MAPPING POTENTIALLY RESTORABLE WETLANDS IN THE ROCK RIVER BASIN

Final Report to the U.S. Environmental Protection Agency, Region V Wetland Grant # CD **96544501-0**

August 2008

MAPPING POTENTIALLY RESTORABLE WETLANDS IN THE ROCK RIVER BASIN

Final Report to the U.S. Environmental Protection Agency, Region V Wetland Grant # CD **96544501-0**

August 2008

Authors: Brynda Hatch, Wisconsin Department of Natural Resources Tom Bernthal, Wisconsin Department of Natural Resources This report was prepared by the Wisconsin Department of Natural Resources under Grant No. 96544501-0 from the U. S. Environmental Protection Agency, Region 5. Points of view expressed in this report do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Contact for Further Information Brynda Hatch Bureau of Watershed Management Wisconsin Department of Natural Resources 101 S. Webster Street P.O. Box 7921 Madison, WI 53707-7921 Phone: (608) 261-6446 Email: Brynda.Hatch@Wisconsin.gov

CONTENTS

Executive Summary	1
CHAPTER 1: INTRODUCTION	2
CHAPTER 2: POTENTIALLY RESTORABLE WETLANDS	5
IDENTIFYING POTENTIALLY RESTORABLE WETLANDS	5
LIMITATIONS	8
CHAPTER 3: DATA	9
DATA PROCESSING	
Data Processing Environment	
Data Format	9
DATA LAYERS	9
Input Layer: HYDRIC SOILS from Natural Resource Conservation Service	
Input Layer: MAPPED WETLANDS from Wisconsin Wetland Inventory	
Input Layer: LAND USE from National Agriculture Statistics Service	
Input Layer: RESTORED WETLANDS from various tracking efforts	
Input Layer: SUBWATERSHEDS from TMDL modeling process	
Output Layer: Potentially Restorable Wetlands (PRW)	16
CHAPTER 4: METRICS, RELATIVE NEED & POTENTIAL OPPORTUNITY	17
CHAPTER 5: SUMMARY	20
USING ROCK RIVER BASIN PRW INFORMATION	20
LESSONS LEARNED	21
CHAPTER 6: LITERATURE CITED	22
APPENDICES	
APPENDIX A: COMPREHENSIVE LAND USE AND PRW METRICS	
APPENDIX B: DATA DICTIONARY FOR ROCK RIVER BASIN POTENTIALLY RESTORABLE WETLANDS LAYER	
APPENDIX C: DECISION MATRIX FOR ROCK RIVER BASIN POTENTIALLY RESTORABLE WETLANDS LAYER	
APPENDIX D: HYDRIC SOILS APPENDIX E: PROCESSING DOCUMENTATION FOR POTENTIALLY RESTORABLE WETLANDS LAYER	
AFFENDIAL. PROCESSING DOCUMENTATION FOR FOTENTIALLY RESTORABLE WEILANDS LATER	47
FIGURES	_
FIGURE 1: STUDY AREAS	
FIGURE 2: ROCK RIVER BASIN IN WISCONSIN FIGURE 3: PHOTO SERIES OF GIS PROCESS	
FIGURE 4: HYDRIC SOILS FIGURE 5: MAPPED WETLANDS	
FIGURE 5: MAPPED WEILANDS	
FIGURE 7: SUBWATERSHEDS	
FIGURE 8: POTENTIALLY RESTORABLE WETLANDS	
FIGURE 9: WETLAND RESTORATION RELATIVE NEED	
FIGURE 10: WETLAND RESTORATION RELATIVE POTENTIAL OPPORTUNITY.	
	-

TABLE

TABLE 1.	ROCK RIVER BASIN METRICS	(IN ACRES)	17
----------	--------------------------	------------	----

Executive Summary

The Rock River Basin area is the third location in Wisconsin where potentially restorable wetlands (PRWs) have been mapped. The Rock River Basin is the largest area to be analyzed so far, at 2.3 million acres, covering some or all of 11 counties. Using the previous two study sites as guides, the methods have been refined and improved. To expedite the process time, input datasets have been chosen that have statewide cover. Therefore, the mapping decisions made for this basin, can be applied to other watersheds or basins in the future.

Our calculations show that the Rock River Basin had about 632,297 acres of wetlands in presettlement times. Of those, 270,667 acres, or 42.8%, have been lost due to agricultural, residential and transportation development. This coarse analysis shows that 87.6% of the lost wetland acres in the Rock River Basin have some potential to be restored.

To be considered a PRW, an area must have hydric soil, not be currently mapped as a wetland, and have a land use compatible with restoration techniques. Maps made with the layer can be used for a landscape level analysis of wetland restoration potential. For example, the layer can be used as the input for plans to improve water quality, provide flood storage, expand wildlife habitat or to increase recreational opportunities.

Metrics calculated for each subwatershed can help to compare their relative need for restoration within the basin. The Relative Need score reflects both the relative amount of wetlands lost and the prevalence of original (presettlement) wetlands in the subwatershed. Subwatersheds of higher Need are those that originally had a larger percentage of wetlands, but have lost a large amount. The Potential Opportunity score indicates where a large percentage of the lost wetlands can potentially be restored.

This PRW layer will initially be used to aid implementation of a watershed plan to clean up rivers, stream and lakes impaired by polluted runoff in the Rock River Basin. The plan, known as a Total Maximum Daily Load (TMDL) analysis, identified pollutant reduction goals needed to bring over 40 waterbodies into compliance with water quality standards. The PRW layer will allow managers to locate where wetland restoration can contribute the most toward achieving the pollutant reduction goals.

With all of the advancements in GIS technology, the data processing techniques change quite a bit with each new area analyzed. The process outlined in this report uses the most current GIS analysis tools, but it should not be considered a fixed procedure. As new basins are analyzed, the decision rules will have to be reevaluated, to account for differences in the landscape.

CHAPTER 1: INTRODUCTION

Previous Studies

The process to map potentially restorable wetlands in Wisconsin was first developed through an EPA grant-funded DNR project in the Milwaukee River Basin in 2006. The methodology was repeated, with some modifications, for Mead Lake Watershed in 2007. Local landuse datasets, with different landuse categories, were used in each of the studies. Because of regional differences, decisions on what would be considered a hydric soil also differed. Rock River Basin marks the third time this process has been carried out. This time, however, the data sources were all statewide

datasets, so the process outlined below should be applicable to future watershed projects. The methods have also changed slightly each time because the GIS software has been updated to new versions with new tools available each time.

The proposed objective for this study is to create a dataset that can be incorporated into the Water Assessment Tracking and Electronic Reporting System (WATERS), to help expand the WDNR's capacity for wetland management at the watershed scale. The addition of wetland condition as a component of the 305(b) reports to EPA will be a first step in better integrating wetland assessment into the surface water program.

Figure 1: Study Areas

The Rock River Basin

The Rock River Basin is comprised of 2.3 million acres of land in the glaciated portion of south central Wisconsin. The most dominant geologic features are extensive drumlin fields in several counties. The Wisconsin portion of the Rock River Basin covers approximately 3,750 square miles, and includes parts or all of eleven counties. The basin is largely agricultural, with expanding urban areas. The basin includes the internationally recognized Horicon Marsh, a migration stopover for many birds. The area is home to Madison, the state capital, and the Yahara chain of lakes. The Rock River continues to flow southwest and meets the Mississippi River in Illinois.

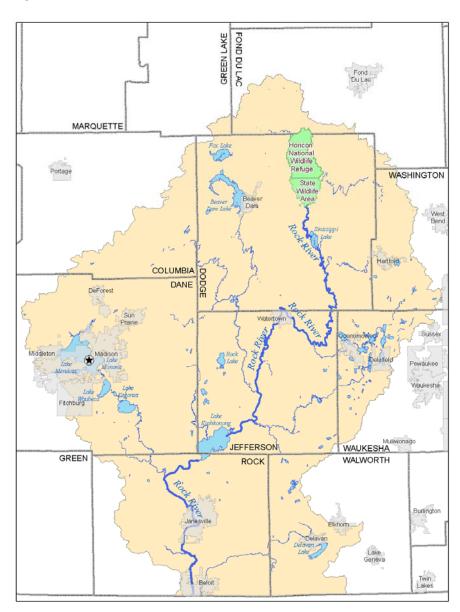


Figure 2: Rock River Basin in Wisconsin

Application to Total Maximum Daily Load (TMDL) Efforts

The DNR is in the process of developing a TMDL to improve impaired waters in the Rock River Basin. Over 40 waterbodies in the basin are listed as impaired waters. Impaired waters are defined in Section 303d of the federal Clean Water Act as not meeting the state's water quality standards or use designations. The Rock River TMDL will focus on the waterbodies that are impaired by excessive sediment and phosphorus. These pollutants can cause low dissolved oxygen, degraded habitat and excessive turbidity in waterways, resulting in harm to fish and aquatic life, water quality, recreation and even navigation. The TMDL will provide a quantitative analysis of the amount of sediment and/or phosphorus that the waterbodies can receive from both point and nonpoint sources and still meet water quality standards.

The potentially restorable wetlands layer will be useful in implementation of the TMDL, because it allows analysis of wetland restoration as part of the solution to the impaired water problem. Wetlands can act as filters and can function to remove sediment and nutrients from polluted runoff before it reaches downstream waterbodies. The PRW layers can be used to plan out different scenarios of wetland restoration and analyze their potential contribution to reducing sediment and phosphorous loads to downstream waters.

For more information on the Rock River TMDL analysis, go to http://www.dnr.state.wi.us/org/water/wm/wqs/303d/RockRiverTMDL/

Additional Applications of the PRW layer

In addition to applying the PRW layer to TMDL implementation, there are other applications of the data. Two major uses are described below.

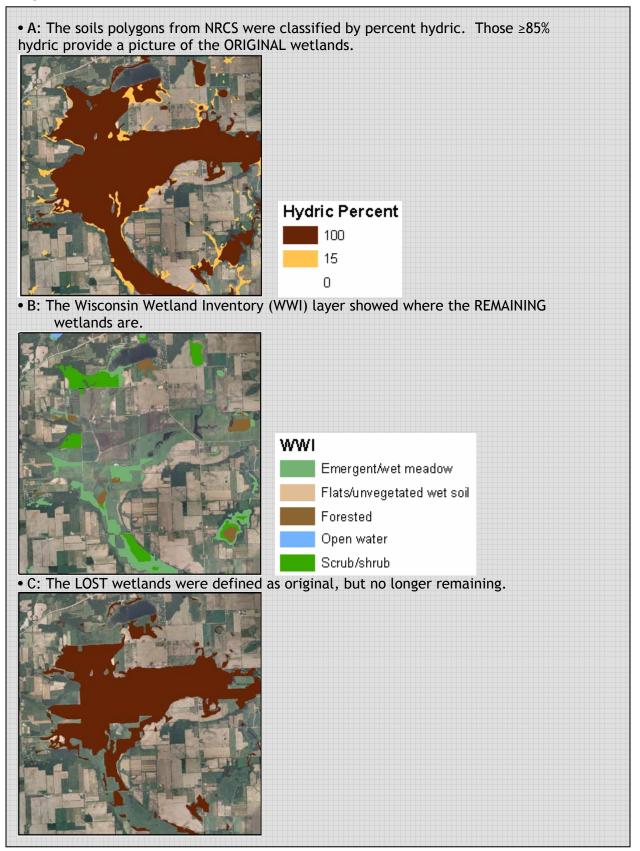
The Need and Opportunity scores can be used as global measures to target areas where wetland restoration can have the greatest benefits. These should be particularly useful to federal state and local agencies planning restoration and acquisition efforts in the Basin.

The Department will be refining GIS decision tools to assess specific functional benefits that wetland restoration can achieve for water quality improvement, flood storage and wildlife habitat. The tools will analyze the provision of these key ecosystem services by existing wetlands and allow a relative comparison of where wetland restoration can provide the most benefit for each service. The PRW layer is an essential input for these tools.

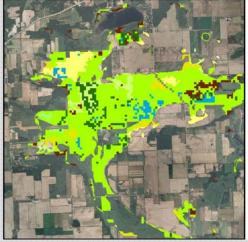
Rock River Basin: Mapping its Potentially Restorable Wetlands

CHAPTER 2: POTENTIALLY RESTORABLE WETLANDS

IDENTIFYING POTENTIALLY RESTORABLE WETLANDS

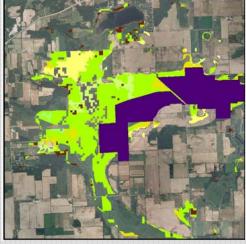

The original pilot study in the Milwaukee River Basin (MRB) began by evaluating the role of existing wetlands in improving water quality, flood control, or wildlife habitat, and then focused on identifying where restored wetlands would have the greatest ecological impact. The concept of a potentially restorable wetland (PRW) emerged, and is based on three criteria:

- there had to be favorable soil conditions to support a wetland (hydric soils);
- the site could not currently be mapped as a wetland (if so, it could be a candidate for an enhancement or rehabilitation project rather than a restoration);
- there had to be opportunities for restoring a site to a functioning wetland. Opportunity was defined as having a compatible land use.


These key concepts were the core elements of both the MRB project and the Mead Lake Watershed project. Figure 3 below illustrates in simplified fashion, how GIS data sets (discussed in Chapter 3) were utilized to develop the potentially restorable wetland (PRW) layer. The area in Figure 3 is a subset of the subwatershed known as L0105, in Walworth County.

Rock River Basin: Mapping its Potentially Restorable Wetlands

Figure 3: Photo Series of GIS Process


• D: Areas marked as wetlands in National Agriculture Statistics Service's (NASS) 2006 cropland layer were also considered REMAINING. Land uses were taken from NASS and

ed REMAINING. Land uses were taken from NASS and overlaid on the LOST wetlands to locate areas with land use likely to be compatible with restoration (cropland, fallow fields, shrubland, and woodland).

• E: Previously restored sites are excluded. These came from GIS data compiled from

existing databases from USDA-NRCS, USFWS and from WDNR field staff reports in 2006 and 2007.

USDA-NRCS WRP sites

Restored Areas

• F: Potentially Restorable Wetlands (PRWs) emerge as areas that have favorable soil

conditions, compatible land uses, and are not existing wetlands. PRW1 soils are potentially restorable areas currently in open land cover. PRW2 soils are potentially restorable areas currently in shrub or wooded land cover.

Potentially Restorable Wetlands

open (cropped or idle fields) wooded (shrub or woodland)

LIMITATIONS

The scope of this study is limited to a landscape level of analysis, which cannot replace on-site investigation for any individual restoration project. The data allow for relative comparisons between subwatersheds in relation to the needs and opportunities for wetland restoration. However, the feasibility of any individual wetland restoration requires much more detailed site analysis than this study provides. For instance, land owners must be willing, and the ability to complete a wetland restoration without adversely affecting neighbors' properties must be ascertained before a restoration can be feasible.

Before choosing a site for restoration, a more thorough analysis of the area is necessary. Other data sources could be referenced, including historical aerial photos, anecdotal evidence of previous land cover or water and soil conditions, and ground-truth surveys to verify the data in the PRW layer.

The user should be aware that the input data layers had varying dates of currency and resolution. We had to make decisions about which layer to "trust" when there were discrepancies between them. The decision rules are detailed in Appendix C. Subsequent projects elsewhere in the state will need to review and possibly modify the decision rules used here.

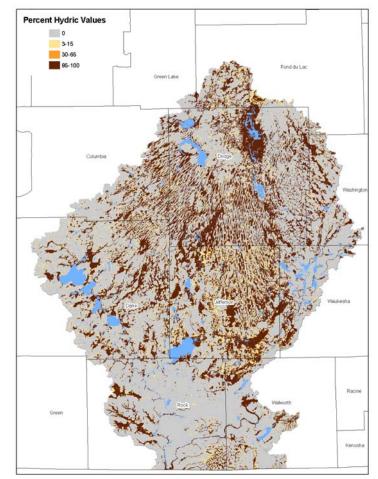
CHAPTER 3: DATA

DATA PROCESSING

Data Processing Environment

All of the data processing was performed in Environmental Systems Research Institute's, (ESRI) ArcGIS v.9.2 environment, which is the WDNR's standard GIS software. The processing steps included the initial assembly of the data, a clean-up phase, and then the development of the data table. The data table was exported into Microsoft Office Access 2003 to create the metrics tables.

Data Format


There were three main data sources; shapefiles in SDE (Spatial Database Engine), feature classes in a file geodatabase, and raster data in grid format. It was decided to convert all of the inputs to feature class format within a file geodatabase. The raster grid was converted to a polygon feature class.

DATA LAYERS

This section outlines the data sources and data processing steps used to create the Rock River Basin Potentially Restorable Wetlands layer. This output layer was used to create the wetland landscape metrics.

Input Layer: HYDRIC SOILS from Natural Resource **Conservation Service** For a site to have potential for wetland restoration. it must have soils capable of supporting a wetland. We assumed that the presence of hydric soils where there currently wasn't a mapped wetland was evidence that there had once been a functioning wetland on that site. A hydric soil is defined as a soil that formed under conditions of saturation, flooding or ponding long enough during the growing season to develop anaerobic conditions in the upper part (59 Fed.Reg.35680, 7/13/94).

In the previous two studies, the hydric rating attribute was used to distinguish

hydric soils from non-hydric soils. In the Milwaukee River Basin, only mapping units with a rating of "ALL" were included, meaning the entire mapping unit was hydric, not just parts of it. In Mead Lake, mapping units with a rating of either "ALL" or "PART" were included. For the Rock River Basin, we used a different attribute to distinguish the hydric soils. We looked at the percent hydric value. We determined that any value 85% or greater would be considered hydric. Figure 4 shows the percent hydric values grouped into 3 classes. The darkest shade is the grouping we considered as hydric for our PRW criteria. The map also illustrates that there is a negligible amount of soils in the 30-65% grouping, present only in Dodge and Fond du Lac counties. This made us more confident in our selection of 85% as the cut off. The soil features in this map also bring out the distinctive pattern of the drumlin fields, referred to on page 3.

The Wisconsin Department of Agriculture, Trade and Consumer Protection created a statewide seamless layer of the USDA Natural Resource Conservation Service (NRCS) Soil Survey Geographic (SSURGO) county soils layers. This layer was joined to tabular data from the National Soils Information System (NASIS)

Figure 4: Hydric Soils

database. Field mapping methods using national standards are used to construct the SSURGO soil maps database, the most detailed level of soil mapping done by the NRCS. This level of mapping is designed for use by landowners, townships, and county natural resource planning and management. Digitization is still on-going by NRCS in other states, while currently all counties in Wisconsin have digitized SSURGO soils maps. Information on the SSURGO soils maps can be found at: <u>http://www.soils.usda.gov/survey/geography/ssurgo/</u> Input Layer: MAPPED

WETLANDS from

Inventory

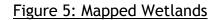
Wisconsin Wetland

An up-to-date digital

be functioning as a wetland. The WDNR is

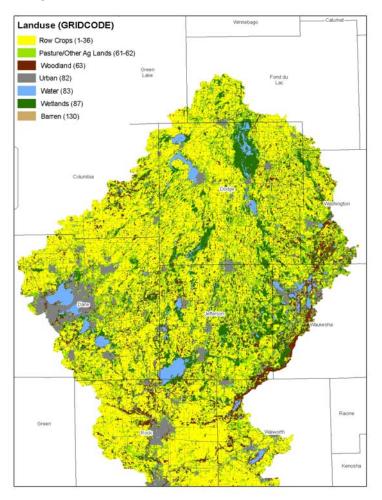
process. By definition, a

a statewide inventory of


of obtaining an accurate

is called the Wisconsin

The WWI provides


vegetation cover and hydrologic type of

Rivers, Lakes, & Streams Wetland Class Aquatic bed Emergent/wet meadow Fond du Lac Flats/unvegetated wet soi Forested Scrub/shrub Filled/drained wetland wetland layer is essential to the PRW identification PRW site cannot currently charged with maintaining wetlands for the purpose record of wetland acreage across the state. The data Darina Wetland Inventory (WWI). additional information on

mapped wetlands. Figure 5 shows major wetland cover classes. Note the predominance of emergent/wet meadow in the basin. More information about ordering the data or viewing it online in the Surface Water Data Viewer can be found at: http://www.dnr.state.wi.us/wetlands/mapping.html

Input Layer: LAND USE from National Agriculture **Statistics Service** Wetland restoration opportunities are based on the assumption that certain present land uses are favorable for restoring the site as a functioning wetland. Land uses that were defined as favorable included all cropped fields, idle cropland, fallow fields, CRP fields, pasture, shrubland and woodland. Examples of land uses that were not considered favorable for wetland restoration include urban, water, and barren. Figure 6 shows the different land use categories. Some of the more detailed crop cover classes were grouped together into a single class for display on the map. In the legend, the gridcodes in

parentheses show any grouping that may have occurred. All the row crops were treated the same in the decision matrix (in Appendix C). The gridcodes 61 and 62 were both considered to be compatible land uses in the PRW criteria.

The USDA National Agriculture Statistics Service produces yearly a cropland digital data layer for Wisconsin. The 2006 layer was used for this project. Only the crop categories are updated yearly, while the other categories are actually taken from the National Land Cover Dataset produced in 2001. In earlier years this dataset was not considered to be very accurate, but in 2006 changes were made to greatly increase the reliability of the data. This data layer was chosen because it is a statewide layer and the processing and analysis decisions made for this large river basin can be repeated for others. For more information about NASS and to download the data, go to

http://www.nass.usda.gov/research/Cropland/SARS1a.htm.

Figure 6: Land Use

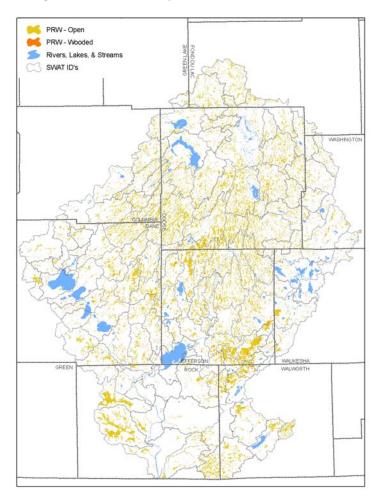
Input Layer: RESTORED WETLANDS from various tracking efforts Four sources of GIS data were available showing wetland restoration sites. Two were products from DNR: the GIS data layer from the Restoration Tracking Database (RTD) and the digitized restoration sites from the Glacial Habitat Restoration Area (GHRA). Each of the two DNR sources had spatial and temporal pros and cons to using them. The RTD is quite comprehensive, but is still rather new and only has a few years worth of restorations in it. The GHRA does not cover the whole Rock River Basin (only Fond du Lac, and parts of Dodge and Columbia), but it traces back 14 years of restorations. The data from the restoration tracking database is viewable online as a layer in the Surface Water Data Viewer at

http://dnrmaps.wisconsin.gov/imf/imf.jsp?site=SurfaceWaterViewer. The third source was from USDA-NRCS, outlining Wetlands Reserve Program (WRP) sites, and the last source was from USFWS, outlining Waterfowl Production Areas (WPA). For the purposes of this mapping project, within the boundaries of both WRPs and WPAs, we assumed that any work that could have been done restoring the wetlands, has been done already. Input Layer: SUBWATERSHEDS from Soil and Water Assessment Tool (SWAT) The U.S. Geological Survey (USGS) developed a hierarchical hydrologic unit code (HUC) for the United States. Hydrologic unit boundaries define the aerial extent of surface water drainage to a given point. With every level in the hierarchy, an additional 2-digits are added to the code. For more background on HUCs, go to

http://www.ncgc.nrcs.usda.gov/products/datasets/watershed/history.html

The exact HUC boundaries were altered slightly for the Rock River TMDL, in order to separate impaired water segments from the rest of the stream and provide more meaningful inputs for TMDL development.

The Rock River Basin combines two sub-basins, the Lower Rock and the Upper Rock. Each sub-basin is roughly equivalent to an 8-digit HUC. The Rock River Basin contains 20 watersheds. These are similar to the 10-digit HUCs, ranging from 40,000 to 250,000 acres. To calculate metrics that could be used in the TMDL development, a level generally comparable to the 12-digit HUC was used. Smaller units were used to relate to impaired stream


Figure 7: Subwatersheds

segments. These are known as subwatersheds, and there are 112 in the Rock River Basin. In Figure 7, the subwatersheds are labeled in the legend as SWAT ID's, because they were first created for the SWAT modeling tool. The metrics reported in Appendix A are for the 112 SWAT subwatersheds. For more information about the subwatershed boundaries used in this project, contact Kevin Kirsch at <u>kevin.kirsch@wisconsin.gov</u>.

Output Layer: Potentially Restorable Wetlands (PRW)

The output layer represents the geometric intersection of hydric soils, mapped wetlands, land use, and subwatersheds. These geospatial layers form the foundation for identifying a potential restoration site and understanding the watershed and landscape functions of wetlands. Combined they give an estimate of present conditions in order to conduct a "first cut" identification of wetland restoration opportunity and feasibility. The subwatershed layer was added to facilitate generating metrics. The result is a rich, dense layer that contains information from all input layers. This

allows users to determine at any point on the ground conditions such as what soil type is mapped, if there is a mapped wetland, and/or what land use is practiced. The output layer for the Rock River Basin was developed following the processes that were developed for the Milwaukee River Basin and the Mead Lake Basin. One of the major advantages of the output layer is that the user has access to all the attributes from the input layers at his/her disposal. To take full advantage of the output layer, the user will need to thoroughly understand the sources and how the layer was generated.

Figure 8: Potentially Restorable Wetlands

CHAPTER 4: METRICS, RELATIVE NEED & POTENTIAL OPPORTUNITY

Metrics for the 112 individual subwatersheds are shown in Appendix A. For the basin as a whole, Table 1 shows the total and average values for each category.

	Tuble 1. Rock River Basin Metrics (in Acres)											
ACRES	LOST, RESTORED	LOST, PRW1 OPEN	LOST, PRW2 WOODED	LOST, WATER	LOST, URBAN	LOST, FILLED/ DRAINED	LOST, BARREN	REMAINING WETLAND	AG UPLAND PRW 99	OPEN/ WOODLAND UPLAND	URBAN UPLAND	OPEN WATER
TOTAL	5,182	219,709	17,423	4,285	23,157	841	63	361,629	1,291,934	179,305	206,890	62,795
AVERAGE	46	1,962	156	38	207	8	1	3,229	11,535	1,601	1,847	561

Table 1. Rock River Basin Metrics (in Acres)

The original (pre-settlement) wetlands in the Rock River Basin made up 26.6% of the landscape. Only 57.2% remain. Of the 42.8% lost, 87.6% are potentially restorable based on our analysis. Factors, such as landowner willingness and limiting hydrologic impacts to neighboring properties, will reduce the actual feasibility of restoration. We estimate that roughly 2% of the lost wetlands have been restored, to date, based on WDNR restoration tracking data (WDNR 2007, WDNR 2008).

Relative Need is a landscape scale relative measure of the degree to which wetland restoration in a subwatershed has the potential to make an improvement in wetland functions, such as flood storage, water quality and habitat. This is a global measure based on the assumption that wetland restoration will provide functional improvement, without specifying particular functions. Relative Need reflects both the relative amount of wetlands lost and the prevalence of original (pre-settlement) wetlands. Relative Need is expressed as the ratio of lost wetland acres to remaining wetland acres, multiplied by the percent of the subwatershed that was original wetland. Some of the lost acres have recently been restored through federal, state and non-profit partnerships. These must be subtracted to give a more accurate measure for lost wetlands.

(LOST ACRES - RESTORED ACRES)	Х	ORIGINAL ACRES	x 100	
REMAINING ACRES		SUBWATERSHED ACRES		

The resulting NEED value does not have units associated with it, and is primarily useful in comparing the relative need of the subwatersheds within the Rock River Basin, at a landscape scale.

Potential Opportunity is similar to Relative Need. The difference is that it takes into account the current landuse, using the relative amount of potentially restorable wetlands, instead of wetlands lost. Potential Opportunity is

Rock River Basin: Mapping its Potentially Restorable Wetlands

expressed as the ratio of potentially restorable wetland acres to remaining wetland acres, multiplied by the percent of the subwatershed that was original wetland.

POTENTIALLY RESTORABLE ACRES	Х	ORIGINAL ACRES	x 100	
REMAINING ACRES		SUBWATERSHED ACRES		

Both the Relative Need scores and the Potential Opportunity scores were adjusted to fit a scale of 100. This makes the score more meaningful to the user. The subwatershed with the highest score for each however, was so high that it was considered an outlier. As a result, the second highest score was adjusted to 100 with the remaining scores scaled below.

Figures 9 and 10 show the Relative Need scores and the Potential Opportunity scores, respectively. They are thematic maps, showing the values grouped into four different classes. The class breaks are the natural breaks, rounded to the nearest whole number. The outlier was given its own color and not included in the classes. The potentially restorable wetlands are visible on top of the class colors. Note that the highest concentrations of PRWs are within the subwatersheds with the highest class of need and potential opportunity scores.

This analysis does NOT consider factors that may be very important in analyzing site-specific restoration conditions. Such factors might include the landscape position of the site in relation to headwaters, connectivity to floodplains and other wetlands, amount and distribution of alluvial sediment deposition, and drainage systems through the site.

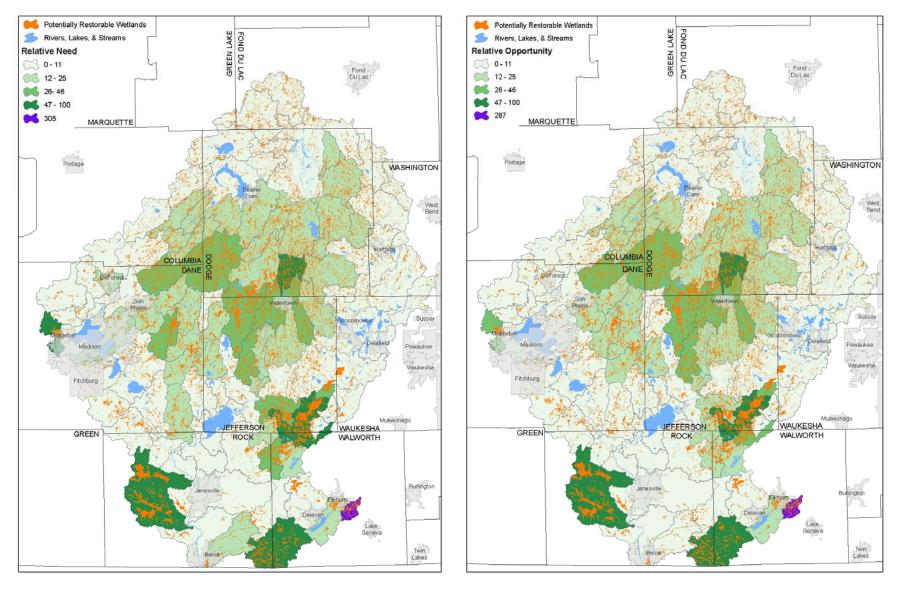
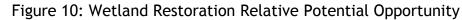



Figure 9: Wetland Restoration Relative Need

CHAPTER 5: SUMMARY

USING ROCK RIVER BASIN PRW INFORMATION

Before using any of the products of the RRPRW project, the User needs to become familiar with the scope and limitations of the PRW process and with the assumptions that underlie the base data layers and the output data layer. Some general considerations include:

- The RRPRW project is a 'first step' in wetland planning. Its products are intended for landscape level analysis. Where this analysis leads to specific sites, decisions to develop further plans at those sites will require on-the-ground assessment.
- The RRPRW project output data layer is intended to be used in conjunction with other planning tools to help meet wetland and water quality related goals of State and local governments, public and private conservation organizations and individual landowners.
- The RRPRW project data is not intended for regulatory use. Wetland boundaries are based on the best available data as of 2007. The least accurate data is at a scale of 1:24000, so site-specific projects will require a field evaluation to determine actual boundary locations.
- The RRPRW project assumes that all wetlands have value and deserve protection. Site-specific factors will cause actual wetlands and potential restoration sites to vary in the type and degree of functions they provide.
- Existing and restored wetlands are not a substitute for other best management practices used to control flooding and to maintain water quality and wildlife habitat.

Voluntary Wetland Restoration

Efforts to restore and rehabilitate wetlands rely on locating potential project sites. Searches for potential wetland restoration sites require time-consuming map reviews and screening before any planning can begin. The identified PRW locations reduce the site search effort. By combining PRW sites with the subwatershed metrics that show which areas have the most restorable wetlands, and where historical wetland loss has had the greatest cumulative effect, we can promote restorations that address ecological needs beyond their project boundaries.

Improved Watershed Planning

The RRPRW project demonstrates that a watershed or basin scale PRW layer can be built with a reasonable amount of expertise and effort, utilizing generally available GIS data layers. The result is far more useful information about the regional status of wetlands and impacts of wetland loss than has been available before. State wetland data lags far behind that of other surface water resources. A broader expansion of the RRPRW project would allow planners a more meaningful view of wetland resources and past wetland impacts and could greatly improve the wetland aspect of the Wisconsin's 305b report.

Flood Storage Analysis

Another potential use of the output layer is in flood remediation analysis. There was a major flooding event in the Basin and in southwestern Wisconsin in June of 2008. As part of the emergency response, a new data layer was developed showing flooded areas. By comparing the PRW layer, the flooded areas layer, and the WWI, an analysis can be conducted to characterize flooded watersheds. Metrics can be calculated to compare the amount of existing wetlands that were flooded, to the amount of lost wetlands that were flooded, and the amount of potentially restorable wetlands that were flooded. It would be instructive to examine where the flooding occurred relative to the wetland status of the flooded areas in different subwatersheds. Further analysis of flood-prone areas from hydraulic models could identify high priority PRW sites for acquisition and restoration.

LESSONS LEARNED: GIS PROCESSING

Deciding on all your input data up front.

The process flow chart shows that the restoration data was added after the "Initial Assembly of Data" step. This is because we did not decide to include it as an input until after that step had been completed. In the future, it is best to decide on all of your input data up front in order to avoid tacking on data in the end. The "Preparation of Restored Wetlands Data" step could have been combined with the "Initial Assembly of Data" step in the beginning so that the restoration data could have been included in the beginning union steps as well. However, having said that, most of the restorations are under 0.5 acre, so they might have been eliminated if they had been included before the clean up phase.

Multipart to Singlepart before or after Eliminate

We only discovered the need to use the multipart to singlepart tool after we ran the first elimination iterations. It was necessary to run the elimination iterations again after the multipart to singlepart tool. We would recommend using the multipart to singlepart tool before any of the eliminations to reduce having to repeat them. However, having said that, there was an initial problem of having too many polygons in the beginning for the eliminate tool to function properly. This was the reason for clipping the layer to the subbasins. We wonder if running the multipart to singlepart tool before the elimination iterations might create too many polygons again. Would this necessitate having to clip the layer into smaller parts?

Buffering the basin boundary before clipping the raster data We should have buffered the basin boundary before clipping the NASS raster data to prevent a stair step appearance of the grid data along the watershed boundary. Also, there were some areas of the soils and wetlands union that did not overlay with the grid data because of the stair step edge. These are small and really inconsequential, but to have a cleaner output we should have done the buffer first.

CHAPTER 6: LITERATURE CITED

Wisconsin Department of Natural Resources. 2006. Milwaukee River Basin Wetland Assessment Project. Final Report to U.S. EPA - Region V Wetland Grant #97593901.

Wisconsin Department of Natural Resources. 2007. Mead Lake Watershed Wetland Assessment Project: Developing Wetland Landscape Metrics for Effective Planning and Adapting the Milwaukee River Basin Approach for a Small Agricultural Watershed. Final Report to U.S. EPA - Region V Wetland Grant #96511801. PUB-WT-865-2007.

Wisconsin Department of Natural Resources. 2007. Wetland Activities in Wisconsin: Status Report for 2006: Gains, Losses, and Acre Neutral Activities. PUB-WT-882-2007.

Wisconsin Department of Natural Resources. 2008. Wetland Activities in Wisconsin: Status Report for 2007: Gains, Losses, and Acre Neutral Activities. PUB-WT-882-2008.

Earth Tech, Inc. 2000. Prediction of Phosphorus Loads in the Rock River Basin, WI Using SWAT (Soil & Water Assessment Tool). Madison, WI.

Rock River Basin: Mapping its Potentially Restorable Wetlands														
APPENE Compre and PR	ehensi	ve Land rics	use	$ \begin{array}{c} L \\ + L \end{array} $	Note: Lost, Restored Wetlands + Lost, Restorable Open + Lost, Restorable Wooded + Lost, Not Restorable Water + Lost, Not Restorable Urban + Lost, Not Restorable Filled/Drained + Lost, Not Restorable Barren = Total Lost Wetland Acres						Note: Total Lost Wetland Acres + Remaining Wetland Acres + Ag Upland, PRW 99 + Open Water + Open/Wooded Upland + <u>Urban Upland</u> = SWAT Acres = Total Area			
SWAT_ID	LOST, RESTORED WETLANDS	LOST, RESTORABLE OPEN	LOST, RESTORABLE WOODED	LOST, NOT RESTORABLE WATER	LOST, NOT RESTORABLE URBAN	LOST, NOT RESTORABLE FILLED / DRAINED	LOST, NOT RESTORABLE BARREN	TOTAL LOST WETLAND ACRES	REMAINING WETLAND ACRES	AG UPLAND, PRW 99	OPEN WATER	OPEN/WOODED UPLAND	URBAN UPLAND	SWAT ACRES
AFT01	0	120	75	4	13	2	0	213	290	8703	413	3291	719	13630
AFT02	24	4449	57	0	73	0	0	4604	603	14366	0	2422	1071	23071
AFT03	0	337	69	2	140	8	0	555	237	34300	64	2765	7255	45171
AFT04	578	7066	268	5	279	48	0	8243	2004	27336	0	2146	1856	41579
AFT05	0	748	77	41	396	8	0	1269	1477	24326	624	3073	7048	37816
AFT06	0	903	78	19	116	1	0	1117	650	12848	464	2351	7848	25277
AFT07	0	329	131	47	145	0	0	652	5076	8854	10188	2712	1543	29025
AFT08	29	989	116	56	328	3	0	1520	3180	11421	281	1950	3002	21354
AFT09	65	2490	248	3	268	11	0	3085	3521	16112	190	2091	2341	27144
AFT10	1	1572	180	9 49	116	4	0	1882	3915 4714	13680	189	2043	1008	22714
AFT11 AFT12	6	1757 380	206 39	49 6	64 13	0	0	2076 445	4714 1842	24871 4468	591 8	4209 727	1741 328	38202 7818
AFT12 AFT13	386	1741	130	414	158	0	0	2829	3008	8550	525	1096	1333	17341
AFT13 AFT14	0	88	38	1	5	0	0	130	414	12158	348	3509	2683	19242
L0101	0	1542	279	13	217	3	0	2053	786	21145	38	2170	4282	30471
L0101	0	1064	73	4	35	0	0	1176	911	19259	22	1666	1196	24228
L0102	0	1521	33	2	107	0	0	1663	102	3206	7	141	398	5521
L0104	1	1406	69	16	580	0	0	2072	754	11318	1954	1569	2812	20488
L0105	566	2058	201	94	135	0	0	3054	3000	20135	165	2933	3400	32688
L0106	0	6124	115	13	262	0	0	6514	1420	29372	14	1086	2867	41280
L0601	0	292	55	6	21	0	0	375	985	9520	97	1487	468	12931
L0602	125	1996	216	77	236	0	4	2653	5002	21197	3380	3009	4180	39421
L0603	0	1472	219	11	152	4	0	1858	2956	17676	304	2233	3476	28502

Rock River Basin: Mapping its Potentially Restorable Wetlands

Rock River Basin: Mapping its Potentially Restorable Wetlands

SUPULIAR SUPULIAR	1		OCK RIVE		i. Map	ping its	1 Otentia	iny r	Cestorau		lus				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SWAT_ID	LOST, RESTORED WETLANDS	LOST, RESTORABLE OPEN	LOST, RESTORABLE WOODED	LOST, NOT RESTORABLE WATER	LOST, NOT RESTORABLE URBAN	LOST, NOT RESTORABLE FILLED/DRAINED	LOST, NOT RESTORABLE BARREN	TOTAL LOST WETLAND ACRES	REMAINING WETLAND ACRES	AG UPLAND, PRW 99	OPEN WATER	OPEN/WOODED UPLAND	URBAN UPLAND	SWAT ACRES
	L0701					5			59						
		32			21							70			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	180		5	95	0		369			1096			11891
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L0803	0	648	107	33	2903	4	0	3695	1842	4805	3627	1283	14204	29457
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L1001	0	273	32	4	39	0	0	349	640	3999	386	393	649	6415
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L1002	0	284	12	0	23	0	0	319	521	6449	1	284	539	8113
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L1003	0	146	97	20	655	0	0	917	722	1729	9432	1675	8355	22830
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0	801	26	12	383	0	0	1223	142	7026	5	647		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0											1559		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							4								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							0	0							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					60	100	0								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			82	116	6	100	4		309		4160	1780	4022	3910	15613
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		31													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						177	0	0							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	1213		19	65	7	0				_			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1992				0			1931		1004	3613	697	14880
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L1404	5	2137	105	73	117	0	0	2438	1603	7142	2	1280	651	13115
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L1501	504	5489	277	8	157	1	2	6437	2335	5753	0	705	340	15570
L150407557701400846519220605261334230L15050180920111640020858732844527283858923L1506042489418005351371141714613153275112U0101123135815328976002000679769086115676017628U010205325013780067346429291853843845020U01033341773555334306496669151387241553163028940U01040378324656414604505297110409206831242321341U0105013921503819000177018416345419815153212722U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U01087445867113201644221543911429	L1502	0	667	140	13	42	0	0	861	5589	4491	19	4211	438	15614
L15050180920111640020858732844527283858923L1506042489418005351371141714613153275112U0101123135815328976002000679769086115676017628U010205325013780067346429291853843845020U01033341773555334306496669151387241553163028940U01040378324656414604505297110409206831242321341U0105013921503819000177018416345419815153212722U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U0108744586711320164422154391142967664710002	L1503	38	444	76	4	23	0	0	584	1118	2889	73	1371	471	6507
L1506042489418005351371141714613153275112U0101123135815328976002000679769086115676017628U010205325013780067346429291853843845020U01033341773555334306496669151387241553163028940U01040378324656414604505297110409206831242321341U0105013921503819000177018416345419815153212722U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U0108744586711320164422154391142967664710002	L1504	0	755	77	0	14	0	0	846	519	2206	0	526	133	4230
U0101123135815328976002000679769086115676017628U010205325013780067346429291853843845020U01033341773555334306496669151387241553163028940U01040378324656414604505297110409206831242321341U0105013921503819000177018416345419815153212722U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U0108744586711320164422154391142967664710002	L1505	0	1809	201	11	64	0	0	2085	873	2844	5	2728	385	8923
U010205325013780067346429291853843845020U01033341773555334306496669151387241553163028940U01040378324656414604505297110409206831242321341U0105013921503819000177018416345419815153212722U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U0108744586711320164422154391142967664710002	L1506	0	424	89	4	18	0	0	535	1371	1417	146	1315	327	5112
U01033341773555334306496669151387241553163028940U01040378324656414604505297110409206831242321341U0105013921503819000177018416345419815153212722U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U0108744586711320164422154391142967664710002	U0101	123	1358	153	289	76	0	0	2000	6797	6908	6	1156	760	17628
U01040378324656414604505297110409206831242321341U0105013921503819000177018416345419815153212722U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U0108744586711320164422154391142967664710002	U0102	0	532	50	13	78	0	0	673	464	2929	185	384	384	5020
U0105013921503819000177018416345419815153212722U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U0108744586711320164422154391142967664710002	U0103	33	4177	355	53	343	0	6	4966	6915	13872	4	1553	1630	28940
U010611624131482031480230301594961813179993216104U01072559083432192463100104347396164615421614224138688U0108744586711320164422154391142967664710002	U0104	0	3783	246	56	414	6	0	4505	2971	10409	206	831	2423	21341
U0107 255 9083 432 192 463 10 0 10434 7396 16461 542 1614 2241 38688 U0108 74 458 67 11 32 0 1 644 2215 4391 1429 676 647 10002	U0105	0	1392	150	38	190	0	0	1770	1841	6345	419	815	1532	12722
U0108 74 458 67 11 32 0 1 644 2215 4391 1429 676 647 10002	U0106	116	2413	148	203	148	0	2	3030	1594	9618	131	799	932	16104
	U0107	255	9083	432	192	463	10	0	10434	7396	16461	542	1614	2241	38688
U0109 29 10562 494 146 669 20 0 11920 7892 28983 113 1901 2267 53072	U0108	74	458	67	11	32	0	1	644	2215	4391	1429	676	647	10002
	U0109	29	10562	494	146	669	20	0	11920	7892	28983	113	1901	2267	53072

	Rock River Basin: Mapping its Potentially Restorable Wetlands													
	K	OCK KIVE	er Basin						e wettan	as				
SWAT_ID	Γ , RESTORED WETLANDS	LOST, RESTORABLE OPEN	L, RESTORABLE WOODED	r, not restorable water	f, NOT RESTORABLE URBAN	LOST, NOT RESTORABLE FILLED / DRAINED	LOST, NOT RESTORABLE BARREN	IOTAL LOST WETLAND ACRES	REMAINING WETLAND ACRES	UPLAND, PRW 99	N WATER	DPEN/WOODED UPLAND	URBAN UPLAND	SWAT ACRES
WA.	LOST,	SOL	LOST,	LOST,	LOST,	OS	SO	TOT	KEM	AG L	OPEN	DFEI	JRB	WA
U0301	1	2433	128	21	99	10	0	2692	4435	10665	0	770	755	19315
U0302	0	5644	330	23	246	6	0	6250	9869	13989	132	1256	791	32283
U0303	378	1732	109	32	194	71	0	2516	5574	20299	6587	959	3020	38898
U0304	120	2244	96	15	155	15	0	2644	5719	24375	2695	937	2084	38449
U0305	278	2066	226	6	93	8	0	2677	4540	11646	0	1446	872	21188
U0306	0	3912	249	12	257	23	0	4453	3968	13028	65	816	1341	23657
U0307	9	3053	178	17	327	10	0	3594	5248	18659	21	892	2867	31276
U0501	0	750	70	6	109	0	1	936	1787	5396	4	1206	851	10180
U0502	0	4423	148	38	226	0	0	4835	2007	14950	1	663	1272	23728
U0503	154	1593	57	82	61	0	0	1947	2992	8384	2	454	375	14155
U0504	18	1744	146	11	62	0	0	1981	3527	7086	2	1689	663	14948
U0505	7	2038	154	54	197	119	1	2569	2139	10389	12	1426	1116	17634
U0601	0	1353	103	1	90	0	3	1550	1851	6220	82	721	494	10916
U0602	0	1597	50	0	56	17	0	1721	1444	5920	0	325	299	9707
U0603	28	2376	96	15	258	11	2	2787	2861	8180	31	461	937	15253
U0604	49	759	151	5	49	5	0	1016	3912	15180	3	2881	993	23989
U0605	28	2491	145	9	135	0	0	2807	3446	18537	1	1260	1048	27099
U0606	117	1969	149	4	105	17	0	2360	3024	9132	0	1142	531	16187
U0801	31	3312	192	75	276	34	0	3919	1542	7891	21	720	602	14691
U0802 U0803	23	3083 812	283 65	114 5	525 90	5	0	4033 973	2421	9207 4610	179 13	1064 428	1922	18826 9936
U0803	0	1335	212	13	162	0	0	1722	3588 4846	15419	229	428 2297	324 1277	25789
	0		318	86	527	35	8		7484	13419				
U0805		5655 3553		52	262	30	5	6623			2849	1431 2012	2031	35250 26837
U0806 U0807	11 0	1007	371 39	- 32 - 7	66	<u> </u>	0	4284 1126	2922 2086	16303 2631	21 27	2012	1300 277	6359
U0807	0	4294	346	50	197	13	5	4905	8032	16792	27	212	1230	33688
U0808 U0809	0	3679	232	38	213	13	2	4903	4908	11675	61	1174	965	22951
U0901	0	1020	143	5	213	0	0	1388	4348	6595	224	786	1888	15230
U0901	0	246	143	9	152	2	0	523	2811	8997	4940	4261	5249	26780
U0902	1	1585	598	20	106	23	0	2335	6661	20258	513	9536	2434	41738
U1101	0	1087	160	1	80	3	0	1332	928	8346	0	710	562	11877
U1101 U1102	0	865	60	22	190	24	0	1352	2245	7117	7	458	1868	12855
U1102	0	1693	266	41	165	0	1	2166	3562	10898	37	1914	900	12855
U1103	0	1693	46	7	49	2	0	2100	1132	2804	444	989	808	6446
01104	0	105	-0	/		4	0	207	1152	2004		707	000	0++0

	Rock River Basin: Mapping its Potentially Restorable Wetlands													
SWAT_ID	LOST, RESTORED WETLANDS	LOST, RESTORABLE OPEN	LOST, RESTORABLE WOODED	LOST, NOT RESTORABLE WATER	LOST, NOT RESTORABLE URBAN	LOST, NOT RESTORABLE FILLED / DRAINED	LOST, NOT RESTORABLE BARREN	TOTAL LOST WETLAND ACRES	REMAINING WETLAND ACRES	AG UPLAND, PRW 99	OPEN WATER	OPEN/WOODED UPLAND	URBAN UPLAND	SWAT ACRES
U1201	262	4820	461	30	502	35	4	6114	34637	26164	43	2673	2516	72144
U1202	18	844	34	11	47	10	0	963	1898	9510	0	314	597	13272
U1203	13	1028	53	8	74	0	0	1177	3536	5837	1	188	434	11172
U1204	135	3416	137	12	271	1	3	3975	5414	24723	4	1168	2513	37802
U1205	41	3071	160	15	146	7	0	3441	6471	18383	2	992	1182	30479
U1301	0	702	94	0	55	26	0	877	440	8105	0	396	503	10299
U1302	0	1713	171	11	218	25	1	2148	5834	11902	22	1326	1754	22991
U1303	0	2828	321	11	336	15	4	3515	5502	21022	0	2303	2095	34438
U1304	0	687	136	4	59	20	0	906	2213	7712	0	1253	606	12688
U1305	0	1092	70	0	74	4	0	1240	1249	15095	0	643	893	19124
U1306	0	3614	416	11	379	18	1	4439	3184	15685	35	2292	2182	27812
YA01	39	396	11	0	49	0	0	495	1129	18372	2	539	1428	21971
YA02	0	744	14	2	82	0	0	841	523	10941	11	885	791	13996
YA03	0	506	44	7	196	12	0	765	475	5230	6	301	1982	8760
YA04	0	123	26	11	218	0	2	380	873	1678	474	468	896	4769
YA05	0	823	54	0	122	1	0	1000	2391	11819	0	922	2478	18610
YA06	0	88	1	0	118	0	0	208	636	2493	2	98	493	3929
Total	5182	219709	17423	4285	23157	841	63	270667	361629	1291934	62795	179305	206890	2373148
Average	46	1962	156	38	207	8	1	2417	3229	11535	561	1601	1847	21189

.

Metrics Tables: Definitions and Processing

Rock River PRWs.mdb is the Access database containing all the metrics tables. The dbf file for PRW_RR_final was exported from ArcGIS and imported into Access. Queries were run matching those in the Decision Matrix. The desired result was to have summary statistics for each of the 112 subwatersheds within the Rock River Basin. Once the queries were run and the results were combined, the table was exported into Excel to prepare for print. The metrics calculated can be found in RR_Metrics.xls

The following is a list of the metrics calculated and an explanation of how each was defined:

1) Lost, But Restored Wetlands - those acres that were historically wetland and have been restored to wetland in recent years RESTORED = 'YES'

2) Lost, PRW1 Acres - those areas that were historically wetland and are now in agriculture, and therefore are open potential wetland restoration sites LOST = 'YES' AND PRWCODE = 1

3) Lost, PRW2 Acres - those areas that were historically wetland, but now are wooded or shrubby and therefore are wooded potential wetland restoration sites

LOST = 'YES' AND PRWCODE = 2

4) Lost, But Not Restorable Water - those areas that were historically wetland, but now are under water and therefore not likely to be restored without draining

LOST = 'YES' AND GRIDCODE = 83

5) Lost, But Not Restorable Urban - *those areas that were historically wetland, but now are developed and therefore cannot be restored without demolition* LOST = 'YES' AND GRIDCODE = 82

6) Lost, But Not Restorable Filled/Drained - those areas that were historically wetland, but are now filled/drained. It is assumed that these are not likely to be restored

WETL_CLASS = 'FILLED / DRAINED WETLANDS' AND LOST = 'YES' AND GRIDCODE <> 63 AND GRIDCODE <> 82 AND GRIDCODE <> 83 AND PRWCODE = 99

7) Lost, But Not Restorable Barren - those areas that were historically wetland, but now are barren and the ground is not suitable for wetland restoration. This is, by far, the smallest category.

LOST = 'YES' AND GRIDCODE = 130

8) Total Lost Wetland Acres - *the sum of the first seven metrics* LOST = 'YES'

9) Remaining Wetland Acres - *those areas that are mapped as wetland* REMAINING = 'YES'

10) Ag Upland, PRW99 - those areas in agriculture that do not have soil suitable for wetlands and were not mapped as wetlands

DIS_AGRIC = 'A' AND PRWCODE = 99 AND REMAINING = 'NO'

11) Open Water - those areas that are open water

ORIGINAL = 'NO' AND (GRIDCODE = 83 OR GRIDCODE = 87) AND DIS_AGRIC = 'X' 12) Open/Wooded Upland - those areas that are neither ag nor open water nor urban nor hydric soil, and not mapped as wetlands ORIGINAL = 'NO' AND (GRIDCODE = 63 OR GRIDCODE = 130 OR GRIDCODE = 136) AND DIS_AGRIC = 'X' 13) Urban Upland - those areas that are urban/developed and not mapped as wetlands ORIGINAL = 'NO' AND GRIDCODE = 82 AND DIS_AGRIC = 'X'

14) SWAT Acres - *the sum of metrics eight through thirteen* SUM OF FINAL_ACRE

Rock River Basin: Mapping its Potentially Restorable Wetlands

APPENDIX B:

Data Dictionary for Rock River Basin Potentially Restorable Wetlands Layer

Source = the name of the intermediate layer created from the original source

Source 2 = the name of the original source

If Source and Source 2 are blank, then this is a derived field, new to this layer.

	0011005		DEENITION	FORMAT /	
FIELD	SOURCE	SOURCE 2	DEFINITION		EXAMPLE/DOMAIN
OBJECTID				OBJECT ID	
SHAPE				GEOMETRY	
			This attribute contains a 2		For example:Adams
			digit minor civil division	SHORT	County = 01; Wood
DNR_CNTY_CODE	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	coding system number.	INTEGER	County = 72
			This attribute is the full		
DNR_CNTY_NAME	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	county name	TEXT (12)	Ex. Outagamie.
			The date when the WWI	, <i>i</i>	X
			map was originally		
DIGITIZED_DATE	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	digitized	TEXT (10)	e.g. 04/23/2000
					Wetland classification
					codes typically include
					up to 4 alphanumeric
			The WWI classification		characters (E2Kg), but
			system describes the		when a second
			dominant vegetative		vegetative type covers
			class, subclass,		30% or more of the
			hydrologic characteristics		area, codes for both
			and special features of		types of vegetation
			the wetland as of the date		are described and
ORIGINAL_WETCODE_			the data was originally		separated by a "/".
CODE	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	interpreted.	TEXT (10)	(e.g. S3/E2Kg).

				FORMAT /	
FIELD	SOURCE	SOURCE 2	DEFINITION	DATA TYPE	EXAMPLE/DOMAIN
					Wetland classification
					codes typically include
					up to 4 alphanumeric
					characters (E2Kg), but
					when a second
					vegetative type covers 30% or more of the
					area, codes for both
					types of vegetation
			The current WWI		are described and
CURRENT WETCODE			Classification Code for		separated by a "/".
CODE	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	the represented area.	TEXT (10)	(e.g. S3/E2Kg).
		Digitarivenariariventory.gab			{Aquatic Bed, Deep
					Water Lake,
					Emergent/wet
					meadow,
					Filled/drained wetland,
			Generalized description		Flats/unvegetated wet
			of the WWI Classification		soil, Forested, Open
WETLAND_CLASS_DE			Code based on		Water, River, Road,
SC	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	WETCODE	TEXT (10)	Scrub/Shrub, Upland}
			The latest date that the		
			wetland polygon was		
			revised on the original		
UPDATED_DATE	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	hardcopy map	TEXT (10)	e.g. 03/02/1997
					{AD, Classification
					change, Linework
UPDATE_CHANGE_TE		D'alle NA/a dia a dia aratara di			change, Wetland
XT	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb		TEXT (30)	addition}
UPDATE_REASON_DE			Describes why the		{Filled or drained,
SC	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	wetland was updated.	TEXT (30)	Map error}

FIELD	SOURCE	SOURCE 2	DEFINITION	FORMAT / DATA TYPE	EXAMPLE/DOMAIN
DIGITAL_UPDATE_DA	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	The date that a revised wetland polygon was last digitally updated. If a wetland polygon has not been revised since it was originally digitized this item will be left blank. If the date indicated in the UPDATED attribute is later than the date in the DIGUP attribute, the digital linework has not been updated.	TEXT (10)	e.g. 05/31/2003
BASEMAP_YEAR	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	Represents the year(s) of the original 1:24,000 scale ratioed and rectified photographic base maps	TEXT (14)	
			The year of 1:20,000 scale 9x9 black and white infrared stereoscopic aerial photography used to photo interpret wetland delineations and classifications. The year of the base map photography may be different than the date of the stereoscopic photography used to		
PHOTO_YEAR	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	interpret wetlands.	TEXT (14)	

	COURCE		DEFINITION	FORMAT /	
FIELD	SOURCE	SOURCE 2	DEFINITION	DATA TYPE	EXAMPLE/DOMAIN
MAP_SOURCE_DESC	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	This attribute describes the photographic base map used when drafting wetland delineations and point symbols	TEXT (35)	{Non-ortho PLSS mylar, Rectified aerial photography}
			This is an 11 digit identification number assigned to each polygon that contains the COUNTYID attribute, PLS attribute and a unique 4 digit polygon identification number assigned to each polygon by ArcGIS. It can be used to relate the wetland data to existing or future spatial or tabular		Example: WET_ID =
WETLAND_ID	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	databases.	DOUBLE	05424200047
ACRES_AMT	ROCK_RIVER_WETLANDS	DigitalWetlandInventory.gdb	This is not an accurate field. Refer to the Final_Acres field for a more accurate measurement	DOUBLE	
MUSYM_CODE	ROCK_RIVER_SOILS	EN_WI_SOIL_MAPUNIT_AR _20K	The symbol used to uniquely identify the soil mapunit in the soil survey	TEXT (6)	
MUKEY_KEY	ROCK_RIVER_SOILS	EN_WI_SOIL_MAPUNIT_AR _20K	A non-connotative string of characters used to uniquely identify a record in the Mapunit table.	TEXT (9)	

FIELD	SOURCE	SOURCE 2	DEFINITION	FORMAT / DATA TYPE	EXAMPLE/DOMAIN
PCTHYDRIC_NUM	ROCK_RIVER_SOILS	SDEDNR_EN_WI_SOIL_HY	An indication of the proportion of the map unit, expressed as a percent, that is "hydric", based on the hydric classification of individual map unit components.	DOUBLE	{1-100, 9999 represents an mapunit that is unknown}
HYDRICRTNG_TEXT	ROCK_RIVER_SOILS	SDEDNR_EN_WI_SOIL_HY DRIC_REF	An indication of the proportion of the map unit, expressed as a class, that is "hydric", based on the hydric classification of individual map unit components.	TEXT (21)	{predominately hydric, hydric inclusions, moderately hydric, Not Hydric, Unknown}
MUNAME_NAME	ROCK_RIVER_SOILS	SDEDNR_EN_WI_SOIL_MA	Correlated name of the mapunit.	TEXT (83)	
MUKIND_TEXT	ROCK_RIVER_SOILS	SDEDNR_EN_WI_SOIL_MA PUNIT_REF	Code identifying the kind of mapunit.	TEXT (20)	{Association, Complex, Consociation, Undifferentiated group}
FARMLNDCL_TEXT	ROCK_RIVER_SOILS	SDEDNR_EN_WI_SOIL_MA PUNIT_REF		TEXT (97)	{prime farmland, farmland of statewide importance, farmland of local importance}
DIS_WETL_CODE			Indicates whether a feature is considered a wetland or non-wetland.	TEXT (5)	{W - Wetland, X - Not a Wetland}
GRIDCODE_CODE	RR_NASS_POLY		Categorization code	DOUBLE	{1-144}
LANDUSE_TEXT	RR_NASS_POLY		The classification of land according to how it is used.	TEXT (40)	EX. PASTURE, NON- AG, RANGE, WASTE, FARMLAND

FIELD	SOURCE	SOURCE 2	DEFINITION	FORMAT / DATA TYPE	EXAMPLE/DOMAIN
WETL_CLASS_DESC			Provides a text description of the wetland classifications developed/used for this project.	TEXT (50)	{Aquatic Bed, Cropped Wetland, Emergent/Wet Meadow, Filled/Drained Wetland, Flats/Unvegetated Wet Soil, Forested, Not Existing Wetland, Open Water Wetland, Scrub/Shrub, Surface Water, Upland, Wetland}
SWAT ID			unique identification code for watershed delineations of subbasins defined by the Soil and Water Assessment Tool (SWAT)	TEXT (10)	Ex. AFT02
PRWCODE_CODE			Code indicates whether a feature fulfills the definition of a potentially restorable wetland (prw).	SHORT	{1, 2, 5, 6, 7, 8, 99}
			Indicates whether a site was originally a wetland. The criteria used to make this determination includes any area that has hydric soils conditions or is currently mapped as a wetland, or a filled or drained		
ORIGINAL_FLAG			wetland.	TEXT (3)	{YES, NO}

				FORMAT /	
FIELD	SOURCE	SOURCE 2	DEFINITION	DATA TYPE	EXAMPLE/DOMAIN
			Indicates if the wetland		
			has been converted to		
			another use. The site		
			must be identified as an		
			original wetland but not		
LOST_FLAG			currently mapped as a wetland.	TEXT (3)	{YES, NO}
			wetiario:		{1L3, NO}
			Indicates if a site is		
			currently mapped as a		
			wetland from any of the		
			data sources used for this		
REMAINING_FLAG			project.	TEXT (3)	{YES, NO}
			Designates land		
			cover/land use as being		
			agricultural or non-		
			agricultural, based on		{A - Agricultural, X -
DIS_AGRIC_CODE			NASS categories.	TEXT (8)	Non-agricultural}
			Calculates the final acre		
FINAL_ACRES_AMT			amount for each polygon.	DOUBLE	
SHAPE_LENGTH				DOUBLE	
SHAPE_AREA				DOUBLE	
			Indicates whether the site		
RESTORED_FLAG			has been restored.	TEXT (10)	{YES, NO}

Rock River Basin: Mapping its Potentially Restorable Wetlands

APPENDIX C:

Decision Matrix for Rock River Basin Potentially Restorable Wetlands Layer

The tan shaded cells signify that these values are from the original input data sources. The olive shaded cells signify derived values in the newly created data layer. The clear cells are all YES/NO fields, but only the YES values are entered. This was done for easier reading. These are also derived fields. They are the fields used in calculating metrics for the subwatersheds in Appendix A.

This matrix was made as a QA/QC step in the GIS process to assure that every possible combination of the three input sources is accounted for. It also helped organize the outputs into the categories used in the metrics.

Below is an example of how the matrix works. Field names are orange and cell values are blue, both are in all capital letters. Following the steps, work from left to right on the first page, second row down (at the red arrow): 1) GRID CODE is 1-36. (That comes from the NASS layer, and 1-36 is all cropland.)

2) CURRENT_WETCODE is UPLAND. (That comes from the WWI, and it is showing that it is not currently a wetland.)

3) MUSYM is N/A (Not Applicable) for this combination of GRID CODE and CURRENT_WETCODE.

4) As a derived attribute, the WETL_CLASS is UPLAND. (Each value for WETL_CLASS is derived from the combination of the GRID CODE value and the CURRENT_WETCODE value. Sometimes it is a combined value from the two (CROPPED WETLAND), and sometimes it shows that one source is taking precedence over the other (one says fallow field, the other says lake).

5) It is classified as X in DIS_WETL because it is not currently a wetland.

6) It is classified as A in DIS_AGRIC because it is currently cropped.

7) **PCTHYDRIC** is the next input. (That comes from the SSURGO soils). It can either be {85, 90 or 100} OR {<85 or 9999}.

8)a. If PCTHYDRIC was {85, 90 or 100} in step 7, then it is considered an ORIGINAL wetland and is classified YES for this attribute.

b. If PCTHYDRIC was {<85, or 9999} in step 7, then it is considered to be not an ORIGINAL wetland and is classified NO for this attribute.

9)a. If it was YES as an original wetland, it is NO for REMAINING because it is currently an UPLAND in the WWI.

b. If it was NO as an original wetland, it is NO for REMAINING because it can never be REMAINING if it was not an original to begin with.

10)a. If it was YES for original and NO for remaining, then it is YES for LOST because it is considered to be a lost wetland.

b. If it was NO for original and NO for remaining, then it is NA for LOST because it was not a wetland to begin with.

11)RESTORATION SOURCE can be either blank (for none), GHRA, WRP, WPA, or RTD. These are the four different sources of restoration data.

12)a. If the RESTORATION SOURCE was blank, and it is considered a lost wetland, then the PRWCODE is 1. (This means that it is a potentially restorable wetland).

b. If the RESTORATION SOURCE was GHRA, then the PRWCODE is 5.

c. If the RESTORATION SOURCE was WRP, then the **PRWCODE** is 6.

d. If the RESTORATION SOURCE was WPA, then the PRWCODE is 7.

e. If the RESTORATION SOURCE was RTD, then the PRWCODE is 8.

f. If the RESTORATION SOURCE was blank, and it is considered not to be a lost wetland, then the PRWCODE is 99. (This means that it is not a potentially restorable wetland).

13) At this point, a YES is put in the appropriate column in the clear cells. If the PRWCODE is 1, then it gets a YES in the LOST, PRW1 column. If the PRWCODE is 5,6,7, or 8, then it gets a YES in the LOST, RESTORED column. If the PRWCODE is 99, then it gets a YES in the AG UPLAND PRW 99 column.

1.GRID CODE	2.CURRENT_	3.MUSYM	4.WETL_CLASS	5.DIS_WETL	6.DIS_AGRIC	7.PCTHYDRIC	8.ORIGINAL	9.REMAINING	10.LOST	11.RESTORATION SOURCE	12.PRW_CODE	LOST, RESTORED	LOST, PRW1	LOST, PRW2	LOST, WATER	LOST, URBAN	LOST, FILLED/ DRAINED	LOST, BARREN	REMAINING WETLAND	AG UPLAND PRW 99	OPEN/ WOODLAND UPLAND	URBAN UPLAND	OPEN WATER
											1		YES										
						05.00				GHRA	5	YES											
	RIVER		SURFACE WATER	x	А	85, 90, 100	YES	NO	YES	WRP	6	YES											
	KIVEK									WPA	7	YES											
	1					05 OD				RTD	8	YES											
			1			<85 OR 9999	NO	NO	NA		99									YES			
											1		YES										
						05.00				GHRA	5	YES											
₽	UPLAND		UPLAND	x	А	85, 90, 100	YES	NO	YES	WRP	6	YES											
~	OI LAND		UT EAND							WPA	7	YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA		99									YES			
	"A" SERIES		CROPPED WETLAND	W	Α		YES	YES	NO		99								YES				
	"E" SERIES		CROPPED WETLAND	W	А		YES	YES	NO		99								YES				
	"F" SERIES		CROPPED	w	А		YES	YES	NO		99								YES				
1-36	"S"	N/A	CROPPED	W	A		YES	YES	NO		99								YES				
	SERIES "T"		WETLAND CROPPED	w	A		YES	YES	NO		99								YES				
	SERIES "W"		WETLAND CROPPED	w	A		YES	YES	NO		99								YES				
	SERIES		WETLAND	vv	A		ITES	TES	NO				1/50						TES				<u> </u>
										01154	1	1/50	YES										<u> </u>
						85, 90,	YES	NO	VEC	GHRA	5	YES											
	\$		FILLED / DRAINED	x	А	100	ITES	NO	YES	WRP	6	YES											
			WETLAND							WPA	7	YES				-							┝──┤
						<85 OR				RTD	8	YES											
						9999	YES	NO	YES		99						YES						\mid
											1		YES										└──┨
						85, 90,				GHRA	5	YES											└──┨
	NULL		NOT EXISTING	x	А	100	YES	NO	YES	WRP	6	YES									<u> </u>		<u> </u>
			WETLAND							WPA	7	YES									<u> </u>		<u> </u>
										RTD	8	YES											\mid
						<85 OR 9999	NO	NO	NA		99									YES			

1.GRID CODE	2.CURRENT_	3.MUSYM	4.WETL_CLASS	5.DIS_WETL	6.DIS_AGRIC	7.PCTHYDRIC	8.ORIGINAL	9.REMAINING	10.LOST	11.RESTORATION SOURCE	12.PRW_CODE	I OST RESTORED		LOSI, PRW1	LOST, PRW2	LOST, WATER	LOST, URBAN	LOST, FILLED/ DRAINED	LOST, BARREN	REMAINING WETLAND	AG UPLAND PRW 99	OPEN/ WOODLAND UPLAND	URBAN UPLAND	OPEN WATER
											1		Y	ES										
						05.00				GHRA	5	YE	s											
	DEEP WATER		UPLAND	х	А	85, 90, 100	YES	NO	YES	WRP	6	YE	-											
	LAKE									WPA	7	YE				-								
						<85 OR				RTD	8	YE	S											
						9999	NO	NO	NA		99					-					YES			
											1	_		ES										
						85, 90,	YES	NO	VEC	GHRA	5	YE	-											
	ROAD		UPLAND	х	А	100	TES	NO	YES	WRP WPA	6	YE												
										RTD	8	YE	-											
						<85 OR	NO	NO	NA		99		-								YES			
						9999					1	_	Y	ES										
										GHRA	5	YE	-											
						85, 90, 100	YES	NO	YES	WRP	6	YE	s											
61	UPLAND	N/A	UPLAND	Х	A					WPA	7	YE	s											
										RTD	8	YE	s											
						<85 OR 9999	NO	NO	NA		99										YES			
											1		Y	ES										
										GHRA	5	YE	s											
	\$		FILLED / DRAINED	x	A	85, 90, 100	YES	NO	YES	WRP	6	YE	s											
	·		WETLAND							WPA	7	YE	s											
						<85 OR				RTD	8	YE	S											<u> </u>
						<85 OR 9999	YES	NO	YES		99							YES						
											1		-	ES										
						85, 90,				GHRA	5	YE	_]
	NULL		NOT EXISTING WETLAND	х	А	100	YES	NO	YES	WRP	6	YE	-									-]
										WPA RTD	7	YE	-]
						<85 OR	NO	NO	NA	RID	99	TE	5								YES			
						9999	NO	- NO	N/A		99										TES			

1.GRID CODE	2. CURRENT_ WETCODE	3.MUSYM	4. WETL_CLASS	5.DIS_WETL	6.DIS_ AGRIC	7. PCTHYDRIC	8. ORIGINAL	9.REMAINING	10.LOST	11. RESTORATION SOURCE	12.PRW_CODE	LOST, RESTORED	LOST, PRW1	LOST, PRW2	LOST, WATER	LOST, URBAN	LOST, FILLED/ DRAINED	LOST, BARREN	REMAINING WETLAND	AG UPLAND PRW 99	OPEN/ WOODLAND UPLAND	URBAN UPLAND	OPEN WATER
	DEEP WATER LAKE		UPLAND	x	A	85, 90, 100	YES	NO	YES	GHRA WRP WPA	1 5 6 7	YES YES YES	YES										
						<85 OR 9999	NO	NO	NA	RTD	8 99	YES								YES			
						< 65 OR 9999	NO	NO	INA		1		YES							TES			
										GHRA	5	YES	. 20										
	DOAD			~		85, 90, 100	YES	NO	YES	WRP	6	YES											
	ROAD		UPLAND	<u> </u>	<u> </u>					WPA	7	YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA		99									YES			
											1		YES										
						05 00 100	YES	NO	VEC	GHRA	5	YES											
	RIVER		SURFACE WATER	х	A	85, 90, 100	YES	NO	YES	WRP WPA	6 7	YES YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA	RID	99	TES								YES			
						<03 OK 7777		NO	INA		1		YES							TLS			
62		N/A								GHRA	5	YES	120										
						85, 90, 100	YES	NO	YES	WRP	6	YES											
	UPLAND		UPLAND	х	A					WPA	7	YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA		99									YES			
	"T" SERIES		FORESTED	W	А		YES	YES	NO		99								YES				
	"W" SERIES		OPEN WATER WETLAND	W	Α		YES	YES	NO		99								YES				
											1		YES										
										GHRA	5	YES											
	\$		FILLED / DRAINED	x	A	85, 90, 100	YES	NO	YES	WRP	6	YES											
	φ		WETLAND							WPA	7	YES											
										RTD	8	YES											
						<85 OR 9999	YES	NO	YES		99						YES						
											1		YES										
										GHRA	5	YES											
	NULL		NOT EXISTING	x	A	85, 90, 100	YES	NO	YES	WRP	6	YES											
			WETLAND							WPA	7	YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA		99									YES			

1. GRID CODE	2. CURRENT_ WETCODE	3. MUSYM	4. WETL_CLASS	5. DIS_WETL	6. DIS_ AGRIC	7. PCTHYDRIC	8. ORIGINAL	9. REMAINING	10. LOST	11. RESTORATION SOURCE	12. PRW_CODE	LOST, RESTORED	LOST, PRW1	LOST, PRW2	LOST, WATER	LOST, URBAN	LOST, FILLED/ DRAINED	LOST, BARREN	REMAINING WETLAND	AG UPLAND PRW 99	OPEN/ WOODLAND UPLAND	URBAN UPLAND	OPEN WATER
											2			YES									
										GHRA	5	YES											
	DEEP WATER		SURFACE WATER	x	x	85, 90, 100	YES	NO	YES	WRP	6	YES											
	LAKE		JUNIACE WATER							WPA	7	YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA		99										YES		
											_2			YES									
										GHRA	5	YES											
						85, 90, 100	YES	NO	YES	WRP	6	YES											
	RIVER		SURFACE WATER	X	X					WPA	7	YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA		99										YES		
											2			YES									
										GHRA	5	YES											
	ROAD		UPLAND			85, 90, 100	YES	NO	YES	WRP	6	YES											
	NOAD		UI LAND							WPA	7	YES											
										RTD	8	YES											
63		N/A				<85 OR 9999	NO	NO	NA		99										YES		
											2			YES									
						05 00 400	VEO		VEO	GHRA WRP	5 6	YES YES											
	UPLAND		UPLAND	x	x	85, 90, 100	YES	<u>NO</u>	YES	WPA	7	YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA	NID.	99										YES		
	"T" SERIES		FORESTED	W	х		YES	YES	NO		99	 							YES				$\left - \right $
	"W" SERIES		OPEN WATER WETLAND	w	x		YES	YES	NO		99	 							YES				$\left - \right $
											2			YES									
										GHRA	5	YES											
	\$		FILLED / DRAINED	x	x		YES	NO	YES	WRP	6	YES											
			WETLAND							WPA	7	YES											
										RTD	8	YES											
										01104	2	VEC		YES									
						85, 90, 100	YES	NO	YES	GHRA WRP	5 6	YES YES									1		$\left - \right $
	NULL		NOT EXISTING WETLAND	X	X					WPA	7	YES											
						<85 OR 9999	NO	NO	NA	RTD	8 99	YES									YES		$\left - \right $

1.GRID CODE	2.CURRENT_ WETCODE	3.MUSYM	4.WETL_CLASS	5.DIS_WETL	6.DIS_ AGRIC	7.PCTHYDRIC	8.ORIGINAL	9.REMAINING	10.LOST	11.RESTORATION SOURCE	12.PRW_CODE	LOST, RESTORED	LOST, PRW1	LOST, PRW2	LOST, WATER	LOST, URBAN	LOST, FILLED/ DRAINED	LOST, BARREN	REMAINING WETLAND		AG UPLAND PRW 99	OPEN/ WOODLAND UPLAND	URBAN UPLAND	OPEN WATER
	ROAD		UPLAND	x	x	85, 90, 100	YES	NO	YES		99					YES								
						<85 OR 9999	NO	NO	NA		99												YES	
	UPLAND		UPLAND	х	x	85, 90, 100 <85 OR	YES	NO	YES		99					YES				_				
	"Т"					9999	NO	NO	NA		99									_			YES	
82	SERIES "W"	N/A	FORESTED OPEN WATER	w w	x x		YES YES	YES	NO NO		99 99								YES	_				
	SERIES \$		WETLAND FILLED / DRAINED WETLAND	x	x		YES	NO	YES		99					YES								
	NULL		NOT EXISTING	v	x	85, 90, 100	YES	NO	YES	-	99					YES								
	NOLL		WETLAND	_X		<85 OR 9999	NO	NO	NA		99												YES	
	DEEP WATER		SURFACE WATER	x	x	85, 90, 100	YES	NO	YES		99				YES									
	LAKE			Â		<85 OR 9999	NO	NO	NA		99													YES
	RIVER	N/A	SURFACE WATER	x	x	85, 90, 100	YES	NO	YES		99				YES									
						<85 OR 9999	NO	NO	NA		99													YES
	UPLAND		SURFACE WATER	x	x	85, 90, 100 <85 OR	YES	NO	YES		99				YES									
						<85 OR 9999 85, 90,	NO	NO	NA		99									_				YES
83	ROAD	ANY OTHER	UPLAND	x	x	85, 90, 100	YES	NO	YES		99				YES					_				
	KOAD	THAN "W"	OFLAND	^		<85 OR 9999	NO	NO	NA		99													YES
	"T" SERIES		FORESTED	W	X		YES	YES	NO		99								YES					
	"W" SERIES		OPEN WATER WETLAND	W	x		YES	YES	NO		99								YES					
	\$	N/A	FILLED / DRAINED WETLAND	х	x		YES	NO	YES		99				YES									
	NULL		NOT EXISTING	x	x	85, 90, 100	YES	NO	YES		99				YES									
	NULL		WETLAND			<85 OR 9999	NO	NO	NA		99													YES

1. GRID CODE	2. CURRENT_ WETCODE	3.MUSYM	4. WETL_CLASS	5. DIS_WETL	6. DIS_ AGRIC	7.PCTHYDRIC	8.ORIGINAL	9.REMAINING	10.LOST	11. RESTORATIO N SOURCE	12. PRW_CODE	LOST, RESTORED	LOST, PRW1	LOST, PRW2	LOST, WATER	LOST, URBAN	LOST, FILLED/ DRAINED	LOST, BARREN	REMAINING WETLAND	AG UPLAND PRW 99	OPEN/ WOODLAND UPLAND	URBAN UPLAND	OPEN WATER
	DEEP WATER LAKE		WETLAND	W	Х		YES	YES	NO		99								YES				
	ROAD		WETLAND	W	Х		YES	YES	NO		99								YES				
	UPLAND		WETLAND	W	Х		YES	YES	NO		99								YES				
	RIVER		SURFACE WATER	X	Х		NO	NO	NA		99												YES
	"A" SERIES		AQUATIC BED	W	X		YES	YES	NO		99								YES				
87	"E" SERIES	N/A	EMERGENT / WET MEADOW	w	х		YES	YES	NO		99								YES				
87	"F" SERIES	IN/A	FLATS / UNVEGETATED SOIL	W	Х		YES	YES	NO		99								YES				
	"S" SERIES		SCRUB/SHRUB	W	Х		YES	YES	NO		99								YES				
	"T" SERIES		FORESTED	W	Х		YES	YES	NO		99								YES				
	"W" SERIES		OPEN WATER WETLAND	w	х		YES	YES	NO		99								YES				
	\$		FILLED / DRAINED WETLAND	x	х		YES	NO	YES		99						YES						
	NULL		WETLAND	W	Х		YES	YES	NO		99								YES				
	UPLAND		UPLAND	x	х	85, 90, 100 <85 OR 9999	YES NO	NO NO	YES NA		99 99							YES			YES		
	"T" SERIES		FORESTED	w	х		YES	YES	NO		99								YES				
130	\$	N/A	FILLED / DRAINED WETLAND	x	х		YES	NO	YES		99						YES						
	Ŷ					85, 90, 100	YES	NO	YES		99						TL3	YES					
	NULL		NOT EXISTING WETLAND	x	х	<85 OR 9999	NO	NO	NA		99							TLJ			YES		
						<03 01(////	NO	NO			2			YES							TES		
										CUDA		VEC		TES									
						05 00 100	VEC	NO	VEC	GHRA	5	YES											
	ROAD		UPLAND	x	х	85, 90, 100	YES	NO	YES	WRP WPA	6	YES											
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA	RID	99	125									YES		
	"T" SERIES		FORESTED	w	х		YES	YES	NO		99								YES		125		
136	"W" SERIES	N/A	OPEN WATER WETLAND	w	х		YES	YES	NO		99								YES				
130	\$	N/A	FILLED / DRAINED WETLAND	x	х		YES	NO	YES		99						YES						
	\$		FILLED / DRAINED WEILAND	· · ^	^		TES	NO	TES								TES						├───┤
											2			YES									
										GHRA	5	YES											<u> </u>
	NULL		NOT EXISTING WETLAND	x	x	85, 90, 100	YES	NO	YES	WRP	6	YES											⊢]
										WPA	7	YES											<u> </u>
										RTD	8	YES											
						<85 OR 9999	NO	NO	NA		99										YES		, I

APPENDIX D: Hydric Soils

*Note: The Saprists and Aquents have the MUKIND of Undifferentiated Group. These consist of two or more components that are not consistently associated geographically, but are included as the same named mapunit because they have similar use and management concerns. The Fluvaquents and Udifluvents have the MUKIND of Consociation. At some point it was determined that describing these various mapunits any further in the taxonomic system would gain little in terms of interpretation. Marsh is a miscellaneous area and is usually considered a non soil area.

Mapunit Symbol	Mapunit Name	Percent Hydric
Ac,Ad	Adrian Muck	100
AcA	Ackmore silt loam, 0-3% slopes	100
Af, An, Aw	Alluvial land, wet	100
Ww	Wet alluvial land	100
Af	Alluvial land, sandy, wet	100
Ah	Alluvial land, loamy, wet	100
Ak	Adrian mucky peat	100
Ar	Adrian variant muck	100
Ata	Ashkum silty clay loam, 0-3% slopes	100
BaA	Barry silt loam, 0-3% slopes	100
Bb	Barry loam, 0-3% slopes	100
Br	Brookston silt loam	100
BsA	Brookston silt loam, 0-3% slopes	100
BtA	Brookston stony silt loam, 0-3% slopes	100
BuA	Brookston silty clay loam, 0-3% slopes	100
Co, Cw	Colwood silt loam	100
Со	Colwood silty clay loam	85
CoA	Colwood fine sandy loam, 0-3% slopes	100
Dt	Drummer silt loam, gravelly substratum	100
Ed	Edwards muck	100
Ev	Elvers silt loam	100
Fn	Fluvaquents	100
Fu	Fluvaquents	85
GaA	Gilford fine sandy loam, stratified substratum, 0-3% slopes	100
Gd	Gilford loam	100
Gd	Gilford sandy loam	100
Gb	Granby variant fine sandy loam	90
Gb, Gn	Granby loamy sand	100
Gf	Granby fine sandy loam	100
Ho, Ht	Houghton muck	100
Hu	Houghton muck	85
HtA	Houghton muck, 0-2% slopes	100
HtB	Houghton muck, 2-6% slopes	100
Hu	Houghton mucky peat	100
Hv	Houghton peat, acid variant	100
Hw	Houghton muck, ponded	85
Kb, Km	Keowns silt loam	100
Ке	Keowns silt loam	90

Mapunit Symbol	Mapunit Name	Percent Hydric
Ma	Mahalasville silt loam	100
Mb	Mahalasville silt loam, overwash	100
Mb, Mc, Mf	Marsh	100
Mc, Mh	Marshan silt loam	100
Mc, Md	Marshan loam	100
Ме	Maumee loamy sand	100
Mf	Millington silt loam	100
МоА	Montgomery silty clay loam, 0-3% slopes	100
Mzb	Mongtomery silty clay loam	100
Mr	Milford silty clay loam	100
Mzk	Mussey loam	100
MzkA	Mussey loam, 0-3% slopes	100
Na	Navan silt loam	100
Oc	Ogden muck	100
Od	Ogden mucky peat	100
Os	Orion silt loam, wet	100
Os	Ossian silt loam	100
OsA	Ossian silt loam, 0-3% slopes	100
Ot	Otter silt loam	90-100
Pa	Palms muck	85-100
Pb	Palms muck, ponded	100
Pc	Palms mucky peat	100
Ph	Pella silt loam	100
Ph	Pella silty clay loam	90
PhA	Pella silt loam, 0-3% slopes	100
Pk	Pella variant silt loam	90
Pm	Pella silt loam, moderately shallow variant	100
PnA	Pella silty clay loam, 0-2% slopes	100
Rs	Rollin muck	100
Ru	Rollin muck, deep	100
Rv	Rollin muck, shallow	100
Rw	Rollin mucky peat	100
SaA	Sable silty clay loam, 0-3% slopes	100
Se	Sebewa silt loam	100
Sm	Sebewa silt loam	90-100
SmA	Sebewa silt loam, 0-2% slopes	100
Sn	Sebewa silt loam, clayey substratum	100
Sg	Sawmill silt loam, calcareous variant	100
Sk	Saprists and Aquents	100
Uf	Udifluvents	100
Wa	Wacousta silty clay loam	100
Wa	Wacousta mucky silt loam	100
Wa, Wb	Wallkill silt loam	100
WsA	Washtenaw silt loam, 0-2% slopes	100

Rock River Basin: Mapping its Potentially Restorable Wetlands

APPENDIX E:

Processing Documentation for Potentially Restorable Wetlands Layer

OBJECTIVE: Create a GIS data layer that represents areas of potential wetland restoration sites using hydric soils, wetlands, and agricultural lands as the base layers. The theory is that if an area can be identified as likely to be historic wetland, but is not currently mapped as a wetland and if the area is currently in agricultural production, then it may represent a potential site for wetland restoration.

PURPOSE: This datalayer is designed for landscape scale watershed analysis. It corresponds to EPA Level 1 monitoring. Existing data sets were used as the base layers.

PROCESSING ENVIRONMENT: The GIS data analysis was done in ESRI's ArcGIS v. 9.2 on a Windows XP desktop. The metrics tables were developed in Microsoft Access.

- A. DATA SOURCES:
 - A.1. Hydric Soils

NRCS Statewide Seamless Soils Layer

A.2. Wetlands

WDNR Statewide Seamless Wisconsin Wetlands Inventory Updated to 1978-79 for Walworth, Washington, and Waukesha counties Updated to 1986 for Dane and Jefferson counties Updated to 1994 for Dodge and Fond du Lac counties Updated to 1999 for Columbia and Green Lake counties Updated to 2000 for Rock county

A.3. Agricultural Lands

USDA - National Agriculture Statistics Service's 1:100,000-scale 2006 Cropland Data Layer, A Crop-Specific Data Layer for Wisconsin, 2007, March 14

A.4. Rock River Basin

WDNR Watershed Management Units

A.5. SWAT subwatersheds

Montgomery Associates

A.6. GHRA

Glacial Habitat Retoration Areas (compiled from WDNR, FWS, and NRCS covering 1991-2005)

A.7. WRP

NRCS Wetland Reserve Program parcel boundaries

A.8. WPA

FWS Waterfowl Production Area parcel boundaries

A.9. Restoration Tracking Database (compiled from WDNR, FWS, and NRCS covering 2005-2006)

Rock River Basin: Mapping its Potentially Restorable Wetlands

- B. DATA PROCESSING HYDRIC SOILS
 - B.1. NRCS Soils (SDEDNR.EN_WI_SOIL_MAPUNIT_AR_20K)
 - a) The polygon SDE layer was first joined to two tables (SDEDNR.EN_WI_SOIL_MAPUNIT_REF AND SDEDNR.EN_WI_SOIL_HYDRIC_REF) using the attribute MUKEY as the join field.
 - b) The layer was then clipped to the Rock River Basin as defined in the wsdrwmu.shp as the Upper and Lower Rock River. Output is called Rock_River_Soils.
- C. DATA PROCESSING WETLANDS
 - C.1. Wisconsin Wetlands Inventory (DigitalWetlandInventory.gdb)
 - a) The polygon feature class in the geodatabase was clipped to the Rock River Basin as defined in the wsdrwmu.shp as the Upper and Lower Rock River. Output is called Rock_River_Wetlands.
- D. DATA PROCESSING AGRICULTURAL LANDS
 - D.1. NASS 2006 (wi06nass_awifs_cdl.tif)
 - a) The EXTRACT BY MASK tool was used to cut the raster landcover dataset to the Rock River Basin as defined in the wsdrwmu.shp as the Upper and Lower Rock River.
 - b) The raster was then converted to a polygon feature class.
 - c) The VALUE field was renamed GRIDCODE, and the field LANDUSE was added and populated with the category names for each of the gridcodes. Output is called RR_NASS.

GRIDCODE	LANDUSE
1	Corn, all
5	Soybeans
21	Barley
24	Winter Wheat
25	Other Grains/Hay
27	Rye
28	Oats
36	Alfalfa
61	Idle Cropland/Fallow/CRP
62	Pasture, Non-ag, Range, Waste,
	Farmstead
63	Woodland
82	Urban
83	Water
87	Wetlands
130	Barren
136	Shrubland

- E. DATA PROCESSING SWAT SUBWATERSHEDS
 - E.1. Montgomery Associates (Rock River Basins.shp)
 - a) Project the shapefile into the wtm 83-91 projection to match all the other layers. Output is called rockbsn_wtm.shp.
- F. DATA PROCESSING RESTORATIONS
 - F.1. Glacial Habitat Restoration Area (GHRA_11_19_07)
 - a) Clip the GHRA feature class to the rockbsn_wtm.shp.
 - b) Select all COVER_TY LIKE WTLD_% AND COVER_TY <> 'WTLD_NAT' AND COVER_TY <> 'WTLD_WRP'. In this step we are trying to avoid the naturally occuring wetlands as well as counting the WRP areas twice. Export selected features.
 - c) Select all (PARTNER_1 = NRCS OR PARTNER_1 = NRCS-WRP OR PARTNER_1 = FWS-WPA) AND (PARTNER_2 = NRCS OR PARTNER_2 = NRCS-WRP OR PARTNER_2 = FWS-WPA) AND (PARTNER_3 = NRCS OR PARTNER_3 = NRCS-WRP OR PARTNER_3 = FWS-WPA). In this step we are trying to avoid counting the WRP or the WPA areas twice.
 - d) Delete selected features. Output is called GHRA_WTLD_RR.
 - e) Add the field PRWCODE_GHRA. Populate it with the value of 5.
 - f) Delete all the fields except PRWCODE_GHRA.
 - F.2. Wetlands Reserve Program (wrp_a_wi.shp)
 - a) Clip the WRP feature class to the rockbsn_wtm.shp. Output is called WRP_clipRR.
 - b) Add the field PRWCODE_WRP. Populate it with the value of 6.
 - c) Delete all the fields except PRWCODE_WRP.
 - F.3. Waterfowl Production Area (wpapw924)
 - a) Clip the WPA feature class to the rockbsn_wtm.shp. Output is called WPA_RR.
 - b) Add the field PRWCODE_WPA. Populate it with the value of 7.
 - c) Delete all the fields except PRWCODE_WPA.
 - F.4. Restoration Tracking Database
 - a) Clip the restoration tracking database feature class to the rockbsn_wtm.shp. Output is called restorations_RR.
 - b) Select all features overlapping GHRA_WTLD_RR , WRP_clipRR, or WPA_RR. In this step we are trying to avoid having the same restorations areas come from multiple sources.
 - c) Delete selected features. Save.
 - d) Select all features equal to 5 acres OR where CoverType = UPGRASS.

The features equal to 5 acres have not been edited to the correct size or shape. They are just buffered circles surrounding the original points provided by FWS.

- e) Delete selected features. Save.
- f) Add the field PRWCODE_wet. Populate it with the value of 8.
- g) Delete all the fields except PRWCODE_wet.

- G. DATA PROCESSING POTENTIALLY RESTORABLE WETLANDS LAYER
 - a) Union Rock_River_Soils and Rock_River_Wetlands. Output is called RR_Union_Wetlands_Soils.
 - b) Union RR_Union_Wetlands_Soils with RR_NASS. Output is called RR_Union_Wetlands_Soils_NASS.
 - c) Delete all FID fields and duplicate fields.
 - d) Taking the SWAT layer (rockbsn_wtm.shp), select the subwatersheds within each subbasin and create 23 new subbasin feature classes.
 - e) Clip RR_Union_Wetlands_Soils_NASS to each new subbasin feature class. This is done because the next step could not be done on the whole dataset. There were more than a million polygons and the software kept coming up with errors.
 - f) For each of the 23 clipped feature classes, select all polygons less than 0.5 acre (< 2023.45 square-meters). Run the ELIMINATE tool. This merges each selected polygon with a neighboring unselected polygon by dropping the shared border. The neighboring polygon is the one with the longest shared border. Repeat this step (selecting and eliminating) iteratively until there are no more polygons less than 0.5 acre. This step has to be repeated because if a selected polygon has no neighboring unselected polygons, it cannot be eliminated. The outer selected polygons have to be eliminated before the inner ones can be. Usually it took 2 or 3 iterations to eliminate them all.
 - g) For each of the 23 feature classes, run the MULTIPART TO SINGLEPART tool.
 - h) Then repeat step (e) above, running the eliminations iteratively again on each of the 23 feature classes.
 - i) For each of the 23 feature classes, run the SPLIT tool using the rockbsn_wtm.shp as the split features and the SWAT_ID as the split field, creating 112 new feature classes total.
 - j) In each new feature class, add a new field SWAT_ID, and populate it with its corresponding SWAT_ID from rockbsn_wtm.shp.
 - k) Append all 112 feature classes into one. Output is called RR_final.
 - Add fields DIS_WETL, WETL_CLASS, DIS_AGRIC, ORIGINAL, REMAINING, LOST, PRW_CODE. Populate using queries in flowchart or decision matrix.
- H. DATA PROCESSING COMBINING RESTORATIONS WITH PRW LAYER
 - a) Union RR_final to GHRA_WTLD_RR. Output is called Union_RR_GHRA.
 - b) Select all features with PRWCODE_GHRA = 5 and (PRWCODE = 1 or PRWCODE = 2).
 - c) Change the PRWCODE = 5 for all selected features.
 - d) Delete the PRWCODE_GHRA field and the FID fields.

- e) Union WRP_clipRR to Union_RR_GHRA. Output is called Union_RR_GHRA_WRP.
- f) Select all features with PRWCODE_WRP = 6 and (PRWCODE = 1 or PRWCODE = 2).
- g) Change the PRWCODE = 6 for all selected features.
- h) Delete the PRWCODE_WRP field and the FID fields.
- i) Union WPA_RR to Union_RR_GHRA_WRP. Output is called Union_RR_GHRA_WRP_WPA.
- j) Select all features with PRWCODE_WPA = 7 and (PRWCODE = 1 or PRWCODE = 2).
- k) Change the PRWCODE = 7 for all selected features.
- l) Delete the PRWCODE_WPA field and the FID fields.
- m) Union restorations_RR to Union_RR_GHRA_WRP_WPA. Output is called PRW_RR_final.
- n) Select all features with PRWCODE_wet = 8 and (PRWCODE = 1 or PRWCODE = 2).
- o) Change the PRWCODE = 8 for all selected features.
- p) Delete the PRWCODE_wet field and the FID fields.
- q) Add fields FINAL_ACRES and RESTORED. Populate using queries in flowchart or decision matrix.

Wisconsin Department of Natural Resources P.O. Box 7921, Madison, WI 53707 • (608) 267-7694 DNR PUB WT-898-2008

The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240.

This publication is available in alternative format (large print, Braille, audio tape. etc.) *upon request. Please call* (608) 267-7694 *for more information.*