

P.O. Box 19001 Green Bay, WI 54307-9001 www.wisconsinpublicservice.com

January 18, 2023

Ms. Terese Van Donsel Project Manager United States Environmental Protection Agency 77 W. Jackson Boulevard (SR-6J) Chicago, Illinois 60604-3590

RE: December 2022 Monthly Progress Report
Campmarina Former Manufactured Gas Plant
Sheboygan, Wisconsin
Wisconsin Public Services Corporation
CERCLA Docket No. V-W-07-C-862, CERCLIS ID – WIN000510058

Dear Ms. Van Donsel:

Wisconsin Public Services Corporation (WPSC) is providing this monthly progress report for the WPSC Former *Campmarina Manufactured Gas Plant (*MGP) Site.

1) PROGRESS MADE DURING THE PAST MONTH

- Prepared and submitted November 2022 Monthly Progress Report to United States Environmental Protection Agency (USEPA) by December 26, 2022.
- Fourth quarter field-measured parameter and groundwater sampling event completed December 2, 2022.

2) ANALYTICAL AND OTHER TESTING RESULTS RECEIVED

• Groundwater analytical results summary table from the December 2, 2022 sampling event and a site map have been included with this monthly progress report.

3) PROJECTED WORK

WPSC Actions

- Submit monthly progress report to USEPA by the 26th of the month.
- Support WDNR's Five Year Review, as necessary.

USEPA Actions

 As discussed on the April 30, 2020 conference call, determine a path for deferral of site authority to the State of Wisconsin.

WDNR Actions

Prepare Five Year Review of Upland Operable Unit.

4) PROBLEMS OR POTENTIAL PROBLEMS ENCOUNTERED

None

5) ACTUAL OR PLANNED RESOLUTION OF PROBLEMS OR POTENTIAL PROBLEMS

None

If you have any questions, please don't hesitate to contact me at (414) 221-2577 or glenn.luke@wecenergygroup.com.

Sincerely,

Glenn R. Luke, PE

Principal Engineer - Environmental

Glen R. Jula

Enclosures: Site Map

Table 1. December 2022 Groundwater Analytical Results

For distribution to: Mr. John Feeney, WDNR (US Mail and email)

Mr. Andrew Cawrse, Ramboll (email)

Table 1. December 2022 Groundwater Analytical Results

December 2022 Monthly Progress Report

Wisconsin Public Service Corporation

Former Manufactured Gas Plant Site - Campmarina

732 Water Street, Sheboygan, Wisconsin

BRRTS#: 0260000095 | FID#: 460134950 | USEPA#: WIN000510058

			BTEX	BTEX	BTEX	BTEX	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
9-digit Code	Sample Locatio	on Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g, h, i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
		Reporting Units:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
			Result Fla	g Result Flag	g Result Flag	Result Flag	Result Fl	ag Result Flag	Result Flag	Result Fla	g Result Flag	g Result Flag	Result Flag	Result Flag	g Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	g Result Flag	Result Flag	Result Flag	Result Flag
		Tap Water RSL:	0.46	1.5	1,100	190	1.1	36	530	530	1,800	0.03	0.025	0.25	120	2.5	25	0.025	800	290	0.25	0.12	1,800	120
	\A/I	Groundwater SL:	5	700	800	2,000	NS	NS	NS	NS	3,000	NS	0.023	0.23	NS	NS	0.2	NS	400	400	NS	100	3,000	250
	WI Groundwater SL: WI Groundwater PAL:			140	160	400	NS	NS	NS	NS	600	NS NS	0.02	0.02	NS NS	NS	0.02	NS	80	80	NS NS	10	NS	<u>50</u>
WYGGUNAWCCTTA			<u>0.5</u>	2.0	100	<u></u>	<u></u>	110	110	110	<u> </u>	110	0.02	0.02	110	110	0.02	<u> </u>	<u> </u>	<u> </u>	110		<u></u>	<u> </u>
120222005/120222006 (N)	MW-701R	12/02/2022	3,450	277	13.6 J	143	158	141	110	2.3 U	15.9	2.5 U	2.4 U	1.7 U	4.3 U	4.1 U	2.3 U	3.3 U	5.0 J	24.7	2.9 U	1,150	44.9	5.4 J
120222009	MW-706	12/02/2022	3,980	302	<u>654</u>	362	608	646	61.2	432	93.3	5.7 U	16.7 J	<u>30.8</u>	16.3 J	18.1 J	72.1	7.5 U	125	166	13.5 J	3,550	430	<u>139</u>
120222003	MW-707R	12/02/2022	3,470	2,400	22.4 J	483	124	14.2	57.6	1.7 J	4.7 J	1.3 U	1.2 U	0.89 U	2.3 U	2.2 U	1.2 U	1.7 U	2.6 U	15.2	1.5 U	495	16.1	2.2 U
120222002	MW-708	12/02/2022	0.30 U	0.33 U	0.29 U	1.0 U	0.019	J 0.015 U	0.015 U	0.013 U	0.020 U	0.015 U	0.014 U	0.0097 U	0.025 U	0.024 U	0.013 U	0.019 U	0.028 U	0.025 U	0.017 U	0.031 J	0.027 U	0.024 U
120222001	MW-709R	12/02/2022	0.30 U	0.33 U	0.29 U	1.0 U	0.018	J 0.016 J	0.014 U	0.013 U	0.018 U	0.014 U	0.013 U	0.0091 U	0.023 U	0.022 U	0.013 U	0.018 U	0.026 U	0.024 U	0.016 U	0.033 J	0.026 U	0.023 U
120222007	PZ-701	12/02/2022	0.30 U	0.33 U	0.29 U	1.0 U	0.087	0.063	0.12	0.051	0.067	0.014 U	0.013 U	0.0091 U	0.023 U	0.022 U	<u>0.032</u> J	0.018 U	0.034 J	0.027 J	0.016 U	0.30	0.076	0.040 J
120222008	PZ-702	12/02/2022	0.30 U	0.33 U	0.29 U	1.0 U	0.078	0.086	0.014 U	0.058	0.033 J	0.014 U	0.015 J	0.011 J	0.023 U	0.022 U	0.013 U	0.018 U	0.026 U	0.027 J	0.016 U	0.46	0.089	0.023 J
120222004	PZ-703	12/02/2022	<u>123</u>	61.4	3.3	25.4	0.026	J 0.018 J	0.014 U	0.028 J	0.019 U	0.014 U	0.013 U	0.0092 U	0.024 U	0.023 U	0.013 U	0.018 U	0.026 U	0.024 U	0.016 U	0.18	0.026 U	0.023 U
Te	otal Number of Sa	amples Analyzed:	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
	Numb	er of Detections:	4	4	4	4	6	7	4	5	5	0	2	2	1	1	2	0	3	5	1	8	5	4
		Min:	123	61.4	3.3	25.4	0.026	0.016	0.12	0.028	0.033	NA	0.015	0.011	16.3	18.1	0.032	NA	0.034	0.027	13.5	0.031	0.076	0.023
	Max:			2,400	654	483	608	646	110	432	93.3	NA	16.7	30.8	16.3	18.1	72.1	NA	125	166	13.5	3,550	430	139
	Tap Water RSL:			1.5	1100	190	1.1	36	530	530	1800	0.03	0.025	0.25	120	2.5	25	0.025	800	290	0.25	0.12	1800	120
Number of Samples that Exceed Tap Water RSL			<u>4</u> 5	4	0	2	3	2	0	0	0	0	1	1	0	1	1	0	0	0	1	6	0	1
	Groundwater SL:			700	800	2000	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	3000	250
Number of Sa	Number of Samples that Exceed Groundwater SL:			1	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	3	0	0
	WI Groundwater PAL:			140	160	400	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Number of Samples that Exceed WI Groundwater PAL:		4	3	1	1	0	0	0	0	0	0	1	1	0	0	2	0	1	1	0	3	0	1	

Sorted by sample location

Analyte concentration attains or exceeds the standard/screening level for:

Italic	exceeds the Tap Water RSL
Bold	exceeds the Groundwater SL
<u>Underlined</u>	attains or exceeds the WI Groundwater PAL
Pink Highlighting	Groundwater SL exceedance; results only attaining/exceeding the PAL and/or Tap Water criteria are not highlighted.
Vellow Highlighting	analyte exceedance in statistics for one or more samples

Field parameters were analyzed at time of sampling using an InSitu Aquatroll multiparameter sonde.

Lab comments, additional data qualifiers and definitions can be found in associated laboratory reports.

Screening Levels and Standards:

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, eleven revisions of the RSLs have been published by EPA through November 2022. As a result of these eleven revisions, there were no updates to the RSLs necessary for the MGP-related constituents evaluated in this table.

Results & Flags:

J = Estimated Concentration

U = Concentration was not detected above the reported limit

NA = Not Applicable

Acronyms:

(N) = Normalized sample locations created from combining parent and field duplicate samples following EPA protocol

 μ g/L = micrograms per liter

 $\mu\text{S/cm}$ = microsiemens per centimeter (aka micromhos per centimeter)

BRRTS = Bureau for Remediation and Redevelopment Tracking System

BTEX = Benzene, Toluene, Ethylbenzene and Xylene

Deg C = degrees Celsius

EPA = Environmental Protection Agency

MCL = Maximum Contaminant Level

mg/L = milligrams per liter

MGP = Manufactured Gas Plant

NO2 + NO3 = nitrite plus nitrate

NS = No Screening Level/No Standard

NTU = Nephelometric Turbidity Unit PAH = Polycyclic Aromatic Hydrocarbon

PAL = Preventive Action Limit

RAF = Risk Assessment Framework

RSL = Regional Screening Level

s.u. = standard units

SL = Screening Level

USEPA = United States Environmental Protection Agency

WI = Wisconsin

Table 1. December 2022 Groundwater Analytical Results

December 2022 Monthly Progress Report

Wisconsin Public Service Corporation

Former Manufactured Gas Plant Site - Campmarina

732 Water Street, Sheboygan, Wisconsin

BRRTS#: 0260000095 | FID#: 460134950 | USEPA#: WIN000510058

			Inorganic	Inorganic	Organic	Field	Field	Field	Field	Field	Field	Field
9-digit Code	Sample Location	Sample Date	Nitrogen, NO2 + NO3, Total	Sulfate, Total	Methane	Dissolved oxygen	Groundwater, depth to	Oxidation Reduction Potential	pH, Field	Specific Conductance, Field	Temperature, Water	Turbidity, Quantitative
	Rej	porting Units:	μg/L	μg/L	μg/L	mg/L	feet	millivolts	s.u.	μS/cm	Deg C	NTUs
			Result Fla	g Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag
		ap Water RSL:	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		oundwater SL:	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
	WI Groundwater PAL:				NS	NS	NS	NS	NS	NS	NS	NS
							_	_	_	_	_	
120222005/120222006 (N)	MW-701R	12/02/2022	59 U	1,300 J	6,580	0.13	5.53	5.1	6.47	2,363	11.77	10.54
120222009	MW-706	12/02/2022	59 U	10,600	112	0.14	8.65	-42.7	7.02	954.8	11.71	0.00
120222003	MW-707R	12/02/2022	59 U	2,200 U	8,750	0.18	4.45	1.7	7.08	1802.8	10.59	0.00
120222002	MW-708	12/02/2022	59 U	120,000	29.1	0.23	10.71	58.7	7.11	4026.2	11.91	0.00
120222001	MW-709R	12/02/2022	59 U	4,500	1,900	0.21	4.75	-16.0	7.11	1933.6	9.90	0.00
120222007	PZ-701	12/02/2022	59 U	57,600	191	0.24	5.80	43.6	7.21	957.2	11.24	0.00
120222008	PZ-702	12/02/2022	59 U	1,600 J	0.76 J	2.04	6.40	75.1	7.76	193.3	10.33	0.00
120222004	PZ-703	12/02/2022	59 U	440 U	584	0.30	5.30	18.6	7.59	584.3	10.05	0.00
To	Total Number of Samples Analyzed:					8	8	8	8	8	8	8
	Number	of Detections:	0	6	8	8	8	8	8	8	8	8
		Min:	NA	1,300	0.76	0.13	4.45	-42.7	6.47	193.3	9.9	0
		Max:	NA	120,000	8,750	2.04	10.71	75.1	7.76	4,026	11.91	10.54
		ap Water RSL:	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Number of S	samples that Exceed		0 NS	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS
Number of Co.	Gro mples that Exceed G	oundwater SL:	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0
Nurriber of Sa		undwater PAL:	2000	125000	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Number of Sample	s that Exceed WI Gro		0	0	0	0	0	0	0	0	0	0
Number of Sample	3 GIGE EXCECU WI GIE	Junawater FAL.		1 0				U	U		O:MGP 1/9/23, C	

Sorted by sample location

Analyte concentration attains or exceeds the standard/screening level for:

Italic	Jexceeds the Tap Water RSL
Bold	exceeds the Groundwater SL
<u>Underlined</u>	attains or exceeds the WI Groundwater PAL
Pink Highlighting	Groundwater SL exceedance; results only attaining/exceeding the PAL and/or Tap Water criteria
Yellow Highlighting	analyte exceedance in statistics for one or more samples

Field parameters were analyzed at time of sampling using an InSitu Aquatroll multiparameter sonde.

Lab comments, additional data qualifiers and definitions can be found in associated laboratory reports.

Screening Levels and Standards:

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, eleven revisions of the RSLs have been published by EPA through November 2022. As a result of these eleven revisions, there were no updates to the RSLs necessary for the MGP-related constituents evaluated in this table.

Results & Flags:

J = Estimated Concentration

U = Concentration was not detected above the reported limit

NA = Not Applicable

Acronyms:

(N) = Normalized sample locations created from combining parent and field duplicate samples following EPA protocol

 $\mu g/L$ = micrograms per liter

 μ S/cm = microsiemens per centimeter (aka micromhos per centimeter) BRRTS = Bureau for Remediation and Redevelopment Tracking System

are not highlighted. BTEX = Benzene, Toluene, Ethylbenzene and Xylene

Deg C = degrees Celsius

EPA = Environmental Protection Agency
MCL = Maximum Contaminant Level

mg/L = milligrams per liter

mg/L = milligrams per liter
MGP = Manufactured Gas Plant

NO2 + NO3 = nitrite plus nitrate

NS = No Screening Level/No Standard

NTU = Nephelometric Turbidity Unit

PAH = Polycyclic Aromatic Hydrocarbon

PAL = Preventive Action Limit

RAF = Risk Assessment Framework

RSL = Regional Screening Level s.u. = standard units

SL = Screening Level

USEPA = United States Environmental Protection Agency

WI = Wisconsin

1313 202212_WG MPR.xlsx 2 of 2