250 EAST WISCONSIN AVENUE, SUITE 1500, MILWAUKEE, WISCONSIN 53202-4209 (414) 347-0800 FAX: (414) 347-0288

🔁 Dames & Moore

January 10, 1994

Ms. Eileen Kramer Wisconsin Department of Natural Resources Industrial Parkway, Box 16 Marinette, Wisconsin 54143

RECEIVED JUL 1 4 2000 ERS Division

Re: Ansul Fire Technology Center, Marinette, Wisconsin LUST Case #38-01345

Dear Eileen:

Enclosed is a copy of the site investigation report for the above-referenced site. Please call if you have any questions.

Sincerely,

DAMES & MOORE, Inc.

Kristine M. Casper Project Manager/Hydrogeologist

Enclosure

cc: Mr. George E. Rogers

SITE INVESTIGATION REPORT ANSUL FIRE TECHNOLOGY CENTER PIERCE AVENUE MARINETTE, WISCONSIN

LUST# 38-01345

RECEIVED JUL 1 4 2000 ERS Division

JANUARY 1994

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Site Location and Description	1
	1.2 Prior Investigation	1
2.0	REGIONAL AND LOCAL SETTING	6
	2.1 Topography	6
	2.2 Geology	6
	2.3 Surface Water and Ground Water Hydrology	7
	2.4 Climate	7
3.0	SOIL AND GROUND WATER QUALITY INVESTIGATION	8
	3.1 Soil Boring/Monitoring Well Locations	8
	3.2 Field Methodology	9
	3.3 Soil Types Encountered	10
	3.4 Laboratory Analysis	10
	3.4.1 Soil Samples	10
	3.4.2 Ground Water Samples	11
4.0	SITE HYDROGEOLOGY	12
	4.1 Local Aquifer Characteristics	12
	4.2 Ground Water Flow Direction and Gradients	12
	4.3 Hydraulic Conductivity and Ground-Water Velocity	13
	4.4 Contaminant Transport	14
5.0	NATURE AND EXTENT OF IMPACTED AREA	17
	5.1 Soil Quality	17
	5.2 Ground Water Quality	17
6.0	SUMMARY AND CONCLUSIONS	19
7.0	RECOMMENDATIONS	21
8.0	LIMITATIONS	22
9.0	REFERENCES CITED	23 [.]

TABLE OF CONTENTS (continued)

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Potentiometric Map

LIST OF TABLES

Table 1	Laboratory Analytical Results - Soil	
Table 2	Elevation Survey Data	

 Table 3
 Laboratory Analytical and Field Screening Results - Ground Water

LIST OF APPENDICES

- Appendix A Field Methodologies
- Appendix B Soil Boring Logs
- Appendix C Monitoring Well Construction and Development Forms
- Appendix D Laboratory Analytical Reports and Chain of Custody Documents Soil
- Appendix E Laboratory Analytical Reports and Chain of Custody Documents Ground Water

Appendix F Material Safety Data Sheets

SITE INVESTIGATION REPORT ANSUL FIRE TECHNOLOGY CENTER MARINETTE, WISCONSIN LUST# 38-01345

1.0 INTRODUCTION

Presented in this report are the results of a Site Investigation at the Ansul Fire Technology Center facility (AFTC) in Marinette, Wisconsin. The investigation was conducted to evaluate the vertical and lateral boundaries of impact to the environment resulting from one 560-gallon underground storage tank, formerly containing gasoline. During the tank removal in November, 1992, adverse environmental impact to the soils surrounding the tank was discovered. Ansul retained Dames & Moore to prepare a Leaking Underground Storage Tank Site Investigation Work Plan to address the Wisconsin Department of Natural Resources (WDNR) site investigation requirements. Following WDNR approval of the work plan, site investigation activities were initiated.

1.1 Site Location and Description

The AFTC property is located on Pierce Avenue, Marinette, Wisconsin, Marinette County, Wisconsin (Figure 1). The location occupies part of the north half of the northeast quarter of Section 13, Township 31 north, Range 27 west (N¹/₂, NE¹/₄, Sec. 13, T31N, R27W), based on the USGS 7.5-minute series topographic map, Marinette West, Wisconsin-Michigan Quadrangle (1963; photorevised, 1976). The property is located within the Marinette Industrial park. The property surrounding the AFTC facility consists of undeveloped land owned by Ansul. The site area is shown in Figure 2.

The property is currently used by Ansul as a fire-fighter's training school, with operations consisting of classroom lectures and field exercises. The facilities noted on Figure 2 southwest and east of the former tank location are associated with field training activities.

1.2 Prior Investigation

In November 1992, the 560-gallon gasoline tank was removed by E&K Hazardous Waste Services of Sheboygan, Wisconsin. Upon removal of the tank, E&K personnel identified

Page 1

07724-009-RPT

gasoline fractions in the surrounding soil, indicating that a release from the tank system had occurred. E&K staff collected one confirmation soil sample from the north-central area of the excavation and submitted for laboratory analysis of total petroleum hydrocarbons gasoline range organics (Wisconsin GRO method). Based on the laboratory data, detectible concentrations of petroleum fractions were identified in the sample collected during tank closure activities.

1.3 Purpose and Scope

The purpose of the site investigation was to evaluate the boundaries of impact to the soil, determine if ground water quality had been impacted, evaluate the potential for risk to the public health or the environment, and to evaluate corrective measures, if appropriate.

The scope of work included:

- Installation of four soil borings, three of which were converted into ground water monitoring wells and one of which was nested as a piezometer;
- Collection of soil samples for in-field screening and laboratory analysis;
- Collection and laboratory analysis of ground water samples from the three monitoring wells and piezometer;
- Elevation survey of the wells;
- Collection of ground water elevation data; and
- In-field testing of aquifer characteristics.

In-field soil analyses were conducted using a Micro Tip photoionization detector (PID) equipped with a 10.6 eV lamp. Laboratory analytical methods were selected based on the likelihood of the method to identify the suspected contaminants in the sample, as identified

Page 2

07724-009-RPT

DAMES & MOORE

in the WDNR Leaking Underground Storage Tank (LUST) Analytical Guidance (April 1992). Each soil sample selected for laboratory analysis was analyzed for total petroleum hydrocarbons - gasoline range organics (GRO; Wisconsin GRO method), petroleum volatile organic compounds (PVOCs; Wisconsin-modified SW846 method 8020), and total lead (SW846 method 7421 or 6010). Additionally, soil samples were analyzed for total organic carbon (TOC, SW846 method 160.4) and grain size (sieve method ASTM D-4749 and Bouyoucous method).

Ground water samples were analyzed for volatile organic compounds (VOCs; Wisconsinmodified SW846 method 8021), GRO (Wisconsin GRO method), and dissolved lead (SW846 method 7421 or 6010).

In response to particular field conditions, several deviations from the original work plan were necessary, as identified and discussed below:

- Changing the locations of the borings and wells.
- Soil sampling was conducted to depths of 9 to 11 feet, instead of to depths of at least 15 feet.
- Use of a 10.6 eV lamp in the PID instead of an 11.7 eV lamp.
- Omitting the preservative from one of the ground water samples collected for volatile compound analysis.
- Collecting and analyzing one field blank water sample for VOCs.

The proposed locations of the soil borings and monitoring wells had to be changed in response to the underground and aboveground hazards encountered at the investigation site. Ms. Eileen Kramer, the WDNR project manager for the site, approved the new locations during her site visit of May 19, 1993.

Page 3

Ansul Fire Technology Center Site Investigation Report January 1994

The proposed location of AFTC1 (through the middle of the tank excavation area) was within ten feet of aboveground flammable liquid storage tanks. As required by OSHA, a minimum distance of 20 feet was required for safe use of the drilling equipment. AFTC1 was located west of the former tank location, the location originally proposed for AFTC3. AFTC3 was located east of the former tank location, generally to replace the location proposed for AFTC4; however, the location was more east than southeast due to the density of underground utilities located southeast of the former tank location. AFTC2 was located northeast of the former tank location, as proposed. A deeper well was nested with AFTC2 (the shallow well was identified as AFTC2A and the deeper well was identified as AFTC2B) to evaluate the vertical extent of impact in this area. The AFTC2 location was selected for the nested wells based on in-field observations that this location contained the highest concentrations of petroleum impact of those locations investigated. The boring/well locations are shown in Figure 2.

Soil sampling was originally proposed to terminate at a depth no less than 15 feet. However, heaving sand conditions encountered at the site precluded competent sampling much below four to six feet into the saturated zone, corresponding to a depth of 9 to 11 feet below ground surface. Ms. Kramer was also advised of this condition on May 19, 1993.

The 10.6 eV lamp was used instead of the 11.7 eV lamp because of the moisture content of the soil samples screened. Because the 11.7 eV lamp has a very low moisture threshold, the 10.6 eV lamp was used to provide more consistent and reliable results.

The ground water sample collected from AFTC3 reacted with the hydrochloric acid recommended to preserve ground water samples for analysis of VOCs and GRO. The reaction created head-space in the sample that could not be eliminated. Therefore, a variance from the field procedure was granted by Ms. Kramer. Expedited turn-around was secured from the laboratory for that sample to ensure the highest analytical quality possible in the absence of sample preservation.

One field blank water sample was collected and analyzed for VOCs. The sample was collected because ambient gasoline odors, emanating from the aboveground gasoline tanks,

were noticeably present during the investigative activities. The concern was that the gasoline vapors in the ambient air may contaminate the water samples collected from the wells during sample collection procedures. The field blank consisted of a known clean source of water (Marinette municipal water system) and was containerized in the investigative area to most effectively identify the potential for water samples to be contaminated by the vapors during sample collection.

2.0 REGIONAL AND LOCAL SETTING

2.1 Topography

The regional topography of the Lake Michigan Basin consists of rolling hills of moderate relief. Elevations range from 585 feet above mean sea level (MSL) at the Menominee River and Green Bay to elevations of approximately 630 feet MSL within Menominee County. Elevations of 650 feet MSL are found atop local glacial features (drumlins) within the Menominee County area (USGS 15-minute series topographic map, Marinette Michigan-Wisconsin, 1963). The higher ground elevations are associated with east-west or southeast-northwest trending ridges, consisting largely of sand and gravel deposits. One such ridge is located approximately 2,000 feet southwest of the AFTC facility. Approximate surface elevation at the former tank site is 610 feet MSL.

2.2 Geology

According to the Soil Conservation Service, soils near the surface of the property are classified as Udorthents. Udorthents are generally deep, loamy soils consisting primarily of fill materials placed in drainageways, depressions, and areas along the margins of lakes and reservoirs. The soils are poorly suited to cultivated crops, pasture, woodland and most engineering uses (USDA, 1991). The fill material associated with the Udorthents are naturally-occurring sands and gravels associated with the river. Soil excavated during removal of the tank consisted almost exclusively of sand.

Bedrock is encountered at depths of approximately 40 feet below the current ground surface (Dames & Moore, 1976; STS, 1981). The bedrock consists of the Ordovician Sinnipee Group dolomite with limestone and shale (Greenberg, 1980; Mudrey, 1982). The Sinnipee Group includes the Galena, Decorah and Plattville formations.

2.3 Surface Water and Ground Water Hydrology

The nearest surface-water body to the site is an intermittent stream that originates at the northeast corner of the AFTC property. The stream flows generally southward with an east-flowing segment approximately 2,000 feet south of the AFTC property, into the Little River. The Little River flows eastward into Green Bay. The local ground water flow direction is east-southeast, toward Green Bay.

Ground water is not used for municipal, residential, commercial, or industrial purposes in the vicinity of the AFTC property, according to Ansul representatives. Water and sewer services are provided by the City of Marinette; however, some of the buildings on the AFTC property use septic systems.

2.4 Climate

The Marinette area is characterized by a temperate continental climate with marked seasonality (NOAA, 1989), although the close proximity of Green Bay and the Great Lakes system tends to moderate temperature extremes. The greatest precipitation occurs as rainfall during the spring months, while thunderstorms occur most frequently during the summer months of June, July and August. The average precipitation is approximately 1.5 inches during the winter months and 3.5 inches during the summer months. The average winter and summer temperatures in the area are in the teens to 30s (degrees Fahrenheit) and in the 50s to 80s, respectively.

3.0 SOIL AND GROUND WATER QUALITY INVESTIGATION

During May 19, 1993 and May 20, 1993, Twin City Testing Corp., Inc. Appleton, Wisconsin, under the direction of Dames & Moore personnel, installed four soil borings at the AFTC facility. Three of the soil borings were converted into ground water monitoring wells. The fourth soil boring was converted into a piezometer, nested with monitoring well AFTC2A, and identified as AFTC2B.

3.1 Soil Boring/Monitoring Well Locations

The investigation focused on the area surrounding the former tank area (Figure 2). Boring/well locations, as shown on Figure 2 were modified from the locations proposed in the Site Investigation Work Plan, based on aboveground and underground hazards identified on the site during the site visit of May 19, 1993. The modifications to the planned locations were approved by Ms. Eileen Kramer, WDNR, during her May 19, 1993 site visit. The rationale for soil boring and monitoring well locations are as follows:

- <u>AFTC1</u> AFTC1 is located in the center of the asphalt access road to the immediate west of the former tank excavation. This boring was used to investigate the western horizontal boundary of impact.
 - AFTC2A was located near the northeast corner of the former tank location, outside of the excavated area. This boring was used to evaluate the northeastern horizontal boundary of impact.
- <u>AFTC2B</u> AFTC2B was nested with AFTC2A to evaluate the vertical boundary of impact to the ground water in the location identified by in-field observations as likely to have the greatest vertical extent of impact (of those areas that could be safely investigated).

Page 8

07724-009-RPT

DAMES & MOORE

AFTC-3 was located east of the former tank location, outside of the excavated area. This boring was used to investigate the eastern horizontal boundary of impact.

3.2 Field Methodology

The following is a summary of the field methodologies used during soil boring and ground water monitoring well installation, sample collection, and other aspects of the field investigation. Details of the methodologies are presented in Appendix A.

Soil boring installation and soil sampling was conducted, in general, using standard ASTM methodologies and undisturbed soil sample-collection techniques. Soil boring logs (Form 4400-122) are presented as Appendix B.

Soil samples intended for laboratory analysis were collected in appropriate laboratorysupplied jars. Co-located samples were collected in resealable plastic bags for in-field screening with a photoionization detector (PID). PID screening results are provided on the soil boring logs (Appendix B).

All ground water monitoring well installation, development and sampling was conducted in accordance with Wisconsin Administrative Code NR 141, when possible (adjustments from the code were made to accomodate the shallow ground water at the site). Details of the monitoring well construction and development are presented on the Monitoring Well Construction and Development forms (Form 4400-113A/B) in Appendix C. Ground water samples were collected in appropriate laboratory-supplied jars, using standard methodologies (except as noted in Section 1.3 for AFTC3).

Soil and ground water samples were transported to Anatech Analytical Laboratories, Ludington, Michigan, via overnight courier. Appropriate chain-of-custody documents are presented in Appendices D and E. The well locations were surveyed by Dames & Moore personnel, with reference to the elevations established in the USGS 7.5-minute series topographic map, Marinette West, Wisconsin-Michigan Quadrangle (1963; photorevised, 1976). A summary of the elevation survey data is presented in Table 2.

3.3 Soil Types Encountered

Soil types encountered during the Site Investigation consisted primarily of brown and yellowish brown fine and medium sands. The top one to three feet of soil encountered was generally darker and contained silt, trace clay and organic fractions.

3.4 Laboratory Analysis

Soil and ground water samples were transported on ice to Anatech Analytical Laboratory for chemical analyses. The analytical list was based on the requirements identified in the WDNR LUST Analytical Guidance (April 1992).

3.4.1 Soil Samples

Five soil samples were collected and submitted for laboratory analysis from soil borings AFTC1, AFTC2A and AFTC3. The samples were analyzed for GRO (Wisconsin GRO method), PVOCs (Wisconsin-modified SW846 method 8020), and total lead (SW846 method 7421 or 6010). Additionally, soil samples were analyzed for total organic carbon (TOC, SW846 method 160.4) and grain size (sieve method ASTM D-4749 and Bouyoucous method). The samples selected for analyses were selected to represent the interval most likely to be impacted by gasoline fractions, based on in-field analysis and observations. Additionally, in borings AFTC2A and AFTC3, the samples from the greatest depth that could be effectively sampled (AFTC2-4 and AFTC3-4, respectively) were submitted for analysis to define the character of the soil with depth. Sample AFTC3-4 also had the highest PID reading for that boring. Sample AFTC1-1 was selected for analysis to identify the presence or absence of petroleum fractions in the soil with the highest organic content (highest adsorptive capacity).

DAMES & MOORE

The results of the laboratory analyses are discussed in Section 5.0 below. The laboratory analytical results are summarized in Table 1. The laboratory reports and chain-of-custody documentation are presented in Appendix D.

3.4.2 Ground Water Samples

Ground water samples were collected and laboratory analyzed from all three ground water monitoring wells and the piezometer. The samples were analyzed for GRO (Wisconsin GRO method), VOCs (Wisconsin-modified SW846 method 8021) and dissolved lead (SW846 method 7421 or 6010), as recommended in the WDNR LUST Analytical Guidance (April 1992). The results of the laboratory analyses are discussed in Section 5.0 below. The laboratory analytical results are summarized in Table 3. Analytical reports and chain-ofcustody documentation are presented in Appendix E.

Ground water samples were also analyzed in the field for pH, conductivity, dissolved oxygen, salinity and temperature. The data are presented in Table 3.

4.0 SITE HYDROGEOLOGY

Hydrogeologic data were collected to characterize the shallow aquifer at the AFTC property in terms of:

- Ground water flow direction;
- Vertical and horizontal hydraulic gradients;
- Hydraulic conductivity of the aquifer.

The purpose of the characterization was to evaluate potential contaminant migration directions and the location of potential ground water receptors.

4.1 Local Aquifer Characteristics

As discussed in Sections 2.2 and 2.3 above, the shallow aquifer materials in the vicinity of the AFTC property consist of deep, loamy soils consisting primarily of fill materials placed in drainageways, depressions, and areas along the margins of lakes and reservoirs. The local bedrock is encountered at depths of approximately 40 feet below the ground surface; somewhat deeper than the investigation wells. The local ground water flow direction is east-southeast, toward Green Bay.

Local ground water is not used for municipal, residential, commercial, or industrial purposes in the vicinity of the AFTC property. Water and sewer services are provided by the City of Menominee.

4.2 Ground Water Flow Direction and Gradients

An elevation survey of the monitoring wells was conducted on May 21, 1993. The results of the survey are presented in Table 2. Post-development ground water elevations were measured from all monitoring wells and the piezometer at the site on May 21, 1993 and

August 12, 1993. The data were analyzed to estimate ground water flow direction and gradients using two statistical methods: kriging and least squares, and were cross-checked by hand plotting.

Based on the ground water level data gathered from the monitoring wells, a potentiometric surface map of the site was constructed (Figure 3). The horizontal ground water gradient at the site is estimated to be approximately 0.005 flowing east-southeast toward Green Bay. The vertical gradient expressed at the AFTC2A/B well nest is downward, varying from 0.0015 (May 21, 1993 data) to 0.007 (August 12, 1993 data).

4.3 Hydraulic Conductivity and Ground-Water Velocity

Slug tests were conducted on each monitoring well to estimate the hydraulic conductivity of the shallow ground water system at the site. The data from AFTC1, AFTC2A and AFTC3 were analyzed as described by Bouwer and Rice (1976). Water-level recovery in AFTC2B was nearly instantaneous and could not be accurately measured for analysis. The geometric mean hydraulic conductivity (K) in the shallow system estimated from monitoring wells AFTC1, AFTC2A and AFTC3 is 9×10^{-3} cm/sec.

The average ground water linear velocity is estimated using the following equation:

V	=	<u>K I</u>
		n,

Where:

V	=	Average linear ground water velocity.
K	=	Geometric mean hydraulic conductivity.
Ι	=	Ground water gradient.
n _e	=	Effective porosity of the aquifer material.

The ground water gradient was estimated to be 0.005, as discussed in Section 4.2. The effective porosity of the aquifer material was estimated to be 0.33 (McWhorter and Sunada,

Page 13

07724-009-RPT

DAMES & MOORE

1988). Given the above estimated variables, the average linear ground water velocity is estimated to be:

 $V = (9 \times 10^{-3} \text{ cm/sec})(0.005) = 1.4 \times 10^{-4} \text{ cm/sec}$ 0.33

It should be noted, however, that this is the average linear ground water velocity. The velocity of petroleum fractions in the ground water may be slower than that of the ground water due to retardation of the compounds by the soil materials, as discussed below.

4.4 Contaminant Transport

Contaminants in ground water often react with the constituents of soil, thereby affecting the rate of contaminant transport. These reactions may include adsorption/desorption, cation exchange, precipitation, and oxidation/reduction. For many organic compounds, migration in the ground water system is significantly retarded, due to adsorption/desorption processes between the compound and the soil media (known as the retardation factor, R_f). At the AFTC site, the rate of contaminant transport is conservatively estimated to be 1/7 of the average linear ground water velocity, as discussed below.

The rate of contaminant transport can be estimated as the inverse of the retardation factor multiplied by the average linear ground water velocity (Freeze and Cherry, 1979).

Transport Rate =

Where: V = Average linear ground water velocity. $R_f = Retardation factor.$

<u>v</u>

R۶

Retardation factors for many organic compounds are estimated based on the distribution coefficients (K_d), as follows:

DAMES & MOORE

0

0

8

$$R_{f} = 1 + (D_{b}/n_{e}) \times K_{d}$$

 $D_{\rm h}$

n_e

Where:

Bulk density of aquifer material.
Effective porosity of the aquifer material.

 K_d = Distribution coefficient.

The distribution coefficients (K_d) of many common organic ground water contaminants may be estimated by multiplying the percent organic matter (TOC) in the soils by the soil-water partition coefficient (K_{∞}) .

 $K_d = TOC \times K_{\infty}$

Where:

TOC = Total organic carbon content of the aquifer material. $K_{\infty} = Soil-water partition coefficient.$

 L_{∞} is defined as the ration of the amount of chemical adsorbed per unit weight of organic carbon (oc) in the soil or sediment to the concentration of chemical in solution at equilibrium (Lyman, *et.al.*, 1982). Values of K_{∞} are derived from laboratory studies and are available for many compounds. The compounds identified in the soil associated with the gasoline tank are of the "high," "moderate" and "low" mobility classes (Fetter, 1988). K_{∞} values for the most common volatile organic compounds found in the ground water at the site range from 97 (benzene; "high" mobility class) to 622 (ethylbenzene; "low" mobility class). The average total organic carbon (TOC) content in the soils within the impacted zone at the site is 1.5% (averaging the TOC results from the two impacted levels in AFTC2 and the two saturated levels from AFTC3). Therefore, the distribution coefficients (K_d) range from 1.4 (benzene) to 9.3 (ethylbenzene), as calculated below. From equation $\boldsymbol{\Theta}$:

 $K_{d(benzene)} = 1.5\% \ge 97 = 1.4$ $K_{d(ethylbenzene)} = 1.5\% \ge 622 = 9.3$

The bulk density of the aquifer material at the site was estimated to be 1.3 (Foth, 1984). Using these estimated variables, the retardation factors of the contaminants found in the ground water range from approximately 7 (benzene) to 38 (ethylbenzene), meaning that the rate of contaminant transport rates for benzene and ethylbenzene would be $1/_7$ to $1/_{38}$ of the average linear ground water velocity, respectively.

From equation **2**:

R _{f(benzene)}	=	1 + (1.3 / 0.33) x 1.4	=	6.5	a	7
R _{f(ethylbenzene)}	=	1 + (1.3 / 0.33) x 9.3	=	37.6	a	38

As a conservative approach, the retardation factor of 1/7 was selected to estimate the maximum rate of contaminant transport at the site.

From equation **0**:

Transport rate = $1.4 \times 10^{-4} \text{ cm/sec}$ = 2.0 x 10⁻⁵ cm/sec 7

The estimated rate of contaminant transport at the site is 2×10^{-5} cm/sec, or approximately 21 feet per year. The actual rates of transport would be somewhat higher in the area immediately adjacent to the tank and substantially lower as the contaminants moved down-gradient, toward AFTC3, as the TOC content of the soil increases dramatically in the area of AFTC (Table 1).

Page 16

07724-009-RPT

DAMES & MOORE

5.0 NATURE AND EXTENT OF IMPACTED AREA

5.1 Soil Quality

Based on the laboratory analytical results, soil impacted by volatile gasoline fractions is limited to the immediate area surrounding the former tank location, as demonstrated at AFTC1 (35 feet west) and AFTC3 (65 feet east). The soil in the area of AFTC2A (15 feet northeast of the former tank location) contains gasoline fractions in the shallow soils (three to five feet below ground surface), decreasing substantially at a depth seven to nine feet below ground surface (soil sampling below this depth could not be accomplished due to heaving conditions). The soil conditions southeast of the former tank location could not be investigated due to the presence of aboveground flammable liquid storage. However, given the ground water flow direction at the site (east-southeast), the shape of a typical contaminant plume and the lateral extent of impact in the up-gradient direction from the former tank location. Lead was not detected in any of the soil samples at concentrations exceeding expected background concentrations.

5.2 Ground Water Quality

Ground water samples collected from all of the project monitoring wells and the piezometer were found to contain detectable concentrations of volatile organic compounds. However, because gasoline vapors were detected within the investigation area (possibly emanating from fire-school activities) a field blank was collected using water supplied by the Marinette municipal water system (known clean source). The field blank was collected within the investigation area to most effectively identify the potential for water samples to be contaminated by the vapors during sample collection.

As shown in Table 3, the field blank was contaminated with all of the volatile organic compounds found in the other samples. The concentrations detected in the field blank suggest that the compounds detected in samples AFTC1 and AFTC2B may be the result of air-borne contamination and not representative of ground water contamination at those

locations. The lack of contamination in the trip blank suggests that the contamination found in the field blank (and probably in samples AFTC1 and AFTC2B) were not derived at the laboratory or during shipping.

This considered, the ground water in areas of AFTC2A/B (shallow ground water only) and AFTC3 appear to be impacted with gasoline fractions. The substantial decrease in concentrations identified in AFTC3 from those identified in AFTC2A suggest that the leading edge of the ground water contaminant plume may be within 50 to 100 feet of AFTC3.

Dissolved lead concentrations were below the practical quantitation limits, with the exception of sample AFTC2A, which contained 0.06 mg/l dissolved lead.

At the request of the WDNR, dissolved solids analysis was also performed on a sample from AFTC3 in an attempt to determine the reason that the water from that location reacted with the hydrochloric acid preservative. Dissolved solids were detected at a concentration of 4,770 mg/l. However, comparative data from the other monitoring wells located at the property will have to be gathered to make an accurate assessment of the importance of the data. pH and conductivity values for AFTC3 were only slightly higher than in AFTC1 and AFTC2A.

Two of the three dry chemical fire suppressant agents used in fire training exercises at the Pierce Avenue property consist substantially of sodium bicarbonate or potassium bicarbonate. All three of the agents used at the school are non-toxic and non-hazardous (Appendix F). Because of the carbonate bedrock in the area, small additional concentrations of bicarbonate may have caused the sample from AFTC3 to react with the acid.

6.0 SUMMARY AND CONCLUSIONS

At the request of Ansul Fire Protection, Dames & Moore personnel conducted a Site Investigation at the Ansul Fire Technology Center facility in Marinette, Wisconsin. The purpose of the investigation was to evaluate the lateral and vertical boundaries of impact resulting from operation of a former gasoline fuel tank. Petroleum impact to the soils adjacent to the tank were identified during tank closure activities conducted by E&K Hazardous Waste Services, Sheboygan, Wisconsin, in November, 1992.

The investigation consisted of the installation of four soil borings, three of which were converted into ground water monitoring wells and one converted into a piezometer nested with one of the project monitoring wells; laboratory and field analysis of soil and groundwater samples; and aquifer-response testing to estimate aquifer characteristics. Soil samples were field screened using a photoionization detector and laboratory analyzed for GRO, PVOCs and total lead, as recommended in WDNR LUST Analytical Guidance (April, 1992). Additional soil samples were analyzed for total organic carbon and grain size.

Ground water samples were field analyzed for pH, conductivity, dissolved oxygen, percent salinity and temperature. Ground water samples were laboratory analyzed for GRO, VOCs and dissolved lead.

Soil types encountered at the site consisted primarily of brown and yellowish brown fine and medium sands. The top one to three feet of soil encountered was generally darker and contained silt, trace clay and organic fractions.

Ground water was encountered at depths of approximately five feet below the ground surface. The horizontal ground water gradient at the site is estimated to be approximately 0.005 flowing east-southeast toward Green Bay. The vertical gradient expressed at the AFTC2A/B well nest is downward, varying from 0.0015 (May 21, 1993 data) to 0.007 (August 12, 1993 data). Based on slug tests conducted on the wells, the geometric mean hydraulic conductivity (K) in the shallow system estimated from monitoring wells AFTC1, AFTC2A and AFTC3 is 9 x 10^{-3} cm/sec. Water-level recovery in AFTC2B was nearly

instantaneous and, therefore, could not be accurately measured for analysis. The contaminant transportation rates for the identified gasoline fractions in the ground water and the aquifer material are estimated to range from 1/7 to 1/37 of the average linear ground water velocity for benzene and ethylbenzene, respectively. The resulting contaminant velocities are conservatively estimated to be less than 21 feet per year.

Based on the laboratory analytical results, soil impacted by volatile gasoline fractions is limited to the immediate area surrounding the former tank location, as demonstrated at AFTC1 (35 feet west) and AFTC3 (65 feet east). The soil in the area of AFTC2A (15 feet northeast of the former tank location) contains gasoline fractions in the shallow soils (three to five feet below ground surface), decreasing substantially at a depth seven to nine feet below ground surface.

The ground water in areas of AFTC2A/B (shallow ground water only) and AFTC3 appear to be impacted with gasoline fractions. The substantial decrease in concentrations identified in AFTC3 from those identified in AFTC2A suggest that the leading edge of the ground water contaminant plume may be within 50 to 100 feet of AFTC3. The detection of volatile compounds in the samples from AFTC1 and AFTC2B are suspect, due to the fact that similar or greater concentrations of the same compounds were detected in the field blank collected at the site.

1

7.0 RECOMMENDATIONS

Ground water analytical results, indicating the presence of gasoline fractions in monitoring wells AFTC1 and AFTC2B, are suspect due to the presence of similar concentrations of those compounds detected in the field blank. Without determining the actual concentrations of gasoline compounds in the ground water in these wells, the lateral extent of impact west of the former tank location and the vertical extent of impact near the suspected source area cannot be determined.

Dames & Moore recommends that the wells be resampled during the cooler months of early winter, when vapor pressures are reduced and the potential for airborne contamination of the samples is minimized. Analysis should consist of VOCs and dissolved lead, as GRO analyses were previously found to be largely inconclusive. During that round of sampling, all wells should also be analyzed for total dissolved solids to provide comparative data regarding the dissolved solids concentrations previously identified in AFTC3.

Following sampling and laboratory analysis, the data could be analyzed to determine the need for additional investigative or other actions at the site.

Ansul Fire Technology Center Site Investigation Report January 1994

8.0 LIMITATIONS

Dames & Moore certifies to the best of its knowledge and belief that the information contained herein is accurate and complete. The site investigation was conducted in accordance with accepted practices for the environmental consulting profession. Information provided by others was accepted as true and complete and the on-site inspection process was limited to only those activities that were immediately visible and obvious.

Due to the limitations of the inspections and investigative process and the necessary use of unverified data furnished by others, users of this report relying on information contained herein are cautioned that Dames & Moore cannot assume liability if the actual conditions vary from the information contained in this report. The information, conclusions and recommendations provided in this report apply only to the Ansul Fire Technology Center property, Marinette, Wisconsin, as it existed at the time of the investigation. If site uses, conditions, regulations or laws change, conclusions and recommendations may no longer apply.

Respectfully submitted,

DAMES & MOORE, Inc.

Spin C. Jafatin for

Kristine M. Casper Project Manager/Hydrogeologist

ably

James R. Boddy, P.E. Managing Principal

07724-009-RPT

9.0 REFERENCES CITED

- Bouwer, H. and Rice, R.C., 1976; A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells; Water Resources Research, v. 12, n. 3, pp. 423-428.
- Dames & Moore, 1976; Investigation of hydrology and potential ground-water contamination of bedrock aquifers at the Ansul Company Site, Marinette, Wisconsin, 34 p. and Appendices.
- Fetter, C.W., 1988; Applied Hydrogeology. Merrill Publishing Company, Columbus, OH, 592 p.
- Freeze, R.A. and Cherry, J.A., 1979; Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ, 604 p.
- Foth, D.H., 1984; Fundamentals of Soil Science. 5th ed., John Wiley & Sons, Inc., New York, 435 p.
- Greenberg, J.K. and Brown, B.A., 1980; Northeastern Wisconsin preliminary bedrock geology - review copy. Wisconsin Geological and Natural History Survey Map, scale 1:250,000.
- Lyman, W.J., Reehl, W.F., and Rosenblatt, D.H., 1982; Handbook of Chemical Property Estimation Methods. McGraw-Hill Book Company, New York, 1094 p.
- McWhorter, D.B. and Sunada, D.K., 1988, Ground-water Hydrology and Hydraulics. Water Resources Publications, 290 p.
- Mudrey, M.G., Jr., Brown B.A., and Greenberg, J.K., 1982; Bedrock geologic map of Wisconsin. Wisconsin Geological and Natural History Survey Map, scale 1:1,000,000.

- National Oceanic and Atmospheric Administration, 1989; Climatological data, Wisconsin. Department of Commerce, National Environmental Satellite, Data, and Information Service, and the National Climate Data Center, Asheville, North Carolina, v. 94, n. 1.
- STS, 1981; Update, Geohydrologic study and groundwater quality assessment, the Ansul Company, 33 p. and Appendices.
- USDA, Soil Conservation Service, 1991; Soil survey of Marinette County, Wisconsin, 263 p., 116 plates.
- USGS 7.5-minute series topographic map, 1963 (photorevised 1976); Marinette West, Wisconsin-Michigan Quadrangle, scale 1:24,000.
- USGS 15-minute series topographic map, 1963; Marinette Michigan-Wisconsin, Quadrangle, scale 1:62,500.
- WDNR, Leaking Underground Storage Tank (LUST) Analytical Guidance, April 1992; PUBL-SW-130 92REV, 25 p. plus attachments.

			AT VERAL DESIGN	TO CON		
	LA	BORATORY AN	ALYTICAL RESUL	.18 - SOIL		
		ANSUL FIRE T	echnology ce	INTER		
		MARINE	TTE, WISCONSIN			
PARAMETER	AFTC1-1	AFTC2-2	AFTC2-4	AFTC3-1	AFTC3-4	TRIP BLANK
GRO (mg/kg)	ND	922	ND	ND	ND	ND
PVOCs (µg/kg)						
Benzene	ND	650	1400	ND	ND	ND
Toluene	ND	2,300	1200	ND	ND	ND
Ethylbenzene	ND	5,000	110	ND	ND	ND
Xylenes (total)	ND	11,800	580	ND	ND	ND
1,3,5-Trimethylbenzene	ND	1,500	370	ND	ND	ND
1,2,4-Trimethylbenzene	ND	3,000	330	ND	ND	ND
Total Lead (mg/kg)	2.0	6	1.1	0.8	1.0	NA
TOC (mg/kg)	19,000	5900	3200	5,000	47,000	NA
% Solids	82.0	75.2	76.6	87.4	82.3	NA
	1-3'695	3:5' bgs	7-9'bgs	1-3'69S	7:9'bg=	5
ND: Not detected above practi	ical quantitation limit		Ū			
NA: Not analyzed.						
"AFTC2" samples are from soil	boring AFTC2A.					

•

.

.

TABLE 2							
ELEVATION SURVEY DATA							
ANSUL FIRE TECHNOLOGY CENTER MARINETTE, WISCONSIN							
PARAMETER	AFTC1	AFTC2A	AFTC2B	AFTC3			
Ground Elevation (feet MSL)	614.79	614.69	614.69	613.56			
Well Elevation (feet MSL)	614.29	614.31	614.19	613.06			
Water Elevation (feet MSL; 5/21/93)	610.47	610.40	610.37	610.33			
Water Elevation (feet MSL; 8/12/93)	610.07	610.01	609.87	609.94			
Screened Interval (feet below ground surface)	5-15	5-15	5-15	32-27			
Well Depth (feet below ground surface)	15	15	15	32			

i,

TABLE 3										
LABORATORY ANALYTICAL AND FIELD SCREENING RESULTS - GROUND WATER										
ANSUL FIRE TECHNOLOGY CENTER MARINETTE, WISCONSIN 5000000000000000000000000000000000000										
PARAMETER	PARAMETER AETC1 AETC2A AETC2R AETC3 TDID DI ANK EIEL D DI ANK									
GRO (mg/l)	1.90	5.2	1.2	0.8	ND	NA				
VOCs (µg/l)		a a a a a a a a a a a a a a a a a a a								
Benzene	100	11,800	22	1,200	ND	120				
Toluene	140	11,000	71	1,700	ND	520				
Ethylbenzene	13	1,500	32	630	ND	65				
p-, m-Xylenes	41	3,300	62	2,000	ND	160				
o-Xylene	17	1,500	31	890	ND	89				
1,3,5-Trimethylbenzene	6	1,300	21	200	ND	40				
1,2,4-Trimethylbenzene	11	1,100	45	380	ND	34				
Dissolved Lead (mg/l)	ND	0.06	ND	ND	NA	NA				
Dissolved Solids (mg/l)	NA	NA	NA	4,770	NA	NA				
pH	5.59	6.78	7.02	8.27	NA	NA				
Conductivity (mS/cm)	1.8	1.96	0.68	11.4	NA	NA				
Dissolved Oxygen (mg/l)	13.03	13.49	15.49	13.16	NA	NA				
Salinity (%)	0.08	0.09	0.02	0.65	NA	NA				
Temperature (°C)	18.7	14.0	12.3	17.0	NA	NA				

ND: Not detected above practical quantitation limit.

NA: Not analyzed.

ŧ

0

Dames & Moore

40

Figure 2 Site Plan Sample Location Map

80 Feet Ansul I

Ansul Fire Technology Center Marinette, Wisconsin

Adapted From The Ansul Company Pierce Avenue drawing number L-100125-1 (1962, revised), 1:480.

Dames & Moore

80 Feet

Ansul Fire Technology Center Marinette, Wisconsin

Figure 3

FIELD METHODOLOGIES

Soil Boring Installation and Soil Sample_Collection

The boreholes were drilled using 4¹/₄-inch hollow stem augers, in accordance with ASTM method D-1586, section 5.1.3. Standard undisturbed-soil sample collection procedures were used in conjunction with the installation of soil borings. A steel split-barrel sampling tube was used for the collection and retrieval of the soil samples in accordance with ASTM method D-1586. Upon retrieval of the sampler, visual and olfactory observation of the recovered materials were made in accordance with ASTM method D-2487 and with reference to method D-2488.

Samples were described in the field with respect to the soil type (Unified Soil Classification System), grain size distribution, color (Munsell color charts), odor, moisture content, consistency and photoionizable constituent content, as appropriate. The observations were recorded in a bound field notebook and later transferred to soil boring logs (Appendix B). Between each sampling episode, the split barreled sampler was washed in a TSP* solution and double rinsed in clean tap water. All down-hole equipment was steam cleaned between borings.

Recovered soil samples were containerized for eventual laboratory analysis ("primary" samples) or in-field analysis ("co-located" samples). Primary samples intended for laboratory analysis of PVOCs and TOC were collected in laboratory-supplied 120 ml glass jars with teflon-lined lids. The jars were tightly packed to minimize headspace and were securely sealed. Samples intended for GRO analysis were collected in 60 ml wide-mouth glass jars with teflon septa. Approximately 25 grams of soil was placed in each jar and preserved in the field with a premeasured, laboratory-provided vial of purge-and-trap grade methanol. The threads of the jar were wiped clean and the jar securely sealed. Samples intended for analysis of total lead and percent solids (for use in the GRO quantitation) were collected in 120 ml glass jars with teflon-lined lids. The jars were filled, but not tightly packed, and securely sealed.

Co-located samples were collected from each sampling interval for in-field screening with a photoionization detector (PID). The PID was calibrated in the field, according to manufacturer's instructions, using 100-ppm isobutylene span gas, and checked between each screening event for proper response. The peak instrument readings were recorded on the soil boring logs. PID readings from the co-located samples were assumed to be similar to the primary samples. As such, the primary samples were not screened. This procedure reduces the escape of volatile components from the sample submitted for laboratory analysis. The co-located samples were loosely placed in resealable plastic bags to provide sufficient headspace to optimize PID analysis. The samples were allowed to warm, out of direct sunlight, to approximately 70° F. and screened in the field using a MicroTip PID.

Monitoring Well Installation, Development and Ground Water Sample Collection

The monitoring wells and piezometer were installed, developed and sampled in general accordance with NR 141. Details of the well construction and development are presented on the Monitoring Well Construction and Development forms in Appendix C. The wells installed during the site investigation were alternately surged and purged prior to sampling, as identified on the Well Development forms.

Ground water samples were collected using well-dedicated, clear PVC bailers that had been previously washed in a TSP[®] solution and triple rinsed with distilled water. Samples to be analyzed for PVOCs and GRO were collected in laboratory-supplied 40-ml vials with teflon septa. Sample vials were filled until a positive meniscus was formed, preserved with HCl (except for AFTC3, as identified in Section 1.3 above) and securely capped.

After the sample jars were filled and closed, identification labeling was completed with respect to sampling location, identifier and, for soil samples, depth of sample. The samples were placed in insulated containers and chilled with ice to protect them from sunlight and temperature extremes. The samples were then transported to Anatech Analytical Laboratories, Ludington, Michigan, via over-night courier. All sampling locations were documented in a bound field notebook used to record all daily activities performed at the site.

Soil and Ground Water Sample Custody

Sample custody procedures are designed to comply with U.S. EPA and National Enforcement Investigation Council (NEIC) requirements for sample control. Samples collected during the site investigation were the responsibility of identified persons from the time they were collected until they or their derived data were incorporated into the final report. Stringent chain-of-custody procedures were followed to maintain and document sample possession. A sample or evidence file is considered to be in the custody of the designated person if it is in possession; in view, after being in possession; was in possession and was placed in a secured location; or in a designated secure area.
Chain-of-custody forms were completed to the fullest extent possible prior to sample shipment (copies provided in Appendices D and E). They included the following information: sample number, date collected, source of sample (including type of sample and site identification) and name of sampler. The forms were filled out in a legible manner using waterproof ink and were signed by the sampler. Similar information was provided on the sample tag, which was securely attached to the sample bottle. Samples were always accompanied by a chain-of-custody record. When transferring samples, the individuals relinquishing and receiving them signed, dated and noted the time on the record. The custody record documents sample custody transfer from the sampler to the laboratory.

Samples were packaged properly for shipment and dispatched for analysis to Anatech Analytical Laboratories, Ludington, Michigan, with a separate custody record accompanying each shipment. The original record accompanied the shipment and a copy was retained by the field sampler and filed immediately upon return to the office. Proper documentation was maintained for shipment by common carrier. State of Wisconsin

SOIL BORING LOG INFORMATIC	DN
----------------------------	----

Form 4400-122

Department of	Natural	Resources	
---------------	---------	-----------	--

Route to:
Solid Waste
Waste Water

_ Haz. Waste _ Underground Tanks

_____ Water Resources

Page 1 of 1

Jul-91

						_ Emergency Response	_0	ther_								Page 1 of 1
Facility	/Project	Name E TEC	CHNO	LOG	CENTER		License	e/Permit	/Monito	ring N	mber		1	Boring	Numbe	>
Boring	Drilled	By (Firs	n Name	and Na	me of Crew Chief)		Date D	rilling S	tarted		Date I	Drilling (Complete	od	Drillin	g Method
TWIN	CITY	TEST	ING C	ORP		Common Well Name	Linal S	5/1	9/93	1	Surfac	5/1	9/93		4.25"	HS
Diar	activy +				WI Unique Weil ND.	AFTC1	610.47 Feet MSL 614.79 Feet MSL 8.25						8.25	ac LAameter		
Boring	Locatio	a			Local Grid Locations (If Applic								cable)	(************************************		
State P	ane				_NE S/C/N		Lat.	45° 0	4' 39"			_Feet		N	1	s
N 1/2 (of NE	/4 of S	ec. 13	8, T 3 1	N, R27E	DNR County Code	Long.	87° 3	6' 25"			Feet		E		w
MAR	NETT	E				38			MAR	NETT	E					
Sar	nple											So	il Proper	tics	_	
Number	Length Rec. (in.)	Blow Counts	Depth (Ft.)	Interval (Ft.)	Soil/Rock Description a Each Ma	and Geologic Origin for ajor Unit	USCS	Graphic Log	Well Diagram	(UI) CITY	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/Comments
			0						1							
1•	, 19	4	1 2	1-3	SAND: fine, silty, some clay; root ma (10YR2/2 and 7.5YR3/4) interbedded (7.5YR3/4).	ts, wood; very dark brown d with dark brown	SM			9.3	-	lab	Ser	yp	L	Dry, no odor.
2	17	18	3	3-5	SAND: fine, silty, dark yellowish brown (10YR4/4).					70.1						Moist, wet at tip, no odor.
	20	10	4	57	SAND, Englished alle alle alle alle alle alle alle al											
3	20	10	6	5-7	AND: time, little sult; strong brown (7.5YR5/6). Top 8" sulty, ace clay in layers, mottled brown (7.5YR5/4 and 10YR4/3).		SM			20.9						Wet, no odor.
4	20	7	7	7-9	SAND: fine, becoming medium with brown (7.5YR4/4).	AND: fine, becoming medium with depth of sample, little silt; yown (7.5YR4/4).				8.3						Wet, no odor.
5	20	7	8	9-11	SAND: medium: brown (7.5YB4/4).		SP			15.6						Wet no odor
			10													
			11													
			12													
			13													
			14													
			15													
					Boring terminated at 17.											*
					* sample submitted for laboratory an	alysis										
I hereb	y certify	that the	inform	ation or	this form is true and correct to the best of	my knowledge.										
Signatu	1	110	h	11	1 lister		Firm			_						
	4	Air	1/1	111	116 0-1		IDAM	ES &	MOOF	RE						

This form is authorized by Chapters 144.147 and 162/Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06 Wis. Stats.

State Depa	of wis	t of N	n atural	Reso	urces	Route to: Solid Waste Waste Water	Ha Ui W	az. Wa ndergr ater R	ste ound esourc	Tanks		Form	4400-	122	NFU	KIVIAIIO յա-9
						_ Emergency Response	_0	her_				_				Page 1 of
Facility	/Project	Name					License	/Permit	/Monito	ring Nu	mber			Boring	Numbe	6
Boring	JL FIR	E TEC	Name	LOG 1	CENTER me of Crew Chief)		Date D	rilling S	tarted		Date D	rilling	Complete	AFIC	2A Drillin	Method
TWIN	CITY	TEST	ING C	ORP	INC./GARY WELLNER			5/1	9/93			5/1	9/93		4.25	HS
DNR F	acility W	ell No.			WI Unique Well No.	Common Well Name	Final S	tatic Wa	ter Leve	1	Surface	Elevati	OE		Borcho	de Diameter
						AFTC2A		610.4	D Fe	et MSL		614.6	9 Fe	et MSL	8.25	
State P	Location	n			N ES/C/N		Lat.	45° 0	4' 39"		Local	Feet	anons (lf Appu N	cable)	S
N 1/2 (of NE	4 of S	ec. 13	T31	N R27E		Long	87° 3	6' 25"			Feet		E		w
County				1.2		DNR County Code			Civil to	wn/City	Village					
MAR	NETT	E	_			38			MAR	NETT	E				-	
San	nple											Soi	l Proper	ties	-	
Number	Length Rec. (in.)	Blow Counts	Depth (Pt.)	Interval (Ft.)	Soil/Rock Description a Each Ma	and Geologic Origin for ajor Unit	uscs	Graphic Log	Well Diagram	PID (IU)	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/Comments
1	18	16	1	1-3	SAND: fine, silty; root mats, wood; vo becoming yellowish brown (10YR5/6	ery dark brown (10YR2/2)) with depth of sample.	SM			131						Dry, no odor.
2•	20	8	3	3-5	SAND: fine, silty, yellowish brown (1	0YR5/6).	SM			1763	V	bs	ban	ple	-	Moist, wet at tip, no odor.
3	15	9	5 6	5-7	SAND: fine, silty; strong brown (7.5)	(R5 /6).	SM			892						Wet, trace gasoline odor.
4*	20	6	7 8	7-9	SAND: fine, silty; strong brown (7.5)	(R5/6).	SM			35.5	U	b	Elm	ple	_	Wet, gasoline odor, sheen.
			10													
			11													
			12													
			13													
			14													
			15													
					Boring terminated at 17.											
					• sample submitted for laboratory an	alysis										
I hereb	y certify	that the	inform	ation or	a this form is true and correct to the best of	my knowledge.				L	L		L		L	
Signatu	re 1	Ya	1.	11	11:		Firm									
	4.	12	411	11	1651-1		DAM	ES & I	MOOF	E						

DAMES & MOORE
This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to as 144.99 and 162.06 Wis. Stats.

State	of Wi	sconsi	in				SOIL BORING LOG INFORMATIO									
Depa	artmen	t of N	latural	Reso	urces	Route to:	_ ^H	az. Wa	aste			Form	1 4400	-122		Jul-9
						Solid Waste	_U	nderg	round	Tanks	1					
			-			Waste Water	_w	ater F	lesour	ces						
						_ Emergency Response	_0	ther_	_							Page 1 of
Facility	y/Project	Name					License/Permit/Monitoring Number Boring Number						Numbe	r internet in the second se		
ANS	UL FIF	By (Fir	CHNC m Name	and Na	Y CENTER		Date I	Drilling S	started		Date I	Drilling (Complet	AFTO	Drillin	e Method
TWIN		TES	TING (ORP	., INC./GARY WELLNER			5/1	9/93			5/1	9/93	-	4.25	HS
DNR I	Pacility V	Vell No.	•		WI Unique Well No.	Common Well Name	Final S	static W	ater Lev	el	Surfac	e Elevati	ion		Boreho	de Diameter
Boring	Locatio					AFTC2B		610.3	7 F	eet MSL	Logi	614.6	9 Fe	TE Appli	8.25	
State P	lane	-			N. E S/C/N		Lat.	45° 0	4' 39"			Feet		n under n V	1	S
N 1/2	of NE	/4 of S	ec. 13	3, T31	N, R27E		Long.	87° 3	6' 25"			Feet		E		w
County	7					DNR County Code			Civil to	wn/City	/Village				Contraction of the second	
MAR	INETT	E				38	r	-	MAR	INETT	E	8-	Deces			
581									1		-	50	ПРгоре			
											ation	1				
	E.	ts		3	Soil/Rock Description	and Geologic Origin for		*	g		enetr	onter		=		ment
k	h Re	Coun	E.	val (F	Each M	ajor Unit		licLo	Diagr	E	ardP	ure	dLim	cLim		Com
Num	Leng	Blow	Dept	Inter			nsc	Grap	Well	Ĩ	Stand	Moist	inpil	Plasti	200	(OD)
			0													
			1		No log maintained	for boring AFTC2B.										
			2													
			3													
			4													
			5													
			6													
			,													
			ľ													
			8							1						
			9													
			10													
			10													
			11													
			12													
							1									
			13													
			14													
			15													
					Boring terminated at 33'.											
I hereb	y certify	that the	inform	ation or	this form is true and correct to the best of	f my knowledge.	1				I	L	L		L	
Signatu	ire ,	6.	1.	11	(11)		Firm									
	4	15	1.	11	111511/		DAM	ES &	MOOF	RE						

This form is authorized by Chapters 144.147 and 162, Wis, Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06 Wis. Stats.

State of Wisconsin

Depa	rtmen	tment of Natural Resources Route to:Haz. Waste Form 4400-122 Solid WasteUnderground Tanks Waste Water Resources							Jul-91							
						Emergency Response	-"	ther	caour	ucs						Page 1 of 1
Facility	Project	Name					Licens	e/Permi	Monit	oring Nu	mber			Boring	Numbe	
ANS	UL FIF	RETE	снис	LOG	YCENTER			4141						AFTO	3	
Boring	Drilled	By (Fin	m Name	and Na	ume of Crew Chief)		Date I	Drilling S	itarted		Date D	orilling (Complet	ed	Drillin	g Method
TWIN	CITY	TEST	ring (ORP	., INC./GARY WELLNER			5/1	9/93			5/1	9/93		4.25	HS
DNR I	acility V	Vell No.	•		WI Unique Well No.	Common Well Name	Final S	610 3	ter Lev		Surface	e Elevat	ion F		Boreho	ole Diameter
Boring	Locatio	<u>π</u>						010.5	5 F	Set MSL	Local (Grid Lo	cations (If Appli	cable)	
State P	lane		and the second second		_NE S/C/N		Lat.	45° 0	4' 39"			Feet		N	1	s
N 1/2	of NE	1/4 of S	ec. 13	B, T31	N, R27E		Long.	87° 3	6' 25"			Feet		E		w
County						DNR County Code			Civil to	wn/City	/Village					
MAR	NETT	E				38		r	MAR	INETT	E	50	il Drong	-		
54		1										30		rues		1
Number	Length Rec. (in.)	Blow Counts	Depth (Ft.)	Interval (Pt.)	Soil/Rock Description a Each Ma	nd Geologic Origin for Ijor Unit	uscs	Graphic Log	Well Diagram	(UT) CITA	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	RQD/Comments
1•	22	17	0	1-3	SAND: fine, silty; dark yellowish brow	wn (10YR3/6)	SM			4.1	-	ul	00	anyc	le,	Moist, odor (not
	10		2													petroleum).
2	18		4	3-5	SAND: nne, sury; brown (7.5 Y R4/4).		SM			21.3						Wet, no odor.
3	14	9	5	5-7	SAND: fine; brown (7.5YR4/4).		SM			12.7						Wet, no odor.
			6									1.		0		
4*	12	2	7	7-9	SAND: fine; pyrite flecks; brown (7.5	YR4/4).	SM			35.5	Ch	ul z	m n	p		Wet, trace odor (not
		s	9													petroleum).
			10													
			11													
			12													
			13													
			14													
			15													
					Boring terminated at 15											
					* sample submitted for laboratory and	alveie										
I hereb	y certify	that the	inform	ation or	this form is true and correct to the best of	my knowledge.	L		L	L			L			
Signatu	re	6	1	11	11	, 	Firm									
	1	1/5	1.1	11	115101		DAM	FS &		8F						
-	11	1.1	LV	66	1 60 114		DAW		VICOF	16						

This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06 Wis. Stats.

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160. Wis, Stats, and ch. NR 141, Wis, Ad. Code. In accordance with ch.144, Wis Stats, failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis, Stats, failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

	MI	ATERIALS USED FOR INSTAL	LLATION
PROJECT#:	8500-93-213		WELL#: <u>AFTC</u>
START:	5-19-93		FINISH: 5-19-57
1) <u>SCREEN</u> :	: Schedule 40 PVC Screen Length Couples	_ Schedule 80 PVC Quantity Flush Joint	Other Flugh Thread
A. Bott	tom: Slip Cap	_ Screw Cap	Thread Plug
Supplie	ed By: TCT	Client	· · · · · · · · · · · · · · · · · · ·
2) <u>CASING</u> :	: Schedule 40 PVC	Schedule 80 PVG	C Other
(RISER) A. To) op: Slip Cap Waterproof Expandable	Thread Cap	_ Coupling & Plug
Suppl	lied By: TCT	Client	
3) <u>PROTECT</u> Suppl	TIVE COVER: Above Ground	i Flushmour Client	nt
4) <u>GUARD F</u> A B. St C. Wo	POSTS: Yes No inch pipe ceel Fence Posts poden Fence Posts	Supplied By: 7 feet long Quantity Quantity Quantity	ICT Client
6) <u>FILTER</u>	PACK SAND: Type <u>43</u> No of Bags	Size 20	upplied By: TCT Client
7) <u>fine s</u> a	AND: Type <u>Y205</u> No of Bags <u>4</u>	Supplie Size	ed By: TCT Client
8) <u>BENTONI</u> Supr	TE: Bentonite Pellets Granular Bentonite Bentonite Powder Bentonite Chips	Client	Quantity 5 gallon bucket Quantity Bags Quantity Bags Quantity Bags
Supp 9) <u>CONCRET</u>	Died By: TCT	Client E C lbs Supplie	ed By: TCT \underline{X} Client $$

Department of Natural Resources	A Renair D Underground Tasks D	MONITORING WELL CONSTRUCTIO Form 4400-113A Rev. 4.0
acility/Project Name	Local Grid Location of Well	Well Name
AFTC	ft. []N.	$ft. \Pi W AFTC'2$
acility License, Permit or Monitoring Number	Grid Origin Location	Wis. Unique Wall Number DNR Well Numb
when of Well Water Table Observation Wall FF11	Lat Long	
Piezometer	St. Plane ft. N,	ft. E. Date well installed 5_1/2/23
Distance Well Is From Waste/Source Boundary	1/4 of 1/4 of Sec. T. N	B E, Well Installed By: (Person's Name and Firm)
ft.	Location of Well Relative to Waste/Source	CE GWABW
Yes Division of Enforcement Std. Application?	u 🗌 Upgradient s 🔲 Sidegrad	dient
Protective pipe, top elevation		. Cap and lock?
W-W-size to close in the second	I MSL	Protective cover pipe:
. well casing, top elevation	HU	a. Inside diameter:
Land surface elevation	t. MSL	b. Length:
D. Surface seal, bottom ft. MSL or 1	ft. \	CASTALUNT OUR I
2. USCS classification of soil near screen:		d. Additional protection?
		If yes, describe: WAter Explocki
Bedrock		. Surface seal: Bentonite 3
3. Sieve analysis attached? 🔲 Yes 🔲 1	√o	
4. Drilling method used: Rotary	50 4.	. Material between well casing and protective pipe:
Hollow Stem Auger	41	A Bentonite D 3
· Other L		Athinular space scal
5. Drilling fluid used: Water 02 Air 0	01	
Drilling Mud 🗆 03 None 💆	99	Lbs/gal mud weight Rentonie-sand slurry [] 3:
		Lbs/gal mud weight Bentonite slurry \Box 3
	*o 🗱 👹 d	1 % Bentonjie . C. Bentonite-cement grout 🛛 51
Describe	C	FF volume added for any of the above
7. Source of water (attach analysis):	tana 🖬 🖓 🖓 🗱 🛪 👹 🖓 Sama 🖡	How installed:
		Gravity [] 0
	6.	. Bentonite scal: a. Bentonite granules [] 3
Bentonite seal, top ft. MSL or	- 5 ft_	b. □1/4 in. ⊠3/8 in. □1/2 in. Bentonite
Fina cand ton		c Other
		430 SilicA
Filter pack, top ft. MSL or		b. Volume added -25.165 ft ³
		. Filter pack material: Manufacturer, product name and mesh si
Screen joint, top ft. MSL or		a 4555 017
Well bottom ft. MSL or /	5 ft.	b. volume added ft ² . Well casing: Flush threaded PVC schedule 40 52 2
		Flush threaded PVC schedule 80 [24
Filter pack, bottom ft. MSL or	2 n	Other 🛛 📗
		. Screen material:FJTPUC
Borehole, bottom ft. MSL or	Z II.	a. Screen type: Factory cut Z 11
Borehole, diameter & in		
<u> </u>		b. Manufacturer Johnson
I. O.D. well casing \mathcal{A}, \mathcal{A} in.	\sim	c. Slot size: 0.010 i
	\	d Stotled length:
. I.D. well casing \mathcal{Q}_{\dots} in.	11.	. Dackini materiai (below inter pack): None 😆 12

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats and ch. NR 141, Wis. Ad. Code. In accordance with ch.144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

	MATERIALS USED FOR INSTALLATION
PR	ROJECT#: <u>8500-93-213</u> WELL#: <u>4FTC2</u>
ST	TART: <u>5-19-93</u> FINISH: <u>5-19-93</u>
_	
1)	SCREEN: Schedule 40 PVC Schedule 80 PVC Other
	Couples Flush Joint Flush Thread
	A. Bottom: Slip Cap Screw Cap Thread Plug 🔀
	Supplied By: TCT Client
2)	CASING: Schedule 40 PVC Schedule 80 PVC Other
	(RISER) A. Top: Slip Cap Thread Cap Coupling & Plug
	Waterproof Expandable Cap
	Supplied By: TCT
3)	PROTECTIVE COVER: Above Ground Flushmount
	Supplied By: TCT Client
4)	GUARD POSTS: Yes No Supplied By: TCT Client
	A inch pipe feet long Quantity B. Steel Fence Posts Quantity
	C. Wooden Fence Posts Quantity
6)	FILTER PACK SAND: Type <u>430 5.1.c.</u> Supplied By: TCT Client
	FINE SAND. TWD. 45555 RF Supplied By: TCT V Client
7)	No of Bags Size Size
8)	BENTONITE: Bentonite Pellets Quantity 5 gallon but
	Granular Bentonite Quantity Bags Bentonite Powder Quantity Bags
	Bentonite Chips Quantity Bags
	Supplied By: TCT Client
9)	CONCRETE: No. Bags Size _ Sco lbs Supplied By: TCT Client
	and the second

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis, Stats, and ch. NR 141, Wis, Ad. Code. In accordance with ch. 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis, Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

16,5 26,5 36

PROJECT	:#: <u>8500-93-2</u> <u>5-19-93</u>		WELL#:	<u>AFTC</u> 5-20-93
1) <u>SCRE</u>	EN: Schedule 40 PVC Screen Length Couples	Schedule 80 PV Quantity Flush Joint	C Other Flush Thr	ead
A. B Supp	ottom: Slip Cap	Screw Cap Client	Thread P	lug
2) <u>CASI</u> (RIS: A. Su	NG: Schedule 40 PVC ER) Top: Slip Cap Waterproof Expandal pplied By: TCT	Schedule 8 Thread Cap ble Cap Client	0 PVC Ot Coupling & Plu 	9
3) <u>PROT</u> Su	ECTIVE COVER: Above Gro	und Flus Client	hmount	
4) <u>GUAR</u> A. B. C.	D POSTS: Yes No inch pipe Steel Fence Posts Wooden Fence Posts	Supplied B feet long Quan Quan Quan	y: TCT Cl. tity tity tity	ient
6) <u>FILT</u>	ER PACK SAND: Type No of Bage	Size	Supplied By: TCT	Client
7) <u>FINE</u>	SAND: Type No of Bage	Sup Size	oplied By: TCT	Client _
8) <u>Bent</u> (S1	ONITE: Bentonite Pellets Granular Bentonite Bentonite Powder Bentonite Chips upplied By: TCT	e Client	Quantity Quantity Quantity Quantity Quantity	5 gallon bu Bags Bags Bags Bags

-

State of Wisconsin Department of Natural Resources	id Waste 🛛 Haz: Waste 🕞 Wast		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Env. Response	Local Grid Location of Well	I Other []	Well Name
AFTC	ft. BN.	ft. E.	AETC 3
Facility License, Permit or Monitoring Number	Grid Origin Location	··· [1 W.	Wis, Unique Well Number DNR Well Number
	Long	OF	
Type of Well Water Table Observation Well Pf1		6 E	Date Well Installed
Piczometer 12	St. Flate II. N,	п. с.	$\frac{S_m}{m} \frac{77}{3} \frac{2}{3}$
Distance Well Is From Waste/Source Boundary			Well Installed By: (Person's Name and Firm)
ft.		N, RW.	bur Bu
Is Well A Point of Enforcement Std. Application?	u Upgradient s	Sidegradient	
□ Yes □ No	d Downgradient n D	Not Known	707
A. Protective pipe, top elevation	L. MSL	1. Cap and lock?	X YO D NO
and the second		2. Protective cov	ver pipe:
B. Well casing, top elevation	I MISL IHIS	a. Inside diame	eter: $\underbrace{\$}_{T}$ in.
C. Land surface elevation	t. MSL	b. Length:	∠fi.
D.C. C. Illinois A.M.C	a start is in the	c. Material:	Steel # 04
D. Surface seal, Bottom IL MSL of Z			AST MUM Over D
12. USCS classification of soil near screen:	- Kartin Mark	d. Additional	protection? Yes No
		If yes, desc	ribe:
Bedrock		3. Surface seal:	Bentonite L 30
13 Sieve analysis attached? Yes	بي الم	\backslash	
		A Material hatur	
14. Drilling method used: Rotary		4. Matchai betw	Bentonite - 30
Other			Annular space scal
		/	
15. Drilling fluid used: Water 02 Air 0	01	S Amultana	
Drilling Mud 03 None	99	J. Almurar space	al mud mainter Bootonte-sand shurry 1 35
		bLos/g	al mid wight Bentonite shurry [] 31
16. Drilling additives used? 🔲 Yes 🔁	4o 👘 🔤 🖓 🖓 🕅	d % Ba	topite Bentonite-cement grout \Box 50
A CONSIGNATION OF A C		u	Ft ³ volume added for any of the above
Describe		f How instal	Tremic D 01
17. Source of water (attach analysis):		1. 110. 110.	Tremie pumped [] 02
			Gravity 🛛 0.8
		6. Bentonite sca	a. Bentonite grapules 🖂 33
E Bentonite seal ton ft. MSL or	S ft.	/ b. 141/4 in.	$\Box_{3/8}$ in. $\Box_{1/2}$ in. Bentonite period $\Box_{3/8}$ 32
		6	Other
F. Fine sand, top ft. MSL or	3 5 11. 8	7. Fine sand ma	terial: Manufacturer, product name & mesh size
		1 24	305:1c+
G. Filter pack, top ft. MSL or		b. Volume ac	kled $25/b$ ft ³
	-	8. Filter pack m	aterial: Manufacturer, product name and mesh size
H. Screen joint, top ft. MSL or	> ft	a4	1555 OSF
		b. Volume ad	illed 1819 ft ³
I. Well bottom ft. MSL or	5 ft. [3]	9. Well casing:	Flush threaded PVC schedule 40 - 23
			Flush threaded PVC schedule 80 24
J. Filter pack, bottom ft. MSL or	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	<	Other D
· · · · · · · · · · · · · · · · · · ·		10. Screen mater	ial:
K. Borehole, bottom ft. MSL or \angle _	II.	a. Screen typ	Factory cut 🖉 11
<u> </u>			
L. Borehole, diameter in.		·	Uther L
A for	````	b. Manufactu	ICT UCHNSON 0010 ir
M. O.D. well casing $\mathcal{A}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}$ in.		d Slotted le	ngth: \mathcal{D}_{i} fi
N ID well assist 2	1 × 1	11 Backfill mate	rial (below filter pack): None 2 14
N. I.D. Well casing $2 = 1 = 1$ in.		TT. Duckini mate	Oulxer
I haraby cartifysthat the information on thi	s form is true and correct	to the best of my	knowledge.
Signature	Firm	1_+	

Please complete bith sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160. Wis. Stats and ch. NR 141, Wis. Ad. Code. In accordance with ch.144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent. 1 dary

	MATERIALS USED FOR INSTALLATION
PR	$OJECT\#: \underbrace{8500-93-3/3}_{WELL\#: \underline{AF/C}3}$
ST	ART: <u>5-19-93</u> FINISH: <u>5-18-93</u>
1)	SCREEN: Schedule 40 PVC Schedule 80 PVC Other
	Screen Length Quantity Flush Joint Flush Thread
	A. Bottom: Slip Cap Screw Cap Thread Plug
	Supplied By: TCT Client
2)	CASING: Schedule 40 PVC Schedule 80 PVC Other
	(RISER) A. Top: Slip Cap Thread Cap Coupling & Plug Waterproof Expandable Cap
	Supplied By: TCT
3)	PROTECTIVE COVER: Above Ground Flushmount
	Supplied By: TCT Client
4)	GUARD POSTS: Yes. No Supplied By: TCT Client A.
6)	FILTER PACK SAND: Type Supplied By: TCT Client
7)	FINE SAND: Type <u>430 S.I.en</u> Supplied By: TCT Client No of Bags 25 Size <u>AS</u>
8)	BENTONITE: Bentonite Pellets Quantity 5 gallon buckets Granular Bentonite Quantity Bags Bentonite Powder Quantity Bags Bentonite Chips Quantity Bags Supplied By: TCT Client Client
9)	CONCRETE: No. Bags / Size SO lbs Supplied By: TCT Client

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 4-90

Route to: Solid Waste Haz. Waste Wastewater Env. Response & Repair Underground Tanks Other ____

Facility/Project Name		County M	y Name		Well Name AETC	1
Facility License, Permit or Monitoring Number	er 	County	Code	Wis. Unique Well N	umber Di	VR Well Number
1. Can this well be purged dry?	🗆 Ya	ম	No		Before Develop	oment After Development
2 Well development method				(from top of	. 3.8	ft 8 ft
surged with bailer and bailed	□ 4	1		well casing)	•••	
surged with bailer and pumped		1				
surged with block and bailed	— 4	2		Date	h0512/1	93 05121 193
surged with block and pumped	1 6	2			mmdd	yy mm dd yy
surged with block, bailed and pumped		0			-	Ta.m. zra.m.
compressed air	D 2	0		Time	c. 10:30	p.m. <u>/(:00</u> p.m.
bailed only	D 1	0				
pumped only	D 5	1		12. Sediment in well	i	nches inches
pumped slowly		0		bottom		
Other	. 🛛 🔄	.		13. Water clarity		Clear 20
3. Time spent developing well	<u> </u>	<u>0</u> mir	n.		(Describe)	(Describe)
4. Depth of well (from top of well casisng)	-15	ft.			• <u></u>	
5. Inside diameter of well		in	la -		- <u></u>	
6. Volume of water in filter pack and well						
casing	_10	<u>5</u> 8	al.			!
			_	Fill in if drilling fluid	is were used and w	ell is at solid waste facility:
7. Volume of water removed from well	1 . 00	· 88	u l.			
8. Volume of water added (if any)		· ga	վ.	14. Total suspended solids	•	_ mg/l mg/l
9. Source of water added				15. COD		_ mg/l mg/l
10. Analysis performed on water added? (If yes, attach results)	C Yes		No	1		

16. Additional comments on development:

H2O drop to 8' Steady @ 300 Hz.

Well developed by: Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowledge.
Name: Kristine U. Casper	Signature: Jain Ill Casper
Firm: Dames + Moone	Print Initials: <u>KMC</u>
	Fim: Dames of Moone

NOTE: Shaded areas are for DNR use only. See instructions for more information including a list of county codes.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 4-90

Route to: Solid Waste Haz. Waste Wastewater E Env. Response & Repair Underground Tanks Other

Facility/Project Name	County Name	•	Well Name				
AFIC	Mar	Inette	AFTC	ZA			
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well N	umber DNR W	ell Number			
1. Can this well be purged dry?	⊡Yes ⊠No		Before Development	After Development			
2. Well development method		(from top of	a3. 9_ft.	ft.			
surged with bailer and bailed	4 1	well casing)					
surged with bailer and pumped	6 1						
surged with block and bailed	42	Date	h05121193	05121193			
surged with block and pumped	冠 62		mm dd yy	mm dd yy			
surged with block, bailed and pumped	1 70		M a.m.	- Fi a.m.			
compressed air	20	Time	c. <u>8</u> : <u>30</u> p.m.	_ <u></u> p.m.			
bailed only	1 10						
pumped only	□ 51	12. Sediment in well	inches	inches			
pumped slowly	5 0	bottom					
Other		13. Water clarity	Clear 🔲 10 Turbid 🖾 15	Clear □ 20 Turbid D2≮25			
3. Time spent developing well	<u>30</u> min.		(Describe)	(Describe)			
4. Depth of well (from top of well casisng)	ft.						
5. Inside diameter of well	<u>2</u> in.						
6. Volume of water in filter pack and well	,						
casing	_ <u></u> gal.		د	• 11 d			
7. Volume of water removed from well	<u>00</u> . gal.		is were used and well is a	a solid waste facility:			
8. Volume of water added (if any)	<u> </u>	14. Total suspended solids	mg/i	mg/l			
9. Source of water added		15. COD	mg/l	mg/1			
10. Analysis performed on water added? (If yes, attach results)	Ves No	1		1			

16. Additional comments on development:

H20 drop to 11' @ 300 Hz

Well dev	eloped by: Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowledge.						
Nane: Firm:	Kristine M. Casper Dames + Moore	Signature: <u>ASAN (L. C. S. C</u> Print Initials: <u>KMC</u>						
		Firm: Dames + Moore						

NOTE: Shaded areas are for DNR use only. See instructions for more information including a list of county codes.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 4-90

Route to: Solid Waste 🔲 Haz. Waste 🖾 Wastewater 🗖

Env. Response & Repair 🔲 Underground Tanks 🗖 Other 🗖 🔔

Facility/Project Name AFTC	County	Name	Well Name AFTC 2B				
Facility License, Permit or Monitoring Numbe	r County 2	Code Wis. Unique Well Ni	Imber DNR W	all Number			
1. Can this well be purged dry?	□ Yes ⊅	No	Before Development	After Development			
2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly	□ 41 □ 61 □ 42 52 62 □ 70 □ 20 □ 10 □ 51 □ 50	 11. Depin to water (from top of well casing) Date Time 12. Sediment in well bottom 	a <u>3</u> <u>8</u> ft. b <u>0</u> <u>5</u> <u>1</u> <u>2</u> <u>1</u> <u>9</u> <u>3</u> m m d d y y c <u>7</u> <u>30</u> p m. <u>-</u> <u>inches</u>	$-\underline{4} \cdot \underline{5}_{ft}$ $\underline{\rho 5}_{ft} \underline{21}_{ft} \underline{73}_{ft}$ $\underline{m m d d y y}$ $\underline{10} : \underline{cv}_{ft} p.m.$ $\underline{-} \cdot \underline{inches}$			
Other3. Time spent developing well	<u> </u>	13. Water clarity	Clear 🔲 10 Turbid 🖼 15 (Describe)	Clear 55(20 Turbid 25 (Describe)			
4. Depth of well (from top of well casisng)	_ <u>32</u> ft.						
5. Inside diameter of well	_ <u>2</u> in.						
6. Volume of water in filter pack and well casing	gai	l. Fill in if drilling fluid	s were used and well is a	t solid waste facility:			
7. Volume of water removed from well	<u>_55.</u> gal			mal			
8. Volume of water added (if any)	, gal.	solids		mg/			
9. Source of water added		15. COD	mg/l	mg/l			
10. Analysis performed on water added? (If yes, attach results)		_ No		l			

16. Additional comments on development:

Had drop to 4.5 strady @ 300 Hz.

Well developed by: Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowledge.
Name: Kristine M. Casper	Signature: Michin Ill asp
Firm: Dames + Moone	Print Initials: <u>KMC</u>
	Firm: Dames + Moore

NOTE: Shaded areas are for DNR use only. See instructions for more information including a list of county codes.

MONITORING WELL DEVELOPMENT Form 4400-113B

Route to: Solid Waste 🔲 Haz. Waste 💭 Wastewater 🗋 Env. Response & Repair 🚺 Underground Tanks 🔲 Other 🔲 🗕

Facility/Project Name		Count	y Name	•	Well Name					
Facility License, Permit or Monitoring Number		Count	/ <u>/ / /</u> v Code	Wis Unique Well N	Umber IDNRW	5 ell Number				
			38	•						
1. Can this well be purged dry?	🗆 Yes	, pa	(No	11 Dark to Water	Before Development	After Development				
2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed	□ 4 □ 6 □ 4:	1 1 2		(from top of well casing) Date	∎2.7fi. b. <u>251_2/193</u>	<u>-7.5</u> ft. <u>DSIZ(193</u>				
surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other		2 0 0 1 0		Time 12. Sediment in well bottom 13. Water clarity	m m d d y y c. ⊥ /_: <u>3</u> 2] p.m. inches Clear □ 10	m m d d y y $\cancel{2}: \cancel{2}: 2$				
3. Time spent developing well		2 mi	n.		Turbid 월 15 (Describe)	Turbid 52-25 (Describe)				
4. Depth of well (from top of well casisng)	<u>ک</u> ل_	ft	•							
5. Inside diameter of well	<u>.</u>	ir	L							
 Volume of water in filter pack and well casing 		<u>، ک</u>	;al.	Fill in if drilling fluid		t solid wasta facility:				
7. Volume of water removed from well	110	· 8	al.							
8. Volume of water added (if any)		· 84	al.	solids	mg/l	mg/l				
9. Source of water added	<u> </u>			15. COD	mg/l	mg/l				
10. Analysis performed on water added? (If yes, attach results)	🗆 Yes		No	ł						

16. Additional comments on development:

H20 drop to 7.5' Strady @ 300 H=

Well developed by: Person's Name and Firm	I hereby certify that the above information is true and correct to the best of my knowledge.
Name: <u>Kristine M. Casper</u> Firm: <u>Dames + Moone</u>	Signature: <u>Winkle Casper</u> Print Initials: <u>ICMC</u> Firm: <u>Sames + MOORe</u>

NOTE: Shaded areas are for DNR use only. See instructions for more information including a list of county codes.

Rev. 4-90

Analytical Report

Lab I.D. : Report Date : Project : Client :

32095 06/15/1993 Dames & Moore - #07724-009 Dames & Moore

250 East Wisconsin Ave. Suite 1500 Milwaukee, WI 53202

Attention :

Ms. Kristine Casper

7 pages including cover sheet

1200 Conrad Ind. Dr. Ludington, MI 49431 616-843-1877

Page 1 of 6

Dames & Moore

Sample:	32095-9523	Matrix: Soil
Client Sample:	AFTC 1-1	Location:
COLLECTED:	05/19/1993 :	Project: Dames & Moore - #07724-009
RECEIVED:	05/26/1993 12:19	Sampled By: Kristine Casper

			Detection		18. 18. 19. 19. 19. 19. 19. 19.
Test Description	Result	Unit	Limit	Method	Date/Analyst
TOTAL METALS ANALYSIS					
Lead (GFAA)	2.0	mg/kg	0.1	SW-846 Mtd. 7421	06/11/1993 MC
PHYSICAL PROPERTY ANA	LYSIS				
Total Organic Content	19,000	mg/kg	10	EPA 160.4	06/10/1993 DO
		Gravimetr	ic, Ignition at 55	0 DEG C	
% Solids	82.0	%	0.1	Standard Mtd. 2540	06/02/1993 DF
VOLATILE AROMATIC HYDR	RO.				
Xylenes (Total)	ND	ug/kg	1	SW-846 Mtd. 8020	06/01/1993 EE
1,2,4-trimethylbenzene	ND	ug/kg	1	n	06/01/1993 EE
1,3,5-trimethylbenzene	ND	ug/kg	1		06/01/1993 EE
Methyl Tertiary Butyl Ether	ND	ug/kg	1	19	06/01/1993 EE
Benzene	ND	ug/kg	1		06/01/1993 EE
Toluene	ND	ug/kg	1		06/01/1993 EE
Ethylbenzene	ND	ug/kg	1		06/01/1993 EE
Gasoline Range Organics (V	olatile Fraction)				
Volatile Fraction TPH	ND	mg/kg	10	Wisconsin GRO	06/01/1993 EE
		Note: Res	sults are reporte	d on a dry weight basis.	

ND = Non Detectable

Laboratory Manager C. David Hainer

Reported : 06/15/1993

ŕ	/	\ \/	\wedge	V	//															
A	п	a	l y	t	іс	a	1	L	a	Ь	0	r	a	t	0	r	i	е	s	

Page 2 of 6		Dames & Moore	
Sample:	32095-9524	Matrix:	Sol
Client Sample:	AFTC 2-2	Location:	
COLLECTED:	05/19/1993 :	Project:	Dames & Moore - #07724-009
RECEIVED:	05/26/1993 12:19	9 Sampled By:	Kristine Casper

Test Description	Result	Unit	Detection Limit	Method	Date/Analyst
TOTAL METALS ANALYSIS					
Lead (ICAP)	6	mg/kg	2	SW-846 Mtd. 6010	06/03/1993 CC
PHYSICAL PROPERTY ANALY	ŚIŚ				
Total Organic Content	5900	mg/kg	10	EPA 160.4	06/10/1993 DO
		Gravime	tric, Ignition at 550	DEG C	
% Solids	75.2	%	0.1	Standard Mtd. 2540	06/02/1993 DF
VOLATILE AROMATIC HYDRO).				
Xylenes (Total)	11,800	ug/kg	10	SW-846 Mtd. 8020	06/01/1993 EE
1,2,4-trimethylbenzene	3000	ug/kg	10		06/01/1993 EE
1,3,5-trimethylbenzene	1500	ug/kg	10		06/01/1993 EE
Methyl Tertiary Butyl Ether	ND	ug/kg	10		06/01/1993 EE
Benzene	650	ug/kg	10	19	06/01/1993 EE
Toluene	2300	ug/kg	10	n	06/01/1993 EE
Ethylbenzene	5000	ug/kg	10		06/01/1993 EE
Gasoline Range Organics (Vola	atile Fraction)				
Volatile Fraction TPH	922	mg/kg	10	Wisconsin GRO	06/01/1993 EE
		Note: R	esults are reported	on a dry weight basis.	

ND = Non Detectable

Laboratory Manager

C. David Hainer

Reported : 06/15/1993

Page 3 of 6

Dames & Moore

Sample:	32095-9525	Matrix: Soil	
Client Sample:	AFTC 2-4	Location:	
COLLECTED:	05/19/1993 :	Project: Dames & Moore - #07724-009	
RECEIVED:	05/26/1993 12:19	Sampled By: Kristine Casper	

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analyst
TOTAL METALS ANALYSIS					
Lead (GFAA)	1.1	mg/kg	0.1	SW-846 Mtd. 7421	06/11/1993 MC
PHYSICAL PROPERTY ANALYS	SIS				
Total Organic Content	3200	mg/kg	10	EPA 160.4	06/10/1993 DO
		Gravimetric	, Ignition at 5	50 DEG C	
% Solids	76.6	%	0.1	Standard Mtd. 2540	06/02/1993 DF
VOLATILE AROMATIC HYDRO.					
Xylenes (Total)	580	ug/kg	5	SW-846 Mtd. 8020	06/01/1993 EE
1,2,4-trimethylbenzene	330	ug/kg	5	н.	06/01/1993 EE
1,3,5-trimethylbenzene	370	ug/kg	5	n	06/01/1993 EE
Methyl Tertiary Butyl Ether	1600	ug/kg	5	19	06/01/1993 EE
Benzene	1400	ug/kg	5	33	06/01/1993 EE
Toluene	1200	ug/kg	5	29	06/01/1993 EE
Ethylbenzene	110	ug/kg	5	*	06/01/1993 EE
Gasoline Range Organics (Volat	tile Fraction)				
Volatile Fraction TPH	ND	mg/kg	10	Wisconsin GRO	06/01/1993 EE
		Note: Resu	ilts are reporte	ed on a dry weight basis.	

ND = Non Detectable

Laboratory Manager

C. David Hainer

Reported : 06/15/1993

Page 4 of 6

Dames & Moore

Sample:	32095-9526	N	Aatrix:	Soil
Client Sample:	AFTC 3-1	L	ocation:	
COLLECTED:	05/19/1993 :	P	roject:	Dames & Moore - #07724-009
RECEIVED:	05/26/1993 12:	19 S	ampled By:	Kristine Casper

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analyst
TOTAL METALS ANALYSIS					
Lead (GFAA)	0.8	mg/kg	0.1	SW-846 Mtd. 7421	06/11/1993 MC
PHYSICAL PROPERTY ANALYS	SIS				
Total Organic Content	5000	mg/kg	10	EPA 160.4	06/10/1993 DO
		Gravimetri	c, Ignition at 55	O DEG C	
% Solids	87.4	%	0.1	Standard Mtd. 2540	06/02/1993 DF
VOLATILE AROMATIC HYDRO.					
Xylenes (Total)	ND	ug/kg	1	SW-846 Mtd. 8020	06/01/1993 EE
1,2,4-trimethylbenzene	ND	ug/kg	1		06/01/1993 EE
1,3,5-trimethylbenzene	ND	ug/kg	1	н	06/01/1993 EE
Methyl Tertiary Butyl Ether	ND	ug/kg	1	11	06/01/1993 EE
Benzene	ND	ug/kg	1	"	06/01/1993 EE
Toluene	ND	ug/kg	1	n	06/01/1993 EE
Ethylbenzene	ND	ug/kg	1		06/01/1993 EE
Gasoline Range Organics (Volat	tile Fraction)				
Volatile Fraction TPH	ND	mg/kg	10	Wisconsin GRO	06/01/1993 EE
		Note: Res	sults are reporte	d on a dry weight basis.	

ND = Non Detectable

Laboratory Manager

C. David Hainer

Reported : 06/15/1993

Page 5 of 6 Dames & Moore Sample: 32095-9527 Client Sample: AFTC 3-4

Client Sample:	AFTC 3-4		Location:	
COLLECTED:	05/19/1993 :		Project:	Dames & Moore - #07724-009
RECEIVED:	05/26/1993 12	::19	Sampled By:	Kristine Casper

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analyst
TOTAL METALS ANALYSIS					
Lead (GFAA)	1.0	mg/kg	0.1	SW-846 Mtd. 7421	06/11/1993 MC
PHYSICAL PROPERTY ANALY	SIS				
Total Organic Content	47,000	mg/kg	10	EPA 160.4	06/10/1993 DO
		Gravimetric	, Ignition at 55	O DEG C	
% Solids	82.3	%	0.1	Standard Mtd. 2540	06/02/1993 DF
VOLATILE AROMATIC HYDRO					
Xylenes (Total)	ND	ug/kg	1	SW-846 Mtd. 8020	06/01/1993 EE
1,2,4-trimethylbenzene	ND	ug/kg	1	0	06/01/1993 EE
1,3,5-trimethylbenzene	ND	ug/kg	1	н	06/01/1993 EE
Methyl Tertiary Butyl Ether	ND	ug/kg	1		06/01/1993 EE
Benzene	ND	ug/kg	1		06/01/1993 EE
Toluene	ND	ug/kg	1	н	06/01/1993 EE
Ethylbenzene	ND	ug/kg	1	12	06/01/1993 EE
Gasoline Range Organics (Vola	atile Fraction)				
Volatile Fraction TPH	ND	mg/kg	10	Wisconsin GRO	06/01/1993 EE
		Note: Resu	ults are reporte	d on a dry weight basis.	

ND = Non Detectable

Laboratory Manager

en C. David Hainer

Reported : 06/15/1993

ŕ	Λ		\bigvee	Δ			/										
А	nc	a	yti	cal	L	а	Ь	0	r	a	t	0	r	i	е	s	

Page 6 of 6

Dames & Moore

Sample:	32095-9532	Matrix:	Liquid		
Client Sample:	Blank	Location:			
COLLECTED:	05/19/1993 :	Project:	Dames & Moore - #	07724-009	
RECEIVED:	05/26/1993 12:19	Sampled By:	Kristine Casper		

Test Description	Result	Unit	Limit	Method	Date/Analyst
VOLATILE AROMATIC HYDRO.					
Xylenes (Total)	ND	ug/L	1	SW-846 Mtd. 8020	06/01/1993 EE
1,2,4-trimethylbenzene	ND	ug/L	1	19	06/01/1993 EE
1,3,5-trimethylbenzene	ND	ug/L	1	39	06/01/1993 EE
Methyl Tertiary Butyl Ether	ND	ug/L	1	19	06/01/1993 EE
Benzene	ND	ug/L	1	н	06/01/1993 EE
Toluene	ND	ug/L	1	11	06/01/1993 EE
Ethylbenzene	ND	ug/L	1		06/01/1993 EE
Gasoline Range Organics (Volatile Fi	raction)				
Volatile Fraction TPH	ND	mg/L	0.1	Wisconsin GRO	06/01/1993 EE

ND = Non Detectable

Laboratory Manager

С, C. David Hainer

Reported : 06/15/1993

ANALYTICAL REPORT

CLIENT:	Dames & Moore		
PROJECT:	#07724-009	DATE SAMPLED:	05/10/93
LAB REF. NO.:	32095	DATE RECEIVED:	05/26/93
SAMPLED BY:	RC	DATE FINISHED:	06/15/93
DESCRIPTION:	Soil Sample	REPORT DATE:	06/15/93
ANALYST:	Subcontracted - Commercial	l Testing & Engine	ering Co.

SIEVE ANALYSIS SAMPLE ID: 32095-9528 CLIENT ID: AFTC GS1

CUMULATIVE RESULTS

PASSING	Retained On	%Weight	<pre>% Retained</pre>	%Passing
	#8	10.48	10.48	89.52
#8	#16	3.63	14.11	85.89
#16	#30	6.58	20.69	79.31
#30	#50	12.91	33.60	66.40
#50	#100	42.57	76.17	23.83
#100	#200	19.86	96.03	3.97
#200		3.97	100.00	0.00

Texture Class

8	Sand	88.00
8	Silt	10.00
8	Clay	2.00

1

C. Dau

C. David Hainer Project Manager

ANALYTICAL REPORT

CLIENT:	Dames & Moore		
PROJECT:	#07724-009	DATE SAMPLED:	05/10/93
LAB REF. NO.:	32095	DATE RECEIVED:	05/26/93
SAMPLED BY:	RC	DATE FINISHED:	06/15/93
DESCRIPTION:	Soil Sample	REPORT DATE:	06/15/93
ANALYST:	Subcontracted - Commercial	. Testing & Engine	ering Co.

SIEVE ANALYSIS SAMPLE ID: 32095-9529 CLIENT ID: AFTC GS2

CUMULATIVE RESULTS

PASSING	Retained On	%Weight	<pre>% Retained</pre>	%Passing
	#8	0.00	0.00	100.00
#8	#16	0.00	0.00	100.00
#16	#30	0.00	0.00	100.00
#30	#50	1.30	1.30	98.70
#50	#100	42.26	43.56	56.44
#100	#200	51.66	95.22	4.78
#200		4.78	100.00	0.00

Texture Class

8	Sand	96.00
8	Silt	4.00
8	Clay	<1.00

C. Da

C. David Hainer Project Manager

. Sector

ANALYTICAL REPORT

CLIENT:	Dames & Moore		
PROJECT:	#07724-009	DATE SAMPLED: 05/10/93	3
LAB REF. NO.:	32095	DATE RECEIVED: 05/26/93	3
SAMPLED BY:	RC	DATE FINISHED: 06/15/93	3
DESCRIPTION:	Soil Sample	REPORT DATE: 06/15/93	3
ANALYST:	Subcontracted - Commercial	Testing & Engineering Co.	,

SIEVE ANALYSIS SAMPLE ID: 32095-9530 CLIENT ID: AFTC GS3

CUMULATIVE RESULTS

PASSING	Retained On	%Weight	% Retained	%Passing
	#8	0.11	0.11	99.89
#8	#16	0.07	0.18	99.82
#16	#30	0.12	0.30	99.70
#30	#50	8.66	8.96	91.04
#50	#100	61.29	70.25	29.75
#100	#200	25.45	95.70	4.30
#200		4.30	100.00	0.00

Texture Class

8	Sand	99.00
8	Silt	1.00
8	Clay	<1.00

C. David Hainer Project Manager

ANALYTICAL REPORT

CLIENT:	Dames & Moore		
PROJECT:	#07724-009	DATE SAMPLED:	05/10/93
LAB REF. NO.:	32095	DATE RECEIVED:	05/26/93
SAMPLED BY:	RC	DATE FINISHED:	06/15/93
DESCRIPTION:	Soil Sample	REPORT DATE:	06/15/93
ANALYST:	Subcontracted - Commercial	. Testing & Engine	ering Co.

SIEVE ANALYSIS SAMPLE ID: 32095-9531 CLIENT ID: AFTC GS4

1

CUMULATIVE RESULTS

PASSING	Retained On	*Weight	<pre>% Retained</pre>	*Passing
	#8	0.24	0.24	99.76
#8	#16	0.20	0.44	99.56
#16	#30	0.26	0.70	99.30
#30	#50	13.11	13.81	86.19
#50	#100	52.31	66.12	33.88
#100	#200	29.26	95.38	4.62
#200		4.62	100.00	0.00

Texture Class

8	Sand	99.00
8	Silt	1.00
8	Clay	<1.00

C. Dav

C. David Hainer Project Manager

Milwaukee, Wisconsin 53202 (414) 347-0800 FAX:(414) 347-0288 SHIPPING DETAILS: Method of Shipment: Contents Temperature Commenta Commenta Contrainers PROJECT MANAGER: LAB USE ONLY DATE Contrainers No. SAMPLE ID SAMPLE TYPE ANALYSIS REQUESTED REMARKS/PR //5 2 3 5-/5-53 120 m/G1 // AFTC 1-1 Soril X X A A // 130 m/G1 / AFTC 1-1 Soril X X // 5 2 4/ 120 m/G1 AFTC 2-2 Soil X X A A / 15 2 4/ / 20 m/G1 / AFTC 2-2 Soil <th colspa<="" th=""><th></th></th>	<th></th>	
LAB USE ONLYDATECONTAINERSNo.SAMPLE IDSAMPLE TYPEANALYSIS REQUESTEDREMARKS/PR 1323 $5-15-53$ $120 mlgl$ 1AFTC 1-1SoilXXXA $130 mlgl$ 1AFTC 1-1SoilXXXA $130 mlgl$ 1AFTC 1-1SoilXXA $130 mlgl$ 1AFTC 1-1SoilXXA $120 mlgl$ 1AFTC 2-2SoilXXA $15 25$ 100 mlgl1AFTC 2-4SoilXX		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ESERVATIV	
IDOMIELI I AFTCI-I Soil X X IDOMACI 2 NETCI-I Soil X X 1534 120 m/cf 1 AFTC 2-2 Soil X ×		
Image Image Image Image Image Image Image 1/524 120 m/cf 1 AFTC 2-2 Soil X × 1528 120 m/cf 1 AFTC 2-4 Soil X ×		
1524 120 mlg 1 AFTC 2-2, Soil X × 120 mlg 1 AFTC 2-2, Soil X × 60 mlg 1 AFTC 2-2, Soil X × 1525 120 mlg 1 AFTC 2-4, Soil X × 1525 120 mlg 1 AFTC 2-4, Soil X ×		
120 mlde 1 AFTC 2-2 Soil X X 60 mlde 2 AFTC 2-2 Soil X 1525 Domlar 1 AFTC 2-4 Soil X X × V		
1525 BORKY 1 AFTC 2-2 Soil X MEDH		
1525 Donly 1 AFTC 2-4 Soil X - ×	*: 	
120 mlg 1 AFTC 2-4 Soil X X	2. •	
lames 24 AFTC 2-45 Soil X Marcott		
1526 DOMAY I AFTC 3-1 Soil X K		
120 mly 1 AFTC 3-1 Soil X X	ili sus Terresson	
120 rel g 2 AFTC 3-1 Sal X MEDH	<u></u>	
MPLER: (SKANATURE) DATE COMMENTS		
This all today 5/20/53 Operasile		
LINQUISHED BY: SKANATURE DATE/TIME RECEIVED BY: SKANATURE RECEIVED BY: SKANATURE RECEIVED BY: SKANATURE RECEIVED BY: SKANATURE		

4

. 7/

ş.

٦.

DA	MES	& MO	O	RE	Chain of Cus	tody Seal #		#			Rush (preapproved by Lab
250 Ea	st Wisco	onsin Ave, S	Suit	e 1500						×-	Norma	i
19111 (414	waukee,) 347-0800	FAX:(414) 3	554 47-0	202 1288	SHIPPING DE	TAILS:			\overline{TT}	1 19	Tat	777. X
ROJECT NAME:					Method of Sh	ipment <u>EdE</u>		s Q	1309	1.1	× /	
ROJECT #:	17724	1-009			Contents Tem	peratureC		- W	S Y	19	\$ /	1 1 6 7
and Results To:		Casmi	~		Comments			<u>З</u> ,	JNYK	5 1 3	X /	
IUJEUT MANAC	icn/=_	- 4544							715	WX V		
AB USE ONLY	DATE	CONTAINERS	No.	SAN	/ PLE ID	SAMPLE TYPI	Е [ANA	LYSIS	REQUES	STED	REMARKS/PRESERVA
1527	5-19-93	pomege	1	AFTC.	3-4	Sil			X			
		pomly	1	AFTC	3-4	- Sil	_	X				
	V	40 mlg/	2	AFTO	- 3-4	Soil	X					MEDH
1528	5-10-93	500 mlge	2	AFIC	<u>.951</u>	Soil				└		
7539		500 mls	2	AFTC	<u>GS2</u>	Sal						
<u>·/·s 30</u> /<= 9,	N	STOIN SE	4	APTC	<u>qss</u>	304			+			
<u>/</u>	- 6.62	500 mlg	1	AFIC -RI.	<u>957</u> 6	- Manut	X			X		MER 1
	5-17-12	10 mg	- /	Dian	<u> </u>		-+^					Invert
				the state of the								
AIN OF CUSTO	DY RECOR	RD CC	MM	ENTS		A I	ñ.,	• • • •		•		
MPLER: SKANATU	REJ D		on	trèm p	<u>4. at G</u>	KD bottles to	<i>b lb</i>	an	g an	alys	£.S	
Bfrill Us	4 5-2	0-93 -					· · · · ·			in de la composition de la composition de la		
LINQUISHED BY	(SIGNATURE)	DATE/TIME	RE	CEIVED BY:	(SIGNATURE)	ELINQUISHED BY;	SKINAT	UREJ D	ATE/TIM	E RECE	IVED B	1: (SKANATURE)
A. L. 111/1		I mal in	1	-1 -								

Analytical Report

Lab I.D. : Report Date : Project : Client : 32069 06/09/1993 Dames & Moore - #07724-009 Dames & Moore

250 East Wisconsin Ave. Suite 1500 Milwaukee, WI 53202

Attention :

Ms. Kristine Casper

13 pages including cover sheet

1200 Conrad Ind. Dr. Ludington, MI 49431 616-843-1877

Page 1 of 12

Dames & Moore

Sample: 320	069-9461	Matrix:	Water	
Client Sample: AF	TC 1	Location:	Trail.	
COLLECTED: 05	/21/1993 :	Project:	Dames & Moore - #	07724-009
RECEIVED: 05	/25/1993 14:11	Sampled By:	K. Casper	

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analyst
DISSOLVED METALS ANALYSIS					
Diss/Lead (GFAA)	ND	mg/L	0.002	SW-846 Mtd. 7421	06/02/1993 SRC
GC/MS VOLATILE ORGANIC					
Dichlorodifluoromethanc	ND	ug/L	10	SW-848 Mtd. 8021	05/26/1993 EE
Chloromethane	ND	ug/L	10		05/26/1993 EE
Vinyl Chloride	ND	ug/L	10		05/26/1993 EE
Bromomethane	ND	ug/L	10		05/26/1993 EE
Chloroethane	ND	ug/L	10		05/26/1993 EE
Trichlorofluoromethane	ND	ug/L	10	•	05/26/1993 EE
1,1-Dichloroethene	ND	ug/L	5		05/26/1993 EE
Methylene Chloride	ND	ug/L	5	•	05/26/1993 EE
t-1,2-Dichloroethene	ND	ug/L	5	м	05/26/1993 EE
tert-Butylbenzene	ND	ug/L	5		05/26/1993 EE
1.1-Dichloroethane	ND	ug/L	5		05/26/1993 EE
2.2-Dichloropropane	ND	ua/L	5		05/26/1993 EE
c-1.2-Dichloroethene	ND	ua/L	5		05/26/1993 EE
Chloroform	ND	ua/L	5		05/26/1993 EE
Bromochloromethane	ND	ua/L	5		05/26/1993 EE
1.1.1-Trichloroethane	ND	ug/L	5		05/26/1993 EE
1.1-Dichloropropene	ND	ua/L	5	•	05/26/1993 EE
Carbon Tetrachloride	ND	ug/L	5	•	05/26/1993 EE
1.2-Dichloroethane	ND	ua/L	5		05/26/1993 EE
Benzene	100	ug/L	5		05/26/1993 EE
Trichloroethene	ND	ua/L	5		05/26/1993 EE
Dibromoethane	ND	ua/L	5	•	05/26/1993 EE
1.2-Dichloropropane	ND	ua/L	5		05/26/1993 EE
Bromodichloromethane	ND	ug/L	5		05/28/1993 EE
Tetrachloroethene	ND	ug/L	5		05/26/1993 FF
Toluene	140	ug/l	5		05/28/1993 EE
1 1 2-Trichloroethane	ND	ug/L	5		05/26/1993 FE
1 3-Dichloronronane	ND	ug/L	5		05/26/1993 EE
Dibromochloromethane	ND	ug/L	5		05/26/1993 EE
1.2-Dibromoethane	ND	ug/L	5		05/28/1993 EE
Chlorobenzene	ND	ug/L	5		05/28/1993 EE
1.1.1.2-Tetrachloroethane	ND	ug/L	5		05/28/1993 FF
ND - Non Detectable			-		

Reported : 06/09/1993

Analytical Laboratories

Page 2 of 12

Dames & Moore

Sample:	32069-9461	Matrba:	Water
Client Sample: /	AFTC 1	Location:	
COLLECTED: (5/21/1993 :	Project:	Dames & Moore - #07724-009
RECEIVED: 0	5/25/1993 14:11	Sampled By:	K. Casper

			Detection			
Test Description	Result	Unit	Limit	Method	Date/Analyst	
GC/MS VOLATILE ORGANIC						
Ethylbenzene	13	ug/L	5	SW-846 Mtd. 8021	05/26/1993 EE	
Para & Meta Xylene	41	ug/L	5	*	05/26/1993 EE	
-Ortho Xylene	17	ug/L	5		05/26/1993 EE	
Styrene	ND	ug/L	5	•	05/26/1993 EE	
IsopropylBenzene	ND	ug/L	5	м	05/26/1993 EE	
Bromoform	ND	ug/L	5	•	05/26/1993 EE	
1,1,2,2-Tetrachloroethane	ND	ug/L	5		05/26/1993 EE	
1,2,3-Trichloropropane	ND	ug/L	5	•	05/26/1993 EE	
Bromobenzene	ND	ug/L	5	•	05/26/1993 EE	
n-PropylBenzene	ND	ug/L	5	• 🗸	05/26/1993 EE	
2-Chlorotoluene	ND	ug/L	5	· . •	05/26/1993 EE	
1,3,5-Trimethylbenzene	6	ug/L	5		05/26/1993 EE	
4-Chlorotoluene	ND	ug/L	5	•	05/26/1993 EE	
1,2,4-Trimethylbenzene	11	ug/L	5		05/26/1993 EE	
sec-Butylbenzene	ND	ug/L	5	•	05/26/1993 EE	
p-Isoprpyltoluene	ND	ug/L	5	•	05/26/1993 EE	
1,3-Dichlorobenzene	ND	ug/L	5	•	05/26/1993 EE	
1,4-Dichlorobenzene	ND	ug/L	5		05/26/1993 EE	
n-Butylbenzene	ND	ug/L	5		05/26/1993 EE	
1,2-Dichlorobenzene	ND	ug/L	5	•	05/26/1993 EE	
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	•	05/26/1993 EE	
1,2,4-Trichlorobenzene	ND	ug/L	5		05/26/1993 EE	
Hexachlorobutadiene	ND	ug/L	5	•	05/26/1993 EE	
Naphthalene	ND	ug/L	5	•	05/26/1993 EE	
1,2,3-Trichlorobenzene	ND	ug/L	5	-	05/26/1993 EE	
Gasoline Range Organics (Volatile	Fraction)					
Volatile Fraction TPH	1.9	mg/L	0.1	Wisconsin GRO	05/27/1993 EE	

ND - Non Detectable

Laboratory Manager am

C. David Hainer

Reported : 06/09/1993

. .

Page 3 of 12

Dames & Moore

Sample:	32069-9462	Matrix:	Water		
Client Sample:	AFTC 2A	Location:			
COLLECTED:	05/21/1993 :	Project:	Dames & Moore -	#07724-009	
RECEIVED:	05/25/1993 14:11	Sampled By:	K. Casper		

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analyst
DISSOLVED METALS ANALYS	5IS				
Lead (ICAP)	0.06	mg/L	0.03	SW-846 Mtd. 6010	05/27/1993 GCP
GC/MS VOLATILE ORGANIC					
Dichlorodifluoromethane	ND	ug/L	1000	SW-846 Mtd. 8021	06/03/1993 EE
Chloromethane	ND	ug/L	1000		06/03/1993 EE
Vinyl Chloride	ND	ug/L	1000	n	06/03/1993 EE
Bromomethane	ND	ug/L	1000	n	06/03/1993 EE
Chloroethane	ND	ug/L	1000		06/03/1993 EE
Trichlorofluoromethane	ND	ug/L	1000	n	06/03/1993 EE
1,1-Dichloroethene	ND	ug/L	500	19	06/03/1993 EE
Methylene Chloride	ND	ug/L	500	*	06/03/1993 EE
t-1,2-Dichloroethene	ND	ug/L	500	10	06/03/1993 EE
tert-Butylbenzene	ND	ug/L	500		06/03/1993 EE
1,1-Dichloroethane	ND	ug/L	500		06/03/1993 EE
2.2-Dichloropropane	ND	ug/L	500	•	06/03/1993 EE
c-1,2-Dichloroethene	ND	ug/L	500		06/03/1993 EE
Chloroform	ND	ug/L	500		06/03/1993 EE
Bromochloromethane	ND	ug/L	500	*	06/03/1993 EE
1,1,1-Trichloroethane	ND	ug/L	500	10	06/03/1993 EE
1,1-Dichloropropene	ND	ug/L	500	•	06/03/1993 EE
Carbon Tetrachloride	ND	ug/L	500		06/03/1993 EE
1,2-Dichloroethane	ND	ug/L	500		06/03/1993 EE
Benzene	11,800	ug/L	500	•	06/03/1993 EE
Trichloroethene	ND	ug/L	500		06/03/1993 EE
Dibromoethane	ND	ug/L	500	•	06/03/1993 EE
1,2-Dichloropropane	ND	ug/L	500	•	06/03/1993 EE
Bromodichloromethane	ND	ug/L	500	•	06/03/1993 EE
Tetrachloroethene	ND	ug/L	500	•	06/03/1993 EE
Toluene	11,000	ug/L	500	•	06/03/1993 EE
1,1,2-Trichloroethane	ND	ug/L	500		06/03/1993 EE
1,3-Dichloropropane	ND	ug/L	500	•	06/03/1993 EE
Dibromochloromethane	ND	ug/L	500	•	06/03/1993 EE
1,2-Dibromoethane	ND	ug/L	500		06/03/1993 EE
Chlorobenzene	ND	ug/L	500	•	06/03/1993 EE
1,1,1,2-Tetrachloroethane	ND	ug/L	500	"	06/03/1993 EE
ND - Non Detectable					

Reported : 06/09/1993

Analytical Laboratories

Page 4 of 12

Dames & Moore

Sample:	32069-9462	Matrix: Water	
Client Sample:	AFTC 2A	Location:	
COLLECTED:	05/21/1993 :	Project: Dames & Moore - #07724-009	
RECEIVED:	05/25/1993 14:11	Sampled By: K. Casper	

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analysi
GC/MS VOLATILE ORGANIC					
Ethylbenzene	1500	ug/L	500	SW-846 Mtd. 8021	06/03/1993 EE
Para & Meta Xylene	3300	ug/L	500		06/03/1993 EE
Ortho Xylene	1500	ug/L	500	•	06/03/1993 EE
Styrene	ND	ug/L	500		06/03/1993 EE
IsopropylBenzene	ND	ug/L	500	· *	06/03/1993 EE
Bromoform	ND	ug/L	500		06/03/1993 EE
1,1,2,2-Tetrachloroethane	ND	ug/L	500		06/03/1993 EE
1,2,3-Trichloropropane	ND	ug/L	500		06/03/1993 EE
Bromobenzene	ND	ug/L	500		06/03/1993 EE
n-PropylBenzene	ND	ug/L	500		06/03/1993 EE
2-Chlorotoluene	ND	ug/L	500		06/03/1993 EE
1,3,5-Trimethylbenzene	1300	ug/L	500		06/03/1993 EE
4-Chlorotoluene	ND	ug/L	500	n	06/03/1993 EE
1,2,4-Trimethylbenzene	1100	ug/L	500	•	06/03/1993 EE
sec-Butylbenzene	ND	ug/L	500	•	06/03/1993 EE
p-Isoprpyltoluene	ND	ug/L	500		06/03/1993 EE
1,3-Dichlorobenzene	ND	ug/L	500		06/03/1993 EE
1,4-Dichlorobenzene	ND	ug/L	500		06/03/1993 EE
n-Butylbenzene	ND	ug/L	500		06/03/1993 EE
1,2-Dichlorobenzene	ND	ug/L	500		06/03/1993 EE
1,2-Dibromo-3-Chloropropane	ND	ug/L	500	*	06/03/1993 EE
1,2,4-Trichlorobenzene	ND	ug/L	500	20	06/03/1993 EE
Hexachlorobutadiene	ND	ug/L	500		06/03/1993 EE
Naphthalene	ND	ug/L	500	•	06/03/1993 EE
1,2,3-Trichlorobenzene	ND	ug/L	500	•	06/03/1993 EE
Gasoline Range Organics (Volati	le Fraction)				
Volatile Fraction TPH	5.2	mg/L	0.1	Wisconsin GRO	05/27/1993 EE

ND - Non Detectable

Laboratory Manager

C.1 6 Jan C. David Hainer

Reported : 06/09/1993

Page 5 of 12

197

Dames & Moore

Sample:	32069-9463	Matrix: Water
Client Sample:	AFTC 2B	Location:
COLLECTED:	05/21/1993 :	Project: Dames & Moore - #07724-009
RECEIVED:	05/25/1993 14:11	Sampled By: K. Casper

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analyst
DISSOLVED METALS ANALYSIS	÷				
Diss/Lead (GFAA)	ND	mg/L	0.002	SW-848 Mtd. 7421	06/02/1993 SRC
GC/MS VOLATILE ORGANIC					
Dichlorodifluoromethane	ND	ug/L	10	SW-846 Mtd. 8021	05/26/1993 EE
Chloromethane	ND	ug/L	10	•	05/26/1993 EE
Vinyl Chloride	ND	ug/L	10		05/26/1993 EE
Bromomethane	ND	ug/L	10		05/26/1993 EE
Chloroethane	ND	ug/L	10	•	05/26/1993 EE
Trichlorofluoromethane	ND	ug/L	10		05/26/1993 EE
1,1-Dichloroethene	ND	ug/L	5		05/26/1993 EE
Methylene Chloride	ND	ug/L	5		05/26/1993 EE
t-1,2-Dichloroethene	ND	ug/L	5	•	05/26/1993 EE
tert-Butylbenzene	ND	ug/L	5	•	05/26/1993 EE
1,1-Dichloroethane	ND	ug/L	5		05/26/1993 EE
2,2-Dichloropropane	ND	ug/L	5	•	05/26/1993 EE
c-1,2-Dichloroethene	ND	ug/L	5	•	05/26/1993 EE
Chloroform	ND	ug/L	5	"	05/26/1993 EE
Bromochloromethane	ND	ug/L	5		05/26/1993 EE
1,1,1-Trichloroethane	ND	ug/L	5		05/26/1993 EE
1,1-Dichloropropene	ND	ug/L	5		05/26/1993 EE
Carbon Tetrachloride	ND	ug/L	5		05/26/1993 EE
1,2-Dichloroethane	ND	ug/L	5		05/26/1993 EE
Benzene	22	ug/L	5	•	05/26/1993 EE
Trichloroethene	ND	ug/L	5	2	05/26/1993 EE
Dibromoethane	ND	ug/L	5	•	05/26/1993 EE
1,2-Dichloropropane	ND	ug/L	5	•	05/26/1993 EE
Bromodichloromethane	ND	ug/L	5	•	05/26/1993 EE
Tetrachloroethene	ND	ug/L	5	•	05/26/1993 EE
Toluene	71	ug/L	5		05/26/1993 EE
1,1,2-Trichloroethane	ND	ug/L	5	•	05/26/1993 EE
1,3-Dichloropropane	ND	ug/L	5	•	05/26/1993 EE
Dibromochloromethane	ND	ug/L	5		05/26/1993 EE
1,2-Dibromoethane	ND	ug/L	5		05/26/1993 EE
Chlorobenzene	ND	ug/L	5		05/26/1993 EE
1,1,1,2-Tetrachloroethane	ND	ug/L	5	•	05/26/1993 EE
ND - Non Detectable					

Page 6 of 12

: .

Dames & Moore

Client Sample:	AFTC 2B	Location:		
COLLECTED:	05/21/1993 :	Project:	Dames & Moore - #07724-009	
RECEIVED:	05/25/1993 14:11	Sampled E	By: K. Casper	

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analys
GC/MS VOLATILE ORGANIC					
Ethylbenzene	32	ug/L	5	SW-846 Mtd. 8021	05/26/1993 EE
Para & Meta Xylene	62	ug/L	5		05/26/1993 EE
Ortho Xylene	31	ug/L	5		05/26/1993 EE
Styrene	ND	ug/L	5		05/26/1993 EE
IsopropylBenzene	ND	ug/L	5		05/26/1993 EE
Bromoform	ND	ug/L	5		05/26/1993 EE
1,1,2,2-Tetrachloroethane	ND	ug/L	5		05/26/1993 EE
1,2,3-Trichloropropane	ND	ug/L	5	*	05/26/1993 EE
Bromobenzene	ND	ug/L	5	•	05/26/1993 EE
n-PropylBenzene	ND	ug/L	5	*	05/26/1993 EE
2-Chlorotoluene	ND	ug/L	5	10	05/26/1993 EE
1,3,5-Trimethylbenzene	21	ug/L	5	•	05/26/1993 EE
4-Chlorotoluene	ND	ug/L	5	•	05/26/1993 EE
1,2,4-Trimethylbenzene	45	ug/L	5		05/26/1993 EE
sec-Butylbenzene	ND	ug/L	5		05/26/1993 EE
p-Isoprpyltoluene	ND	ug/L	5		05/26/1993 EE
1,3-Dichlorobenzene	ND	ug/L	5	"	05/26/1993 EE
1,4-Dichlorobenzene	ND	ug/L	5	•	05/26/1993 EE
n-Butylbenzene	ND	ug/L	5		05/26/1993 EE
1,2-Dichlorobenzene	ND	ug/L	5		05/26/1993 EE
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	•	05/26/1993 EE
1,2,4-Trichlorobenzene	ND	ug/L	5	•	05/26/1993 EE
Hexachlorobutadiene	ND	ug/L	5	•	05/26/1993 EE
Naphthalene	ND	ug/L	5	•	05/26/1993 EE
1,2,3-Trichlorobenzene	ND	ug/L	5		05/26/1993 EE
Gasoline Range Organics (Volatile	Fraction)				
Volatile Fraction TPH	1.2	mg/L	0.1	Wisconsin GRO	05/27/1993 EE

ND - Non Detectable

Laboratory Manager

С C. David Hainer

Reported : 06/09/1993

ANATECH

Analytical Laboratories

Dames & Moore

18

Page 7 of 12

Sample: Client Sample:	32069-9464 AFTC 3	Matrix: Location:	Water
COLLECTED:	05/21/1993 :	Project:	Dames & Moore - #07724-009
RECEIVED:	05/25/1993 14:11	Sampled By:	K. Casper

	_		Detection			
Test Description	Result	Unit	Limit	Method	Date/Analys	
DISSOLVED METALS ANALYS	IS					
Diss/Lead (GFAA)	ND	mg/L	0.002	SW-846 Mtd. 7421	05/27/1993 MA	
PHYSICAL PROPERTY ANALY	SIS					
Solids, Dissolved	4770	mg/L	10	EPA 160.1	06/03/1993 NS	
GC/MS VOLATILE ORGANIC						
Dichlorodifluoromethane	ND	ug/L	25	SW-846 Mtd. 8021	05/26/1993 EE	
Chloromethane	ND	ug/L	25	•	05/26/1993 EE	
Vinyl Chloride	ND	ug/L	25	•	05/26/1993 EE	
Bromomethane	ND	ug/L	25	۳	05/26/1993 EE	
Chloroethane	ND	ug/L	25		05/26/1993 EE	
Trichlorofluoromethane	ND	ug/L	25		05/26/1993 EE	
1,1-Dichloroethene	ND	ug/L	25	n	05/26/1993 EE	
Methylene Chloride	ND	ug/L	25		05/26/1993 EE	
t-1,2-Dichloroethene	ND	ug/L	25	•	05/26/1993 EE	
tert-Butylbenzene	ND	ug/L	25	•	05/26/1993 EE	
1,1-Dichloroethane	ND	ug/L	25	•	05/26/1993 EE	
2,2-Dichloropropane	ND	ug/L	25		05/26/1993 EE	
c-1,2-Dichloroethene	ND	ug/L	25	"	05/26/1993 EE	
Chloroform	ND	ug/L	25	•	05/26/1993 EE	
Bromochloromethane	ND	ug/L	25	•	05/26/1993 EE	
1,1,1-Trichloroethane	ND	ug/L	25	•	05/26/1993 EE	
1,1-Dichloropropene	ND	ug/L	25	•	05/26/1993 EE	
Carbon Tetrachloride	ND	ug/L	25		05/26/1993 EE	
1,2-Dichloroethane	ND	ug/L	25	•	05/26/1993 EE	
Benzene	1200	ug/L	25	•	05/26/1993 EE	
Trichloroethene	ND	ug/L	25	•	05/26/1993 EE	
Dibromoethane	ND	ug/L	25	•	05/26/1993 EE	
1,2-Dichloropropane	ND	ug/L	25		05/28/1993 EE	
Bromodichloromethane	ND	ug/L	25	*	05/26/1993 EE	
Tetrachloroethene	ND	ug/L	25	•	05/26/1993 EE	
Toluene	1700	ug/L	25		05/26/1993 EE	
1,1,2-Trichloroethane	ND	ug/L	25	"	05/26/1993 EE	
1,3-Dichloropropane	ND	ug/L	25		05/26/1993 EE	
Dibromochloromethane	ND	ug/L	25	•	05/26/1993 EE	
ND - Non Detectable						

Dames & Moore

-i -

Page 8 of 12

Sample: Client Sample:	32069-9464 AFTC 3		Matrix: Location:	Water		
COLLECTED:	05/21/1993	:	Project:	Dames & Moore	- #07724-009	
RECEIVED:	05/25/1993	14:11	Sampled By:	K. Casper		

Test Description	Result	Unit	Detection Limit	Method	Date/Analyst
12-Dibromoethane	ND	ug/l	25	SW-846 Mtd 8021	05/28/1002 EE
Chlorobenzene	ND	ug/L	25	"	05/28/1993 EE
1 1 1 2-Tetrachloroethane	ND	ug/L	25		05/26/1993 EE
Fthylbenzene	630	ug/L	25		05/26/1993 EE
Para & Meta Xylene	2000	ug/L	25		05/26/1993 EE
Ortho Xylene	890	ug/L	25	19	05/26/1993 FF
Styrene	ND	ug/L	25	ю	05/26/1993 EE
IsopropylBenzene	ND	ug/L	25	м	05/26/1993 FF
Bromoform	ND	ua/L	25	•	05/26/1993 EE
1.1.2.2-Tetrachloroethane	ND	ug/L	25		05/26/1993 EE
1.2.3-Trichloropropane	ND	ug/L	25	· .	05/26/1993 EE
Bromobenzene	ND	ug/L	25		05/26/1993 EE
n-PropylBenzene	ND	ug/L	25		05/26/1993 EE
2-Chlorotoluene	ND	ug/L	25		05/26/1993 EE
1.3.5-Trimethylbenzene	200	ug/L	25		05/26/1993 EE
4-Chlorotoluene	ND	ua/L	25		05/26/1993 EE
1.2.4-Trimethylbenzene	380	ua/L	25		05/26/1993 EE
sec-Butylbenzene	ND	ug/L	25		05/26/1993 EE
p-Isoprovitoluene	ND	ug/L	25		05/26/1993 EE
1.3-Dichlorobenzene	ND	ug/L	25		05/26/1993 EE
1.4-Dichlorobenzene	ND	ua/L	25		05/26/1993 EE
n-Butylbenzene	ND	ug/L	25		05/26/1993 EE
1.2-Dichlorobenzene	ND	ug/L	25		05/26/1993 EE
1,2-Dibromo-3-Chloropropane	ND	ug/L	25		05/26/1993 EE
1,2,4-Trichlorobenzene	ND	ug/L	25		05/26/1993 EE
Hexachlorobutadiene	ND	ug/L	25	•	05/26/1993 EE
Naphthalene	ND	ug/L	25	•	05/26/1993 EE
1,2,3-Trichlorobenzene	ND	ug/L	25		05/26/1993 EE
Gasoline Range Organics (Volati	ile Fraction)				
Volatile Fraction TPH	0.8	mg/L	0.1	Wisconsin GRO	05/27/1993 EE

ND - Non Detectable

Laboratory Manager

C. David Hainer

Reported : 06/09/1993

147

Dames & Moore

Page 9 of 12

0011 FOTED. 05 /04 /4000 .			A 64 6 6 6 6
RECEIVED: 05/21/1993 14:1	Project: 1 Sampled By:	Dames & Moore - #07724-009 : K. Casper	

Test Description	Result	Unit	Limit	Method	Date/Analyst
GC/MS VOLATILE ORGANIC					
Dichlorodifluoromethane	ND	ug/L	10	SW-846 Mtd. 8021	05/26/1993 EE
Chloromethane	ND	ug/L	10	"	05/26/1993 EE
Vinyl Chloride	ND	ug/L	10		05/26/1993 EE
Bromomethane	ND	ug/L	10		05/26/1993 EE
Chloroethane	ND	ug/L	10	*	05/26/1993 EE
Trichlorofluoromethane	ND	ug/L	10	м	05/26/1993 EE
1,1-Dichloroethene	ND	ug/L	5		05/26/1993 EE
Methylene Chloride	ND	ug/L	5	"	05/26/1993 EE
t-1,2-Dichloroethene	ND	ug/L	5		05/26/1993 EE
tert-Butylbenzene	ND	ug/L	5		05/26/1993 EE
1,1-Dichloroethane	ND	ug/L	5	•	05/26/1993 EE
2,2-Dichloropropane	ND	ug/L	5	×	05/26/1993 EE
c-1,2-Dichloroethene	ND	ug/L	5		05/26/1993 EE
Chloroform	ND	ug/L	5	"	05/26/1993 EE
Bromochloromethane	ND	ug/L	5		05/26/1993 EE
1,1,1-Trichloroethane	ND	ug/L	5	•	05/26/1993 EE
1,1-Dichloropropene	ND	ug/L	5	•	05/26/1993 EE
Carbon Tetrachloride	ND	ug/L	5		05/26/1993 EE
1,2-Dichloroethane	ND	ug/L	5	•	05/26/1993 EE
Benzene	ND	ug/L	5		05/26/1993 EE
Trichloroethene	ND	ug/L	5	n	05/26/1993 EE
Dibromoethane	ND	ug/L	5		05/26/1993 EE
1,2-Dichloropropane	ND	ug/L	5		05/26/1993 EE
Bromodichloromethane	ND	ug/L	5		05/26/1993 EE
Tetrachloroethene	ND	ug/L	5	•	05/26/1993 EE
Toluene	ND	ug/L	5	. •	05/26/1993 EE
1,1,2-Trichloroethane	ND	ug/L	5		05/26/1993 EE
1,3-Dichloropropane	ND	ug/L	5		05/26/1993 EE
Dibromochloromethane	ND	ug/L	5	-	05/26/1993 EE
1,2-Dibromoethane	ND	ug/L	5		05/26/1993 EE
Chlorobenzene	ND	ug/L	5		05/26/1993 EE
1,1,1,2-Tetrachloroethane	ND	ug/L	5		05/26/1993 EE
Ethylbenzene	ND	ug/L	5		05/26/1993 EE
Para & Meta Xylene	ND	ug/L	5	•	05/26/1993 EE
Ortho Xylene	ND	ug/L	5		05/26/1993 EE
ND = Non Detectable					

Reported : 06/09/1993

ANATECH

Page 10 of 12

Analytical Laboratories Dames & Moore

- is

Sample:	32069-9465	Matrix:	Water
Client Sample:	Trip Blank 009	Location:	
COLLECTED:	05/21/1993 :	Project:	Dames & Moore - #07724-009
RECEIVED:	05/25/1993 14:11	Sampled By	y: K. Casper

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analyst
GC/MS VOLATILE ORGANIC					
Styrene	ND	ug/L	5	SW-846 Mtd. 8021	05/26/1993 EE
IsopropylBenzene	ND	ug/L	5		05/26/1993 EE
Bromoform	ND	ug/L	5	•	05/28/1993 EE
1,1,2,2-Tetrachloroethane	ND	ug/L	5	"	05/26/1993 EE
1,2,3-Trichloropropane	ND	ug/L	5	n	05/26/1993 EE
Bromobenzene	ND	ug/L	5	н	05/26/1993 EE
n-PropylBenzene	ND	ug/L	5		05/26/1993 EE
2-Chlorotoluene	ND	ug/L	5		05/26/1993 EE
1,3,5-Trimethylbenzene	ND	ug/L	5		05/26/1993 EE
4-Chlorotoluene	ND	ug/L	5	•	05/26/1993 EE
1,2,4-Trimethylbenzene	ND	ug/L	5		05/26/1993 EE
sec-Butylbenzene	ND	ug/L	5	•	05/26/1993 EE
p-Isoprpyltoluene	ND	ug/L	5		05/26/1993 EE
1,3-Dichlorobenzene	ND	ug/L	5		05/26/1993 EE
1,4-Dichlorobenzene	ND	ug/L	5		05/26/1993 EE
n-Butylbenzene	ND	ug/L	5	"	05/26/1993 EE
1,2-Dichlorobenzene	ND	ug/L	5	•	05/26/1993 EE
1,2-Dibromo-3-Chloropropane	ND	ug/L	5		06/26/1993 EE
1,2,4-Trichlorobenzene	ND	ug/L	5		05/26/1993 EE
Hexachlorobutadiene	ND	ug/L	5	•	05/26/1993 EE
Naphthalene	ND	ug/L	5		05/26/1993 EE
1,2,3-Trichlorobenzene	ND	ug/L	5	•	05/26/1993 EE
Gasoline Range Organics (Volatile	Fraction)				
Volatile Fraction TPH	ND	mg/L	0.1	Wisconsin GRO	05/27/1993 EE

ND - Non Detectable

Laboratory Manager

C. David Hainer w/

Reported : 06/09/1993

••

1920

Page 11 of 12

Dames & Moore

Sample:	32069-9466	Matrix: Water
Client Sample:	Field Blank 009	Location:
COLLECTED:	05/21/1993 :	Project: Dames & Moore - #07724-009
RECEIVED:	05/25/1993 14:11	Sampled By: K. Casper

Test Description	Result	Unit	Limit	Method	Date/Analys
GC/MS VOLATILE ORGANIC					
Dichlorodifluoromethane	ND	ug/L	10	SW-846 Mtd. 8021	05/26/1993 EE
Chloromethane	ND	ug/L	10		05/26/1983 EE
Vinyl Chloride	ND	ug/L	10		05/26/1993 EE
Bromomethane	ND	ug/L	10	"	05/26/1993 EE
Chloroethane	ND	ug/L	10	n	05/26/1993 EE
Trichlorofluoromethane	ND	ug/L	10		05/26/1993 EE
1,1-Dichloroethene	ND	ug/L	5		05/26/1993 EE
Methylene Chloride	ND	ug/L	5		05/26/1993 EE
t-1,2-Dichloroethene	ND	ug/L	5	и	05/26/1993 EE
tert-Butylbenzene	ND	ug/L	5	•	05/26/1993 EE
1,1-Dichloroethane	ND	ug/L	5		05/26/1993 EE
2,2-Dichloropropane	ND	ug/L	5		05/26/1993 EE
c-1,2-Dichloroethene	ND	ug/L	5	*	05/26/1993 EE
Chloroform	ND	ug/L	5	7	05/26/1993 EE
Bromochloromethane	ND	ug/L	5	•	05/26/1993 EE
1,1,1-Trichloroethane	ND	ug/L	5	-	05/26/1993 EE
1,1-Dichloropropene	ND	ug/L	5		05/26/1993 EE
Carbon Tetrachloride	ND	ug/L	5	•	05/26/1993 EE
1,2-Dichloroethane	ND	ug/L	5	•	05/26/1993 EE
Benzene	120	ug/L	5		05/26/1993 EE
Trichloroethene	ND	ug/L	5	*	05/26/1993 EE
Dibromoethane	ND	ug/L	5		05/26/1993 EE
1,2-Dichloropropane	ND	ug/L	5	•	05/26/1993 EE
Bromodichloromethane	ND	ug/L	5	•	05/26/1993 EE
Tetrachloroethene	ND	ug/L	5	•	05/26/1993 EE
Toluene	520	ug/L	5	•	05/26/1993 EE
1,1,2-Trichloroethane	ND	ug/L	5	n	05/26/1993 EE
1,3-Dichloropropane	ND	ug/L	5		05/26/1993 EE
Dibromochloromethane	ND	ug/L	5		05/26/1993 EE
1,2-Dibromoethane	ND	ug/L	5		05/26/1993 EE
Chlorobenzene	ND	ug/L	5	•	05/26/1993 EE
1,1,1,2-Tetrachloroethane	ND	ug/L	5		05/26/1993 EE
Ethylbenzene	65	ug/L	5		05/26/1993 EE
Para & Meta Xylene	160	ug/L	5	. "	05/26/1993 EE
Ortho Xylene	89	ug/L	5	•	05/26/1993 EE
ND = Non Detectable					

Reported : 06/09/1993

•

Page 12 of 12

Dames & Moore

Sample:	32069-9466	Matrix:	Water
Client Sample:	Field Blank 009	Location:	
COLLECTED:	05/21/1993 :	Project:	Dames & Moore - #07724-009
RECEIVED:	05/25/1993 14:11	Sampled By	r: K. Casper

			Detection		
Test Description	Result	Unit	Limit	Method	Date/Analyst
GC/MS VOLATILE ORGANIC					
Styrene	ND	ug/L	5	SW-846 Mtd. 8021	05/26/1993 EE
IsopropylBenzene	ND	ug/L	5	•	05/26/1993 EE
Bromoform	ND	ug/L	5		05/26/1993 EE
1,1,2,2-Tetrachloroethane	ND	ug/L	5	•	05/26/1993 EE
1,2,3-Trichloropropane	ND	ug/L	5	n	05/26/1993 EE
Bromobenzene	ND	ug/L	5	15	05/26/1993 EE
n-PropylBenzene	ND	ug/L	5	*	05/26/1993 EE
2-Chlorotoluene	ND	ug/L	5		05/26/1993 EE
1,3,5-Trimethylbenzene	40	ug/L	5	-	05/26/1993 EE
4-Chlorotoluene	ND	ug/L	5		05/26/1993 EE
1,2,4-Trimethylbenzene	34	ug/L	5	n	05/26/1993 EE
sec-Butylbenzene	ND	ug/L	5	n	05/26/1993 EE
p-Isoprpyltoluene	ND	ug/L	5	•	05/26/1993 EE
1,3-Dichlorobenzene	ND	ug/L	5	•	05/26/1993 EE
1,4-Dichlorobenzene	ND	ug/L	5	*	05/26/1993 EE
n-Butylbenzene	ND	ug/L	5		05/26/1993 EE
1,2-Dichlorobenzene	ND	ug/L	5		05/26/1993 EE
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	•	05/26/1993 EE
1,2,4-Trichlorobenzene	ND	ug/L	5	•	05/26/1993 EE
Hexachlorobutadiene	ND	ug/L	5	•	05/26/1993 EE
Naphthalene	ND	ug/L	5	•	05/26/1993 EE
1,2,3-Trichlorobenzene	ND	ug/L	5		05/26/1993 EE

ND - Non Detectable

Laboratory Manager AIN C. David Hainer

Reported : 06/09/1993

Ť A	MEG	0. 110				aleck				Τι	Irnaround Time
→ DA ,	st Wisco	onsin Ave, S	Suite	NE 1500	Chain of Custoc マッマ	ly Seal <i>≢</i>		#	\ 	Rush	(preapproved by Lab) al
Mil (414) PROJECT NAME: PROJECT #:(Sond Rosults To: PROJECT MANAG	waukee, 347-0800 27724 iER:	Wisconsin FAX:(414) : - 009 - 009	532	02 288 	SHIPPING DETAI Method of Shipm Contents Tempers	LS; ent <u>Exc/Ey</u> utureC	ų į	5		×	$ \frac{2}{4} \frac{2}{250} \frac{1}{100} \frac{1}{$
LAB USE ONLY	DATE	CONTAINERS	No.	SAM	PLE ID	SAMPLE T	YPE			IS REQUESTED	REMARKS/PRESERVATIVES
9461	5-21-93	40ml gl	4	AFTC1		Gred the	2	XX			Hel
		250 ml pl	1	AFTC.	1	Gradty	0		X_		HNU3
9462		40 mg	4	AFTC	2A	Gind the	0	X			HCC
		250 ml gl	1	AFTC	2A	Gind Hy	0		, X _		HNU
4463		40 mlcl	4	AFTC	ZB	Girel 12	0	X 2			HALL IN
		Sompl		AFTC	20	and the	2			•	HAIU3
1464		40 ml Gl	4	KFIC	<u></u>	Grind H	Ð			<u></u>	->unpres. see bele
<u> </u>		25UME PL		Tin	J L MA	H-D	\mathcal{O}_{-}				MVV3
<u> </u>		to Migi.	4	E LIS	are w 1	170	\mathcal{D}	\sim	}		40
1706	· · · · · · · · · · · · · · · · · · ·	tuniq.		FW41	xun	gine P3	ν_{-}				
						•.				╶┼──┼──┼	
HAIN OF CUSTON	DY RECOL	RD CO DATE 4 1-23 4	DMME FTC	ENTS 13 (GRO 14 Hair	+VOLS) all ur 5 219 2	un prosen 3 for Al	Vid TC	1. E	<u>pich</u> mly.	ted turn . TDS only .	approved per
RELINQUISHED BY:	(SIGNATURE)	DATE/TIME 5-34 522 DATE/TIME	REC REC	EIVED BY: ECCEX.	SKANATURE REL	INQUISHED BY	1: ₍ 5%) (: ₍ 5%)	ANATURI	DATE/		BY: SKANATURE

.

Manulacturer's	ANSUL FIRE PROTECTION	Emergency CHEMTREC
Address:	One Stanton Street, Marinette, WI (4143-2542	Other Information (715) 735-7411 Calla:
Prepared By:	Safety and Health Department	Date Prepared: JANUARY 6, 1992

SECTION 1 - IDENTITY

Common Name: (Trade Name an	(used on izbel) Purple-K Dry Chemical Extinguishing Agent d Bynonyme)	CAS NO .:	N/A
Chemical Name:	N/A This is a Mixture	Chemical Family:	Mixture
Formula:	N/A	· · · · · · · · · · · · · · · · · · ·	

SECTION 2 - INGREDIENTS

CAS No	100011 5111	
	ACGIH TLV	Acute Toxicity Data
12001-26-2	20 mppc1*	NDA
8031-18-3	10 mg/M3	NDA
	••••••	
· · · · · · · · · · · · · · · · · · ·		
CAS No.		Acuta Toxicity Data
298-14-6		NDA
63148-57-2		NDA
Mixture	<u>. </u>	NDA
	12001-26-2 8031-18-3 CAS No. 298-14-6 63148-57-2 Mixture	12001-25-2 20 mppc1* 8031-18-3 10 mg/M3 CAS No. 298-14-6 63148-57-2 Mixture

SECTION 3 — PHYSICAL AND CHEMICA, CHARACTERISTICS (Fire and Explosion Data)

Boiling Point:	N/A	· · · · · · · · · · · · · · · · · · ·		Specific Gravity (H2O = 1):	N/A	Vapor Pressure (mm Hg):	N/A
Percent Valatile by Volume (%):	N/A	Vapor Density (Alr = 1):	N/A	Evaporation Rate (= 1):	N/A		
Solubility in Water:	Slight			Reactivity in Water:	N/A		
Appearance and Odor:	Violet color	red powder, no chara	cteristic (odor			
Flash Point:	None	Flammable Limits In Air % by Volum:	N/A	Extinguisher Media:	N/A	Auto-Ignition Temperature:	N/A
Special Fire Fighting Procedures:	NÓNE -	THIS IS AN EXTING .	IISHING	AGENT		· · · · · · · · · · · · · · · · · · ·	
Unusual Fire and Explosion Hazards:	None						

SECTION 4 - PHYSICAL HAZARDS

Stability:	Unstable Stable			Condi lor to Avuid:	\$	N/A			
Incompatibility (Materials to Ayold):	Strong	acids	, NaK allo	y and N	H4	H2PO4		 	
Hazardous Decomposition Producti	CO2						 		
Hazardous Polymerization:	May Will Not	Occur Occur		Condition to Avc d:	3	N/A			

SECTION 5 - HEALTH HAZARDS

Threshold Limit Value:	OSHA nulsance dust limit of 15 ing/M3 or ACGIH nulsance dust value of 10 mg/M3 for the eight hour time-weighted average.
Routes of Entry: Eye Contact:	Mildly irritating for a short period of time.
Skin Contact:	May be mildly initialing.
Inhalation:	Treat as a mineral dust. Irritant to the respiratory tract.
Ingestion:	Not an expected route of entry.
Signs and Acuta C Symptoms: Chronic C	Iverexposure: Translent cough, shortness of breath. Iverexposure: Chronic fibrosis of the long.
Medical Conditions G Aggravated by Expos	enerally Reactive airway ure:
Chemical Listed as C or Potential:	arcinogen National Toxicology /es

SECTION 6 - EMERGENCY AND FIRST AID PROCEDURES

Flush with large amounts of water; if irritation persists, seek Medical attention.	
Wash with soap and water; if irritation persists, seek Medical attention.	
Remove victim to fresh air. Seek Medical attention if discomfort continues.	
If patient is conscious, give large amounts of water and induce vomiting. Seek Medical help.	
	Flush with large amounts of water; if irritation persists, seek Medical attention. Wash with soap and water; if irritation persists, seek Medical attention. Remove victim to fresh air. Seek Medical attention if discomfort continues. If patient is conscious, give large amounts of water and induce vomiting. Seek Medical help.

SECTION 7 - SPECIAL PROTECTION INFORMATION

Respiratory Protection (Specify Type):	Dust mask where dustiness is p prolonged.	privalent, or TLV e:	xceeded. Mechanical filter respirator il exposure is
Ventilation;	Local Discretionary Exhaust:	Mechanical (General):	Recommended
Protective Gloves:	N/A	Eye Protection:	Recommended as mechanical barrier for prolonged exposure.
Other Protective Clothing or Equipment:	If irritation occurs, long sleeves	and impervious gid	oves should be worn.

SECTION 8 - SPECIAL PRECAUTIONS AND SPILL/LEAK PROCEDURES

Precautions to be Taken In Handling and Storage:	Should be stored in original container or Ansul fire extinguisher.
Other Precautions:	Do not mix agents.
Steps to be Taken in Case Material is Released or Spilled:	Sweep up.
Waste Disposal Melhods:	Dispose of in compliance with local, state, and federal regulations.

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM RATINGS

H 4 3 2 1 0	AZARD INDEX: Severe Hazard Serious Hazard Moderate Hazard Slight Hazard Minimal Hazard	HEALTH FLAMMABILITY REACTIVITY
<u> </u>		

N/A = Not Applicable NDA = No Data Available

ANSUL is a registered trademark.

• •

.

ANSUL FIRE PROTECTION MARINETTE, WI 54143-2542

MATERIAL SAFETY DATA SHEET

PLUS-FIFTY C

OUICK IDENTIFIER (In Plant Common Name)

Manufacturer's Name:	ANSUL FIRE PROTECTION	Emergency CHEMTREC Telephone No.: (800) 424-9300
Address:	One Stanton Street, Marinette, WI 54143-2542	Other Information (715) 735-7411 Calls:
Prepared By:	Salety and Health Department	Date Prepared: August 26, 1992

SECTION 1 - IDENTITY

Common Name: (used on label) (Trade Name and Synonyms)		PLUS-FIFTY C Dry Chemical CAS No.: Extinguishing Ager :		N/A	
Chemical Name:	N/A This is e	a Mixture	Chemical Family:	Mixture	
Formula:	N/A				

SECTION 2 - INGREDIENTS

CAS No.	ACGIH TLV	Acute Toxicity Data
14807-96-6	2 mg/m3	NDA
8031-18-3	10 mg/M3	NDA
CAS No.		Acute Toxicity Data
144-55-8		Oral LD50 (rat) 4220 mg/kg
63148-57-2		NDA
00147-14-8		Oral LD50 (rat) 6400 mo/kg
	CAS No. 14807-96-6 8031-18-3 CAS No. 144-55-8 63148-57-2 00147-14-8	CAS No. ACBIH TLV 14807-96-6 2 mg/m ³ 8031-18-3 10 mg/M ³ CAS No. 144-55-8 63148-57-2 00147-14-8

SECTION 3 — PHYSICAL AND CHEMICAL CHARACTERISTICS (Fire and Explosion Data)

Boiling Point:	N/A	and a second		Specific Gravity (H2O = 1):	N/A	Vapor Pressure (mm Hg):	N/A
Percent Volatile by Volume (%);	N/A	Vapor Density (Alr = 1):	N/A	Evaporation Rate (= 1);	N/A		
Solubility in Water:	Slight			Reactivity in Water:	Unreactive		
Appearance and Odor:	Blue color	ed powder, no charact	teristic od	lor	<u></u>	<u></u>	
Flash Point:	None	Flammable Limit: In Air % by Volu ne:	N/A	Extinguisher Media:	N/A	Auto-Ignition Temperature:	N/A
Special Fire Fighting Procedures:	NONE -	THIS IS AN EXTINGU	ISHING /	AGENT			
Unusual Fire and Explosion Hazarda:	None						

SECTION 4 - PHYSICAL HAZARDS

Stability:	Unstable 🗋 Stable 🖾	Corditions N/A to Avoid:	
Incompatibility (Materials to Avoid):	Strong acids,	NaK alloy and NH4H2PO4	· · · · · · · · · · · · · · · · · · ·
Hazardous Decomposition Produc	CO2		
Hazardous Polymerization:	May Occur	Cor sluona N/A to / void:	

PLUS-FIFTY C (Continued)

.

SECTION 5 - HEALTH HAZARDS

Threshold	OSHA nulsance dust limit of 15 mg/M3 or ACGIH nuisance dust value of 10 mg/M3 for the eight hour			
Limit Value:	time-weighted average.			
Routes of Entry: Eye Contact:	toutes of Entry: Mildly trritating for a short period of time.			
Skin Contact:	May be mildly irritating.			
Inhalation:	Treat as a mineral dust. Irritant to the respiratory tract.			
Ingestion:	Not an expected route of entry.			
Signs and Acute C Symptoms: Chronic C	verexposure: Translent cough, shorness of breath. verexposure: Talcosia, pulmonary filtrosia.			
Medical Conditions G Aggravated by Expos	enerally Reactive airway ure:			
Chemical Listed as C or Potential:	arcinogen National Toxiculogy Yes CI I.A.R.C. Yes D OSHA: Yes D Program: No X: Monographs: No CI No X			

SECTION 6 - EMERGENCY AND FIRST AID PROCEDURES

Eye Contact:	Flush with large amounts of water; if irritation persists, seek Medical attention.
Skin Contact:	Wash with soap and water; If Irritation persists, seek Medical attention.
Inhalation:	Remove victim to fresh air. Seck Medical attention if discomfort continues.
ingestion;	If patient is conscious, give large amounts of water and induce vomiting. Soek Medical help,

SECTION 7 - SPECIAL PROTECTION INF DRMATION

Respiratory Protection (Specily Type):	Dust mask where dustiness is prevalent, or TLV exceeded. Mechanical filter respirator if exposure prolonged.			
Ventilation:	Local Discretionary Exhaust:	Mechanical (General):	Recommended	
Protective Bloves:	N/A	Eye Protection:	Recommended as mechanical barrier for prolonged exposure.	
Other Protective Clothing or Equipment:	If Irritation occurs, long sleeve: and Impervious gloves should be worn.			

SECTION 8 - SPECIAL PRECAUTIONS AND SPILL/LEAK PROCEDURES

Precautions to be Taken in Handling and Storage:	Should be stored in original container or Ansul fire extinguisher.
Other Precautions:	Do not mix agents.
Steps to be Taken in Case Material is Released or Spilled:	Sweep up.
Waste Disposal Methoda:	Dispose of in compliance with local, state, and federal regulations.

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM RATINGS

HAZARD INDEX:		٦
4 Severe Hazard		
3 Serious Hazard		
2 Moderate Hazard	FLAMMABILITY	
1 Slight Hazard		
0 Minimal Hazard		
N/A = Not Applicable	NDA = No Data Available	

ANSUL and PLU8-FIFTY are registered trademarks.

FORAY OUICK IDENTIFIER (In Plant Common Name)

Manufacturer's Name:	ANSUL FIRE PROTECTION	Emergency CHEMTREC Telephone No.: (800) 424-9300
Address:	One Stanton Street, Marinette, WI 54143-2542	Other Information (715) 735-7411 Calls:
Prepared By:	Safety and Health Department	Date Prepared: April 15, 1992

SECTION 1 -- IDENTITY

Common Name (Trade Name ar	: (used on label) nd Synonyms)	FORAY Dry Chemical Extinguishing Agent	CAS No .:	N/A
Chemical Name:	N/A This is a	a Mixture	Chemical Family:	Mixture
Formula:	N/A			

SECTION 2 - INGREDIENTS

PART A - HAZARDOUS INGREDIENTS			
Principal Hazardous Component(s) (chemical and common rame(s)):	CAS No.	ACGIH TLV	Acute Toxicity Data
Muscovite Mica	12001-26-2	20 mppct*	NDA
Magnesium Aluminum Silicate	12174-11-7	10 mg/M3	NDA
*Million particles per cubic foot			
PART B - OTHER INGREDIENTS			
Other Component(e) (chemical and common name(s)):	CAS No.		Acute Toxicity Data
Proprietary Mixtures of: Monoammonium Phosphate	7722-78-1		Oral (Rat) LD50 5750 mg/kg
Ammonium Sulfate	7783-20-2		Oral (Rat) LD50 3000 mg/kg
Methyl Hydrogen Polysiloxane	63148-57-2		NĎĂ
Yellow Pigment	5488-75-7	-	NDA

SECTION 3 - PHYSICAL AND CHEMICAL CHARACTERISTICS (Fire and Explosion Data)

Bolling Point:	N/A			Specific Gravity (H2O = 1):	N/A	Vapor Pressure (mm Hg):	N/A
Percent Volatile by Volume (%):	N/A	Vapor Density (Air = 1):	N/A	Evaporation Rate (= 1):	N/A		
Solubility In Weter:	Slight			Reactivity in Water:	Unreactive		
Appearance and Odor:	Yellow colore	d powder, no chare	cteristic o	dor			
Flash Point:	None	Flammable Limits In Air % by Volume:	N/A	Extinguisher Media:	N/A	Auto-Ignition Temperature:	N/A
Special Fire Fighting Procedures:	NONE - TH	IS IS AN EXTINGU	ISHING A	GENT			
Unusual Fire and Explosion Hazards:	None						

SECTION 4 - PHYSICAL HAZARDS

Stability:	Unetable Stable	18		Corditions to Avoid:	N/A
Incompatibility (Materials to Avoid):	Stron	g alka	lis, Mg. ox	dizers that	can release chlorine per NFPA 43A
Hazardous Decomposition Products	NH3	and/or	PO _X may	be ovolved	
Hazardous Polymerization:	May Will Not	Occur Occur	□ 28	Conditions to /ivold:	N/A

SECTION 5 - HEALTH HAZARDS

Threshold Limit Value:	OSHA nuisance dust limit of 15 mg/M3 or ACGIH nuisance dust value of 10 mg/M3 for the eight hour time-weighted average.
Routes of Entry: Eye Contact:	Mildly irritating for a short period of time.
Skin Contact:	May be mildly irritating.
Inhalation:	Treat as a mineral dust, Irritant to the respiratory tract.
ingéstion:	Not an expected route of entry.
Signs and Acute C	werexposure: Transient cough, shortness of breath.
Symptoms: Chronic C	Iverexposure: Chronic Ilbrosis of the lung, pneumoconiosis.
Medical Conditions G Aggravated by Expos	enerally Reactive airway ure:
Chemical Listed as C or Potential:	arcinogen National Toxicology Yes 🗇 I.A.R.C. Yes 🖵 OSHA: Yes 🗔 Program No X: Monographs: No X: No X

SECTION 6 - EMERGENCY AND FIRST AID PROCEDURES

Eye Contact:	Flush with large amounts of water; if irritation persists, seek Medical attention.
Skin Contact:	Wash with soap and water; if irritation persists, seek Medical attention.
Inhalation;	Remove victim to fresh air. Seak Medical altention if discomfort continues.
Ingestion:	If patient is conscious, give large amounts of water and induce vomiting. Seek Medical help.

SECTION 7 - SPECIAL PROTECTION INFORMATION

Respiratory Protection (Specify Type):	Dust mask where dustiness is prevalent, or TLV exceeded. Mechanical filter respirator if exposure is prolonged.				
Ventilation:	Local Exhauat:	Discretionary	Mechanical (General).	Racommended	
Protective Gloves:	N/A		Eye Protection:	Recommended as mechanical barrier for prolonged exposure.	
Other Protective Clothing or Equipment:	If irritatio	on occurs, long sleeves	and imporvious glo	ves should be worn.	

SECTION 8 - SPECIAL PRECAUTIONS AND SPILL/LEAK PROCEDURES

Precautions to be Taken In Handling and Storage:	Should be stored in original container or Ansul fire extinguisher.
Other Precautions:	Do not mix agents,
Steps to be Taken in Case Material is Released or Spilled:	Sweep up.
Waste Disposal Methods:	Dispose of in compliance with local, state, and federal regulations.

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM RATINGS

HAZARD INDEX:	
4 Severe Hazard	
3 Serious Hazard	
2 Moderate Hazard	OFLAMMABILITY
1 Slight Hazard	
0 Minimal Hazard	REACTIVITY
Low and the second seco	

N/A = Not Applicable NDA = No Data Available

ANSUL and FORAY are registered trademarks.

والمنابع المعادمة المراجع المرا