.0058	<0.0066	< 0.0065	< 0.0062	< 0.0062	< 0.0053	< 0.0060	<0.0080	< 0.0060	< 0.0061	< 0.0059	<0.0060	< 0.0059
Acenaphthene	83-32-9		<0.0042	< 0.0045	< 0.0051	< 0.0051	<0.0048	<0.0048	< 0.0041	< 0.0046	< 0.0062	< 0.0046	< 0.0047	< 0.0046	< 0.0047	< 0.0046
Acenaphthylene	208-96-8		< 0.0036	<0.0038	<0.0044	< 0.0043	< 0.0041	<0.0041	< 0.0035	< 0.0039	< 0.0053	< 0.0039	<0.0040	< 0.0039	< 0.0040	< 0.0039
Anthracene	120-12-7		<0.0062	< 0.0067	<0.0076	< 0.0075	< 0.0071	< 0.0071	<0.0060	<0.0068	<0.0092	<0.0068	< 0.0070	< 0.0067	< 0.0069	< 0.0067
Benzo(a)anthracene	56-55-3		0.047	0.039	0.0112	0.0268	0.0332	0.0182	0.0049	0.0116	0.0103	0.0113	< 0.0039	< 0.0037	<0.0038	< 0.0037
Benzo(a)pyrene	50-32-8		0.073	0.0693	0.016	0.0388	0.0558	0.0297	0.006	0.0176	0.0143	0.0144	0.0045	< 0.0030	< 0.0030	0.0032
Benzo(b)fluoranthene	205-99-2		0.0904	0.0868	0.0163	0.0393	0.0682	0.0329	0.0051	0.0225	0.016	0.0167	0.0061	< 0.0033	< 0.0034	0.0047
Benzo(g,h,i)perylene	191-24-2		0.06	0.0583	0.0125	0.0311	0.0479	0.0253	0.0044	0.0147	0.0105	0.0121	0.0041	< 0.0024	<0.0025	0.0032
Benzo(k)fluoranthene	207-08-9		0.0688	0.0606	0.0185	0.0452	0.0542	0.0365	0.0069	0.0177	0.0126	0.0134	0.005	< 0.0030	< 0.0030	0.0043
Chrysene	218-01-9		0.0771	0.0687	0.0203	0.0449	0.0605	0.0363	0.007	0.0207	0.0158	0.0167	0.0053	< 0.0040	<0.0041	<0.0040
Dibenz(a,h)anthracene	53-70-3		0.0192	0.0177	0.0039	0.0098	0.0135	0.008	<0.0024	0.0046	<0.0036	0.0039	< 0.0027	<0.0026	<0.0027	<0.0026
Fluoranthene	206-44-0		0.128	0.108	0.0347	0.0773	0.1	0.0608	0.0079	0.0338	0.0249	0.0259	0.0064	<0.0061	<0.0063	< 0.0062
Fluorene	86-73-7		<0.0045	<0.0048	<0.0055	<0.0054	<0.0051	<0.0051	<0.0044	<0.0049	<0.0066	<0.0049	<0.0050	<0.0049	<0.0050	<0.0049
Indeno(1,2,3-cd)pyrene	193-39-5		0.0536	0.051	0.0114	0.0278	0.0414	0.0219	0.0038	0.0123	0.0094	0.0094	0.0035	<0.0026	<0.0027	0.0029
Naphthalene	91-20-3		<0.0092	<0.0098	<0.0112	<0.0110	<0.0104	<0.0104	<0.0089	<0.0100	<0.0135	<0.0100	<0.0103	<0.0099	<0.0102	<0.0100
Phenanthrene	85-01-8		0.0356	0.0347	<0.0154	0.0266	0.03	0.0217	<0.0123	<0.0139	<0.0187	<0.0139	<0.0142	<0.0137	<0.0141	<0.0138
Pyrene	129-00-0		0.0897	0.0791	0.0257	0.0549	0.0724	0.0423	0.0069	0.0241	0.019	0.0193	<0.0055	< 0.0053	<0.0055	< 0.0053

ATTACHMENT A AERIAL PHOTOGRAPHS

© 2020 SME 069638.00.051+042320+LRPT-62

Site boundaries shown in red are approximate

2018



Site boundaries shown in red are approximate

2013

Site boundaries shown in red are approximate

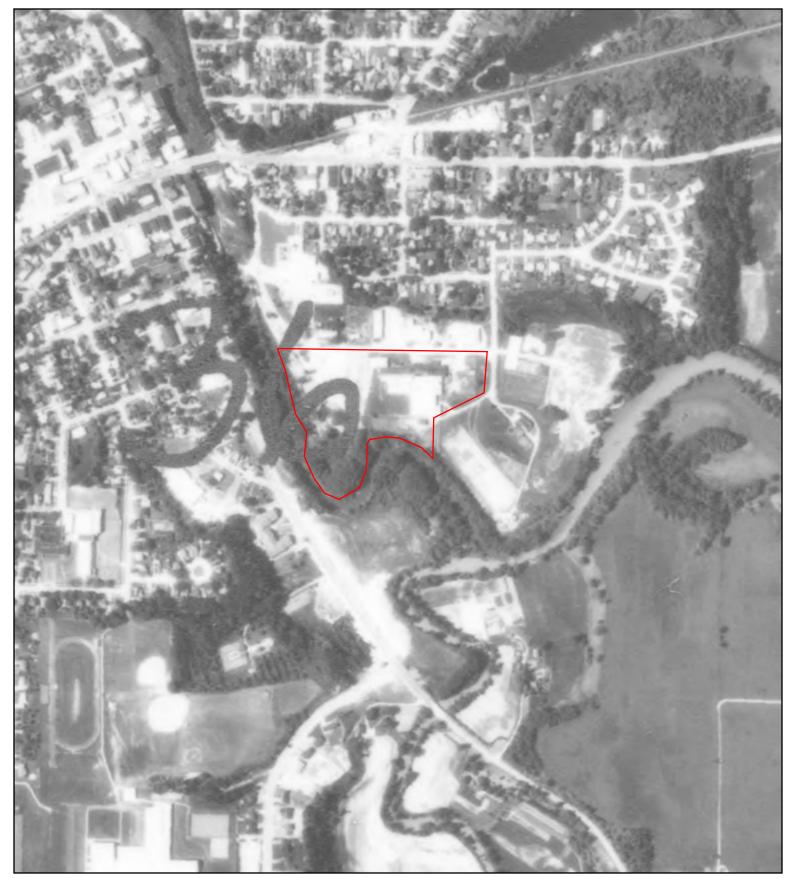
2008

Site boundaries shown in red are approximate

2005

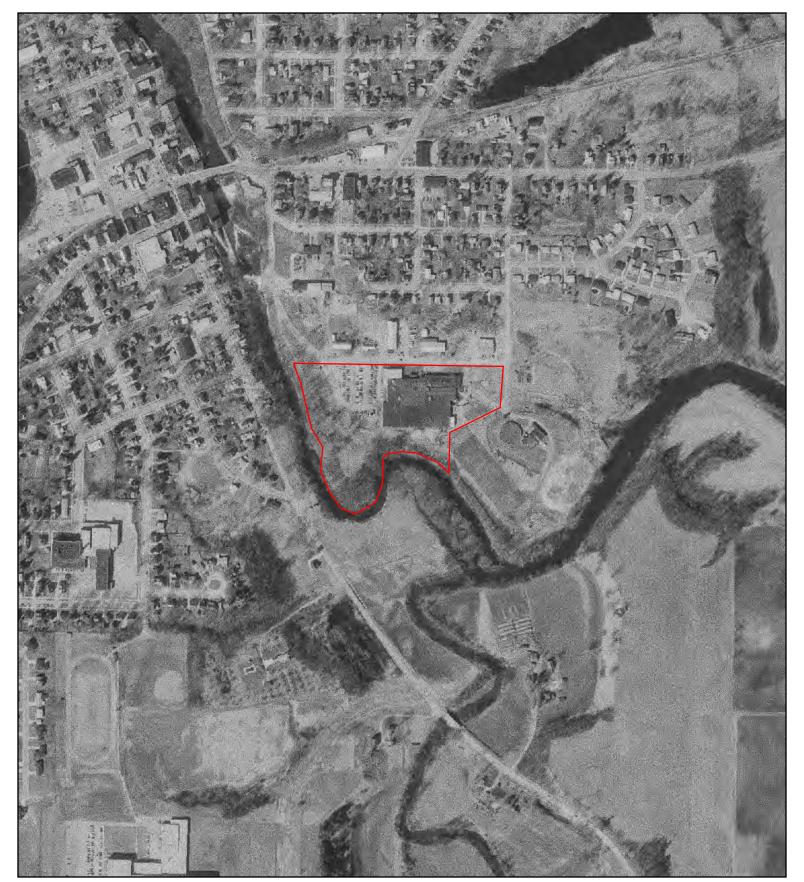
Site boundaries shown in red are approximate

1992



Site boundaries shown in red are approximate

1981

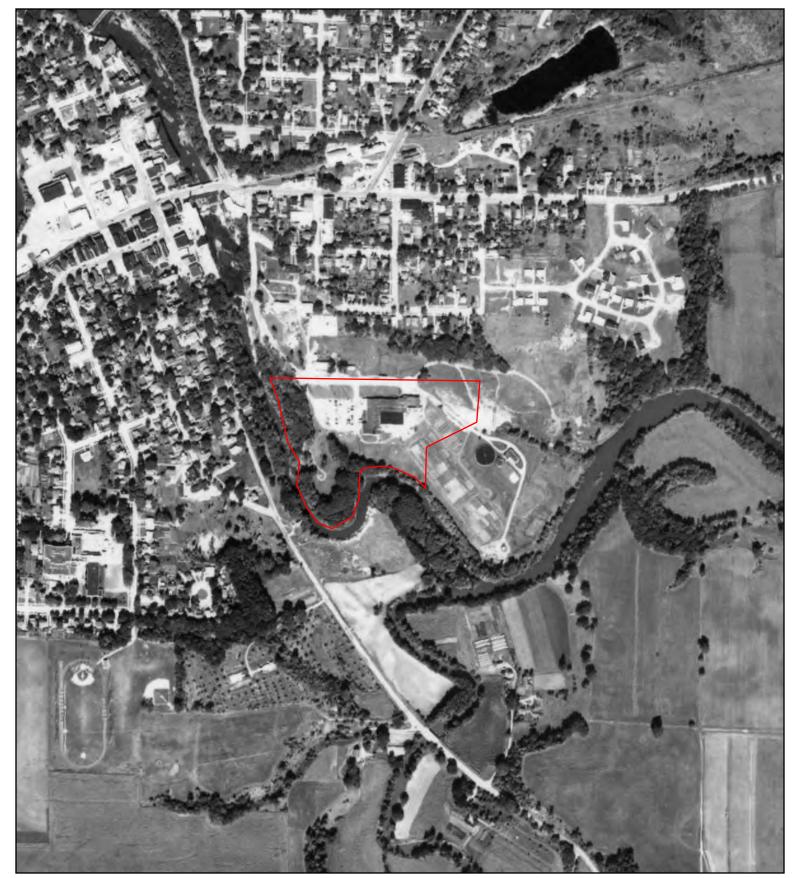


Site boundaries shown in red are approximate

1978

Site boundaries shown in red are approximate

1973



Site boundaries shown in red are approximate

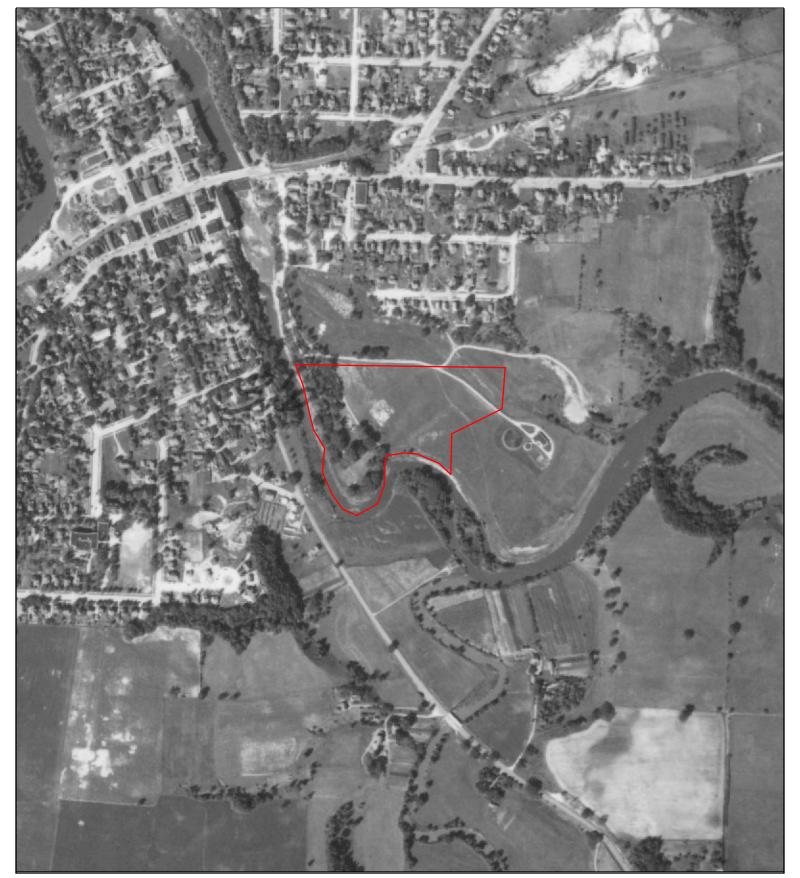
1967

Site boundaries shown in red are approximate

1962

Site boundaries shown in red are approximate

1952



Site boundaries shown in red are approximate

1950

Site boundaries shown in red are approximate

1941

ATTACHMENT BHISTORICAL REPORT EXCEPTS

© 2020 SME 069638.00.051+042320+LRPT-62

January 15, 1979

Mr. Renato C. Millan, P.E. Solid Waste Management Section Department of Natural Resources P.O. Box 7921 Madison, WI 53707

Re: Progress Report Through January 15, 1979 Donohue Project 4909

Dear Mr. Millan:

This progress report presents a summary of the work completed through January 15, 1979, on the polychlorinated biphenyl (PCB) investigations at the Diecast Plant.

Preliminary engineering plans have been submitted to the Department of Natural Resources (DNR) for dike stabilization. The DNR has indicated to me that they will have completed a preliminary review of these plans by January 17, 1979.

The field work for the sampling program to determine the vertical extent of PCB contamination at the Diecast Plant was completed December 28, 1978. The first set of results of laboratory analyses for PCB's have been received by us and are attached to this letter. The locations of the samples can be found on the attached map in our letter of December 18, 1978, by reading the row number, column number, then the depth of the sample which was analyzed (i.e. 2.5/6.5 12-18, indicates row 2.5, column 6.5, 12-18, inch sample analyzed for PCB's). We have prepared 36 additional samples to be analyzed for PCB's. A list of these samples is also attached to this letter.

We are continuing to evaluate the data as it is received to determine the extent of PCB contamination on the Diecast property. Should you require any additional information or have any questions, please feel free to contact our office.

Very truly yours,

DONOHUE & ASSOCIATES, INC.

Patrick Ries Project Engineer

PR/gd

cc: Ken Miller, Diecast Division

Ken Wachal Tecumseh Products
Sandy Williams, Foley & Lardner

enc: Polychlorinated Biphenyl (PCB) Results Additional Samples to be Analyzed

4738 N. 40TH ST. SHEBOYGAN, WI 53081 TEL. (414) 458-8711

December 1978 Assessment

POLYCHLORINATED BIPHENYL (PCB) RESULTS (Preliminary)

Samp1	<u>e</u>	Aroclor	Concentration (PPM)
0.5/0.5	12-18	1254	<1.0
0.5/4.5	12-18	1248	13.7
0.5/8.5	12-18	1248	17.3
0.5/8.5	24-30	1242	598
0.5/8.5	36-42	1254	<1.0
0.5/12.5	12-18	1242	1,166
0.5/16.5	12-18	1248	1,265
2.5/2.5	12-18	1254	<1.0
2.5/6.5	12-18	1254	<1.0
2.5/10.5	12-18	1242	10,263
2.5/14.5	12-18	1248	95.2
2.5/18.5	12-18	1254	<1.0
3.5/9.5	12-18	1254	1.0
3.5/11.5	12-18	1254	<1.0
4.5/0.5	12-18	1254	<1.0
4.5/4.5	12-18	1254	<1.0
4.5/8.5	12-18	1254	<1.0
4.5/12.5	12-18	1254	<1.0
4.5/16.5	12-18	1254	23.8
6.5/10.5	12-18	1254	< 1.0
6.5/12.5	12-18	1254 -	<1.0
6.5/12.5	24-30	1248	55.2
6.5/14.5	12-18	1248	9.58
	12-18	1254	<1.0
10.5/18.5	12-18	1254	<1.0
5.8/2.2	12-18	1254	7.81
5.0/4.2	12-18	1254	<1.0
5.0/4.2	24-30	1254	<1.0
5.9/6.2	12-18	1254	<1.0
5.8/8.1	12-18	1248	2.87
7.7/10.2	12-18	1248	5.13
7.6/12.2	12-18	1248	1,926
7.6/12.2	24-30	1254	<1.0
9.3/14.2	12-18	1248	1.13
9.5/16.1	12-18	1254	<1.0
11.2/18.1	12-18	1254	< 1.0
11.8/19.8	12-18	1254	<1.0
5.9/1.2	6-12	1254	<1.0
6.0/5.0	6-12	1254	1.2
7.2/9.1	6-12	1248	3,779
8.9/13.1	6-12	1248	20.5
10.9/17.1	6-12	1254	<1.0

December 18, 1978

Mr. Renato C. Millan, P.E. Solid Waste Management Section Department of Natural Resources P. O. Box 7921 Madison, WI 53707 RECHIVED A 8: 26

Re: Proposed Sampling Program

Diecast Division - Engineering Services

Donohue Project 4909

Dear Mr. Millan:

Attached to this letter is an outline of our proposed sampling program to determine the vertical extent of PCB contamination at the Diecast plant. The sampling program as outlined in the attachment is intended to provide the necessary information to determine the vertical extent of PCB contamination.

We intend to initiate this sampling program on December 20, 1978. We estimate that the field work will take 5-7 days; therefore, completing the sampling program on December 29, 1978. Samples will be analyzed for PCB's by Raltech Scientific Services, Inc. The results for all samples will be received by us within 10-14 days, enabling analyses of all results to be completed by January 19, 1979. If further analyses become necessary, samples will be analyzed as required.

Please let us know your comments on this program prior to December 20, 1978; otherwise we are presuming you find this program acceptable.

If there are any questions concerning this sampling program, please feel free to contact us.

Very truly yours,

DONOHUE & ASSOCIATES, INC.

Patrick Ries
Project Engineer

PR/gh

cc: Mr. Ken Miller, Diecast Division

Mr. Ken Wachal, Tecumseh Products

Mr. Sandy Williams, Foley & Lardner

Mr. L. D. Bakke, Tecumseh Products

4738 N. 40TH ST. SHEBOYGAN, WI 53081 TEL. (414) 458-8711

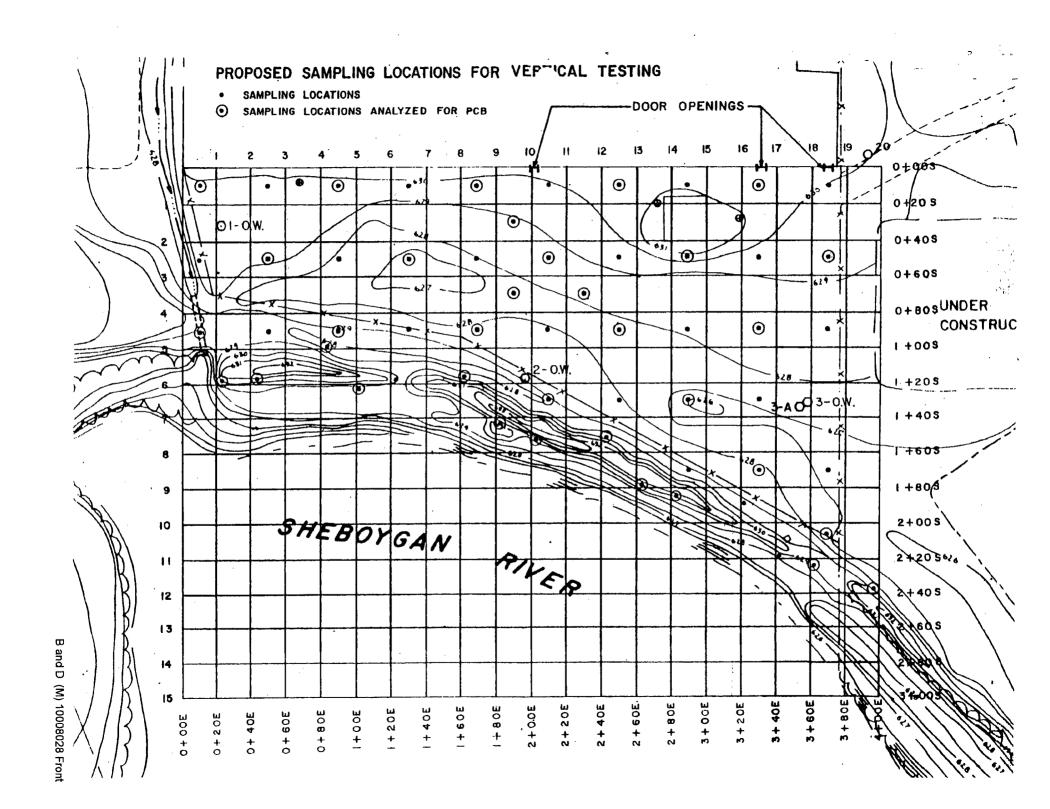
SAMPLING PROGRAM TO DETERMINE VERTICAL CONTAMINATION DIECAST DIVISION - TECUMSEH PRODUCTS DONOHUE PROJECT 4909

The field investigations as outlined below are intended to provide the necessary information requested by the Department of Natural Resources (DNR) to determine the vertical extent of polychlorinated biphenyl (PCB) contamination on Diecast property. Attached to this sampling program is a map showing the approximate locations for all the soil borings.

Soil Sampling Between Building and Dike.

Soil borings will be conducted at 40 foot intervals in an area defined as being between the building and the dike, resulting in approximately 41 boring locations. The locations of these soil borings are shown on the attached map. Soil samples from the borings will be collected at the surface, 1 foot, 2 foot, 3 foot, 4 foot, and 5 foot depths. Samples will be obtained by using a split spoon sampler. Initially, all 1 foot samples from the boring locations which are circled will be analyzed for PCB's. Upon review of the results of the analyses, additional analyses may be performed on a portion or all of the remaining samples to define the vertical extent of contamination.

Soil Sampling on Dike.


Soil borings will be conducted at 40 foot intervals along the toe of the dike, resulting in approximately 10 boring locations. The soil borings will alternate on each side of the dike. The locations of these borings are shown on the attached map. Soil samples from the borings will be collected at the surface, 1 foot, and 2 foot depths. Samples will be obtained by using a split spoon sampler. Initially, all 1 foot samples from the boring locations which are circled will be analyzed for PCB's. Upon review of the results of the analyses, additional analyses may be performed on a portion or all of the remaining samples to define the vertical extent of contamination.

3. Soil Sampling Between Dike and River.

Soil borings will be conducted at 80 foot intervals between the dike and the river, resulting in approximately 5 boring locations. The locations of these borings are shown on the attached map. Soil samples from the borings will be collected at the surface, 6 inch, 1 foot, and 2 foot depths. Samples will be obtained by using a split spoon sampler. Initially, all 6 inch samples from the boring locations will be analyzed for PCB's. Upon review of the results of the analyses, additional analyses may be performed on a portion or all of the remaining samples to define the vertical extent of contamination.

For all sampling locations described above, samples will be obtained continuously for the first 1 foot. When the hole is augered out at the 1 foot level, a 6 inch sample will be obtained for PCB analysis at the 1 foot level. The hole will then be augered to 2 feet and again a 6 inch sample will be obtained at the 2 foot level for PCB analyses. This procedure will continue to a depth of 5 feet. All soil samples will be visually classified, and those not analyzed for PCB will be preserved for future reference or laboratory testing.

PR/jl

TECUMSEH PRODUCTS COMPANY

DIECAST DIVISION.

SHEBOYGAN FALLS, WISCONSIN 53085

October 4, 1978

The Honorable Gladys Morken 375 Buffalo Street Sheboygan Falls, WI 53085

Dear Mayor Morken:

As you know, the DNR has requested that Tecumseh, Diecast Division and the City carry out various tests to determine whether, and where, PCB traces might be found in the soil in and around the City's sewage treatment plant and the Diecast premises.

You are also aware that Donohue & Associates, Inc. has been conducting soil sampling tests over the past several weeks. Results from some of these tests have now become available. Today Donohue reported to Company personnel some of these results. Although only limited tests were conducted off of the Diecast property, it does appear that at some locations, soil on the City's property east of the Division's land contains measurable levels of PCB. One of several tests taken in the area apparently leased by the City for garden plots contained 288 parts per million of PCB at the surface. The second test showed 2.29 parts per million while for two other tests, no results were received. Although 288 ppm represents a lower concentration than the Federal EPA had previously defined to be contaminated soil (500 ppm), it is higher than the 50 ppm level currently being proposed. Because of the presence of measurable PCB levels in the garden area and since without further testing the presence of PCBs in other areas of the garden cannot be determined, and further because, at this time, Tecumseh does not know whether PCB in the soil could create any potential health problem for foods grown, we are bringing this information to your immediate attention.

We should also emphasize that Tecumseh does not have any reason currently to believe that the produce being grown is unsafe. Several vegetables were tested, and all showed miniscule PCB levels well below the FDA standards permissible in baby food, of 0.2 ppm. However, because no firm conclusions about the area of impact of PCB can be reached without further testing, you might want to consider notifying the individuals known to be gardening, of these test results.

Very truly yours.

TECUMSEH PRODUCTS CO. Diecast Division

Kenneth F. Miller

Assistant Works Manager

KFM:rjz

Sample Number	Description of Material	Date Sampled
C-14	0-46" Reddish-brown silty clay fill 46-54" Dark brown silt loam	9-14-78
C-15	0-18" Reddish-brown silty clay fill 18-36" Mixed silty clay fill & burned refuse	11
C-16	0-36" Reddish-brown silty clay fill	н
C-17	0-15" Reddish-brown silty clay fill 15-36" Black mixed soil, ash & refuse	ti
C-18	0-16" Reddish-brown silty clay fill 16-36" Black mixed soil, ash & refuse	tt
C-19	0-12" Reddish-brown silty clay fill 12-36" Black mixed soil, ash & refuse	11
C-20	0-10" Reddish-brown silty clay fill 10-34" Black mixed soil, ash & refuse 34-36" Dark brown silt loam	H 2
C-21	0-24" Reddish-brown silty clay fill 24-32" Black mixed soil, ash & refuse 32-36" Dark brown silt loam	tt
C-22	0-18" Reddish-brown silty clay fill w/concrete demolition material 18-44" Black mixed soil, ash & refuse 44-54" Dark brown silt loam	11
C-23	0-8" Brown silty, sandy clay fill 8-18" Black mixed soil, ash & refuse w/concrete demolition material	
C-24	0-24" Reddish-brown silty clay fill w/thin layers of sand 24-36" Black mixed soil, ash & refuse	9-15-78
C-25	0-24" Reddish-brown silty clay fill 24-34" Black mixed soil, ash & refuse 34-36" Dark brown silt loam	
C-26	0-10" Reddish-brown silty clay fill 10-36" Black mixed soil, ash & refuse	u ·
C-27	0-8" Reddish-brown silty clay fill 8-24" Black mixed soil, ash & refuse w/tree stumps and logs	TI.
(C-28)	0-10" Reddish-brown silty clay fill 10-26" Black mixed soil, ash & refuse 26-36" Dark brown silt loam	
C-29	0-12" Reddish-brown silty clay fill 12-30" Black mixed soil, ash & refuse 30-36" Dark brown silt loam	

Sample	Towards the of New 11.1	
Number	Description of Material	Date Sampled
(C-30)	0-16" Reddish-brown silty clay fill 16-32" Black mixed soil, ash & refuse 32-36" Dark brown silt loam	9 – 15–78
C-31	0-12" Reddish-brown silty clay fill 12-33" Black mixed soil, ash & refuse 33-36" Dark brown silt loam	ti
C-32	0-24" Reddish-brown silty clay fill 24-36" Black mixed soil, ash & refuse	tt .
C-33	0-12" Reddish-brown silty clay fill 12-40" Black mixed soil, ash & refuse 40-54" Dark brown silt loam	11
C-34	0-24" Reddish-brown silty clay fill 24-33" Black mixed soil, ash & refuse 33-36" Dark brown silt loam	11
C-35	0-12" Reddish-brown silty clay fill 12-22" Black mixed soil, ash & refuse 22-36" Dark brown silt loam	
C-36	0-30" Reddish-brown silty clay fill 30-36" Dark brown silt loam	
C-37	0-18" Reddish-brown silty clay fill 18-34" Black mixed soil, ash & refuse 34-36" Dark brown silt loam	u · · ·
C-38	0-22" Reddish-brown silty clay fill 22-33" Black mixed soil, ash & refuse 33-36" Dark brown silt loam	11
C-39	0-15" Reddish-brown silty clay fill 15-34" Black mixed soil, ash & refuse 34-36" Dark brown silt loam	15
C-40	0-45" Reddish-brown silty clay fill 45-54" Dark brown silt loam	. 11
C-41	0-22" Reddish-brown silty clay fill 22-36" Black mixed soil, ash & refuse	"
C-42	0-28" Reddish-brown silty clay fill 28-36" Brown silt loam	11
C-43	0-22" Reddish-brown silty clay fill 22-34" Brown sandy loam fill 34-36" Brown silt loam	"
C-44	0-22" Brown gravelly clay fill 22-61" Mixed soil, sand & "oildry" compound (contaminated soil)	17
C-45	0-14" Brown silty clay fill 14-48" Mixed soil, send & "oildry" compound 48-54" Brown silt loam	11

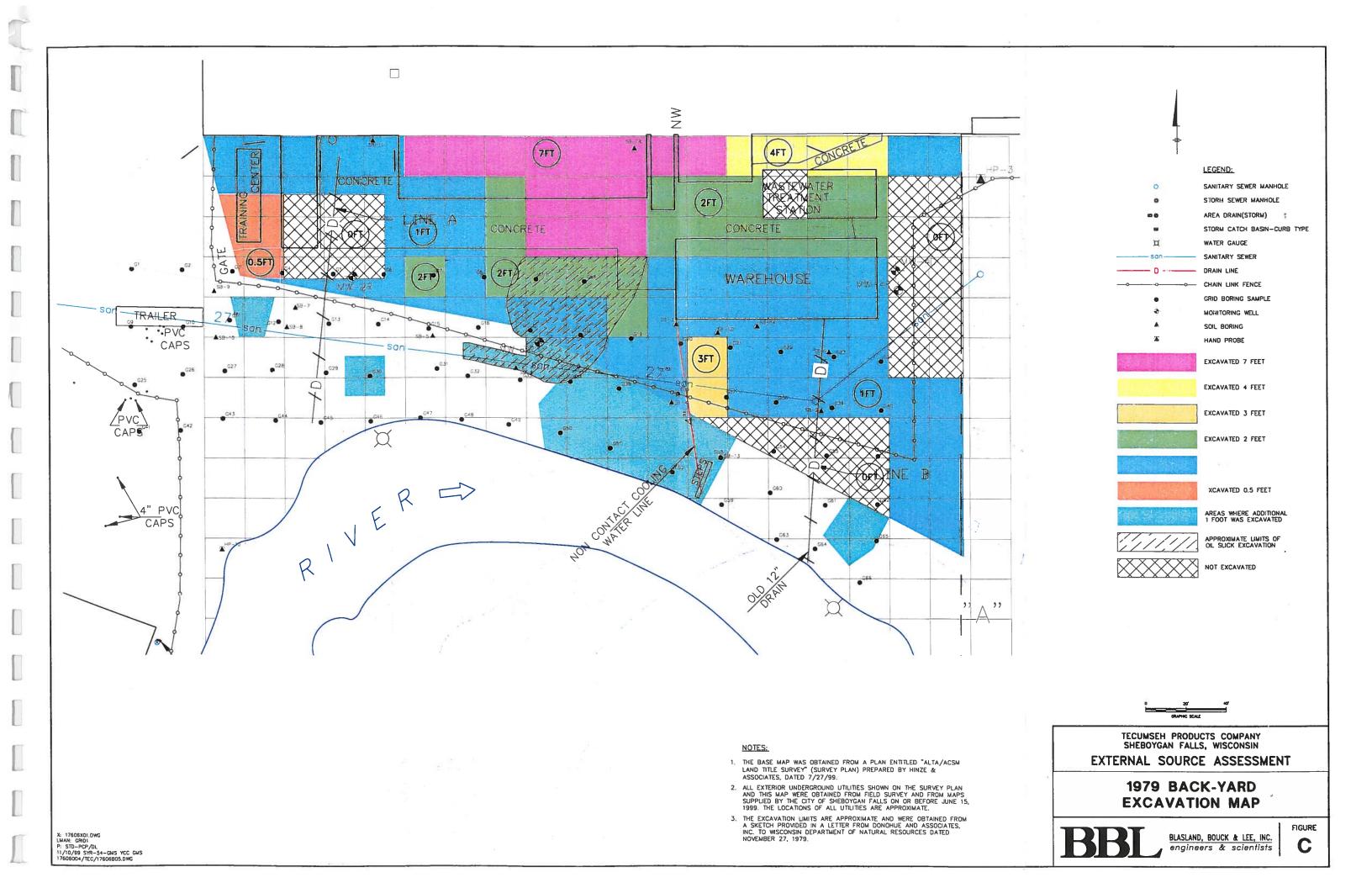
Sample Number	Description of Material	Date Sampled
C-46	0-24" Brown silty gravelly fill 24-36" Dark brown silt loam	9-15-78
C-47	0-3" Reddish-brown silty clay fill 3-14" "Oildry" compound 14-18" Dark brown silt loam	n
C-48	0-14" Reddish-brown silty clay fill 14-32" Mixed soil, sand & "oildry" compound	
C-49	0-6" Reddish-brown silty clay fill 6-30" "Oildry" compound 30-36" Brown silt loam	er .
C-50	0-15" Reddish-brown silty clay fill 15-22" Mixed soil & sand fill 22-48" Mixed soil & "oildry" compound 48-54" Brown silt loam	9-19-78
C-51	0-12" Reddish-brown silty clay fill 12-34" Mixed soil & "oildry" compound 34-36" Brown silt loam	, u
C-52	0-20" Reddish-brown silty clay fill 20-28" Brown silty clay fill 28-33" Mixed soil & refractory brick material 33-36" Brown silt loam	n
C-53	0-15" Reddish-brown silty clay fill 15-30" Mixed soil & "oildry" compound 30-36" Brown silt loam	11
C-54	0-3" Mixed soil & "oildry" compound 3-32" Reddish-brown silty clay fill 32-36" Brown silt loam	n
C-55	0-10" Reddish-brown silty clay fill 10-24" Mixed soil & "oildry" compound 24-36" Brown silt loam	#f [*]
C-56	0-48" Reddish-brown silty clay fill 48-54" Dark brown silt loam	11
C-57	0-12" Reddish-brown silty clay fill 12-50" Mixed soil & "oildry" compound 50-54" Dark brown silt loam	
C-58	0-18" Reddish-brown silty clay fill 18-47" Brown sandy, gravelly fill 47-54" Brown silt loam	n 7
C-59 (d)	0-22" Reddish-brown silty clay fill 22-33" Mixed soil & "oildry" compound 33-36" Brown sandy silt loam	11
C-60	0-17" Reddish-brown silty clay fill 17-42" Brown sand & gravel fill 42-54" Brown silt loam	

Sample Number	Description of Material	Date Sampled
C-61	- 0-6" Reddish-brown silty clay fill 6-18" Dark brown silt loam	9-19-78
(C-62)	0-24" Reddish-brown silty clay fill 24-50" Brown sandy & silty clay fill 50-54" Dark brown silt loam	n
C-63	0-26" Reddish-brown silty clay fill 26-34" Mixed fill & gravel 34-36" Dark brown silt loam	11
C-64	0-8" Reddish-brown silty clay fill 8-32" Mixed fill, sand & gravel 32-36" Dark brown silt loam	tf.
C-65	0-12" Reddish-brown silty clay fill 12-36" Mixed fill, sand & gravel	11
C-66	0-20" Reddish-brown silty clay fill 20-31" Mixed fill, sand & gravel 31-36" Dark brown silt loam	11
C-67	0-18" Reddish-brown silty clay fill 18-33" Mixed fill, sand & gravel 33-36" Dark brown silt loam	11
C-68	0-20" Reddish-brown silty clay fill 20-44" Gray-brown clayey fill w/gravel 44-54" Dark brown silt loam	
C-69,	0-22" Reddish-brown silty clay fill 22-36" Brown mixed silty clay, sand & gravel	u
C-70	0-26" Reddish-brown silty clay fill 26-36" Brown mixed fill w/gravel	11
(c-71)	0-22" Reddish-brown silty clay fill 22-36" Brown mixed sandy silt w/gravel	11
C-72	0-24" Reddish-brown silty clay fill 24-36" Brown mixed clay, sand & gravel	
C-73	0-20" Reddish-brown silty clay fill 20-36" Mixed sand & gravel	
C-74	0-26" Reddish-brown silty clay fill 26-36" Brown gravelly silt loam	9-20-78
(c-75)	0-24" Reddish-brown silty clay fill 24-36" Brown gravelly silt loam	11
C-76	0-36" Reddish-brown silty clay fill	17
C-77	0-33" Reddish-brown silty clay fill 33-36" Dark brown silt loam	11
C-78	0-36" Reddish-brown silty clay fill	п
C-79	0-34" Reddish-brown silty clay fill 34-36" Dark brown silt loam	11

Sample		•
Number	Description of Material	Date Sampled
C-80	0-35" Reddish-brown silty clay fill 35-36" Dark brown silt loam	9-20-78
C-81	0-36" Reddish-brown silty clay fill	11
C-82	0-32" Reddish-brown silty clay fill 32-36" Dark brown silt loam	n
(C-83)	0-26" Reddish-brown silty clay fill 26-36" Dark brown silt loam	н .
(C-84)	0-30" Reddish-brown silty clay fill 30-36" Dark brown silt loam	
C-85	0-28" Reddish-brown silty clay fill 28-36" Dark brown silt loam	
C - 86	0-30" Reddish-brown silty clay fill mixed w/"oildry" compound	11
	30-36" Dark brown silt loam	
C-87	0-28" Reddish-brown silty clay fill mixed w/"oildry" compound	**
	28-36" Dark brown silt loam	
C-88	0-26" Reddish-brown silty clay fill mixed w/"oildry" compound	*11
	26-36" Dark brown silt loam	
C-89	0-25" Reddish-brown silty clay fill mixed w/"oildry" compound	11
	25-36" Dark brown silt loam	
C-90	0-24" Reddish-brown silty clay fill Mixed w/"oildry" compound	11
	24-36" Dark brown silt loam	
C-91	0-26" Reddish-brown silty clay fill 26-36" Dark brown silt loam	11
C-92	0-18" Reddish-brown silty clay fill 18-36" Dark brown silt loam	
C-93	0-24" Reddish-brown silty clay fill 24-36" Dark brown silt loam	n

,* ·			
: :	_ POLYCHLORINAT	ED_ BIPHENYL (PCB)_RESULTS
	<u> </u>		
··— · · · · · · · · · · · · · · · · · ·	ample	Aroclor	Concentration (ppm)
	19/15	1254	297.0
	16/17.	4	140.0
	18/19		183.0
	(20/21		1,487.0
- 	C22/23	e samuel e e e e e e e e e e e e e e e e e e	187.0
<u> </u>	G24/25		360.0
	46/27		441.0
ı.	C08/09		742.0
	C30/3/	<u></u>	410.0
•	C32/33_ C34/35		770.0
:	C36/37	1254	
	C38/39	"	961:0
	C90/91	"	50.0
	C42/43	1248	11. Z
	C44	** *** *** *** *** *** *** *** *** ***	3, 240.0
	C45		6,024.0
	C96		674.0
	C47	<u> </u>	32,011.0
	C48/49		5,994.0
	C50	***	19,793
· · · · · · · · · · · · · · · · · · ·	C52	,	79.3
	cs3		2,633
			479
•======================================	C55	:	2,017

			15, 140
	,	Composited by c	1.27
-	C59	1248	_
	C61		
	C62/63	. 17	1,454
- · · ·	C69/65	<i>"</i>	14.8
	C66/107	1254*	/.87 (I)


	·	
Sample	Acaclor	Concentration (ppm)
	ash-	
C68/69	- 1259*	2.41
G70/71	1248	20,253 73.6
C 72/23	1254*	
C74/75		2
C76/77	1254#	4-62210 55.2
- C78/79	1259.4	2.43
	1254	0.44
682/83	1254*	1945 30.4
C84/85		4.67
C86/87_	···	4.67 CLAT 5,134 (5778) 5
C88	1254*	
C89/90	1254*	CUAT, 686 (510) SAN
C92/93	1254*	
1-1/2	1298	257
7 1-3/4	· · · · · · · · · · · · · · · · · · ·	93.0
7. 1-5/6		192.0
1-7	1259*	2, 338
1-8	1298	89.4
1-9/10	<i>,</i>	در <u>2</u> کارچ
1-11	1254*	766.0
1-12	•	1/3.0
į.	1298	190.0
		959.0
1-17/18	1254	41.9
1-19/20	11	41.9 114.0 3.69
2-1/2	1259*	3.49
2-3/4	1254#	8.69
•		265.0
		2,864.0
2-8.	13 50*	
_2 ~ 9		55-2 1,945 9671
2-10	1250*	10,928-0-4,622
	12.10	2 360

	POLYCHLORINATED BIP	HENYL (PCB) RESULTS	(-+)
er Ografia			
		The second of the property of the second of	
Sample	Aroclor	Concentration	(ppm)
The same of the sa		•	
2-12	1248	266.0	•
2-/3//4	1254*	56.6	·
2-15/16	n de la companya de La companya de la co		
2-17/18	1254	* 24.5	
2-19/20	/2543	7.6	المنافعين المنافيين والعباد المنيية
3-1/2	1298	48.8	ر ورو د و بر ود المناطق المنظم المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة ا
3.3/4	1254	6.25	
3-5	125	526	
3-6_	/25-	74	o 10,928
3-7/8	A54		•
3-9	/254	\$ \$10.0	7,516
3-10	1248	6,667.	• • • • • • • • • • • • • • • • • • •
3-11/12			(Missing
\$ 7/3	/25 1248	73 1.0	12.8
3-14	(8259	_	
3-15/16	1248	12/.0	
3-/7/18		-34-0-	en e
3-19/20	/2.5	4* 2.23	
	la .	1,303.	, , , , , , , , , , , , , , , , , , ,
4-2	125	4+ 4,538.	o :
4-3	125	4 /292.	2
		4* 8,406	
=7 4-5/6	/25	122.0	
4-7/8	125	9* 100.0	en e
4-9/10	124	722,	O.,
4-11/12	124	983.0	
4-/3//4	1248	221-0	
4-15/16	125	14 191.0	
9-17/1	7 124	10.4	
4-19/2	0 125	4×	
=7 5-8/9	, , , , , , , , , , , , , , , , , , , ,	₽0	
5-10		404.0	1.12
5-11	124	180.0	
=7 5-12/		१ *	
5-141	115 125	61.0	' (ত্ৰ)

· · · · · · · · · · · · · · · · · · ·		and the second control of the second
Sample	Aroclor	Concentration (ppm)
	<u> </u>	and the second s
5-16/17	1254*	5.5
5-18 \$6-18	1254*	4.35
5-19/20	12514	2.99
6-10	1248 1254	516.0
6-11	# :	
6-12/13	inger er en	(Missing)
6-14/15	1254+	3.38
6-14/17	12542	/37.0
6-19/20	1254*	7.06
7-/2	1248	990
7-13	1254*	165
7-14	1254*	41.6
7-15	1254#	24.9
7-16/17	12594	2 5.3
7-18 \$ 8-18	"	43.2
7-19/20	1254	40.0
8-14/15	1254*	4.26
8-16/17	1254*	2.20
8-19/20	1298	78.2
9-16	1254*	2.6/
9-17	1254+	165-0 1.70
•	1254*	Constituted Present
9-18 \$ 10-18		307 (2150 pan y materferens
•	1254	14.5
10-19/20		-589-0-2.85
•		/3.9
		9.23
	•	9.03
•		<1.0
10.10		•
20w5	1248	468
20.W3	1254*	8.08
≈20·m-5	1254*	2.20
20-W10		41.0

•					
	POLYCHLORINATED_		-	$\overline{}$	
	CULTUM DO MINTER	74.00=vi	(D. m)	V	()
_	O 5 1 4 2 5 7 1 5 O			ハヒスひとする	الناجسمال

HONEY DEW MELLOW M			· · · ·	 	 •
FIELDA I	1-1		1248	0.052	
LORN CO	0-1		12 48	 < 0.010	
GREEN BEAN G	B-1.		1248	0.020	
CARRET	A-1	:	1248	 . 0./23	
GROUND G	S-/			 4.0	
GROUND G	3-2			 8.0	
			. 1		

Technical Memorandum

External Source Assessment

Tecumseh Products Company Sheboygan Falls, Wisconsin

November 1999

Table 6
External Source Assessment
PCB Concentrations of Hand-Augered Probe Samples

Sample I.D.	Depth Interval (feet)	Total PCB Concentration (mg/kg dry weight)	
HP-1	0.0 - 0.5	3.5	
	0.5 - 1.0	0.175	
HP-2	0.0 - 0.5	11	
	0.5 - 1.0	48	
HP-3	0.0 - 0.5	38	
	0.5 - 1.0	63	
HP-4	0.0 - 0.5	0.057	
	0.5 - 1.0	ND (0.055)	
HP-5	0.0 - 0.5	0.89	
111 -0	0.5 - 1.0	1.8	
HP-6	0.0 - 0.5	3.3	
111-0	0.5 - 1.0	0.53	
HP-7	0.0 - 0.5	ND (0.056)	
111-7	0.5 - 1.0	ND (0.054)	
HP-8	0.0 - 0.5	ND (0.055)	
111-0	0.5 - 1.0	ND (0.058)	
HP-9	0.0 - 0.5	ND (0.057)	
111-5	0.5 - 1.0	ND (0.059)	
HP10	0.0 - 0.5	0.264	
	0.5 - 1.0	2.9	
HP-11	0.0 - 0.5	52	
HP-11	0.5 - 1.0	160	
HP-12	0.0 - 0.5	8.9	
NP-12	0.5 - 1.0	1.4	
HP-13	0.0 - 0.5	14.5	
115-13	0.5 - 1.0	11.8	
HP-14	0.0 - 0.5	8.9	
115-14	0.5 - 1.0	3.4	
CB-1	Catch Basin Grab	0.14	

Notes:

ND = Non-Detect (detection limit in parentheses)

mg/kg = Milligram per kilogram

CB-1 = Catch basin grab sample along Cleveland Street

Table 7
External Source Assessment
PCB Concentrations of Soil Boring Samples

Sample I.D.	Depth Interval (feet)	Total PCB Concentration	
Gample I.D.		(mg/kg dry weight)	
	0 - 2	15.5	
SB-1	2 - 4	0.9	
J 30-1	4 - 6	NR	
	6 - 8	19	
	0 - 2	22.7	
	2 - 4	99	
	4 - 6	5.6	
	6 - 8	26.3	
SB-2	8 - 10	ND (120*)	
	10 - 12	ND (120*) [ND(31*)]	
	12 - 14	0.75	
	14 - 16	3.6	
	16 - 18	9.3	
	0 - 2	58	
SB-3	2 - 4	3.9	
30-3	4 - 6	7.2	
	6 - 8	ND (0.061) [ND(0.059)]	
	0-2	0.24	
SB-4	2-4	1.5	
30-4	4 - 6	0.79	
	6 - 8	0.5	
	0-2	ND (0.058) [ND (0.056)]	
	2-4	0.64	
SB-5	4-6	NR	
	6 - 8	20.6	
	8 - 10	38	
	0 - 2	0.1	
	2 - 4	0.91	
SB-6	4-6	0.77	
-	6 - 8	ND (0.058)	
	8 - 10	0.19	
	0 - 2	1.7	
	2 - 4	2.22	
	4 - 6	0.67	
SB-7	6 - 8	23	
	8 - 10	1.62	
	10 - 12	0.168	
	12 - 14	3.9	

Table 7 (Continued) External Source Assessment PCB Concentrations of Soil Boring Samples

Sample I.D.	Depth Interval (feet)	Total PCB Concentration	
	, ,	(mg/kg)	
	0 - 2	0.092	
	2 - 4	0.41	
SB-8	4 - 6	60	
05-0	6 - 8	6.7	
	8 - 10	6.2	
	10 - 12	33	
	0 - 2	19.6	
	2 - 4	NR	
SB-9	4 - 6	11.7	
	6 - 8	1.8	
	8 - 10	7.1	
	0-2	7.4	
	2 - 4	51	
SB-10	4 - 6	4.5	
	6 - 8	6.7	
	8 - 10	0.35	
	0 - 2	5.1	
	2-4	14.2	
	4-6	0.52	
SB-11	6 - 8	0.207	
	8 - 10	1.06	
	10 - 12	0.58	
190	0 - 2	106	
	2 - 4	0.6	
SB-12	4-6	23.3	
	6 - 8	3.32	
	0-2	ND (0.056)	
	2-4	ND (0.054)	
SB-13	4-6	ND (0.054)	
00-10	6-8	NR	
	8 - 10	0.073	
SB-14	0-2	47.2	
	2-4	13.1	
	4-6	31.5	
	6 - 8	ND (0.059)	
OD 45**	1 - 3	1.12	
SB-15**	3 - 5 5 - 7	1.0 5.1	
	5-1	5.1	

Table 7 (Continued) External Source Assessment PCB Concentrations of Soil Boring Samples

Sample I.D.	Depth Interval (feet)	Total PCB Concentration (mg/kg)	
	1-3	18	
SB-16**	3 - 5	72	
36-10	5 - 7	ND (0.059)	
	7 - 9	0.26	
_	1 - 3	42	
SB-17**	3 - 5	14	
30-17	5 - 7	0.413	
	7 - 9	0.094	
	1 - 3	28.6	
SB-18**	3 - 5	44.6	
	5 - 7	42	
	7 - 9	62	
	9 - 11	166	

Notes:

ND = Non-detect (detection limit in parentheses)

NR = No Recovery

mg/kg = Milligram per kilogram

[] = Duplicate Sample

^{* =} Analytical Laboratory reported possible interference from other organic compounds, resulting in an elevated detection limit.

^{** =} Sampling interval was changed due to concrete floor

Table 8
External Source Assessment
PCB Concentrations of Monitoring Well Soil Samples

Sample I.D.	Depth Interval (feet)	Total PCB Concentration (mg/kg dry weight)	
	0-2	8.7	
	2 - 4	3.09	
	4 - 6	ND (0.06)	
	6 - 8	2.68	
	8 - 10	NA NA	
	10 - 12	1.49	
	12 - 14	0.3	
	14 - 16	NA NA	
	16 - 18	ND (0.061)	
	18 - 20	ND (0.062)	
MW-4D	20 - 22	NA - ST	
	22 - 24	ND (0.059)	
	24 - 26	ND (0.062)	
	26 - 28		
	28-30	ND (0.061)	
	30-32	ND (0.061)	
	32.34	ND (0.061)	
	34-36	ND (0.054)	
	36 - 38	ND (0.057)	
		ND (0.058)	
	38 - 40	ND (0.055)	
	1 - 3	ND (0.056)	
	3 - 5	NA NA	
	5 - 7	ND (0.052)	
	7 - 9	ND (0.057)	
	9 - 11	ND (0.060)	
	12 - 14	NA NA	
	14 - 16	NA - ST	
	16 - 18	ND (0.066)	
MW-5D	18 - 20	ND (0.064)	
	20 - 22	ND (0.056)	
	22 - 24	ND (0.068)	
	24 - 26	ND (0.054)	
	26 - 28	ND (0.053)	
	28 - 30	ND (0.053)	
	30 - 32	ND (0.058)	
	32 - 34	ND (0.055)	
	34 - 36	ND (0.062)	
	36 - 38	ND (0.059)	
	0 - 2	29	
	2 - 4	11.4	
MW-7D	4-6	23.2	
IVIVV-/D	6 - 8	0.14	
	8 - 10	0.076	
	10 - 12	ND (0.056)	

Table 8 (Continued) External Source Assessment PCB Concentrations of Monitoring Well Soil Samples

Sample I.D.	Depth Interval (feet)	Total PCB Concentration (mg/kg)
	12 - 14	ND (0.060)
	14 - 16	3.7
	16 - 18	NA - ST
	18 - 20	0.158
	20 - 22	ND (0.065)
	22 - 24	ND (0.066)
MW-7D	24 - 26	ND (0.067)
(Cont'd)	26 - 28	ND (0.062)
	28 - 30	ND (0.063)
	30 - 32	ND (0.068)
	32 - 34	ND (0.057)
-	34 - 36	0.15
	36 - 38	Not Sampled
	38 - 40	ND (0.055)
Off-Site	0 - 2	1.4
MW-6S	2 - 4	0.161
10100-03	4 - 6	0.31

Notes:

ND = Non-detect (detection limit in parentheses)

NA = Not Analyzed

ST = Shelby Tube Sample

mg/kg = Milligram per kilogram

Table 9 External Source Assessment Northern Sheboygan River Bank Evaluation Results

Location	Sample I.D.	Depth Interval	Total Organic Carbon Concentration (mg/kg dry weight)	Total PCB Concentration (mg/kg dry weight)
North Bank	NRB-4	0-6	16000	0.56
Soil Samples	NRB-5	0-6	7000	2700 [4400]
from	NRB-7	0-6	2600	ND(0.062)
Walkover	NRB-9	0-6	19000	0.73
	NRB-10	0-6	5000	0.12
	B1	0-6	-	1100
Soils Near	B2	0-6	-	380 [330]
Non-Contact		6-8		100
Cooling Water	B3	0-6		0.36
Discharge		6-12		0.42
Area		12-18		NA
Area		18-24		690
		24-30		38
		30-34		33
	NB-COMP-1	0-6	32000	2.3
	NB-COMP-2	0-6	23000	0.77
	NB-COMP-3	0-6	22000	0.64
North Bank	NB-COMP-4	0-6	39000	2.12
Soil	NB-COMP-5	0-6	19000	39
Composites	NB-COMP-6	0-6	23000 [26000]	2.6 [2.4]
	NB-COMP-7	0-6	15000	2.8
	NB-COMP-8	0-6	18000	3.5
1	NB-COMP-9	0-6	28000	1.6
	NB-COMP-10	0-6	15000	1.9
	NB-SS-41	0-6	26000	7.2
	NB-SS-42	0-6	31000	7.3
l i	NB-SS-43	0-6	26000	13
North Bank	NB-SS-44	0-6	19000	31
Surface Soil	NB-SS-45	0-6	19000	12
Samples	NB-SS-46	0-6	35000	17
(Section 5)	NB-SS-47	0-6	25000	5.8
	NB-SS-48	0-6	30000	3.3
	NB-SS-49	0-6	28000	0.25
	NB-SS-50	0-6	28000	83
Non-Contact Cooling Water	NCCW-1	N/A	N/A	ND(0.053) μg/l

Notes:

- 1. Total Organic Carbon concentration results were obtained by taking the average of all replicate samples.
- 2. Total PCB concentration results in mg/kg except as noted.

[] = Duplicate result

ND() = Result was non-detect, value in parenthesis is the detection limit.

in = inch

mg/kg = Milligram per kilogram

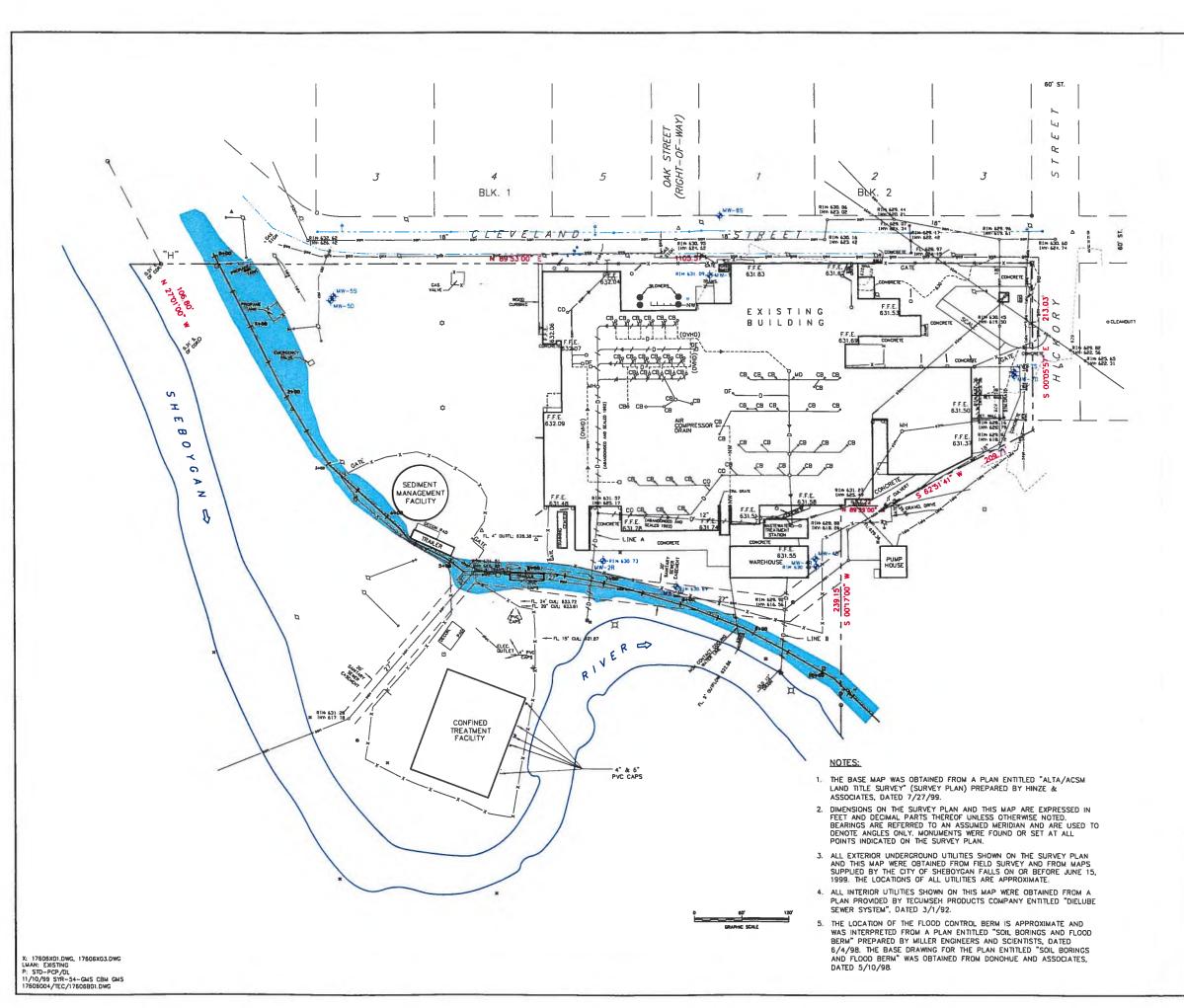
 μ g/L = Microgram per liter

NA = Not Analyzed

N/A = Not applicable

Table 10
External Source Assessment
PCB Concentrations of Grid Boring Composite Soil Samples

Composite Sample I.D.	Grid Borings Sampled in Depth Interval	Depth Interval (feet)	Total PCB Concentration (mg/kg dry weight)
		0 - 2	5.4
	G55, G56, G61, G62	2 - 4	3.4
COMP-1		4 - 6	3.2
	G61, G62	6 - 8	0.1
	G61	8 - 10	ND (0.06)
	050 054 050 000	0 - 2	12
	G53, G54, G59, G60	2 - 4	14.9 [2.24]
COMP-2	054 000	4 - 6	0.192
	G54, G60	6 - 8	0.8
	G60	8 - 10	0.51
-	005 000	0 - 2	0.6
	G65, G66	2 - 4	0.29
COMP-3		4 - 6	ND (0.055)
	G65	6 - 8	0.44
		8 - 10	ND (0.058)
	000 004	0 - 2	1.51
COMP-4	G63, G64	2 - 4	1.08
	G63	4 - 6	1.37
		0 - 2	0.9
COMP-5	G51, G52	2 - 4	7.7
		4 - 6	0.35
	622 624 640 650	0 - 2	2.7
	G33, G34, G49, G50	2 - 4	0.23
COMP-6		4 - 6	3.13
}	G33, G34	6 - 8	2.46
		8 - 10	0.015
	G31, G32, G47, G48	0 - 2	1.28
	G31, G32	2 - 4	0.57
COMP-7		4 - 6	3.5
		6 - 8	ND (0.058)
		8 - 10	0.61
	G29, G30, G45, G46	0 - 2	55
COMP-8	G29, G30, G45	2 - 4	11.1
	G29, G30	4 - 6	102
1	G27, G28, G43, G44	0 - 2	2.2
COMP-9	G27, G28, G43	2 - 4	2.72 [2.39]
	G28, G43	4 - 6	0.58


Table 10 External Source Assessment PCB Concentrations of Grid Boring Composite Soil Samples

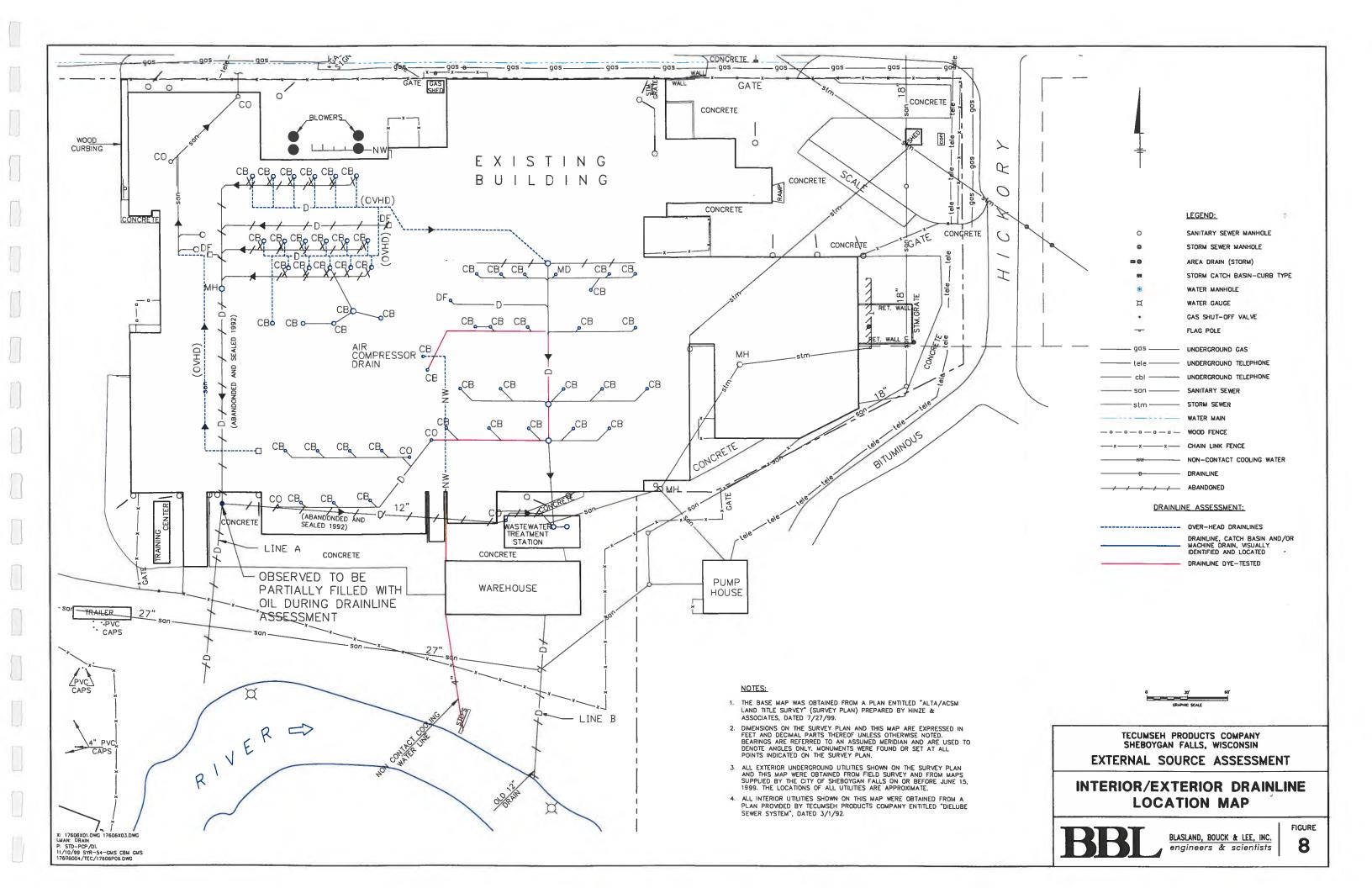
Composite Sample I.D.	Grid Borings Sampled in Depth Interval	Depth Interval (feet)	Total PCB Concentration (mg/kg dry weight)
COMP-10	G25, G26, G41, G42	0 - 2	4.3
	G25, G20, G41, G42	2 - 4	4.0
	G41	4 - 6	50
		0 - 2	55.4
COMP-11	G23, G24, G39, G40	2 - 4	18.5
COMP-11		4 - 6	31
	G23, G24, G39	6 - 8	0.57
		0 - 2	70
COMP-12	G21, G22, G37, G38	2 - 4	54
COMP-12		4 - 6	14
	G22, G37, G38	6 - 8	9.9
		0 - 2	61
COMP-13	G19, G20, G35, G36	2 - 4	52
COMP-13	G 19, G20, G35, G36	4 - 6	85
		6 - 8	34.3
		0 - 2	18.8
	C17 C19 C57 C59	2 - 4	19.8
COMP-14	G17, G18, G57, G58	4 - 6	26.4
		6 - 8	17
	G18, G58	8 - 10	1,800
	G7, G8, G15, G16	0 - 2	4.2
COMP-15		2 - 4	10.9
COMP-15		4 - 6	21.4
	G8, G15, G16	6 - 8	3.8
	G5, G6, G13, G14	0 - 2	3.0
COMP-16		2 - 4	3.8
COMP-16		4 - 6	23
	G13, G14	6 - 8	13.5
	G3, G4, G11, G12	0 - 2	0.94
COMP-17		2 - 4	2.6
		4 - 6	2.0 [.07]
	G1, G2, G9, G10	0-2	28
		2 - 4	450
COMP-18		4 - 6	16
	G9, G10	6 - 8	ND (0.059)
	G9	8 - 10	ND (0.06)

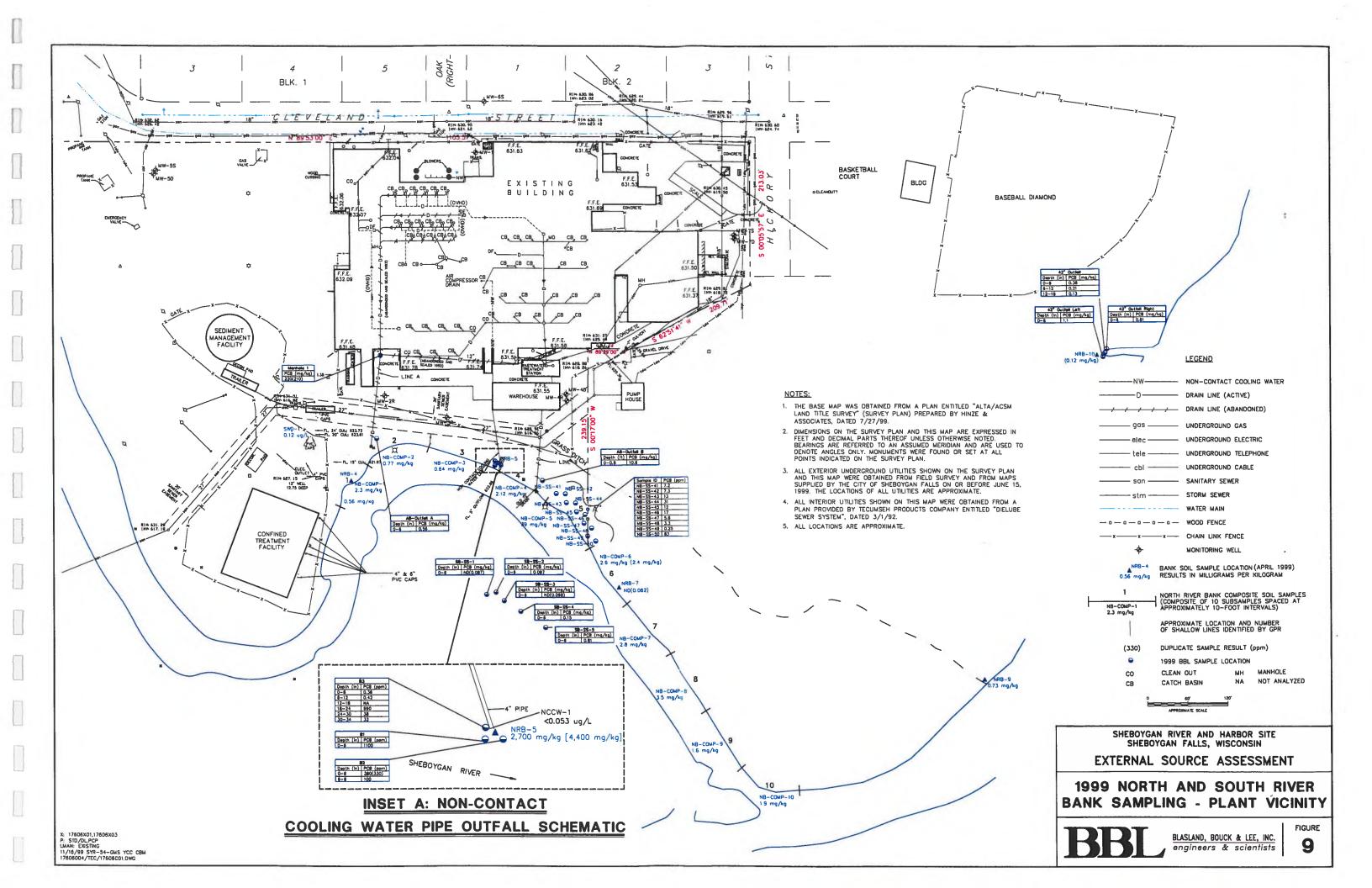
Notes:

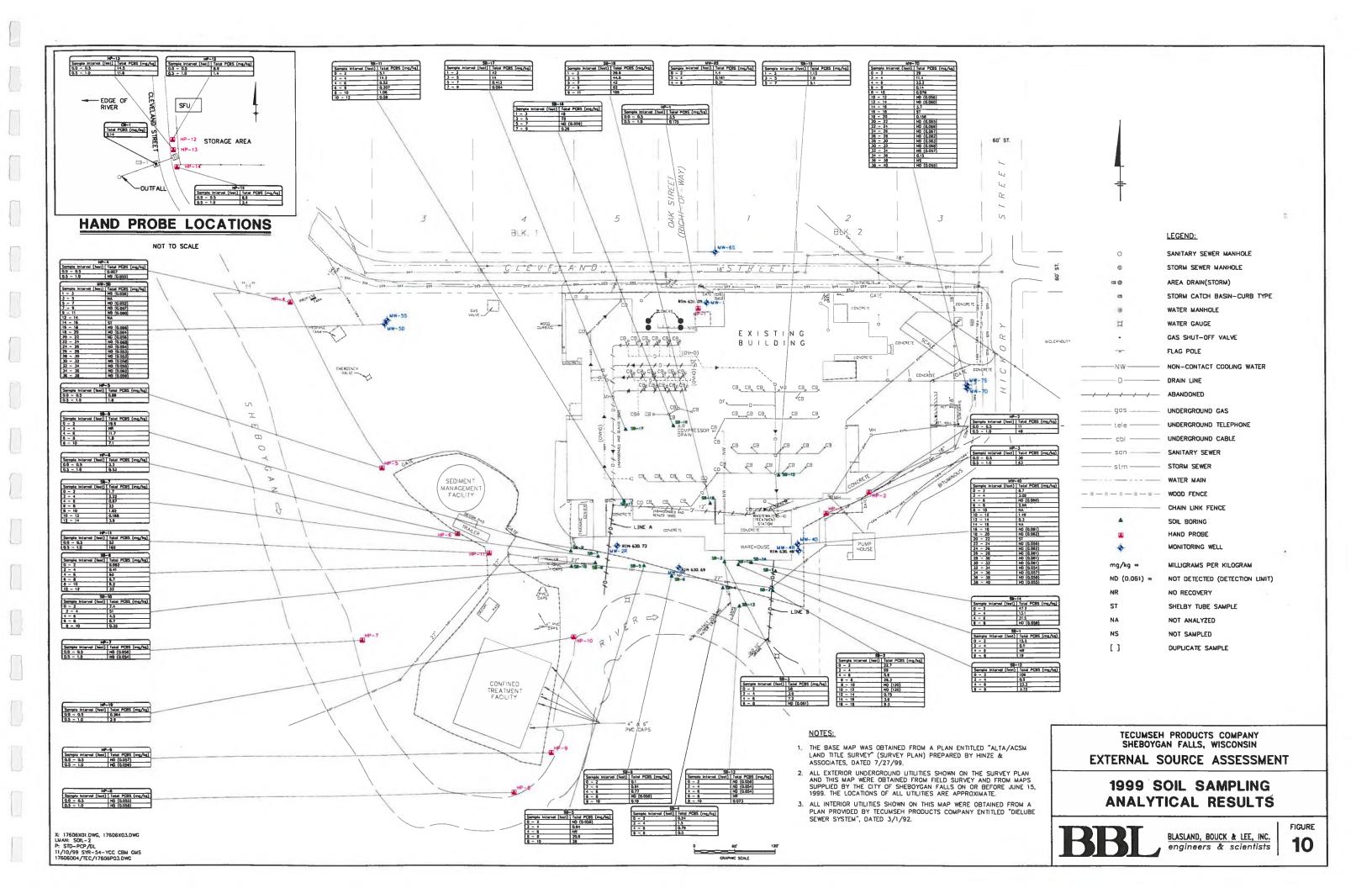
ND = Non-detect (detection limit in parentheses) mg/kg = Milligram per kilogram

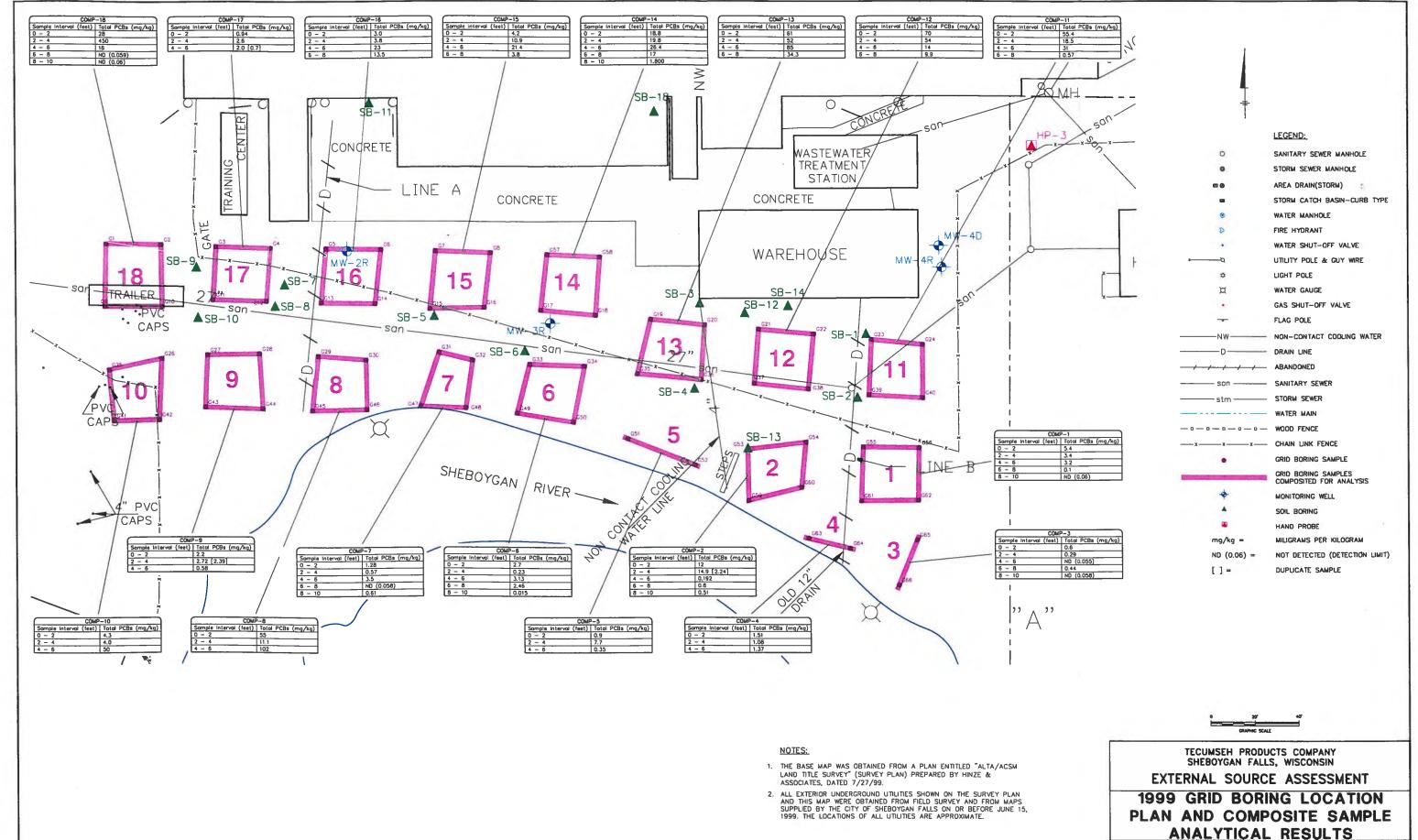
[] = Duplicate Sample

LEGEND SANITARY SEWER MANHOLE STORM SEWER MANHOLE AREA DRAIN (STORM) STORM CATCH BASIN-CURB TYPE WATER MANHOLE FIRE HYDRANT WATER SHUT-OFF VALVE UTILITY POLE & GUY WIRE LIGHT POLE WATER GAUGE GAS SHUT-OFF VALVE FLAG POLE NON-CONTACT COOLING WATER DRAIN LINE (ACTIVE) / / DRAIN LINE (ABANDONED) UNDERGROUND GAS UNDERGROUND ELECTRIC UNDERGROUND CABLE SANITARY SEWER WATER MAIN MONITORING WELL FLOOD CONTROL BERM

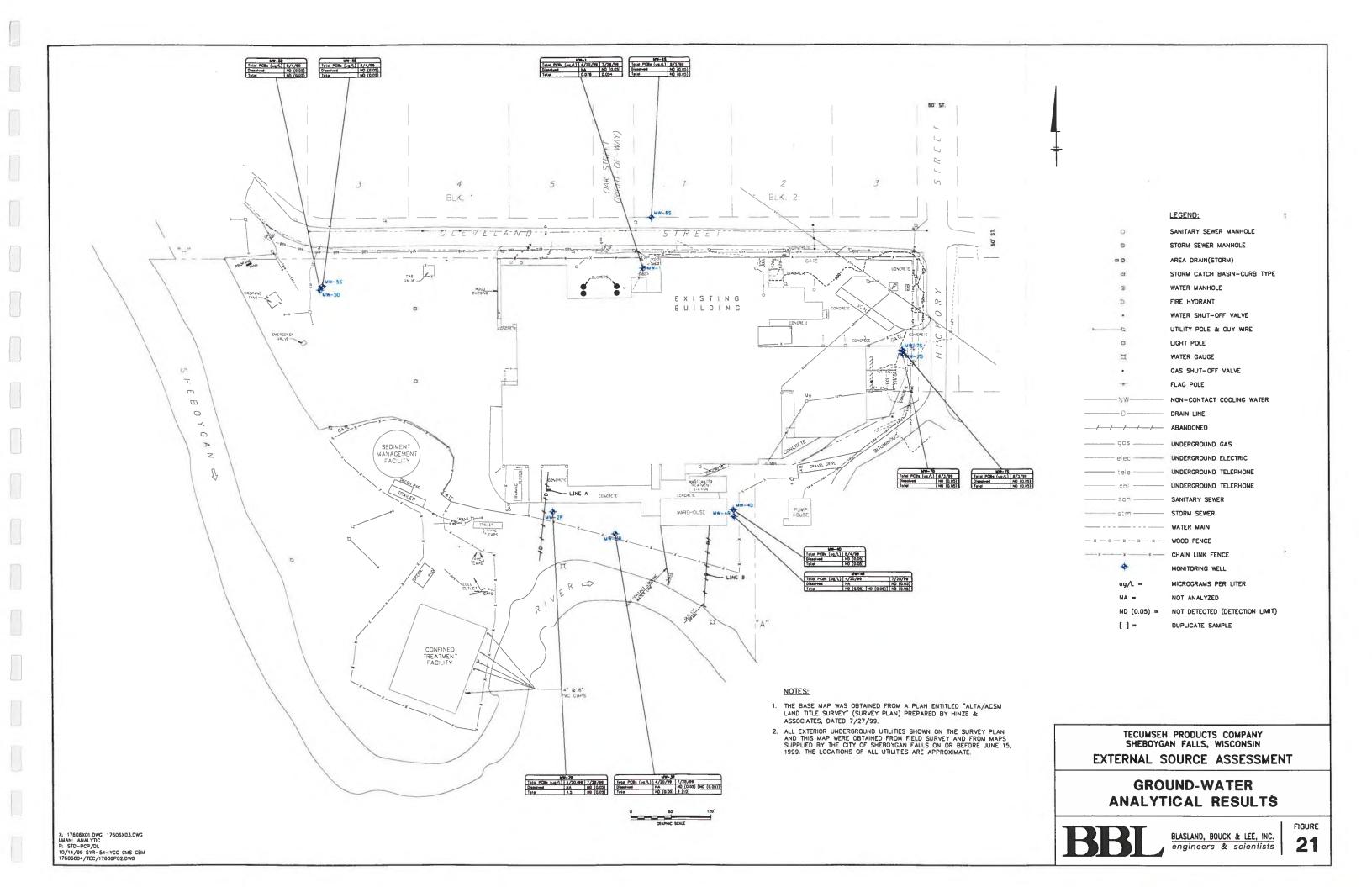

TECUMSEH PRODUCTS COMPANY SHEBOYGAN FALLS, WISCONSIN

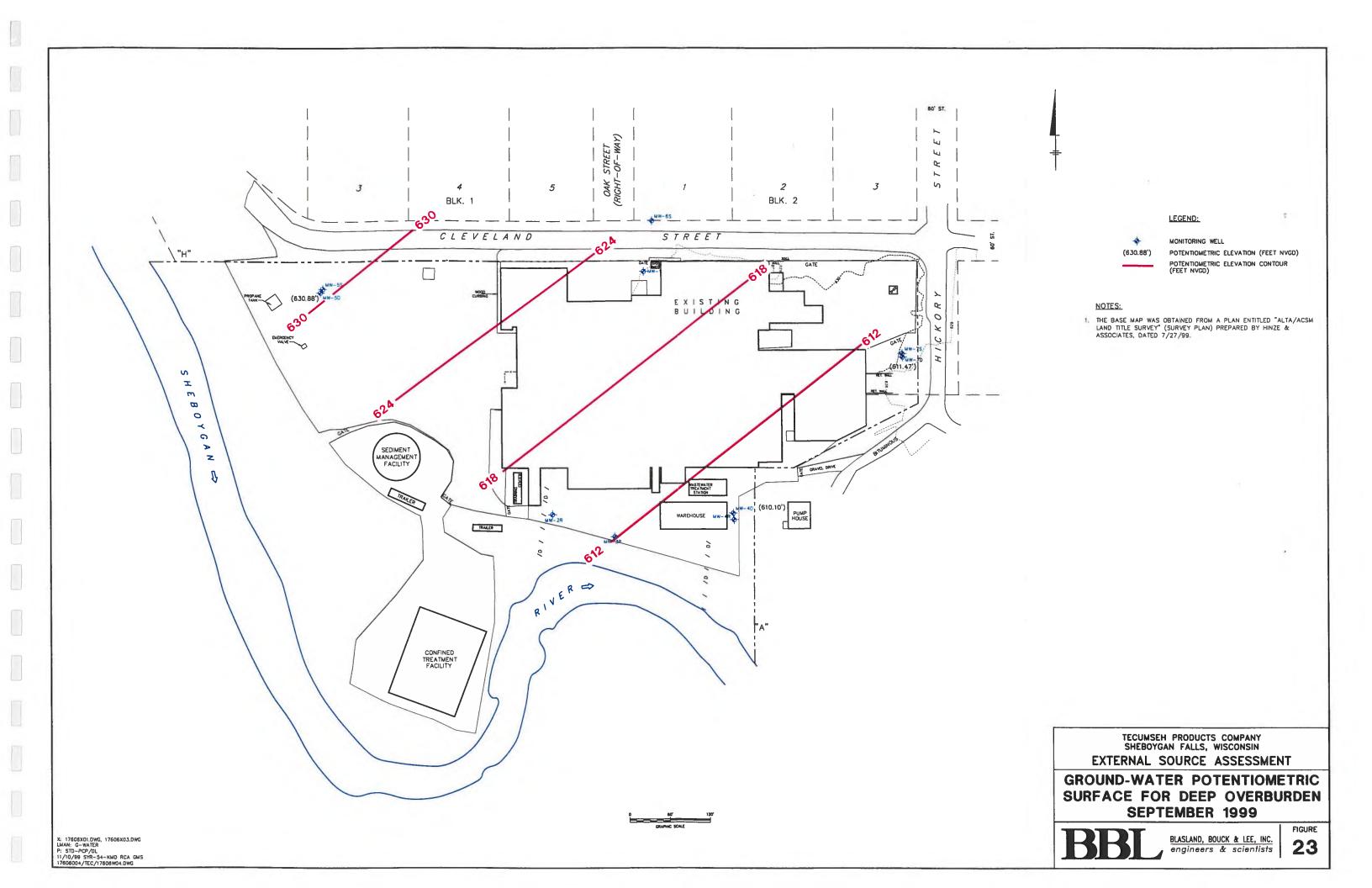

EXTERNAL SOURCE ASSESSMENT

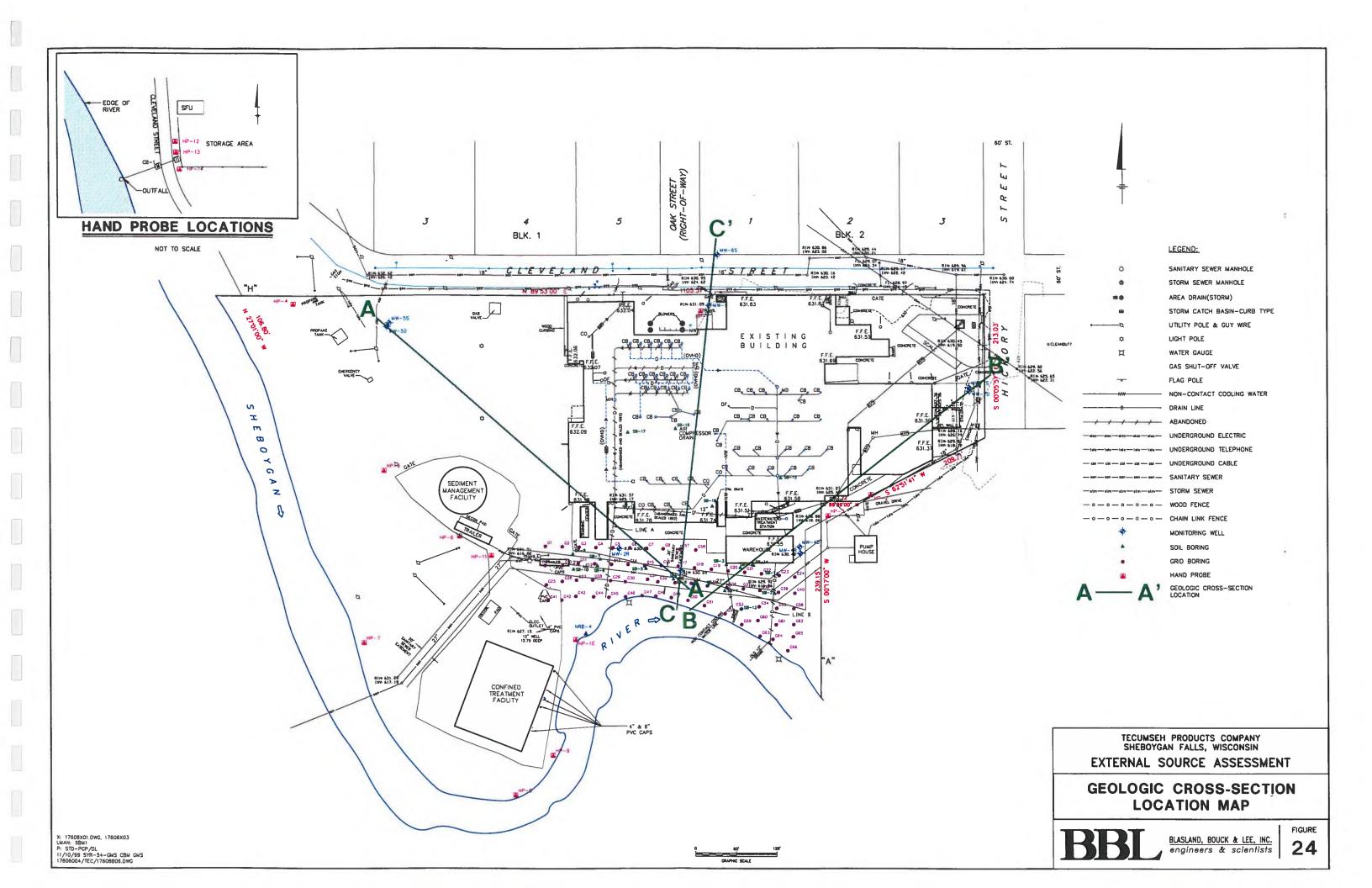

FLOOD CONTROL BERM LOCATION MAP

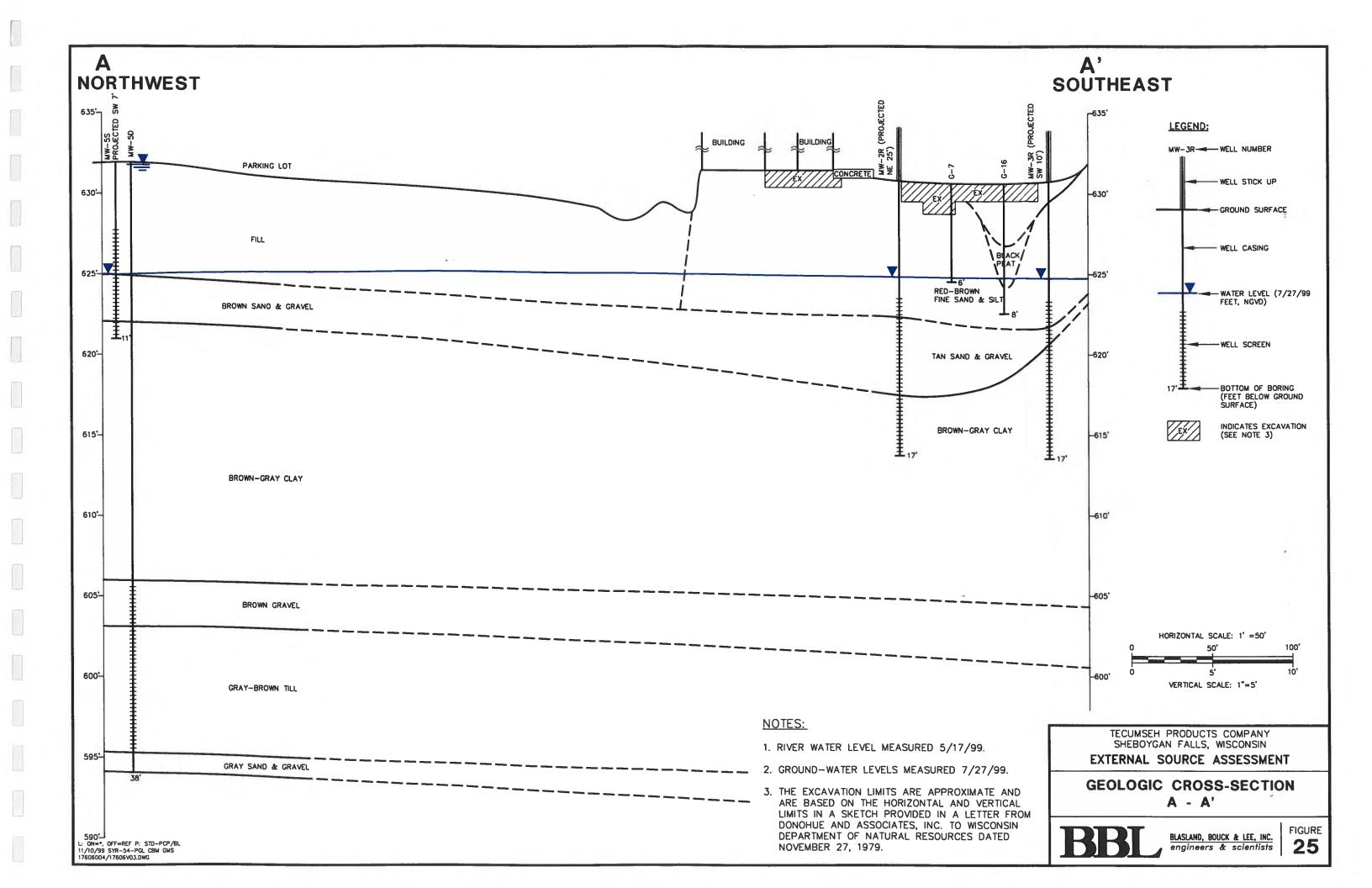


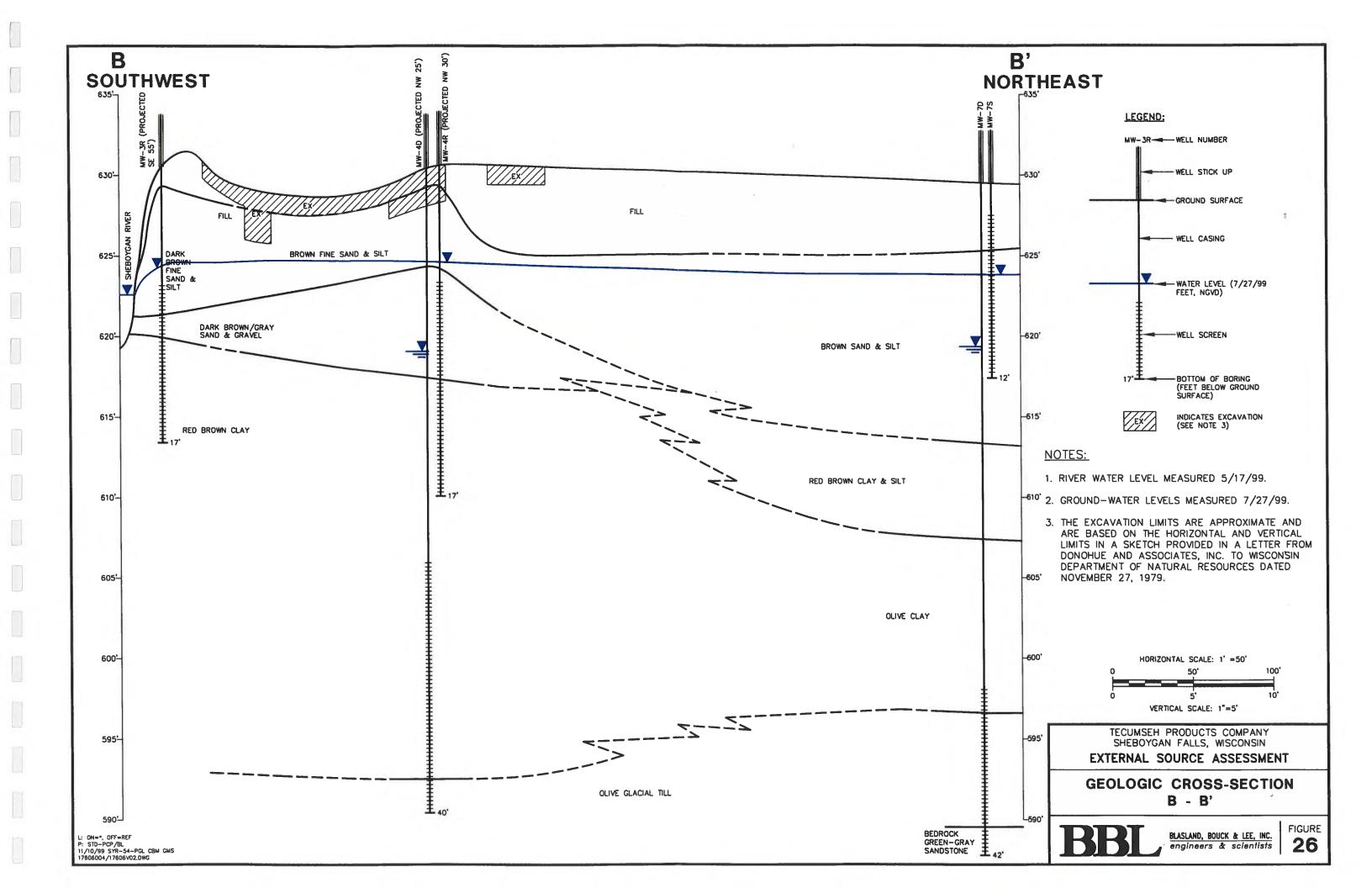
BLASLAND, BOUCK & LEE, INC. engineers & scientists

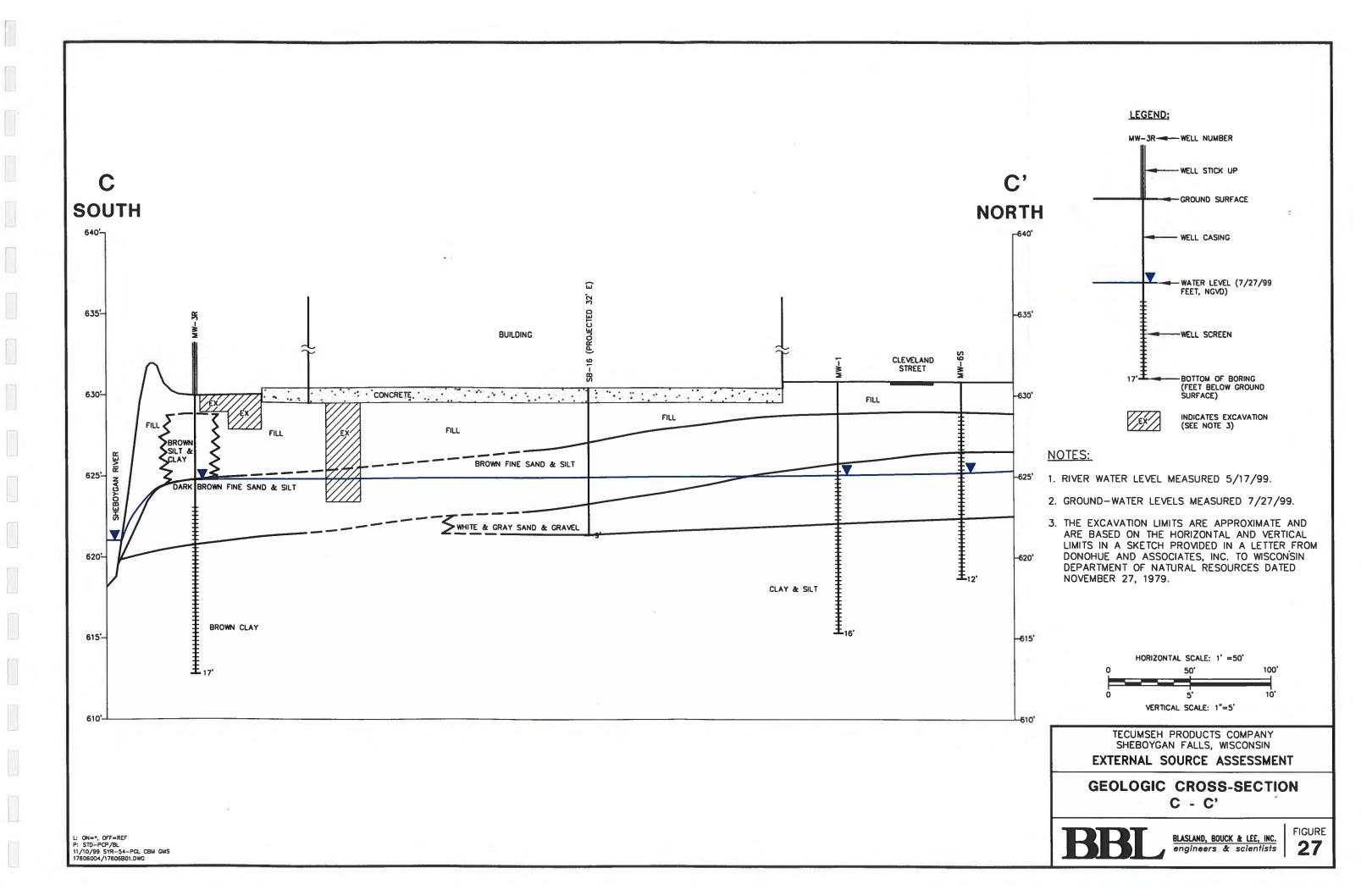



X: 17606X01,DWG, 17606X03.DWG LMAN: GRID1 P: STD-PCP/DL 11/10/99 SYR-54-YCC CBM GMS 17606004/TEC/17606P04.DWG FIGURE


BLASLAND, BOUCK & LEE, INC. engineers & scientists




60' ST. BLK. 2 BLK. 1 LEGEND: CLEVELAND MONITORING WELL STAFF GUAGE (622.86') WATER-TABLE ELEVATION (FEET NVGD) WATER-TABLE ELEVATION CONTOUR (FEET NVGD) 623.0-MW-55 (623.85') 1 EXISTING BUILDING 623.6 I B 0 \prec G SEDIMENT 6 MANAGEMENT FACILITY Z NOTES: THE BASE MAP WAS OBTAINED FROM A PLAN ENTITLED "ALTA/ACSM LAND TITLE SURVEY" (SURVEY PLAN) PREPARED BY HINZE & ASSOCIATES, DATED 7/27/99. WASTEWATER TREATMENT STATION 2. STREAM GAUGE SG-4 WAS DAMAGED. 10USE MW-4 (623.12') 622.0 ---CONFINED TREATMENT FACILITY TECUMSEH PRODUCTS COMPANY SHEBOYGAN FALLS, WISCONSIN EXTERNAL SOURCE ASSESSMENT **WATER-TABLE ELEVATION CONTOUR MAP 9/20/99** BLASLAND, BOUCK & LEE, INC. engineers & scientists X: 17605X01.DWG, 17606X03.DWG LMAN: WATER-T P: STD-PCP/DL 11/12/99 SYR-54-KMD GMS CBM 17606004/TEC/17606W03.DWG


FIGURE

Sheboygan River and Harbor Superfund Site

Phase I Completion Report

Prepared For
United States Environmental Protection Agency
Region 5

Prepared By
Pollution Risk Services, LLC

SEPTEMBER 2005

Table 1 PCB Impacted Soil Final Quantities

Sheboygan River and Harbor Superfund Site ~ Phase I

SOURCE AREA	NON-HAZARDOUS WASTE SHIPPED (TONS)	HAZARDOUS WASTE SHIPPED (TONS)
TRENCH EXCAVATION	2171.86	339.40
SOURCE SOILS	1221.55	303.36
RIVERBANK / PREFERENTIAL PATHWAYS	678.76	725.42
TOTALS	4072.17	1368.18

Table 2 Source Soils PCB Confirmation Sample Results

Sheboygan River and Harbor Superfund SIte ~ Phase I

Sample #	Sample ID #	Sample Depth Interval (ft)	PCB Concentration (ppm)
1	PS-SS2, B7, Floor	1	0.89 (1.1)
2	PS-SS2, B7, N(0-1)	0-1	0.69
3	PS-SS2, B7, S(0-1)	0-1	0.32
4	PS-SS2, B7, W(0-1)	0-1	0.037 J
5	PS-SS3, B7, E(0-1)	0-1	0.082
6	PS-SS1, D9, Floor	1	0.82
7	PS-SS1, D9, N(0-1)	0-1	0.012 J
8	PS-SS1, D9, W(0-1)	0-1	0.45
9	PS-SS1, E9, E(0-1)	0-1	ND
10	PS-SS1, E9, N(0-1)	0-1	0.05
11	PS-SS1, E9, Floor	1	0.82
12	PS-SS3, D9, (0-1)	0-1	0.12 J
13	PS-SS2, E9, S(0-1)	0-1	0.3 J
14	PS-SS1, G9	0-1	1.4
15	PS-SS1, G9, Floor	1	2.6
16	PS-SS1, H8, N Floor	1	2.3
17	PS-SS2, H8, S Floor	1	4.7
18	PS-SS2, H9	1	18
19	PS-SS1, I9	1	2.9 ¹
20	PS-SS1, J9/J10, Floor	1	3.3 (2.8) 2
21	PS-SS1, K9, Floor	1	0.94 (0.83)
22	PS-SS1, K10, Floor	1	1.9
23	PS-SS1, L10, Floor	1	2.6
24	PS-SS1, M10, Floor	1	1.2
25	PS-SS1, N10, Floor	1	5.6
26	PS-SS1, N9, Floor	1	1.6
27	PS-SS1, O8, Floor	1	2.9

NOTES

- 1. Composite includes I10 grid
- 2. Composite includes J10 grid
- 3. Non-detect results are presented in italics

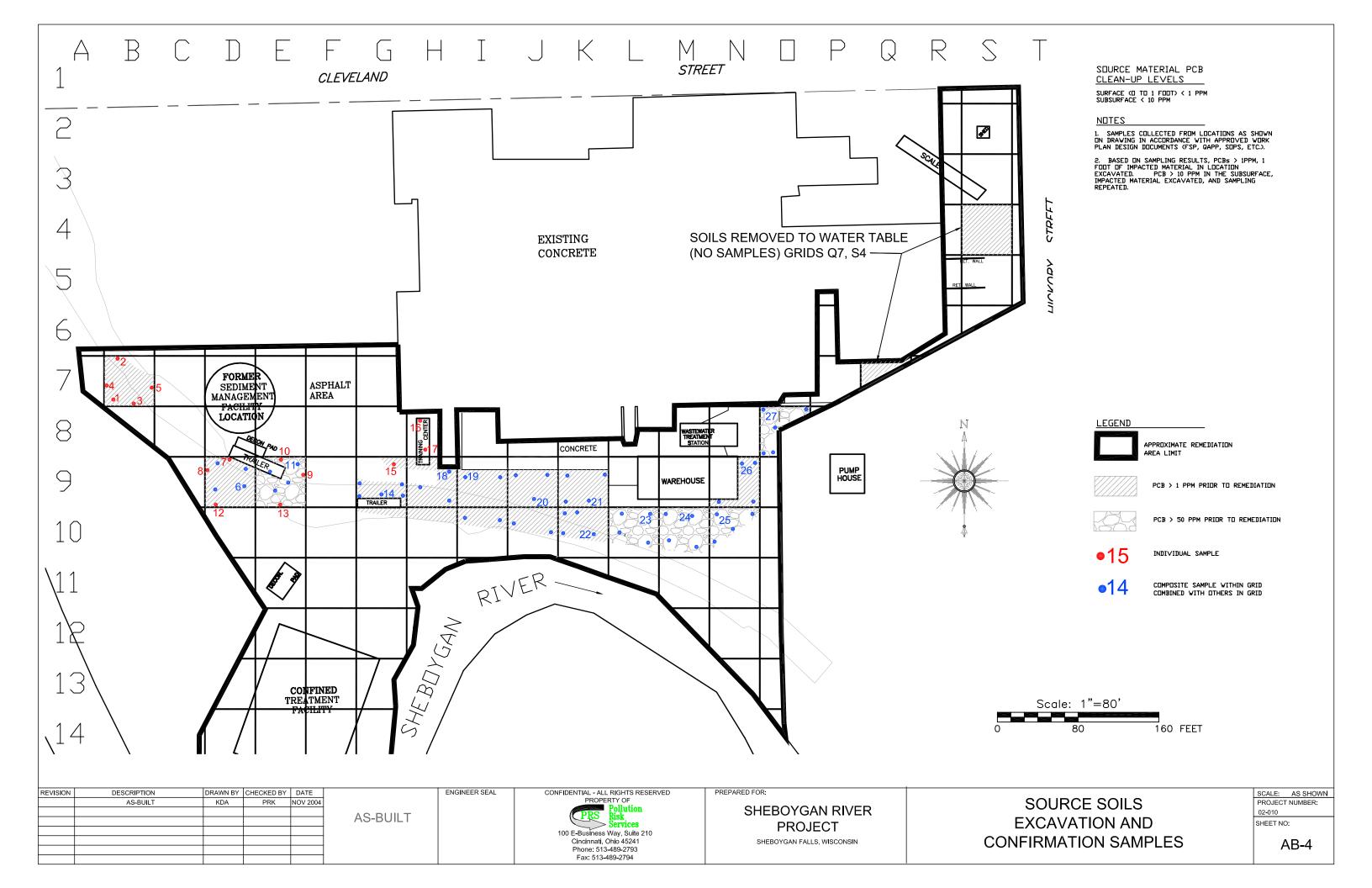


Table 3

Riverbank Soils PCB Confirmation Sample Results

Sheboygan River and Harbor Superfund Site ~ Phase I

Sample #	Sample ID #	Sample Depth Interval (ft)	PCB Concentration (ppm)
1	RB-SS2, G10, 0-1	0-1	0.12 (0.097) 1
2	RB-SS3, G10, W Floor	1	0.228 ¹
3	RB-SS4, G10, E Floor	1	0.79 ¹
4	RB-SS5, G10, 0-1	0-1	0.057 ¹
5	RB-SS3, G9, Floor	1	1.9
6	RB-SS4, H9, Floor	1	0.7
7	RB-SS3, H10, 0-1	0-1	0.65
8	RB-SS6, H10, Floor	1	7.7
9	RB-SS12, H10, 0-1	0-1	0.84
10	RB-SS8, H10, 0-1 South	0-1	0.51 J
11	RB-SS2, H10, 0-1	0-1	0.53
12	RB-SS13, H10, N Floor	1	1.5
13	RB-SS14, H10, Floor	1	5.1
14	RB-SS5, I10, 0-1	0-1	0.22
15	RB-SS10, I10, Floor	1	3.3
16	RB-SS15, I10, Floor	1	0.33 J
17	RB-SS17, I10, S(0-1)	0-1	0.67
18	RB-SS19, I10, Floor	1	2
19	RB-SS2, I9, Floor	1	0.021 (0.017) J
20	RB-SS2, J10, 0-1	0-1	0.21
21	RB-SS4, J10, 0-1	0-1	0.18
22	RB-SS9, J10, N(0-1)	0-1	0.8
23	RB-SS10, J10, Floor	1	0.0085 J
24	RB-SS2, K10, 0-1	0-1	0.18 (0.19)
25	RB-SS5, K10, Floor	1	0.84
26	RB-SS7, K10, 0-1 North	0-1	0.044 (0.28 J)
27	RB-SS5, M11, Floor	1	1.1
28	RB-SS7, M11, E(0-1)	0-1	0.16
29	RB-SS8, M11, Floor	1	2.3 (2.5)
30	RB-SS1, N11, 0-1	0-1	0.048
31	RB-SS5, N11, Floor	1	0.44
32	RB-SS4, N11, 0-1	0-1	0.24 J
33	RB-SS1, O11, 0-1	0-1	0.31
34	RB-SS1, O12, 0-1	0-1	0.018 J
35	RB-SS1, N12, 0-1	0-1	0.27

NOTES

- 1. North and south boundaries defined by preferential pathway #1
- 2. Non-detect results are presented in italics

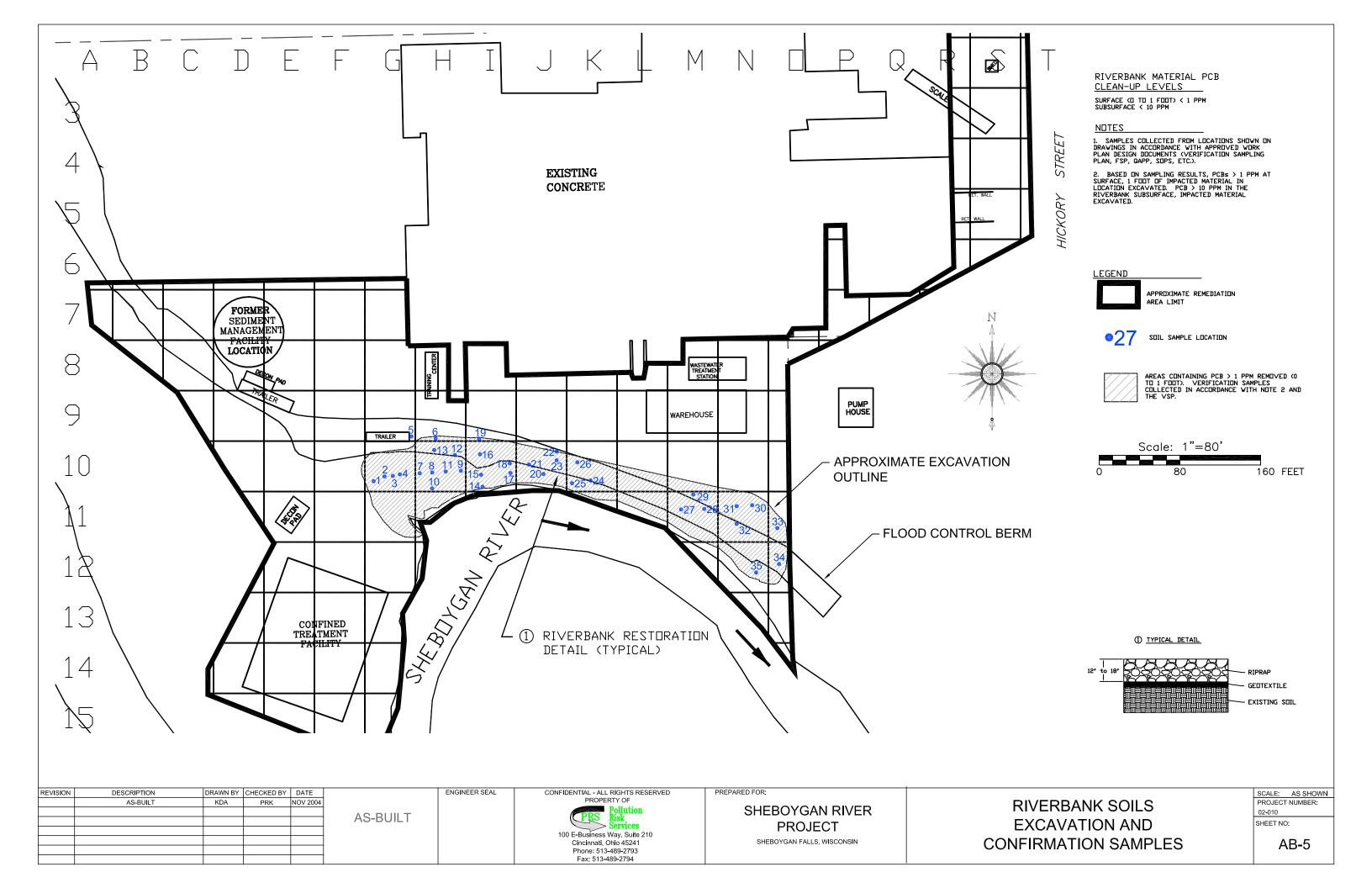
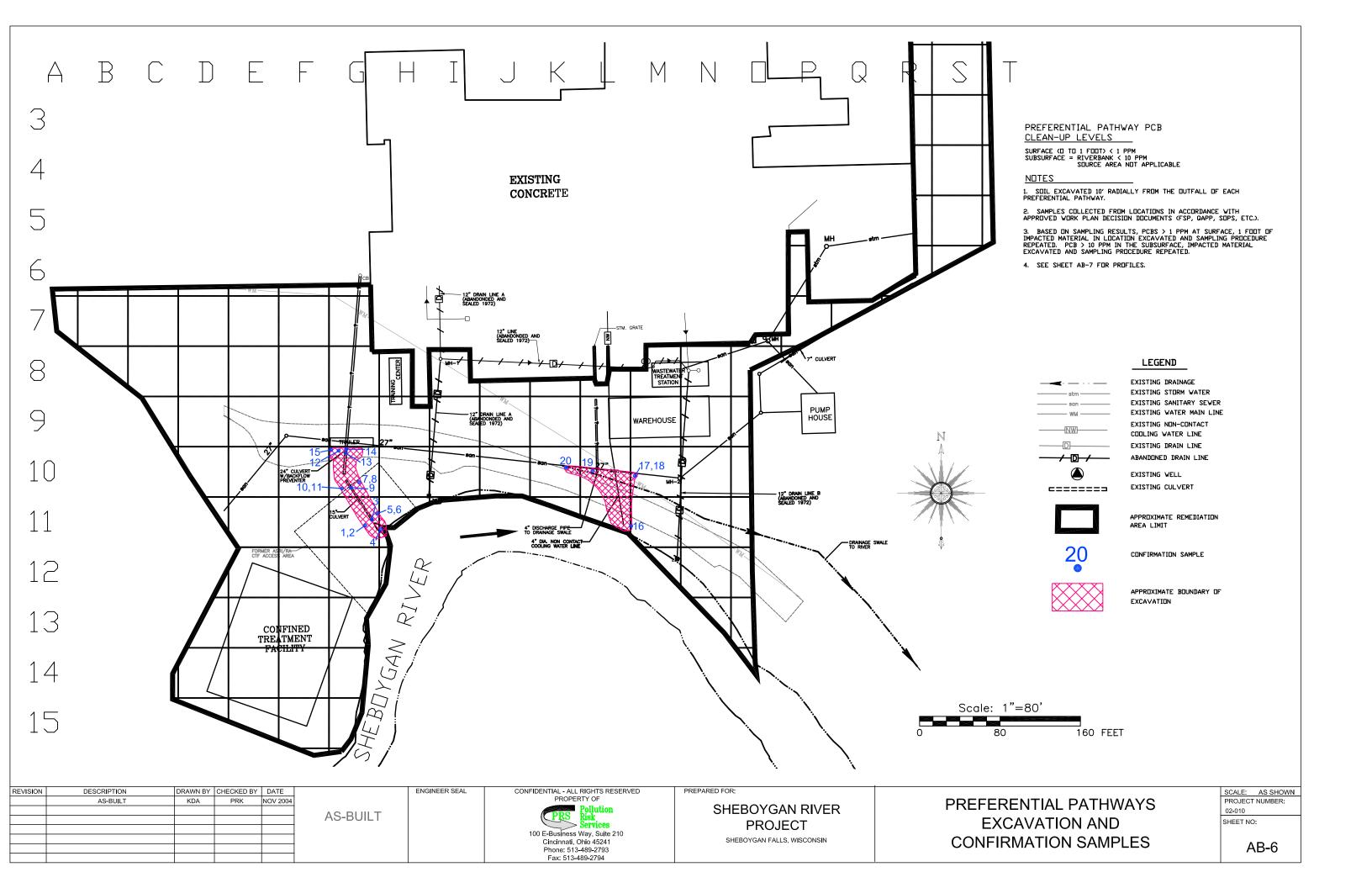


Table 4


Preferential Pathways PCB Confirmation Sample Results

Sheboygan River and Harbor Superfund Site ~ Phase I

Sample #	Sample ID #	Sample Depth Interval (ft)	PCB Concentration (ppm)
1	PPI-SS1-W (1-3)	1-3	0.58
2	PPI-SS2-W (0-1)	0-1	0.27
3	PPI-SS3-Floor	3	4.3 (6.8) ¹
4	PPI-SS4-S (1-3)	1-3	3.8
5	PPI-SS6-E (1-3)	1-3	0.53 J
6	PPI-SS7-E (0-1)	0-1	0.14 J
7	PPI-SS8-E (1-3)	1-3	3.5
8	PPI-SS9-E (0-1)	0-1	0.32
9	PPI-SS10-Floor	3	0.41
10	PPI-SS11-W (1-3)	1-3	6.9 (7.2)
11	PPI-SS12-W (0-1)	0-1	1.95 ²
12	PPI-SS13-W (1-3)	1-3	3.1
13	PPI-SS15-Floor	7	0.48
14	PPI-SS17-N (1-3)	1-3	1.4 J
15	PPI-SS24-W (0-1)	0-1	0.014 J
16	PP2-SS3-E (0-1)	0-1	0.37
17	PP2-SS23-E (0-1)	0-1	0.17
18	PP2-SS24-E (5-7)	5-7	0.072
19	PP2-SS26-W (0-1)	0-1	0.028
20	PP2-SS29-W (5-7)	5-7	27 ³

NOTES

- 1. Sample at water table
- 2. Soils further removed by grid restoration
- 3. Onsite lab result = 5.8 ppm
- 4. Non-detect results are presented in italics

