Riverside Energy Center Water Quality Trading Plan

> Town of Beloit Rock County, WI

Prepared for: Alliant Energy, Wisconsin Power & Light Co.

November 30, 2017 Revised June 15, 2018

Montgomery Associates

Resource Solutions.uc • ma-rs.org

MARS Project #1723

119 South Main Street, Cottage Grove, WI 53527 | 608-839-4422

Table of Contents

1	Intr	oduction	1
	1.1	Background and Purpose	1
	1.2	Location	2
	1.3	Current Permit	2
	1.4	Credit Need	2
2	Exis	sting Land Use Analysis	5
	2.1	Existing Land Use	5
	2.2	Analysis Areas	5
	2.3	Soil Sampling	6
	2.4	Phosphorus Runoff Modeling Approach	7
	2.5	Potentially Tradeable Phosphorus	8
3	Pro	posed Land Use Analysis	9
	3.1	Proposed Land Uses	9
	3.2	Design	9
	3.3	Proposed Conditions P Export	.11
4	Cre	dit Analysis	.13
	4.1	Rock River TMDL	13
	4.2	Trade Ratios	13
	4.3	Construction and Implementation Timeline	14
	4.4	Timeline of Total Credit Availability	.15
5	Pro	posed Compliance Approach	.17
	5.1	Inspections	.17
	5.2	Reporting	.17

List of Appendices

- Appendix A Figures
- Appendix B Data
- Appendix C –Modeling Results SnapPlus WinSLAMM
- Appendix D Native Restoration Installation Plan Native Restoration Operation and Maintenance Plan
- Appendix E West Riverside Plant Grading Plan Kittyhawk Substation Grading Plan
- Appendix F Credit Calculations
- Appendix G Forms
- Appendix H Stormwater Management Plans West Riverside Stormwater Management Plan Rev May 2018 Kittyhawk Substation Stormwater Management Plan September 2017
- Appendix I Response to Reviewer Comments

1 Introduction

1.1 Background and Purpose

Alliant Energy, Wisconsin Power & Light Company owns and operates the Riverside Energy Center, a 603 MW natural gas electrical generating facility in the Town of Beloit, Rock County, WI. The facility holds a WPDES permit issued by WDNR specifying discharge limits for various constituents; including a daily phosphorus (P) discharge limit. Plant operations have been modified to limit the addition of P to the process water and ultimately to plant discharge. However, these modifications have negatively impacted plant operating efficiency. Additionally, the construction of a new facility on the Riverside Energy Center campus will also result in additional P discharge from the operation. To meet existing permit P discharge limits for the existing and future facility, Alliant Energy has developed a Nutrient Trading Plan as a cost effective and environmentally sustainable alternative to construction of a wastewater treatment plant.

The primary source of P in the wastewater stream from the plant is groundwater withdrawn for cooling. Water is withdrawn via a Ranney well adjacent to the facility and cycled through the cooling system. It is eventually discharged untreated to the Rock River. To meet permitted P discharge limits the use of P-based additives to the system have been discontinued at the plant.

West Riverside is scheduled to begin operations in 2019 and provide 700 MW of electricity at peak generation. Additional cooling water to serve the new plant will be drawn from the existing well and waste water will be discharged to the existing outfall. The future plant will use water more efficiently and utilize a recirculating sand filter to provide wastewater treatment. Therefore, the portion of the total P discharge from the new plant will be less than that of the existing plant.

Alliant Energy proposes to establish a water quality trading plan utilizing land owned by the company near the permitted facility. Approximately 84 acres of land adjacent to the Riverside Plant and 28 acres immediately west of the property, purchased from the Town of Beloit, are proposed for inclusion in the trading plan. Both parcels were leased for agricultural production through 2017. The planned development of this land includes several future land uses: as part of the West Riverside Plant, converted to a solar array, developed as an electrical substation, or converted to perennial native vegetation. These land use areas are included in the nutrient trading plan and have been evaluated for P runoff reduction from conversion out of agricultural production.

Alliant Energy contracted with Montgomery Associates: Resource Solutions (MARS) to assist in developing the proposed nutrient trading plan. The remainder of this Water Quality Trading Plan will describe Alliant Energy's plan to meet the current WPDES permitted Total Phosphorus (TP) discharge limits for the combined discharge from the Riverside Energy Center and West Riverside Addition. TP credits will be established for each of the land uses described above.

1.2 Location

Outfall 001 discharges to the Rock River at approximately latitude 42.57436° N and longitude 89.03485° W. The outfall is located in HUC 12 Subwatershed 070900021502, The City of Beloit-Lower Rock River Basin. The approximate location of Outfall 001 is shown in *Figure A1*.

1.3 Current Permit

The Riverside Energy Center currently operates under WPDES Permit No. WI-0061921-02-0. The only outfall for the combined discharge from both the existing and future plants is Outfall 001, to the Rock River. The current permit dictates that the TP load from the outfall cannot exceed 0.65 lb TP/day, on a monthly average. The total annual limit of P that may be discharged from the plant is 237.25 lb.

1.4 Phosphorus Discharge

Existing Riverside Plant

The future P discharge from the existing Riverside Plant was projected based on past plant monitoring data and scaled up to account for changes in plant operations. Plant operations (and therefore P discharge) varies throughout the year with fluctuating electrical demand. Therefore, weekly monitoring data from January 2015 through August 2016 was used to project the daily future P discharge by month. Data after August 2016 was not available because the plant was offline for several months for repairs and maintenance. A summary of the assumptions used in the discharge analysis are provided below. Monitoring data and loading calculations are provided in *Appendix B*.

- It is assumed that the plant will be operating at 70-80% capacity factor (CF). The actual average CF was 62% during period of available monitoring data.
- P based antiscalent will be utilized at the plant, after previously discontinuing use. Antiscalent use is proportional to flow and increases P discharge by approximately 60%.
- Plant operating 5 days per week on average, or about 70% of the month (currently operating about 50-60% of the month)
- Outfall P concentrations conservatively estimated to increase by 50% from monitoring data.

The projected daily average P discharge is 0.35-1.10 lb/day, varying by month and plant capacity factor. The projected annual discharge from the existing plant, based on the available data, is 195.5-223.4 lb P/year. Additional, details are provided in *Appendix B*.

New West Riverside Expansion

The projected discharge from the new plant was calculated based on the plant and wastewater treatment system designs. Alliant Energy is constructing a recirculating sand filter system to treat wastewater from the new West Riverside Plant. The system is designed to remove phosphorus, zinc, chlorine, and TSS from the waste stream via settlement and sand filtration. Phosphorus removal will be enhanced with a Ferric chemical dosing system prior to the settling tanks. The system has been designed to provide total maximum TP concentrations of 0.05 mg/L, based on the systems design

flows. This information was used to project the P discharge from the new West Riverside Plant. A summary of the calculation assumptions is below. Additional information is provided in *Appendix B*.

- West Riverside outfall flow is 65% of that of the existing Riverside plant for the same CF.
- Treatment of wastewater stream from West Riverside will achieve P concentrations of 0.05mg/L.
- Plant will operate 5 days per week on average, or about 70% of the month.

The projected daily average P discharge is 0.07-0.24 lb/day, varying by month and plant capacity factor. The projected annual discharge from the new plant is 39.2-44.8 lb P/year. Additional, details are provided in *Appendix B*.

<u>Total Discharge</u>

The projected total discharge from the combined plants was calculated to be 234.7-268.2 lb P/yr. The plant may discharge less P on an annual basis than the maximum allowable annual P discharge of 237.25 lb/yr. However, the plant is likely to exceed the monthly P limits most months of the year as is shown in the calculations in *Appendix B*.

1.5 Credit Need

Alliant Energy and MARS evaluated the existing and projected P discharges from the Riverside Facility to determine the total credit need from the trading program. Based on historic plant use and operations data the average daily discharge (by month) from the existing Riverside plant and new West Riverside expansion was estimated to be 0.49-1.23 lb/day (*Table 1* and *Appendix B*). Given the assumptions of the projections the plant is expected to exceed the monthly P discharge limit of 0.65 lb/day during most months of the year. Due to the uncertainties in plant operations due to varying electrical demand and plant operations the actual number of credits used on an annual basis is likely to vary from the projection. The anticipated credit need for the combined Riverside/West Riverside plant to meet the current WPDES permit limits is 0-105 lb P. Alliant intends to generate more credits than this estimate to provide a factor of safety and ensure sufficient credit availability in the future.

Table 1. Anticipated Credit Need for both Plants at 80% Capacity Factor

Month	Existing Riverside (lb/day)	West Riverside (lb/day)	Total (lb/day)	Permitted discharge (lb/day)	Credit need (lb/day)	Total Credits Needed*
Jan	0.91	0.17	1.08	0.65	0.43	9.42
Feb	0.91	0.18	1.09	0.65	0.44	8.84
Mar	0.93	0.20	1.13	0.65	0.48	10.50
April	0.40	0.08	0.49	0.65	-	-
May	1.10	0.19	1.28	0.65	0.63	13.94
Jun	1.02	0.19	1.20	0.65	0.55	11.61
Jul	0.90	0.24	1.14	0.65	0.49	10.70
Aug	0.99	0.22	1.21	0.65	0.56	12.23
Sep	1.03	0.20	1.23	0.65	0.58	12.24
Oct	0.70	0.10	0.80	0.65	0.15	3.25
Nov	0.57	0.12	0.69	0.65	0.04	0.79
Dec	0.93	0.19	1.12	0.65	0.47	10.44
				Total	Credit Need: 103.	95 lb P

*- Assumes both plants operating 70% of the month

2 Existing Land Use Analysis

2.1 Existing Land Use

Two agricultural parcels, totaling approximately 112 acres located near the Riverside Energy Center have been identified for inclusion in the P trading program. The proposed trading locations are shown in *Figure A2*. The largest parcel is 84 acres on the east side of S Walters Rd, South of WBR Townline Rd, adjacent to the existing Riverside Energy Center. The remaining 28 acres is located on the west side of S Walters Rd. Each parcel has been managed for row crop production continuously for at least the last decade.

The fields on the east side of S Walters Rd., adjacent to the Riverside Energy Center, have been owned by Alliant Energy and leased to an agricultural operator since 2008. The operator alternated no-till soybeans and winter wheat production in these field. Fertilizer application typically averaged 125 lb/ac of diammonium phosphate in the spring. No soil testing was conducted by the operator prior to the initiation of this project, and the fields were not part of an approved nutrient management plan.

The fields on the west side of S Walters Rd. were purchased by Alliant Energy from the Town of Beloit in 2016. Previously these fields were leased to an agricultural operator by the Town. Alliant Energy continued this lease through the 2017 growing season. The fields were under a variable corn grain – soybeans – wheat rotation. Additionally, the Town utilized these areas for municipal sludge disposal from the Town's wastewater treatment plant. Cropping records, sludge disposal records, and sludge analysis results for these fields were provided by the Town to MARS. A selection of these records is included in *Appendix B*. Fields received sludge applications in spring and/or fall, with application times and rates varying every year. The cropping and sludge application records were aggregated, and representative cropping rotation and nutrient application schedule was determined. The typical crop rotation over the period of record was determined to be 3-years corn -2 years soybeans - 2 years wheat. The average sludge application was 7,200 gal/ac/yr, which based on the sludge analysis results, amounted to 50 lb/ac/yr of P. Additionally, according to the town, 125 lb/ac of potassium sulfate and 50 lb/ac of ammonium phosphate were incorporated annually, with 100 lb/ac of ammonium nitrate added when wheat was planted.

2.2 Analysis Areas

The phosphorus trading areas were subdivided by the planned land use and restoration schedule. The planned land analysis areas are identified in *Figure A2*. Areas are either considered to be "operational" or "restorations". Operational areas include 18.2 acres of land owned by Alliant Energy being set aside for construction of an electrical substation to be owned by American Transmission Company (ATC), 33.3 acres of land for construction of the West Riverside Addition, 24.0 acres reserved to be a future solar array mixed with perennial vegetation, and a total of 32.7 acres of native prairie restoration. Areas were further subdivided by the intended construction schedule and intermediate land use. Field ID's, areas, a brief description of the final land use, intermediate land use (during plant construction), and final restoration date is provided in *Table 2*. Additionally, some areas adjacent to the Riverside Expansion construction will be utilized for construction laydown and/or parking.

Field ID	Area (ac)	Proposed Land Use	Intermediate Construction Use	Projected Final Restoration	
*01	6.0	Perennial vegetation (area reserved for future substation expansion)	Transmission Line Construction Laydown	2020	
02	12.2	ATC Kittyhawk Substation	-	2019	
03-A	7.8	Plant Operational Area (plant buildings and parking)	-	2020	
03-B	3.1	3.1 Plant Operational Area Trailer parking and plant green space)			
03-C	7.4	Plant Operational Area (permanent stormwater facilities)	-	2018	
04	15.0	Greenspace (disturbed by plant construction but not developed)	-	2020	
05	24.0	Future Solar Array with Perennial Vegetation	Parking and Laydown	2021	
06	1.7	Future Alliant Energy Substation	-	2019	
R1	9.0	Native Prairie Restoration, "Southeast Green Space"	Laydown and Stockpiling	2018	
R2	9.3	Native Prairie Restoration, "Southwest Green Space"	-	2020	
R3	14.4	Transmission Corridor, Native Prairie Restoration	Laydown and Parking	2021	

Table 2. Analysis Areas and Proposed Land Use

Field O1 is planned to be seeded to perennial vegetation after its use as the transmission line construction laydown. This area is reserved for future substation expansion by ATC, though the exact schedule is unknown at this time. When that expansion occurs, this plan will be amended, and revised credit calculations will be provided to WDNR.

2.3 Soil Sampling

Soil sampling was conducted by MARS staff covering the entire area of planned development. Soil sampling was completed in three phases. Soil sampling was completed on 4/5/2016, 1/20/2017, and 5/11/18. Additionally, three soil samples were collected by Eco Resource Consulting (ERC) on 11/01/2017, as part of the restoration planning for field R2. These soil samples were included in the SnapPlus analysis as well. *Figure B1*, in *Appendix B* shows the approximate locations of all soil samples collected were analyzed at the UW Soil and Plant Analysis Lab (SPAL), except the samples collected by ERC, which were analyzed at Rock River Laboratories, Inc. Additional description of the soil sampling and analysis is provided below:

- A composite sample was collected on 04/05/2016 covering the fields adjacent to the West Riverside Expansion. A total of 17 sub-samples were collected and composited. This composite sample was applied to fields O3, O4, O5, O6, R1, and R3 in the SnapPlus analysis.
- On 1/20/2017 a second composite sample was collected on the land purchased by Alliant Energy from the Town of Beloit. A total of 12 sub-samples were collected and composited for analysis. The composite soil sample was applied to fields O1, O2, and R2 in Snap Plus analysis.

- As part of the restoration planning for the first phase of prairie planting ERC collected 3 soil samples in field R2.
- Much more extensive soil sampling conforming to UW Extension guidance (Document A2100) for soil sampling was completed on 5/11/2018. Composite soil samples consisting of 10 sub-samples were collected for every 5 acres of land to be evaluated. However, due to ongoing construction activities some areas were not accessible, or were heavily disturbed, and therefore were not sampled. A total of 9 samples were collected and analyzed covering fields O1, O2, R1, R2, and R3.

A summary of the soil samples collected and applied to each field in the SnapPlus analysis are provided below in *Table 3*, refer to *Figure B1* for locations and additional information.

Field ID	Soil Samples applied to Analysis	Notes
01	1/20/17 Composite, 5/11/18: 01-1, 01-2	
02	1/20/17 Composite, 5/11/18: 02-1, 02-2	May 2018 soil sampling access limited by substation construction, area analyzed in WinSLAMM so soil samples not used in P Trade Analysis
03-A	4/5/16 Composite	
03-B	4/5/16 Composite	May 2018 soil sampling access limited by plant construction, area analyzed in WinSLAMM so soil samples not used in P Trade Analysis
03-C	4/5/16 Composite	
04	4/5/16 Composite	May 2018 soil sampling access limited by plant construction
05	4/5/16 Composite	May 2018 soil sampling access limited by plant construction
06	4/5/16 Composite	May 2018 soil sampling access limited by plant construction, area analyzed in WinSLAMM so soil samples not used in P Trade Analysis
R1	4/5/16 Composite, 5/11/18: R1-1	May 2018 soil sampling access partially limited by plant construction
R2	1/20/17 Composite, 5/11/18: R2-1, R2-2, ERC Soil Samples 1, 2, and 3	
R3	4/5/16 Composite, 5/11/18: R3-1, R3-2	May 2018 soil sampling access partially limited by plant construction

Table 3. Soil Sample Summary by Field

Soil test P levels varied significantly across the site. The soils on the east side of Walters Rd with a relatively modest P application history, had relatively lower soil test P levels than the fields on the west side of S Walters Rd. Soil test analysis results are included in *Appendix B*.

2.4 Phosphorus Runoff Modeling Approach

Two modeling tools were used to evaluate P runoff and determine potentially tradeable phosphorus (PTP), SnapPlus V2 17.0 (build 18127.1502) and WinSLAMM v10.3.3. SnapPlus was designed for agricultural use while WinSLAMM is intended for urban land use analysis. WinSLAMM cannot account for differences in soil P content or ground slope, among other potential P export factors. However, SnapPlus cannot model runoff from urban landscapes or stormwater treatment facilities.

Credits were also calculated for areas converted from agricultural land use to developed areas, subject to NR216.Credit cannot be taken for reductions in P export required under other permits, therefore, only limited credits will be taken for the developed areas covered by a stormwater permit. Construction of the West Riverside Plant Expansion, the Alliant Energy Substation, and Kittyhawk Substation are subject to stormwater management performance criteria described in NR151. There are no P reduction performance criteria explicitly described in NR151. However, newly developed sites are required to reduce total suspended solids (TSS) leaving the site by 80% on an annual average basis. WinSLAMM can be used to model TSS as well as total P and therefore a correlation between TSS and TP can be established. P credits were only generated for reductions greater than the required amount. Additional details of this calculation are provided in *Sections 3.3 and 3.4*.

2.5 Potentially Tradeable Phosphorus

SnapPlus 17.0 was utilized for determining the PTP (in lb. P exported from each field) from existing fields that are to be converted to future perennial vegetation. These areas can be seen in *Figure A3*, along with the identified critical slope. Alliant Energy elected not to include the sludge applications in the existing land use analysis in SnapPlus, as the sludge application is likely to be relocated within the watershed. Therefore, when analyzing the existing PTP, only chemical fertilizers were included in the crop rotation. Areas subject to NR 151 post construction stormwater management criteria were modeled in SnapPlus under existing conditions, however, these results were not used in the credit calculations.

A summary of the modeling results is provided in *Table 4*. Two permit cycles were considered for the analysis, yielding an analysis period of 10 years. Detailed model input and output are provided in *Appendix C*.

Table 4. Existing Land Ose Potentially Tradeable Phosphorus											
Field ID	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	
01	100	64	40	46	31	32	37	98	63	39	
02		Area subject to NR 151 stormwater management performance criteria									
03-A		Area subject to NR 151 stormwater management performance criteria									
03-B		Area subject to NR 151 stormwater management performance criteria									
03-C		Area subject to NR 151 stormwater management performance criteria									
04	13	12	13	13	13	13	14	14	14	14	
05	105	97	108	100	110	102	112	103	114	105	
06		Area s	ubject to l	NR 151 st	ormwater	manager	nent perf	ormance	criteria		
R1	68	62	69	63	70	64	71	65	71	66	
R2	61	64	73	184	127	82	90	60	64	29	
R3	111	102	112	103	113	105	115	106	116	107	

3 Proposed Land Use Analysis

3.1 Proposed Land Uses

Proposed land use on site includes land developed for both electric generating and distribution, as well as areas of native prairie restoration, as described in *Table 2* above and shown in *Figure A3*. These areas have been subdivided into "fields" based on the proposed land use and construction schedule. Each field was individually evaluated for P loss under the final proposed condition.

3.2 Design

Areas of Perennial Vegetation (Restoration Areas)

These areas will be restored and maintained in accordance with NRCS Conservations Practice (327): Conservation Cover. All areas of perennial vegetative cover (O1, O4, O5, R1, R2, and R3) have been evaluated and restoration activities planned, based on the proposed construction schedule (*Section 4.4*). Some design details such as precise seed mixes, seed bed preparation, and seeding rates have not been evaluated at the time of the issuance of this report. Additional details will be developed as construction activities are completed on site. The areas of native restoration (R1, R2, and R3) will be evaluated by a trained ecologist for restoration methodology and seed mix selection.

Southeast, Southwest, and Transmission Corridor Green Spaces (R1, R2, R3):

Detailed seed bed preparation plans, and seed mixes has not been determined because these areas are expected to be heavily impacted by construction activities. A detailed investigation will be completed closer to the date of final restoration of each field. Field R2 will be the first area restored to native prairie and has been evaluated by Eco-Resource Consulting (ERC). Seed bed preparation and planting occurred in November 2017. The restoration methodology described by ERC is provided in *Appendix D*. Similar methodology will be used for the remaining areas of restoration as construction activities are completed. Final restoration plans for each area can be submitted to WDNR as an addendum to this report prior to restoration activities occurring and credits are generated from these areas.

Solar Array (O5):

The solar array has been included in the proposed areas of perennial vegetation evaluated in SnapPlus. Detailed designs have not been finalized on the array; however, the intended design is to intermix perennial vegetation cover and potentially native species. At a minimum the area will be seeded with a perennial grass cover, such as WisDOT seed mix 40, that provides good cover and is somewhat drought and wet tolerant. The solar panels will provide sufficient ground cover in conjunction with the intermixed vegetation that risk of erosion is low. Additionally, traffic around the solar panels will be relatively low compared to plant operational areas and no P will be applied in these areas.

ATC Transmission Line Laydown/Future Expansion (O1):

The ATC Laydown area will be used for material and equipment storage during transmission line construction and restored to perennial vegetation after. The transmission line construction will take place in 2019 with restoration of the laydown area occurring by the beginning of 2020. The area will be seeded with a perennial grass seed mix developed by ATC for long term restorations, referred to as

ATC pasture mix. No P application will occur as part of the long-term management of the area, only potential intermittent mowing to control annual weed growth. The seed mix is described below.

ATC Pasture Mix:

Seeding Rate: 40 lbs/acre Orchard Grass - 14 lbs/acre Tall Fescue - 14 lbs/acre Festulolium - 4 lbs/acre Tetraploid Perennial Ryegrass - 4 lbs/acre Intermediate Ryegrass - 4 lbs/acre

The laydown area has been set aside for potential future expansion of the Kittyhawk Substation. There is no planned schedule for expansion currently. This area will be withdrawn from the P trading program, or the credit calculations modified if the substation expansion occurs.

Riverside Plant Green Space (O4):

The green space associated with the Riverside expansion will be landscaped and planted with a perennial grass type seed, WisDOT seed mix 40, or similar approved equivalent. No P fertilizers will be applied as part of the ongoing maintenance of the area, with regular mowing to control growth and maintain aesthetics.

Areas Draining to Stormwater Facilities (Operational Areas)

Runoff from areas of developed impervious surfaces (O2, O3, and O6) will be treated by stormwater facilities designed to meet regulatory requirements for water quality (Total Suspended Solids) treatment. WinSLAMM was used to evaluate the corresponding P removal in these stormwater facilities and total P export from each site. Additional information on the site and stormwater design of these areas is provided in *Appendix E*.

West Riverside Plant (O3):

Rain gardens adjacent to the parking areas provide potential for infiltration and sediment/P removal. Remaining runoff from the plant buildings, parking lots, driveways, and overflow from the rain gardens is captured by two vegetated swales on the east and west side of the plant. The swales both drain to a wet pond on the south side of the plant, which provides additional settling time for sediment and P removal. The wet pond discharges to the south toward an intermittent stream leading toward the Rock River.

Kittyhawk Substation (O2):

Runoff from the proposed Kittyhawk Substation will be collected in vegetated swales on the east and west side of the substation. All water is then diverted to a wet pond at the southeast corner of the pad. The wet pond provides water quality treatment (P removal) via settling. Outflow from the pond is split between being directed toward an infiltration facility or directed toward the S Walters Rd right of way. The infiltration facility provides additional particulate and dissolved P removal via infiltration and plant uptake.

Alliant Energy Substation (O6):

The new proposed Alliant Energy substation has not yet been designed, and therefore stormwater facilities have not been sized. Additionally, due to the relatively small size of the area relative to the other portions of the property and the low potential for credit generation this area was not modeled and is not generating any P credits as part of this trading plan.

3.3 Proposed Conditions P Export – SnapPlus

As described in *Section 2.4,* two modeling methodologies were utilized for determination of the P export from each trading area under the proposed development conditions. Areas of proposed perennial vegetation cover were evaluated with SnapPlus to determine PTP. The same areas and critical slopes identified in the existing conditions analysis were used (*Figure A2*). The crop rotations were set to permanent grassland with no nutrient applications. The total calculated PTP under developed conditions for each field is provided in *Table 5*. Additional modeling details are provided in *Appendix B*.

Field ID	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	
01	9	7	6	5	5	5	5	5	5	5	
02		Area subject to NR 151 stormwater management performance criteria									
03-A		Area subject to NR 151 stormwater management performance criteria									
03-B		Area subject to NR 151 stormwater management performance criteria									
03-C		Area subject to NR 151 stormwater management performance criteria									
04	1	1	1	1	1	1	1	1	1	1	
05	4	3	3	3	3	3	3	3	3	3	
06	Are	ea does no	ot generat	e P tradin	ıg credits,	but is inc	luded in t	able for c	ompleten	ess	
R1	14	8	8	7	7	7	7	7	7	7	
R2	25	23	21	20	20	20	20	20	20	20	
R3	23	14	13	12	12	12	12	12	12	12	

Table 5. Proposed Land Use Potentially Tradeable Phosphorus

3.4 Proposed Conditions P Export – WinSLAMM

Developed areas with impervious land use and subject to NR151 stormwater management performance criteria were modeled using WinSLAMM to determine the potentially available P credits. The industrial land use was selected for the substations, and plant area within WinSLAMM. Stormwater facilities (detention ponds and infiltration facilities) were modeled as nodes receiving runoff from each contributing area. Additional input/output from the WinSLAMM analysis is provided in *Appendix C*. Results for the three sub areas of the plant (O3-A, O3-B, and O3-C) were combined as there were all analyzed within a single model.

P credits are only generated if P removal in the stormwater management facilities exceeds the permit requirements. Permit required P reductions were determined for each area using the WinSLAMM model output to calculate a correlation between total suspended solids (TSS) and Total Phosphorus (TP). A TP:TSS ratio was calculated for each area based on the modeled site outfall (i.e. treated runoff). The ratio varies because, different practices remove the P forms (i.e. particulate vs. dissolved) with varying levels of efficiency. Using the TP:TSS ratio, the permittable TP discharge from the site was calculated based on the NR151 required 80% TSS removal. The permittable P discharge was subtracted from the modeled P discharge to calculate the excess removal, and therefore the amount potentially available for credit. Additional information on these calculations is provided in *Table 6* with a model input/output summary provided in *Appendix C*.

Field ID	Discharge w/N Control Practice (lb)		Discharge with Controls¹ (lb)		TP:TSS Ratio2	Permi Dischar		P Removal beyond NR151 Requirements (lb)
	TSS	TP	TSS	Р		TSS ³	TP⁴	
02	4,080	16.7	415.8	2.32	1:179	816	4.6	2.3
03-A								
03-B	8,519	31.7	127.2	0.38	1:335	1,704	5.1	4.7
03-C								

Table 6. Proposed Land Use Potentially Tradeable Phosphorus

1. From WinSLAMM Modeling

2. Calculated from pollutant runoff WinSLAMM results with runoff controls.

3. Based on 80% TSS reduction required by NR151 compared to no controls.

4. Calculated from TP:TSS ratio

4 Credit Analysis

4.1 Rock River TMDL

The Riverside Energy Center Outfall and water quality trading fields lie within the Rock River Watershed, thereby subject to the approved Rock River TMDL (approved by USEPA in 2012). These fields fall within Sub-basin 79 as delineated within the TMDL. According to Appendix H of the Rock River TMDL, non-point sources contributing to Reach 79 are required to reduce TP loads by 40% from baseline. The assumed baseline loading for agricultural fields is equivalent to a Phosphorus Index (PI) of 6. Given the required reduction of 40%, the credit threshold for these fields is 3.6 lb P/ac/yr. Only reduction of P losses from fields below 3.6 lb/ac/yr will generate long term credits. The reduction in P losses above 3.6 will generate interim credits (only available in the first 5 years of the practice).

This trading plan quantifies the generation of both long term and interim credits from conversion of land out of agricultural use.

4.2 Trade Ratios

Individual trade ratios were calculated for each field based on the guidance documents. Each of the five factors was considered in calculation of the final trade ratio for each field. For several fields that are to be restored to native prairie or other perennial vegetation, the WDNR mandated minimum trade ratio of 1.2:1 was determined to be appropriate. A brief discussion of the evaluation for each of the factors is provided below, while the final trade ratio calculated for each field is provided in *Table 7*.

Delivery - All fields and the discharge outfall are located within the same HUC 12, so the factor does not apply.

Downstream – All fields on the east side of S Walters Rd. discharge to effectively the same location on the Rock River near the Riverside outfall. The fields to the west side of Walter's road drain to culverts under the roadway, directing runoff to the roadside ditch and across the trading areas on the east side of the road. Therefore, the downstream factor does not apply to any of the trading areas.

Equivalency – The proposed traded nutrients are the same form (TP to TP); the factor does not apply.

<u>Uncertainty</u> – Runoff from the plant operations areas and the substations will be treated with structural stormwater facilities (factor of 2), while the prairie restoration and greenspace areas are considered conservation easements (factor of 1).

Habitat – No proposed habitat adjustments, so the factor does not apply.

Table 7. Trade Ratios

Field ID	Delivery	Downstream	Equivalency	Uncertainty	Habitat	*Final Trade Ratio
01: ATC Laydown	-	-	-	1	-	1.2:1
02: ATC Substation	-	-	-	2	-	2.0:1
03-A: Plant Operational Area	-	-	-	2	-	2:1
03-B: Plant Stormwater Facilities	-	-	-	2	-	2:1
03-C: Plant Green Space	-	-	-	2	-	2:1
04: Offsite Plant Greenspace	-	-	-	1	-	1.2:1
05: Solar and Green Space	-	-	-	1	-	1.2:1
06: Substation	-	-	-	2	-	2:1
R1: SE Green Space	-	-	-	1	-	1.2:1
R2: SW Green Space	-	-	-	1	-	1.2:1
R3: Transmission Green Space	-	-	-	1	-	1.2:1

*WDNR minimum allowable trade ratio is 1.2:1

4.3 Construction and Implementation Timeline

Credits only become available after the practices have been installed, fully established, and reported to WDNR. To maximize credit availability as soon as possible, each parcel will be brought into the trading program when development on each is completed and ground cover established, rather than waiting until the whole area is fully developed. The intended construction schedule is described below.

<u>2017</u>: Construction activities begin on West Riverside Addition and ATC Kittyhawk Substation (O1, O2, O3, and O4). Areas south of the pad are used for construction time parking, laydown, and stockpiling (R1, R3, and O5).

December 2017: Prepare soil and seed of southwest greenspace native prairie restoration; schedule to be dependent on soil and weather conditions and contractor availability (R2).

<u>Summer 2018</u>: Restore stormwater facilities treating runoff from the West Riverside Plant (O3-B), and complete grading activities and seeding of pervious areas and stormwater facilities adjacent to Kittyhawk Substation (O2). Construct of Alliant Energy Substation (O6).

Fall 2018: Complete construction of Alliant Energy Substation (O6).

<u>Spring 2019</u>: Complete construction on Kittyhawk Substation (O2). Use of ATC Laydown area for transmission line construction begins (R2).

Summer 2019: Restore offsite greenspace areas immediately east of West Riverside Expansion (O4).

<u>Spring 2020</u>: Complete construction of West Riverside (O3-A, O3-B), restore native prairie of transmission line corridor (R3), solar array area (O5), and the southeast green space area (R1).

January 2021: All areas of trading plan generating credits.

4.4 Timeline of Total Credit Availability

The total credits available for each field were calculated as the difference between the existing PTP and the proposed PTP, divided by the trade ratio. The available credit for each year was then determined based on the projected project timeline.

A timeline of total credit availability was created based on the projected construction schedule described in *Section 4.3*. It was generally assumed that credits will become available the beginning of the year following vegetation establishment. As described in *Section 4.1*, interim credits are generated as part of this plan. Long term credits and interim credits available are shown in *Tables 8 and 9* respectively. When the entire area is fully developed and the plant fully operational in 2021, 160-163 credits will available for trading (*Table 10*). The variability in the total credits generated is due to the comparison of the continuous vegetative cover under the proposed condition (consistent P loss) compared to continuation of the existing cropping rotations which have variable P loss across the analysis period. Areas modeled within WinSLAMM generate the same number of credits every year. Additional details of the credit calculations are provided in *Appendix F*.

Table 8. Long Term Credits

Montgomery Associates Resource Solutions.uc • ma-rs.org

Field ID	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
01			13.2	13.7	13.9	14.0	14.0	14.0	14.1	14.1
02		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
03-A			1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
03-B			0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
03-C		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
04			10.0	10.0	10.0	10.0	10.9	10.9	10.9	10.9
05				69.3	69.3	69.3	69.3	69.3	69.3	69.4
06	Are	ea does no	ot generat	e P tradin	g credits,	but is inc	luded in t	able for c	ompleten	ess
R1			20.7	20.8	20.9	20.9	20.9	20.9	20.9	20.9
R2	6.8	8.8	10.1	10.7	11.1	11.3	11.4	11.5	11.5	7.7
R3				32.7	32.9	32.9	32.9	33.0	33.0	33.0
Total	6.8	10.3	57.5	160.8	161.5	161.9	163.0	163.1	163.2	159.4

Table 9. Interim Credits

Field ID	2018	2019	2020	2021	2022
01			15.3	20.3	7.8
05				6.8	11.8
R1			30.6	25.6	31.4
R2	23.1	25.8	32.9	125.4	77.9
Total	23.1	25.8	78.8	220.8	179.9

Table 10. Total Projected Credits Generated By Year

Field ID	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
Interim	23.1	25.8	78.8	220.8	179.9					
Long Term	6.8	10.3	57.5	160.8	161.5	161.9	163.0	163.1	163.2	159.4
Total	29.9	36.1	136.3	381.5	341.4	161.9	163.0	163.1	163.2	159.4

5 Proposed Compliance Approach

5.1 Inspections

To generate water quality trading credits, the proposed management practices need to be installed and maintained per WDNR or Natural Resource Conservation Service (NRCS) Conservation Practice Standards (CPS). Relevant CPS to this site are identified in *Table 10*.

Table 10 – Conservation Practice Standards

NRCS Conservation Practice Standard	Number
Conservation Cover	327
WDNR Post Construction Technical Standard	Number
Bioretention for Infiltration	1004
Infiltration Basin	1003
Wet Detention Pond	1001

Areas of native prairie restoration will be inspected via meander survey a minimum of twice per year the first two years of growth. After the initial period of establishment, the fields will be inspected via meander survey annually in August by a qualified expert. Mowing, herbicide treatments, burning, or other maintenance will be performed based on recommendations provided to Alliant Energy. Additional details are provided in the Installation and Maintenance plan in *Appendix D*.

A registered engineer will annually inspect all stormwater facilities and drainage features for the West Riverside Expansion, Kittyhawk Substation, and any other stormwater management facilities installed on the areas included in this trading plan. Inspections will include identification of sediment accumulation in stormwater facilities, proper vegetation establishment in ponds and infiltration facilities, verification of good vegetative cover and proper function of drainage swales, inspection of drainage culverts to ensure good function, and identification of any areas of significant erosion.

Practices will need to be registered with DNR after installation and records of inspection maintained. Annual submittals shall be provided to DNR certifying the practice is in place, including the previous year's inspection reports.

5.2 Reporting

Practice Registration

Management practices will not produce credits until fully established and registered with WDNR. As construction of areas of the proposed development are completed and restoration areas established, Alliant Energy will file completed Registration Form 3400-207 separately from this plan. A blank form is provided in *Appendix F*.

Approved stormwater management plans for the developed areas will be provided upon practice registration. The WinSLAMM modeling described in this report is based on the designed stormwater facilities which meet NR 151 performance criteria. However, at the time of issuing this report the final

stormwater management plan for the West Riverside Expansion Plant area are being revised and has not been finalized.

Certification

Each month when the discharge report is filed with WDNR, Alliant Energy staff will certify that the management practices identified in this plan, and registered as described above, are installed and functioning as intended.

Inspection Reporting

Inspection reports for all practices will be created by Alliant Energy, or a contractor authorized by Alliant Energy, on an annual basis and for their own records. At a minimum, inspection reports shall include documentation of the condition of all practices, any issues identified, as well as a description of any recommended repairs or maintenance to be conducted. Inspection reports will be included in the annual Water Quality Trading Report submitted to WDNR. Final stormwater reports covering the stormwater facilities generating credits as part of this plan as part of the annual water quality trading report provided to DNR. A copy of the current approved stormwater plans for areas generating P from stormwater facilities (O2 and O3) are provided in *Appendix H*.

Notification of Practice Failure

In the event any practices described in this plan fail in such a manner that the intended P credits are not being generated, Alliant Energy staff or a contracted representative shall notify WDNR staff of the failure by telephone within 24 hours or learning of the failure. Within 5 working days of learning of the failure, written notice shall be provided to WDNR. The notice shall include a description of the failure and why the intended P credits are not being generated. Additionally, any planned maintenance or repairs required to reestablish the generation of credits from the practice will be provided with 5-day written notice.

In Event Insufficient Credits are Generated

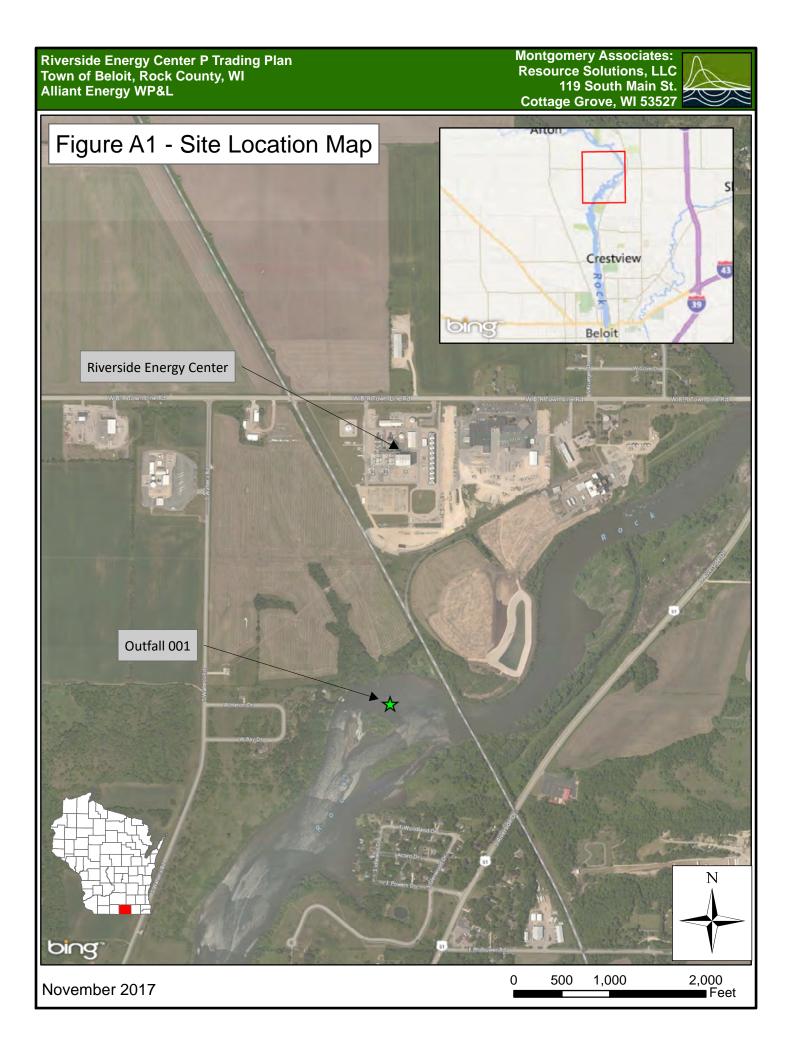
In the even that insufficient credits are generated to meet permit needs due to practice failure or other unanticipated events, Alliant may modify or curtail plant operations to meet stated permit limits. This may include reduced operation, reduced discharge, increased treatment system cycling, or changes in conditioning additives.

Water Quality Trading Report

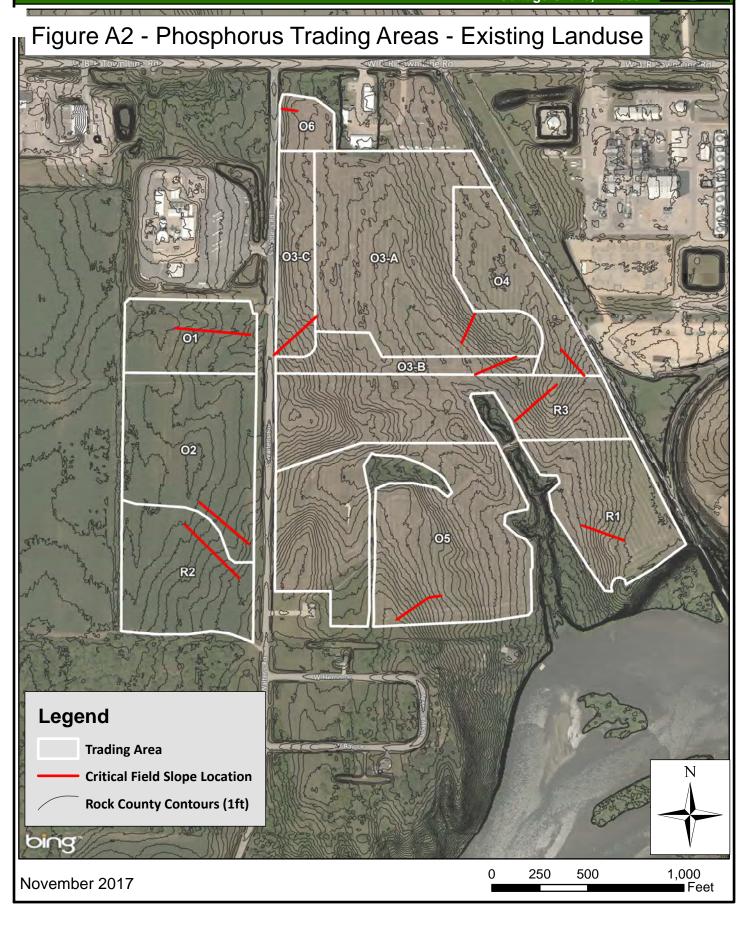
A water quality trading report shall be prepared and submitted to WDNR by January 31. The report shall include a description of the credits used each month, inspection reports for all practices generating credits in the previous year, and a description of any occurrences of non-compliance or practice failures in the previous year.

Right to Inspect

Any duly authorized officer, employee, or representative of WDNR shall have the right to access and inspect the credit generating areas included in the trading plan pursuant to Wis. Stat. § 283.55(2), so


long as the Alliant Energy trade agreement with WDNR and this plan are in effect. A minimum of 48-hours' notice shall be provided to Alliant Energy to ensure that proper safety training can be scheduled and provided to any persons visiting the site.

Trade Agreement


Pursuant s. 283.84(1), Wis. Stats, a trade agreement is required to be in place prior to using trading to help demonstrate compliance with the final phosphorus limits. Alliant Energy will be generating the credits themselves and therefore a trade agreement is being developed that will be entered by Alliant Energy and WDNR. This agreement is being developed concurrently at the time of the development of this plan. The agreement will be finalized prior to conditional approval of this plan.

Appendix A - Figures

Riverside Energy Center P Trading Plan Town of Beloit, Rock County, WI Alliant Energy WP&L Montgomery Associates: Resource Solutions, LLC 119 South Main St., Suite A Cottage Grove, WI 53527

Riverside Energy Center P Trading Plan Town of Beloit, Rock County, WI Alliant Energy WP&L Montgomery Associates: Resource Solutions, LLC 119 South Main St., Suite A Cottage Grove, WI 53527

Appendix B – Data

Riverside and West Riverside Phosphorus Discharge Projections

International production of the large state in	Weekly P data	Max [P]	0.14	mg/L	for uncertaintly in	aled up to account intake P upped at 0.14 mg/L				West Riverside f be 65% of exist	flows projected to ing Riverside	0		pre	suming P based ocess water. M at antiscalents a	onitoring data	a indicates	wastewa	verside P discha ater at 0.05 mg ement system d	P/L, based	3				eed, total proje e minus 0.65 l	
NAME Los Los <thlos< th=""> <thlos< th=""></thlos<></thlos<>										de Flow (MGD)														Cr	adits Needer	1
OPEND Cont Cont Cont Cont C		Well [P]																								
Under Under <th< td=""><td>1/11/2015</td><td><0.025</td><td>0.11</td><td>0.14 0.55</td><td>0.5</td><td>0.62</td><td>0.67</td><td>0.71</td><td>0.40</td><td>0.43</td><td>0.46</td><td>0.73</td><td>0.78</td><td>0.83</td><td>1.16</td><td>1.24</td><td>1.33</td><td>0.17</td><td>0.18</td><td>0.19</td><td>1.33</td><td>1.42</td><td>1.52</td><td>0.68</td><td>0.77</td><td>0.87</td></th<>	1/11/2015	<0.025	0.11	0.14 0.55	0.5	0.62	0.67	0.71	0.40	0.43	0.46	0.73	0.78	0.83	1.16	1.24	1.33	0.17	0.18	0.19	1.33	1.42	1.52	0.68	0.77	0.87
Subset Subse Subse Subse	· · ·																					~ ~				
NAME Des Des <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>0.02</td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td> <td>0.0.</td> <td>0.00</td> <td>0.00</td> <td>0.20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td>				0.00			0.02				0.00				0.0.	0.00	0.00	0.20							0.00	
3 3 5																		0.20								
NADE C DA DA <thda< th=""> DA DA DA<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thda<>																										
UNCOM UNCOM <th< td=""><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td>0.20</td><td>0.20</td><td>0.00</td><td>0.00</td><td></td><td>0.20</td><td></td><td></td></th<>				0.00											0.00				0.20	0.20	0.00	0.00		0.20		
NADDE Obs Obs </td <td></td> <td>-</td> <td></td> <td></td> <td>-</td>																							-			-
- 100 - 101 <th< td=""><td>3/22/2015</td><td></td><td></td><td>0.13 0.44</td><td>0.33</td><td>0.50</td><td></td><td></td><td>0.32</td><td>0.35</td><td></td><td></td><td></td><td></td><td>0.88</td><td></td><td></td><td></td><td>0.14</td><td>0.15</td><td></td><td></td><td>1.17</td><td>0.37</td><td></td><td>0.52</td></th<>	3/22/2015			0.13 0.44	0.33	0.50			0.32	0.35					0.88				0.14	0.15			1.17	0.37		0.52
																			-					0.35	0.42	0.49
																								-		
VINUME I 1 1 1 1 <td></td> <td>0.17</td> <td>0.23</td> <td>0.29</td>																								0.17	0.23	0.29
31713 C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>																								-	-	-
BADE Coli Coli Coli C																										
	5/24/2015		0.11	0.14 0.55	0.51	0.62	0.67	0.71	0.40	0.43	0.46	0.73	0.78	0.83	1.16	1.24	1.33	0.17	0.18	0.19	1.33	1.42	1.52	0.68	0.77	0.87
04000 040 </td <td></td>																										
CULDEN 0.00 0.01 0.01 0.01 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
Dial Dial <th< td=""><td></td><td>0.019</td><td></td><td></td><td></td><td>0.43</td><td></td><td>0.49</td><td></td><td>0.30</td><td></td><td>0.50</td><td></td><td>0.57</td><td></td><td></td><td>0.92</td><td></td><td></td><td></td><td></td><td>0.98</td><td>1.05</td><td></td><td></td><td></td></th<>		0.019				0.43		0.49		0.30		0.50		0.57			0.92					0.98	1.05			
Dynes 0.00 0.01 </td <td>.,.,=====</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.01</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0.</td> <td></td>	.,.,=====			0.00		0.00							0.01						0.20						0.0.	
Symbol Symbol<									0.01															0.51	0.60	0.68
1 1 1 0																								0.38	0.45	0.53
encross encross <t< td=""><td>8/2/2015</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	8/2/2015																									
92/92 93.9 96.9 96.9 96.9 9																										
U1X02013 O O O O </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								-	-		-							-								
0100000 010 0.01 0.02 0.02 0.07 0.07 0.08 0.00 0.06 0.05 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 <		< 0.0074																							0.00	
Diff Diff <th< td=""><td></td><td>0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		0.02																								
Diff Old Old <td></td> <td>0.00</td> <td></td>		0.00																								
11/2005 0.05 0.07 0.10 0.10 0.11 0.21 0.23 0.26 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.81 <	10/11/2015	0.066		0.14 0.24	0.22	0.27	0.29	0.31	0.18	0.19		0.32	0.34	0.36	0.51	0.54	0.58		0.08		0.58		0.66	-	-	
UNLY OND CON OMB OMB O.22 O.14 O.29 O.21 O.27 O.23 O.25 O.25 <tho.25< th=""> O.25 O.25 <th< td=""><td></td><td>0.025</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td></th<></tho.25<>		0.025																						-	-	-
11/2/2015 0.05 0.06 0.09 0.35 0.17 0.40 0.42 0.46 0.48 0.47 0.36 0.57 0.11 0.11 0.17		0.025		0.00	0.00		0.00	0.20		0.20	0.00	0.20	0.00	0.00	0.00		0.01		0.00							-
12/12/0015 0.07 0.10 0.05 0.11 0.06 0.07 0.01 0.05 0.01 0.06 0.05 0.01 0.06 0.00 0.05 0.01 0.06 0.01 0.06 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.01 0.05 0.01 0.05 0.01		0.025	0.06		0.17	0.40	0.42	0.45	0.26	0.28	0.29	0.29	0.31			0.50	0.53	0.11	0.11		0.57	0.61	0.66	-	-	
11/12/07105 0.011 0.06 0.10 0.58 0.10 0.105 0.06 0.105 0.06 0.08 0.28 0.20 0.10 0.105 0.06 0.105 0.06 0.05 0.07 0.10 0.15 0.27 0.16 0.28 0.28 0.28 0.28 0.26 0.27 0.28		0.013					0.0.							0.04		0.01				0.20						
12/72/105 0.05 0.06 0.06 0.07 0.04 0.47 0.51 0.74 0.81 0.85 0.17 0.18 0.19 0.29 0.29 0.21		0.011																								
1/10/2015 0.013 0.08 0.09 0.037 0.18 0.44 0.014 0.014 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.015 0.010 0.015 0.010 0.015 0.010 0.015 0.010 0.015 0.011 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
11/7/2016 -0.074 0.08 0.21 0.23 0.23 0.24 0.46 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.41 0.45 0.68 0.73 0.16 0.17 0.18 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.02 0.22 0.23 0.23 0.27 0.13 0.21 0.13 0.21 0.23 0.27 0.03 0.27 0.21 0.27 0.21 0.24 0.25 0.31 0.26 0.27 0.23 0.27 0.21 0.27 0.27 0.27 0.23 0.24 0.44	-/ 0/ -0-0	0.0-0						0.00	0.00	0.00	0.00				0.00	÷=			0.20	0.00	0.00			0.15	0.21	0.20
1/1/2/106 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.16 0.17 0.18 0.81 0.87 0.93 0.16 0.27 0.81 0.81 0.87 0.93 0.81 0.87 0.93 0.16 0.17 0.18 0.81 0.87 0.93 0.81 0.87 0.83 0.87 0.81 0.81 0.87 0.83 0.87 0.13 0.14 0.15 0.83 0.87 0.83 0.87 0.13 0.14 0.15 0.83 0.87 0.83 0.87 0.13 0.14 0.15 0.83 0.87 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.15 0.13 0.15 0.14 0.15 0.12 0.13 0.15 0.13 0.15 0.13 0.15 0.13	1 .1								-									-	-					- 0.14	0.20	
27/2016 0.007 0.05 0.04 0.14 0.15 0.05 0.13 0.06 0.13 0.14 0.15 0.06 0.86 0.77 0.10 0.01 0.07 0.10 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.01 0.07 0.11 0.55 0.11 0.02 0.07 0.10 0.15 0.13 0.06 0.55 0.91 0.97 0.17 0.18 0.19 1.01 1.09 1.06 0.88 0.64 0.55 3/k/D05 0.05 0.07 0.10 0.56 0.11 0.77 0.81 0.46 0.55 0.52 0.56 0.60 0.84 0.90 0.56 0.20 0.21 1.11 1.18 0.30 0.46 0.35 3/2/D/D16 0.081 0.061 0.27 0.69 0.44 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.5	1/24/2016	0.016	0.06	0.09 0.51	0.24	0.58	0.62	0.66	0.37	0.40	0.43	0.41	0.44	0.47	0.66	0.70	0.75	0.16	0.17	0.18	0.81	0.87	0.93	0.16	0.22	0.28
2/1/2016 0.012 0.07 0.10 0.55 0.31 0.62 0.67 0.17 0.43 0.45 0.53 0.61 0.07 0.11 0.10 1.01 1.00 1.16 0.36 0.34 0.35 3/2/2016 0.05 0.07 0.11 0.65 0.57 0.65 0.65 0.65 0.65 0.65 0.61 0.16 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 1.16 0.48 0.55 0.51 0.66 0.67 0.88 0.55 0.51 0.65 0.67 0.88 0.55 0.51 0.52 0.66 0.69 0.62 0.21 0.23 0.14 0.48 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.55 0.51 0.51 0.51 0.51 0.51																								0.19		
1/2/2016 0.049 0.07 0.11 0.52 0.62 0.67 0.71 0.40 0.48 0.55 0.59 0.61 0.88 0.95 1.01 0.17 0.18 0.19 1.13 1.20 0.40 0.48 0.55 3/6/2016 0.05 0.07 0.01 0.66 0.07 0.08 0.65 1.12 0.13 0.02 1.13 1.26 1.34 0.53 0.51 0.52 0.56 0.60 0.88 0.98 0.20 0.21 0.23 1.04 1.11 1.13 0.39 0.66 0.33 3/0/2016 0.007 0.06 0.68 0.33 0.65 0.51 0.55 0.55 0.58 0.88 0.94 0.20 0.21																								0.36		
3/3/2016 0.03 0.06 0.09 0.65 0.31 0.77 0.79 0.84 0.48 0.51 0.55 0.52 0.56 0.60 0.84 0.20 0.21 0.21 0.23 1.04 1.11 1.18 0.39 0.46 0.53 3/20/2016 0.007 0.66 0.08 0.65 0.3 0.74 0.79 0.84 0.48 0.51 0.55 0.53 0.44 0.85 0.99 0.20 0.21 0.23 1.02 1.08 1.11 1.18 0.39 0.44 0.51 3/2/2016 0.007 0.06 0.08 0.65 0.31 0.44 0.51 0.55 0.58 0.81 0.85 0.93 0.02 0.20 0.21 0.27 0.23 1.02 1.11 0.13 0.44 0.40 4/10/2016 0.002 0.04 0.024 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <						0.62									0.88								1.20			
3/20/2016 0.013 0.05 0.08 0.61 0.27 0.69 0.74 0.79 0.44 0.51 0.55 0.56 0.63 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07																					-					
3/27/2016 0.007 0.06 0.065 0.3 0.73 0.79 0.84 0.48 0.51 0.55 0.55 0.59 0.82 0.88 0.94 0.20 0.21 0.21 0.21 0.21 0.10 1.10 0.11 0.37 0.44 0.52 4/3/2016 0.022 0.07 0.10 0.53 0.3 0.60 0.64 0.68 0.39 0.42 0.44 0.51 0.55 0.58 0.81 0.87 0.10 0.11 0.12 0.13 0.14 0.12 0.13 0.44 0.51 4/3/2016 0.022 0.04 0.22 0.04 0.23 0.24 0.26 0.15 0.16 0.17 0.07 0.08 0.01 0.01 0.01 0.01 0.05 0.05 0.57 -																										
4/3/2016 0.02 0.07 0.10 0.53 0.33 0.60 0.64 0.39 0.42 0.43 0.55 0.58 0.81 0.87 0.93 0.16 0.17 0.19 0.98 1.05 1.12 0.33 0.40 0.47 4/10/2016 0.066 0.07 0.04 0.22 0.03 0.04 0.02 0.03 0.03 0.04 0.44 0.42 0.05 </td <td></td>																										
4/17/2016 0.06 0.09 0.03 0.02 0.03 0.04 0.02 0.02 0.03 0.03 0.04 0.01 0.01 0.01 0.05	4/3/2016	0.022	0.07		0.3	0.60	0.64			0.42	0.44	0.51			0.81		0.93		0.17	0.19	0.98		1.12	0.33		
4/24/2016 0.03 0.03 0.05 0.04 0.07 0.03 0.08		0.0084																						-		-
5/1/2016 0.017 0.06 0.09 0.55 0.27 0.62 0.67 0.71 0.40 0.43 0.46 0.47 0.50 0.53 0.75 0.80 0.85 0.17 0.18 0.19 0.91 0.98 1.04 0.25 0.63 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.35 0.57 0.60 0.65 0.69 0.97 1.04 1.11 0.23 0.24 0.26 1.20 1.28 1.37 0.55 0.63 0.72 5/12/2016 0.007 0.11 0.72 0.45 0.83 0.57 0.60 0.67 0.82 0.87 0.38 0.89 0.95 0.18 0.10 0.18 1.15 0.18 0.16 0.44 0.45 0.44 0.47 0.50 0.52 0.55 0.59 0.83 0.89 0.18 0.20 0.21 1.01 1.06 1.16 0.43 0.51 0.65 0.70 0.75 1.02 0.10 0.20 0.21 1.21 1.20<		0.028																						-		-
\$f222016 <0.007 0.017 0.11 0.72 0.45 0.81 0.93 0.53 0.57 0.60 0.76 0.82 0.87 1.22 1.31 1.39 0.22 0.24 0.25 1.44 1.56 0.79 0.89 1.00 (5/2)016 0.016 0.08 0.011 0.61 0.39 0.68 0.77 0.44 0.40 0.52 0.55 0.55 0.59 0.83 0.89 0.01 0.21 1.10 1.16 0.38 0.48 0.51 6/3/2016 0.016 0.08 0.11 0.61 0.39 0.69 0.74 0.79 0.45 0.44 0.51 0.65 0.70 0.75 1.65 1.12 1.01 0.02 0.21 1.23 1.32 1.41 0.58 0.67 0.76 0.44 0.47 0.45 0.48 0.32 0.37 0.55 0.59 0.18 0.20 0.21 1.23 1.21 1.41 0.38 0.44 0.30 0.46 0.33 0.55 0.59 0.47 0.19 0.20 <th< td=""><td></td><td></td><td></td><td>0.00</td><td>0.0.</td><td>0.62</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td>0.00</td><td></td><td></td><td>0.00</td><td>0.20</td><td>0.02</td><td>0.00</td><td></td><td></td><td>0.00</td><td></td></th<>				0.00	0.0.	0.62								0.00		0.00			0.00	0.20	0.02	0.00			0.00	
6f/2016 0.016 0.06 0.06 0.03 0.66 0.73 0.04 0.70 0.44 0.70 0.52 0.55 0.59 0.83 0.89 0.95 0.18 0.20 0.21 1.01 1.08 1.16 0.36 0.43 0.51 6/19/2016 0.015 0.04 0.016 0.03 0.06 0.74 0.74 0.42 0.45 0.48 0.51 0.65 0.70 0.52 0.55 0.59 0.18 0.20 0.21 1.01 1.08 1.16 0.48 0.51 6/2/2016 0.015 0.04 0.06 0.79 0.44 0.42 0.45 0.48 0.32 0.33 0.37 0.52 0.55 0.59 0.17 0.19 0.20 0.44 0.44 0.47 0.40 0.44 0.44 0.40 0.44 0																										
6/19/2016 0.08 0.11 0.61 0.39 0.69 0.74 0.79 0.48 0.51 0.65 0.75 1.02 1.12 1.02 0.13 0.20 0.21 1.23 1.12 1.14 0.58 0.67 0.76 0/26/2016 0.015 0.04 0.06 0.57 0.19 0.12 1.12 1.10 0.10 0.10 0.10 0.20 0.20 0.20 0.61 0.79 0.64 0.64 0.69 0.74 0.42 0.45 0.45 0.45 0.52 0.55 0.55 0.51 0.50 0.71 0.44 0.44 0.47 0.50 0.43 0.52 0.55 0.51 0.50 0.51 0.51 0.51 0.52 0.51 0.50 0.51 0.44 0.44 0.45 0.45 0.45 0.45 0.45 0.51 0.45 0.46 0.53 0.57 0.51 0.50 0.51 0.51 0.51 0.52 0.51 0.51																										
7/3/2016 0.007 0.06 0.09 0.6 0.29 0.68 0.73 0.74 0.44 0.47 0.47 0.45 0.45 0.57 0.58 0.79 0.84 0.90 0.18 0.20 0.21 0.97 1.04 1.11 0.32 0.43 0.46 7/1/2016 0.07 0.65 0.07 0.61 0.24 0.69 0.74 0.79 0.45 0.48 0.41 0.46 0.45 0.46 0.53 0.57 0.51 0.20 0.21 0.21 0.21 0.49 1.11 0.32 0.39 0.44 0.53 0.57 0.51 0.59 0.51 0.43 0.46 0.53 0.57 0.51 0.59 0.51 0.43 0.45 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.53 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.57	6/19/2016	0.016	0.08	0.11 0.61	0.39	0.69	0.74	0.79	0.45	0.48	0.51	0.65	0.70	0.75	1.05	1.12	1.20	0.19	0.20	0.21	1.23	1.32	1.41	0.58	0.67	0.76
7/10/2016 0.05 0.07 0.61 0.24 0.69 0.74 0.79 0.45 0.48 0.51 0.40 0.43 0.46 0.65 0.69 0.74 0.19 0.20 0.21 0.83 0.89 0.95 0.18 0.42 0.30 7/17/2016 0.007 0.65 0.68 0.74 0.19 0.23 0.21 0.83 0.95 0.18 0.42 0.30 7/17/2016 0.055 0.68 0.74 0.85 0.91 0.55 0.62 0.54 0.55 0.62 0.63 0.57 0.61 0.85 0.91 0.97 0.23 0.24 0.25 0.26 1.08 1.15 1.23 0.43 0.50 0.56 0.54 0.54 0.55 0.54 0.54 0.55 0.54 0.54 0.55 0.54 0.54 0.54 0.57 0.51 0.57 0.54 0.54 0.54 0.57 0.54 0.54 0.54 0.57 0.54									-																	
7/3/2016 0.017 0.05 0.08 0.75 0.31 0.85 0.91 0.97 0.55 0.59 0.63 0.57 0.61 0.85 0.91 0.97 0.23 0.25 0.26 1.08 1.15 1.23 0.43 0.50 0.58 7/3/2016 0.05 0.08 0.74 0.32 0.44 0.90 0.55 0.54 0.58 0.62 0.57 0.91 0.99 0.23 0.24 0.26 1.08 1.17 1.25 0.45 0.52 0.68 0.62 0.87 0.93 0.99 0.23 0.24 0.26 1.00 1.17 1.25 0.45 0.52 0.61 0.65 0.62 0.87 0.93 0.99 0.23 0.24 0.25 0.27 1.25 1.63 1.74 0.87 0.89 0.99 0.57 0.61 0.65 0.52 0.88 0.62 0.57 0.41 0.55 0.54 0.65 0.52 0.68 0.57 0.61 0.65 0.22 0.98 1.05 0.23 0.25 0.26 1.4 <td></td> <td>0.017</td> <td></td>		0.017																								
8/7/2016 0.07 0.11 0.77 0.47 0.87 0.93 0.99 0.57 0.61 0.65 0.80 0.86 0.92 1.29 1.38 1.47 0.24 0.25 0.27 1.52 1.63 1.74 0.87 0.98 1.09 8/7/2016 <0.05 0.08 0.75 0.34 0.87 0.93 0.99 0.57 0.61 0.65 0.80 0.86 0.92 1.29 1.38 1.47 0.24 0.25 0.27 1.52 1.63 1.74 0.87 0.98 0.19 8/1/2016 <0.05 0.05 0.05 0.61 0.65 0.92 0.98 1.05 0.23 0.25 0.26 1.44 1.33 0.49 0.58 0.65 8/21/2016 <0.015 0.04 0.66 0.49 0.76 0.82 0.87 0.23 0.25 0.26 0.21 1.40 1.50 0.75 0.85 0.95 0.35 0.40	7/17/2016	0.017							0.55	0.59			0.57		0.85				0.25				1.23			
8/14/2016 0.05 0.08 0.75 0.34 0.85 0.91 0.97 0.55 0.59 0.63 0.57 0.64 0.65 0.62 0.63 0.57 0.61 0.65 0.92 0.98 1.05 0.22 0.25 0.26 1.14 1.23 1.31 0.49 0.58 0.62 9/2/2/016 0.015 0.09 0.14 0.6 0.45 0.68 0.73 0.77 0.44 0.47 0.50 0.76 0.27 1.21 1.31 0.49 0.48 0.51 0.55 0.47 1.22 1.31 1.99 0.8 0.21 1.04 1.05 1.05 0.47 <		-0.015																								
8/21/2016 0.09 0.14 0.6 0.45 0.68 0.73 0.77 0.44 0.47 0.50 0.76 0.82 0.87 1.22 1.31 1.39 0.18 0.20 0.21 1.40 1.50 1.60 0.75 0.88 0.95 8/28/2016 0.04 0.07 0.65 0.24 0.73 0.79 0.84 0.48 0.51 0.55 0.40 0.43 0.46 0.65 0.69 0.74 0.20 0.21 1.40 1.50 1.60 0.75 0.82 0.32																									0.00	
	8/28/2016 Abbreviations	< 0.015	0.04	0.07 0.65	0.24	0.73	0.79	0.84	0.48	0.51	0.55	0.40	0.43	0.46	0.65	0.69	0.74	0.20	0.21	0.23	0.85	0.91	0.97	0.20	0.26	0.32

Abbreviations RV- Riverside Plant (existing) WRV - West Riverside Plant (new)

CF- Capacity Factor

P - Phosphorus [P] - Phosphorus Concentration

	Month	70% CF	75% CF	80% CF
=	1	0.796	0.853	0.910
ge by outfall	2	0.799	0.856	0.914
ge	3	0.811	0.869	0.926
scharg from data	4	0.352	0.377	0.403
fro sch	5	0.960	1.029	1.097
ed ing	6	0.890	0.954	1.018
Average daily discharge by onth estimated from outform monitoring data	7	0.787	0.843	0.899
ni di	8	0.864	0.925	0.987
es mo	9	0.901	0.966	1.030
Avera month	10	0.609	0.653	0.696
A D	11	0.495	0.531	0.566
E	12	0.814	0.872	0.930
	Average	0.769	0.824	0.879
	Min	0.352	0.377	0.403
	Max	0.960	1 029	1 097

Existing Riverside - Projected P Discharge (lb/day)

West Riverside - Projected P Discharge (lb/day) **70% CF** 0.148 Month 75% CF 80% CF 0.158 Average daily discharge by month estimated from plant design 0.169 0.156 0.178 0.188 0.079 0.175 0.174 0.176 0.073 0.201 0.084 0.163 0.186 0.185 0.222 0.207 0.237 0.192 0.205 0.219 0.095 10 0.089 0.101 11 0.106 0.122 0.170 **0.156** 12 0.183 0.195 0.167 0.179 verag Min Max 0.073 0.207 0.079 0.222 0.084 0.237

Combined Projected P Discharge (lb/day)

Month	70% CF	75% CF	80% CF
1	0.943	1.011	1.078
2	0.955	1.024	1.092
3	0.986	1.057	1.127
4	0.426	0.456	0.487
5	1.123	1.203	1.283
6	1.053	1.128	1.203
7	0.994	1.065	1.136
8	1.055	1.131	1.206
9	1.079	1.156	1.233
10	0.698	0.748	0.798
11	0.602	0.645	0.688
12	0.984	1.054	1.124
Average	0.908	0.973	1.038

Total Credit Need (lb/day)

Month	70% CF	75% CF	80% CF
1	0.293	0.361	0.428
2	0.305	0.374	0.442
3	0.336	0.407	0.477
4	-	-	-
5	0.473	0.553	0.633
6	0.403	0.478	0.553
7	0.344	0.415	0.486
8	0.405	0.481	0.556
9	0.429	0.506	0.583
10	0.048	0.098	0.148
11	-	-	0.038
12	0.334	0.404	0.474
Average	0 281	0 3/10	0 402

Assumed % days discharging per month:

Existing Riverside - Projected P Discharge (lb/month)

70%

Days/Mo	Days Running	70% NCF	75% NCF	80% NCF
31	22	17.51	18.76	20.01
28	20	15.99	17.13	18.27
31	22	17.83	19.11	20.38
30	21	7.40	7.93	8.46
31	22	21.12	22.63	24.14
30	21	18.70	20.04	21.37
31	22	17.31	18.55	19.78
31	22	19.00	20.36	21.71
30	21	18.93	20.28	21.63
31	22	13.40	14.36	15.32
30	21	10.40	11.14	11.89
31	22	17.90	19.18	20.46
lbs discharged		195.49	209.45	223.41

West Riverside - Projected P Discharge (lb/month)

Days/Mo	Days Running	70% NCF	75% NCF	80% NCF
31	22	3.25	3.48	3.71
28	20	3.12	3.34	3.57
31	22	3.87	4.14	4.42
30	21	1.54	1.65	1.76
31	22	3.59	3.84	4.10
30	21	3.41	3.65	3.89
31	22	4.56	4.89	5.21
31	22	4.22	4.52	4.82
30	21	3.73	3.99	4.26
31	22	1.95	2.09	2.23
30	21	2.23	2.39	2.55
31	22	3.75	4.02	4.28
lbs discharged		39.21	42.01	44.81

Total Projected P Discharge (lb/month)

Days/Mo	Days Running	70% NCF	75% NCF	80% NCF	Compliance				
31	22	20.76	22.24	23.72	20.15				
28	20	19.11	20.47	21.84	18.20				
31	22	21.70	23.25	24.80	20.15				
30	21	8.94	9.58	10.22	19.50				
31	22	24.71	26.47	28.24	20.15				
30	21	22.11	23.69	25.26	19.50				
31	22	21.87	23.43	25.00	20.15				
31	22	23.21	24.87	26.53	20.15				
30	21	22.65	24.27	25.89	19.50				
31	22	15.36	16.45	17.55	20.15				
30	21	12.63	13.54	14.44	19.50				
31	22	21.65	23.19	24.74	20.15				
lbs discharged		234.69	251.46	268.22	237.25				
* - red boxes indi	* - red boxes indicate discharge higher than permitted limits (compliance column)								

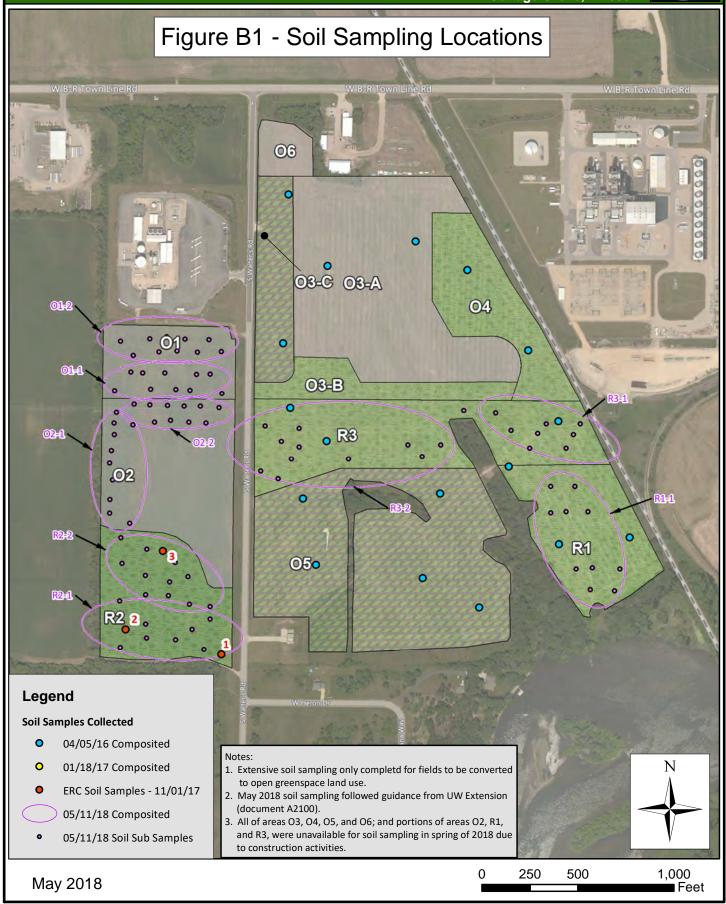
Total Projected P Discharge (lb/month)

Days/Mo	Days Running	70% NCF	75% NCF	80% NCF
31	22	6.46	7.94	9.42
28	20	6.11	7.47	8.84
31	22	7.40	8.95	10.50
30	21	-	-	-
31	22	10.41	12.17	13.94
30	21	8.46	10.04	11.61
31	22	7.57	9.13	10.70
31	22	8.91	10.57	12.23
30	21	9.00	10.62	12.24
31	22	1.06	2.15	3.25
30	21	-	-	0.79
31	22	7.35	8.89	10.44
Total Credit Need		72.72	87.94	103.95

 Average
 0.281
 0.340
 0.402
 Total Credit Need
 72.72

 * - calculations are lb/day discharged minus 0.65 lb (assumes plant would be discharging every day at the projected level)
 Total Credit Need
 72.72

Total Credit Need (lb/day, lb discharged - 0.65)


Month	Existing 80% CF	West Riverside 80% CF	Total (lb/day) 80% CF	Permitted (lb/day)	Credit need (lb/day)	Total Credits (lb)
1	0.91	0.17	1.08	0.65	0.43	9.42
2	0.91	0.18	1.09	0.65	0.44	8.84
3	0.93	0.20	1.13	0.65	0.48	10.50
4	0.40	0.08	0.49	0.65	-	-
5	1.10	0.19	1.28	0.65	0.63	13.94
6	1.02	0.19	1.20	0.65	0.55	11.61
7	0.90	0.24	1.14	0.65	0.49	10.70
8	0.99	0.22	1.21	0.65	0.56	12.23
9	1.03	0.20	1.23	0.65	0.58	12.24
10	0.70	0.10	0.80	0.65	0.15	3.25
11	0.57	0.12	0.69	0.65	0.04	0.79
12	0.93	0.19	1.12	0.65	0.47	10.44
Average	0.88	0.18	1.04	0.65	Total	103.95

Total credit calculations assuming plant is operation 70% of the month

Soil Testing Results

Riverside Energy Center P Trading Plan Town of Beloit, Rock County, WI Alliant Energy WP&L Montgomery Associates: Resource Solutions, LLC 119 South Main St., Suite A Cottage Grove, WI 53527

phone: (715) 387-2523

LAB #: 2112

County

Rock

Soil & Forage Analysis Lab 2611 Yellowstone Dr Marshfield, WI 54449

Account No.

558424

SOIL TEST REPORT

COOPERATIVE EXTENSION University of Wisconsin-Extension University of Wisconsin-Madison Department of Soil Science

Results also available on-line at http://uwlab.soils.wisc.edu/reports lab number: 2112 access code: zvy6x

Montgomery Associates-Resource Solutions - Ryan Stenjem 119 S Main St Cottage Grove, WI 53527

This Report is for: Ryan Stenjem

Date Rec 4/12/2		Date Processed 4/13/2016	Cottage Grove,	, WI 53527										
.,,					NUTRI	ENT RE	COMM	ENDATIC	NS					
Slope 4%	Acres 81	Plow Depth Irrigated 12" No	Cropping Sequence					Legume N	Fertilzer Manure N	Credit P2O5	K2O	Nutrients to Apply N P2O5 K2O		
Soil Nam	he	Tilod		per acre		— Ibs/a —		— Ibs/a —		– Ibs/a –			— Ibs/a —	
Soil Name Lorenzo		Tiled No	Soybean, grain	36-45 bu	0	60	85	0	0	0	0	0	60	85
			Wheat, grain + straw	61-80 bu	see below	75	120	0	0	0	0	see below	75	120
Field Na 101	me		Soybean, grain	36-45 bu	0	60	85	0	0	0	0	0	60	85
-	0		Wheat, grain + straw	61-80 bu	see below	75	120	0	0	0	0	see below	75	120
Previous	ean a	rain	The lime required for this rotat	tion to reach pH 6.	3 is 2 T/	a of 60-	69 lime	or 1.5 T/a	a of 80-89) lime.				

Soybean, grain

SUGGESTED N APPLICATION RATES FOR WHEAT AT DIFFERENT N:WHEAT PRICE RATIOS

0.1					N:Wheat Price R	atio (\$/lb N:	\$/bu) ———								
Loamy Soils			0.05	().075		0.1	().125						
Previous Crop	PPNT	Rate	Range	Rate	Range	Rate	Range	Rate	Range						
					— Ib N/a (Tot	al to Apply) ¹									
Corn	< 50 ² or none	75	65-85	70	55-80	60	50-70	55	40-65						
Corn	51 to 100	45	35-55	40	30-50	35	25-40	30	20-35						
Corn	> 100	0	0-0	0	0-0	0	0-0	0	0-0						
Soybean, Small grain	All ³	55	45-65	50	40-60	45	35-50	40	35-45						

¹ On loamy soils with < 2% organic matter, add 30 lb N/a to all rates. On soils with more than 10% organic matter, reduce rates by 30 lb N/a. Reduce N rates by 10 lb N/a for spring wheat on all soils. No N is required on organic soils. Manure N credits must be subtracted from these values.

² If wheat follows a forage legume or leguminous vegetable, use the MRTN rate for wheat following corn with PPNT < 50 and take the legume credit.

³ Previous crop soybean or small grain: If a PPNT is taken and the PPNT is < 50 lb N/a, use the top end of the profitable range; if the PPNT is 51 to 100 lb N/a, use the bottom end of the profitable range; if the PPNT is > 100 lb N/a, no additional N is needed. Do not take a soybean legume credit.

For more information on the new N application rate guidelines for wheat see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Parts of this field may not benefit from liming. Please see the unadjusted lime requirements in the Laboratory Analysis section below.

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

		SOIL TEST INTE	RPRETATION FOR CROPPIN	IG SEQUENCE		
	Very Low	Low	Optimum	High	Very High	Excessive
Phosphorus Potassium	PPPPPPPPPPPP KKKKKKKKKKKKKK	PPPPPPPPPPPPPPPPPPPPP KKKKKKKKKK				
Rotation pH	XXXXXXXXXXXXXXXXX	xxxxxxxxx				

	LABORATORY ANALYSIS															
Sample Identification	Soil pH	0.M %	Phosphorus ppm	Potassium ppm	60-69 Lime Req (T/a)	Calcium ppm	Magnesium ppm	Est. CEC (cmol/kg)	Boron ppm	Manganese ppm	Zinc ppm	Sulfate-Sulfur ppm		Texture Code	Sample Density	Buffer pH
1	5.5	2.5	27	136	3.4									2	1.19	6.6
2	6.3	2.1	7	68	0									2	1.22	6.9
Adjusted	5.9	2.3	17	102												

Averages

Notes: 1. Composite Samples For Fields O3, O4, O5, O6, R1, and R3 collected in April 2016. 2. Sample 1 - Top 8" of soil profile. Sample 2 - 8-12" depth of soil profile (not used in analysis) 3. See Figure B2 for approximate locations

Soil & Forage Analysis Lab 2611 Yellowstone Dr Marshfield, WI 54449 phone: (715) 387-2523

SOIL TEST REPORT

Results also available on-line at http://not available lab number: 1110 access code: 653pk

LAB #: 1110 County Account No. 558424 Rock Date Received Date Processed

- - --

This Report is for: Ryan Stenjem

Montgomery Associates-Resource Solutions - Ryan Stenjem	
119 S Main St	
Cottage Grove, WI 53527	

1/20/	2017	1/23/2017												
Slope		Plow Depth Irrigate			NUTRI	ENT RE	COMM	ENDATIC	DNS					
3%	Acres 30	12" No	Cropping Sequence	Yield Goal	Crop N	Nutrient N P2O5	leed K2O	Legume N	Fertilzer Manure N	Credit P2O5	K2O	Nu N	trients to App P2O5	k2O
Soil Nar	no	Tileo	1	per acre		— Ibs/a —		— Ibs/a —		– Ibs/a –			- Ibs/a	
		No		151-170 bu	see below	0	75	0	0	0	0	see below	0	75
,	loamy soil/medium yield potential		Soybean, grain	46-55 bu	0	0	100	0	0	0	0	0	0	100
Field Na 101	ame		Corn, grain	151-170 bu	see below	0	75	0	0	0	0	see below	0	75
-			Soybean, grain	46-55 bu	0	0	100	0	0	0	0	0	0	100
Previous	s Crop													

There is no lime recommendation. Soybean, grain

SUGGESTED N AF	SUGGESTED N APPLICATION RATES FOR CORN (GRAIN) AT DIFFERENT N:CORN PRICE RATIOS														
Previous Crop				N:Corn Price Ra	atio (\$/lb N:\$	/bu) ———									
Medium Yield Potential Soils		0.05 0.10 0.15 0.													
	Rate ¹ Range Rate ¹ Range Rate ¹ Range Rate ¹														
				—— Ib N/a (Tot	al to Apply)2										
Corn, Forage legumes, Leguminous vegetables, Green manures ³	145	130-160	125	115-140	115	105-125	105	95-110							
Soybean, Small grains ⁴	130	110-150	100	85-120	85	70-95	70	60-80							

¹ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

²These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.

³Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy sand soils.

⁴ Subtract N credits for animal manures and 2nd year forage legumes.

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 3) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.

4) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits. 5) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate quidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

Starter fertilizer (e.g. 10+20+20 lbs N+P₂O_x+K₂O/a) is advisable for row crops on soils slow to warm in the spring.

Because of excessively high P levels, no P₂O₅ fertilizer or manure is recommended on this field.

Year 1,3: If corn is harvested for silage instead of grain apply extra 90 lbs K₂O per acre to next crop.

SOIL TEST INTERPRETATION FOR CROPPING SEQUENCE

		0012 1 201 111 21				
	Very Low	Low	Optimum	High	Very High	Excessive
Phosphorus Potassium	PPPPPPPPPPPP KKKKKKKKKKKKKK		РРРРРРРРРРРРРР	РРРРРРРРРРРР	РРРРРРРРРРРРРР	PPPPPPPPPPPPP
Rotation pH	XXXXXXXXXXXXXXXXXXXX	xxxxxxxxxxxxxxxxx	xxxxxxxxx			

	LABORATORT ANALTSIS															
Sample	Soil	O.M	Phosphorus	Potassium	60-69 Lime	Calcium	Magnesium	Est. CEC	Boron	Manganese	Zinc	Sulfate-Sulfur		Texture	Sample	Buffer
Identification	pH	%	ppm	ppm	Req (T/a)	ppm	ppm	(cmol/kg)	ppm	ppm	ppm	ppm		Code	Density	pH
1	6.1	1.9	280	80	0									2	1.18	6.7
Adjusted	6.1	1.9	280	80												

1.9

80

Notes:

1. Composite Samples For Fields O1, O2, and R2, collected in January 2017.

- 2. Sample 1 Top 12" of soil profile.
- 3. See Figure B2 for approximate locations.

Account: 1913 Eco-Resource Consulting, Inc. 2554 County Road N Stoughton, WI 53589 Report For: PN 17165 MARS Beloit/Alliant Restoration

Town Line Road Beloit, WI 53511

Received 11/1/20)17			Nutrie	nt Reco	ommen	dation	S					
Slope 0% Field Alliant SW Green Spa	Spa		Yield Goal	•	Nutrien Ibs/acre		F		er Cred acre)	lit		utrients ly(lbs/a	
Acres		Cropping Sequence	(per acre)	Ν	P2O5	K2O	Legume N	Manure N	P2O5	K2O	Ν	P2O5	K2O
Plow Depth 7.0 Soil Name unknown Previous Crop Soybean, grain		CRP, grass	n/a	0	0	45	20	0	0	0	0	0	45
		There is no lime recommendation	ation. Please see	Addition	al Informa	tion belo	w.						

	Euboratory Analysis for Flora Amant of Creen opa, Eub No 204000														
Sample Num	Soil pH	Om %	P ppm	K ppm	60-69 Lime Req(T/a)	Ca ppm	Mg ppm	Est Cec	B ppm	Mn ppm	Zn ppm	Sulfate-S ppm	Texture Code	Sample Density	Buffer Code
1	7.0	1.7	99	83		1220	373	10					2	1.13	N.R.
2	5.1	1.8	368	37	2.8	751	125	5					2	1.21	6.4
3	5.7	0.9	111	44		540	126	5					1	0.96	6.7
Adj Avg	5.9	1.5	193	41		837	208								

Additional Information, Secondary & Micronutrient Recommendations

First year legume N credit is based on a previous poor stand of soybean, grain with less than 8" of regrowth, as specified on sample submission form.

N.R.=Not required for calculation of lime requirement when soil pH is 6.6 or higher.

Because of excessively high P levels, no P2O5 fertilizer or manure is recommended on this field.

Parts of this field may benefit from liming. Please see the unadjusted lime requirements in the Laboratory Analysis section below. Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

For CRP crops in the seeding year only, apply some nitrogen (15–30 lb N/a). See table 6.3 in publication A2809 for specific rates.

Nitrogen rate guidelines for corn can not be provided without knowledge of the soil series or county/soil map unit. Please consult Chapters 4 and 6 in UWEX Publication A2809 for more detail.

Ca - Opt Mg-Opt

Lab #204803

%Base Saturation: Ca 69.8% Mg 28.4% K 1.7%

1: NO3=3.02ppm

2: NO3=10.92ppm

3: NO3=2.61ppm

Response to added Ca is unlikely.

Soil Mg is optimum. Maintain level with dolomitic lime.

Test Interpretation for Field Alliant SW Green Spa, Lab No 204803													
Crop Name Very Low Low Optimum High Very High Excessive Very Low Low Optimum High Very High Excessive													
CRP, grass	Р						К						
Rotation pH	рН												

Notes:

1. Test pit samples For Field R2 collected by ERC in November 2017.

2. See Figure B2 for approximate locations.

Soil & Forage Analysis Lab 2611 Yellowstone Dr Marshfield, WI 54449 phone: (715) 387-2523

SOIL TEST REPORT

Results also available on-line at http://not available lab number: 2472 access code: 48tw8

LAB #: 2472 County Account No. 558424 Rock С

Montgomery Associates-Resource Solutions - Ryan Stenjem 119 S Main St ... ----

This Report is for: Montgomery Associates

Date Received 5/11/2018	Date Processed 5/14/2018	Cottage Grove,	WI 53527										
Slope Acres				NUTRI	ENT RE	COMM	ENDATIC	DNS					
2.1% 6	12" No	Cropping Sequence	Yield Goal	Crop N	Nutrient N P2O5	Veed K2O	Legume N	Fertilzer Manure N	Credit P2O5	K2O	Nu N	utrients to Ap P2O5	ply I
Soil Name Lorenzo Ioamy soil/mee Field Name O1	Tiled No dium yield potential	Soybean, grain Corn, grain	per acre 151-170 bu 46-55 bu 151-170 bu 46-55 bu	see below 0 see below	— Ibs/a — 0 0 0 0	45 70 45 70	- Ibs/a 0 0 0 0	0 0 0 0	- Ibs/a	0 0 0	see below 0 see below	— Ibs/a — 0 0 0	
Previous Crop NO CrOP		Soybean, grain There is no lime recommenda		0	0	70	0	0	0	0	0	0	

There is no lime recommendation.

SUGGESTED N A	PPLICATION	RATES FOR C	ORN (GRAII	N) AT DIFFERE	NT N:CORN	PRICE RATIOS		
Previous Crop				N:Corn Price R	atio (\$/lb N:\$	5/bu) ———		
Medium Yield Potential Soils		0.05	0.10			0.15		0.20
Wedidin Tield Fotential Colls	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range
				—— Ib N/a (Tot	al to Apply)2			
Corn, Forage legumes, Leguminous vegetables, Green manures ³	145	130-160	125	115-140	115	105-125	105	95-110
Soybean, Small grains ⁴	130	110-150	100	85-120	85	70-95	70	60-80

¹ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

²These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.

³Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy sand soils.

⁴ Subtract N credits for animal manures and 2nd year forage legumes.

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 3) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.

4) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits.

5) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate quidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

Starter fertilizer (e.g. 10+20+20 lbs N+P₂O_x+K₂O/a) is advisable for row crops on soils slow to warm in the spring.

Because of excessively high P levels, no P₂O₅ fertilizer or manure is recommended on this field.

Year 1,3: If corn is harvested for silage instead of grain apply extra 90 lbs K₂O per acre to next crop.

N.R.=Not required for calculation of lime requirement when soil pH is 6.6 or higher.

SOIL TEST INTERPRETATION FOR CROPPING SEQUENCE Very Low Low Optimum High Very High Excessive

Phosphorus Potassium

Rotation pH

	LABORATORY ANALYSIS															
Sample Identification	Soil pH	O.M %	Phosphorus ppm	Potassium ppm	60-69 Lime Req (T/a)	Calcium ppm	Magnesium ppm	Est. CEC (cmol/kg)	Boron ppm	Manganese ppm	Zinc ppm	Sulfate-Sulfur ppm		Texture Code	Sample Density	Buffer pH
1	6.4	2.4	359	117	0									2	1.21	6.9
2	6.8	1.7	63	86	0									1	1.23	N.R.
Adjusted	6.6	2.1	211	102												

verages

- 1. Composite samples (2) for Field O1 Collected in May 2018.
- 2. Followed UW Exention guidance A2100.
- 3. See Figure B2 for approximate locations.

Soil & Forage Analysis Lab 2611 Yellowstone Dr Marshfield, WI 54449 phone: (715) 387-2523

SOIL TEST REPORT

Results also available on-line at http://not available lab number: 2472 access code: 48tw8

This Report is for:

Montgomery Associates

LAB #: 2472 County Account No. 558424 Rock Date Received Date Processed 5/11/2018 5/14/2018 Plow Depth Irrigated Slope Acres 12.2 12" 2% No Soil Name Tiled

Montgomery Associates-Resource Solutions - Ryan Stenjem 119 S Main St Cottage Grove, WI 53527

NUTRIENT RECOMMENDATIONS Crop Nutrient Need Fertilzer Credit Nutrients to Apply Yield Goal **Cropping Sequence** Ν K20 Legume N | Manure N K2O P205 P205 Ν P205 K20 per acre lbs/a lhs/a lhs/a lbs/a see below see belov 151-170 bu Corn, grain 0 75 0 0 0 0 0 75 Lorenzo loamy soil/medium yield potential Soybean, grain 46-55 bu 0 0 100 0 0 0 0 0 0 100 Field Name see below Corn, grain 151-170 bu see below 0 75 0 0 0 0 0 75 ΟZ Soybean, grain 46-55 bu 0 0 100 0 0 0 0 0 0 100 Previous Crop The lime required for this rotation to reach pH 6.3 is 2 T/a of 60-69 lime or 1.5 T/a of 80-89 lime. no crop

SUGGESTED N A	SUGGESTED N APPLICATION RATES FOR CORN (GRAIN) AT DIFFERENT N:CORN PRICE RATIOS												
Previous Crop				N:Corn Price Ra	atio (\$/lb N:\$	5/bu) ———							
Medium Yield Potential Soils		0.05		0.10		0.15		0.20					
Medium freid Fotential Solis	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range					
				—— Ib N/a (Tot	al to Apply)2								
Corn, Forage legumes, Leguminous vegetables, Green manures ³	145	130-160	125	115-140	115	105-125	105	95-110					
Soybean, Small grains ⁴	130	110-150	100	85-120	85	70-95	70	60-80					

¹ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

²These rates are for total N applied including N in starter fertilizer and N used in herbicide applications. ³Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N

credits for leguminous vegetables on sand and loamy sand soils.

⁴ Subtract N credits for animal manures and 2nd year forage legumes.

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 3) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.

4) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits.

5) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate quidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Parts of this field may not benefit from liming. Please see the unadjusted lime requirements in the Laboratory Analysis section below.

Some parts of this field are more acid and may require additional lime.

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

Starter fertilizer (e.g. 10+20+20 lbs N+P₂O₅+K₂O/a) is advisable for row crops on soils slow to warm in the spring.

Because of excessively high P levels, no P₂O₅ fertilizer or manure is recommended on this field.

Year 1,3: If corn is harvested for silage instead of grain apply extra 90 lbs K₂O per acre to next crop.

	SOIL TEST INTERPRETATION FOR CROPPING SEQUENCE															
		Ver	y Low		Low			Optimum	1	ŀ	ligh	N	/ery High		Ex	cessive
Phosphor Potassiur Rotation	m	KKK	PPPPPP KKKKKKK XXXXXXX	KKKKKK	KKKKKK		PPPPPF	PPPPPP	PPPPPP	PPPPPF	PPPPP	РРРРРРР	РРРРРРР	PPPP	PPPPPPI	РРРРР
							LABORA	TORY AN	ALYSIS							
Sample Identification	Soil pH	O.M %	Phosphorus ppm	Potassium ppm	60-69 Lime Req (T/a)	Calcium ppm	Magnesium ppm	Est. CEC (cmol/kg)	Boron ppm	Manganese ppm	Zinc ppm	Sulfate-Sulfur ppm		exture Code	Sample Density	Buffer pH
1	5.7	2.5	754	100	4.3									2	1.18	6.5
2	6.5	2.2	257	91	0									2	1.20	6.9
Adjusted	6.1	2.4	506	96												

6.1 506 2.4 Averages

- 1. Composite samples (2) for Field O2 Collected in May 2018.
- 2. Followed UW Exention guidance A2100.
- 3. See Figure B2 for approximate locations.

Soil & Forage Analysis Lab 2611 Yellowstone Dr Marshfield, WI 54449 phone: (715) 387-2523

SOIL TEST REPORT

Results also available on-line at http://not available lab number: 2472 access code: 48tw8

LAB #: 2472 County Account No. 558424 Rock Date Received Date Processed

Montgomery Associates-Resource Solutions - Ryan Stenjem 119 S Main St Cottage Grove, WI 53527

This Report is for: Montgomery Associates

5/11/	/2018	5/14/	2018												
						NUTRI	ENT RE	COMM	ENDATIC	DNS					
Slope 2%	Acres 9.3	Plow Depth 12"	No	Cropping Sequence	Yield Goal	Crop N	Nutrient N P2O5	leed K2O	Legume N	Fertilzer Manure N	Credit P2O5	K2O	Nu N	trients to App P2O5	ply K2O
	Soil Name Tile Lorenzo No loamy soil/medium yield potential			Corn, grain	per acre 151-170 bu	see below	— Ibs/a — 0	75	— Ibs/a — 0	0	- Ibs/a 0	0	see below	— lbs/a — 0	75
Field Na		ium yield pot		Soybean, grain Corn, grain	46-55 bu 151-170 bu	0 see	0	100 75	0 0	0 0	0	0	0 see	0 0	100 75
RZ	a Caan			Soybean, grain	46-55 bu	below 0	0	100	0	0	0	0	below O	0	100
Previou NO CI	•			The lime required for this rotation to reach pH 6.3 is 2 T/a of 60-69 lime or 1.5 T/a of 80-89 lime.											
				SUGGESTED N APPLICATI	ON RATES FOR C	ORN (G	RAIN) A		FRENT N	CORN F		RATIOS			

0000E0TED IN AI													
Previous Crop				N:Corn Price Ra	atio (\$/lb N:\$	/bu) ———							
Medium Yield Potential Soils		0.05		0.10		0.15	(0.20					
	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range					
	Ib N/a (Total to Apply) ²												
Corn, Forage legumes, Leguminous vegetables, Green manures ³	145	130-160	125	115-140	115	105-125	105	95-110					
Soybean, Small grains ⁴	130	110-150	100	85-120	85	70-95	70	60-80					

¹ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

²These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.

³Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy sand soils.

⁴ Subtract N credits for animal manures and 2nd year forage legumes.

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 3) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.

4) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits.

5) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate quidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Parts of this field may not benefit from liming. Please see the unadjusted lime requirements in the Laboratory Analysis section below.

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

Starter fertilizer (e.g. 10+20+20 lbs N+P₂O₅+K₂O/a) is advisable for row crops on soils slow to warm in the spring.

Because of excessively high P levels, no P₂O₅ fertilizer or manure is recommended on this field.

Year 1,3: If corn is harvested for silage instead of grain apply extra 90 lbs K₂O per acre to next crop.

	SOIL TEST INTERPRETATION FOR CROPPING SEQUENCE													
	Very Low	Low	Optimum	High	Very High	Excessive								
Phosphorus Potassium		PPPPPPPPPPPPPPPP KKKKKKKKKKKKKKKKK	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ <	РРРРРРРРРРРРР	PPPPPPPPPPPPPPPPP	PPPPPPPPPPPP								
Rotation pH	XXXXXXXXXXXXXXXXXX	XXXXXXXXX												

	LABORATORY ANALYSIS															
Sample	Soil	O.M	Phosphorus	Potassium	60-69 Lime	Calcium	Magnesium	Est. CEC	Boron	Manganese	Zinc	Sulfate-Sulfur		Texture	Sample	Buffer
Identification	pН	%	ppm	ppm	Req (T/a)	ppm	ppm	(cmol/kg)	ppm	ppm	ppm	ppm		Code	Density	pН
1	6.0	2.2	562	97	2.0									2	1.16	6.6
2	6.2	2.4	572	103	0									2	1.18	6.8
Adjusted	61	23	567	100												

Averages

- 1. Composite samples (2) for Field R2 Collected in May 2018.
- 2. Followed UW Exention guidance A2100.
- 3. See Figure B2 for approximate locations.

Soil & Forage Analysis Lab 2611 Yellowstone Dr Marshfield, WI 54449 phone: (715) 387-2523

SOIL TEST REPORT

Results also available on-line at http://not available lab number: 2472 access code: 48tw8

Apply

K20

0

0

0 0

LAB #: 2472 County Account No. Rock 558424 Da SI 4 S Т

Fi

Pr

no crop

Montgomery Associates-Resource Solutions - Ryan Stenjem 119 S Main St

This Report is for: Montgomery Associates

Date Received 5/11/2018	Date Processed 5/14/2018	Cottage Grove,	WI 53527									
Slope Acres	Plow Depth Irrigated			NUTRI	ENT RE	COMM	ENDATIC	DNS				
	, ,		Mindal Oncol	Crop	Nutrient N	leed		Fertilzer (Credit		Nu	trients to A
4.1% 9	12" No	Cropping Sequence	Yield Goal	N	P2O5	K2O	Legume N	Manure N	P2O5	K2O	N	P2O5
Soil Name	Tiled		per acre		— Ibs/a —		— Ibs/a —	-	- Ibs/a			— Ibs/a —
Lorenzo	Tiled No	Corn, grain	151-170 bu	see below	0	0	0	0	0	0	see below	0
		Soybean, grain	46-55 bu	0	0	0	0	0	0	0	0	0
Field Name R1		Corn, grain	151-170 bu	see below	0	0	0	0	0	0	see below	0
		Soybean, grain	46-55 bu	0	0	0	0	0	0	0	0	0
Previous Crop												

There is no lime recommendation.

SUGGESTED N A	PPLICATION	RATES FOR C	ORN (GRAII	N) AT DIFFEREN	NT N:CORN	PRICE RATIOS		
Previous Crop				N:Corn Price Ra	atio (\$/lb N:\$	5/bu) ———		
Medium Yield Potential Soils		0.05		0.10		0.15		0.20
	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range
				—— Ib N/a (Tot	al to Apply)2			
Corn, Forage legumes, Leguminous vegetables, Green manures ³	145	130-160	125	115-140	115	105-125	105	95-110
Soybean, Small grains ⁴	130	110-150	100	85-120	85	70-95	70	60-80

¹ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

²These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.

³Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy sand soils.

⁴ Subtract N credits for animal manures and 2nd year forage legumes.

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 3) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.

4) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits. 5) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate quidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

Starter fertilizer (e.g. 10+20+20 lbs N+P₂O_x+K₂O/a) is advisable for row crops on soils slow to warm in the spring.

Because of excessively high P levels, no P₂O₅ fertilizer or manure is recommended on this field.

N.R.=Not required for calculation of lime requirement when soil pH is 6.6 or higher.

		SOIL TEST INTER	RPRETATION FOR CROPP	PING SEQUENCE		
	Very Low	Low	Optimum	High	Very High	Excessive
Phosphorus Potassium			РРРРРРРРРРРРРРРР ККККККККККККККККК			
Rotation pH	XXXXXXXXXXXXXXXXXX	*****	xxxxxxxxxxxxxxxxxxx	XXXXXXXXX		

	LABORATORY ANALYSIS														
Sample Identification															
1	7.2	4.3	357	242	0								2	1.08	N.R.
Adjusted	7.2	4.3	357	242											

- 1. Composite sample for Field R1 Collected in May 2018.
- 2. Area partially unavailable for soil sampling due to construction activities.
- 3. Followed UW Exention guidance A2100
- 4. See Figure B2 for approximate locations

Soil & Forage Analysis Lab 2611 Yellowstone Dr Marshfield, WI 54449 phone: (715) 387-2523

SOIL TEST REPORT

Results also available on-line at http://not available lab number: 2472 access code: 48tw8

LAB #: 2472 County Account No. 558424 Rock Date Received Date Processed

no crop

Montgomery Associates-Resource Solutions - Ryan Stenjem 119 S Main St

This Report is for: Montgomery Associates

Cottage Grove, WI 53527

5/11/2018 5/14/2018												
	NUTRIENT RECOMMENDATIONS											
Slope Acres Plow Depth Irrigated 4.5% 14.4 12" No	Cropping Sequence	Yield Goal	Crop N	Nutrient N P2O5		Legume N	Fertilzer Manure N	Credit P2O5	K2O	Nu N	trients to App P2O5	k2O
Soil Name Tiled Lorenzo No	Corn, grain	per acre 151-170 bu	see below	— Ibs/a — 0	0	— Ibs/a — 0	0	– Ibs/a — 0	0	see below	— lbs/a — 0	0
loamy soil/medium yield potential	Soybean, grain	46-55 bu	0	0	0	0	0	0	0	0	0	0
Field Name R3	Corn, grain	151-170 bu	see below	0	0	0	0	0	0	see below	0	0
-	Soybean, grain	46-55 bu	0	0	0	0	0	0	0	0	0	0
Previous Crop												

There is no lime recommendation.

SUGGESTED N APPLICATION RATES FOR CORN (GRAIN) AT DIFFERENT N:CORN PRICE RATIOS									
Previous Crop									
Medium Yield Potential Soils		0.05	0.10		0.15		0.20		
	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	Rate ¹	Range	
	Ib N/a (Total to Apply) ²								
Corn, Forage legumes, Leguminous vegetables, Green manures ³	145	130-160	125	115-140	115	105-125	105	95-110	
Soybean, Small grains ⁴	130	110-150	100	85-120	85	70-95	70	60-80	

¹ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within \$1/a of the MRTN.

²These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.

³Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N credits for leguminous vegetables on sand and loamy sand soils.

⁴ Subtract N credits for animal manures and 2nd year forage legumes.

Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.

2) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to 20 lb N/a in starter fertilizer may be applied in this situation. 3) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.

4) If there is a likelihood of residual N, then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits.

5) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate quidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

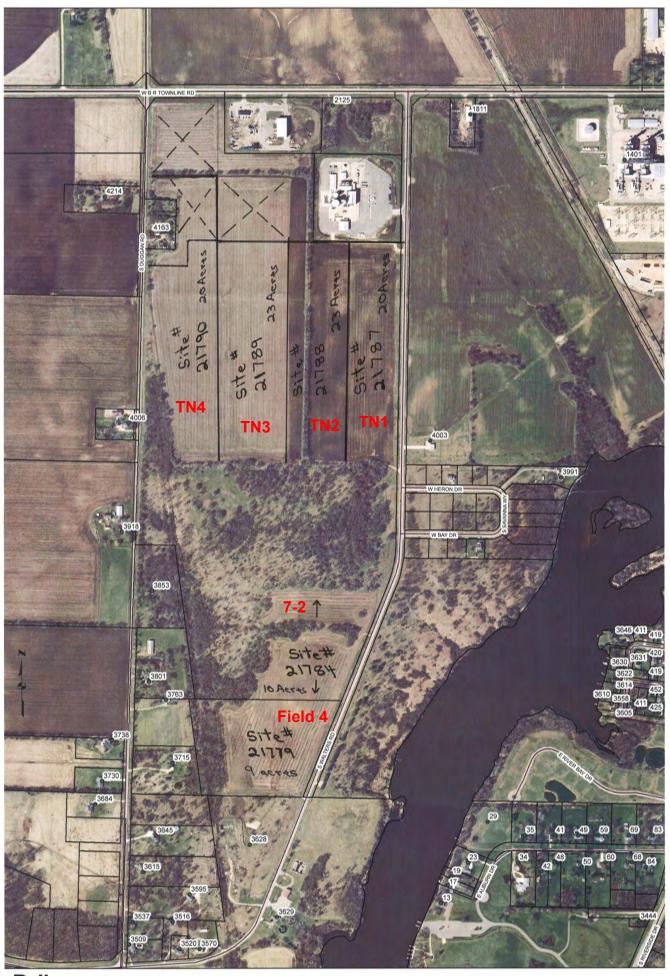
ADDITIONAL INFORMATION

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.

Starter fertilizer (e.g. 10+20+20 lbs N+P₂O_x+K₂O/a) is advisable for row crops on soils slow to warm in the spring.

Because of excessively high P levels, no P_2O_5 fertilizer or manure is recommended on this field.

N.R.=Not required for calculation of lime requirement when soil pH is 6.6 or higher.


SOIL TEST INTERPRETATION FOR CROPPING SEQUENCE								
	Very Low	Low	Optimum	High	Very High	Excessive		
Phosphorus Potassium			PPPPPPPPPPPPPPPP KKKKKKKKKKKKKKKKK					
Rotation pH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	*****	xxxxxxxxxxxxxxxxxxx	xxxxxxxxxxxxxxxx	XXXXXXXX			

	LABORATORY ANALYSIS														
Sample	Soil	O.M	Phosphorus	Potassium	60-69 Lime	Calcium	Magnesium	Est. CEC	Boron	Manganese	Zinc	Sulfate-Sulfur	Texture	Sample	Buffer
Identification	pН	%	ppm	ppm	Req (T/a)	ppm	ppm	(cmol/kg)	ppm	ppm	ppm	ppm	Code	Density	pН
1	7.3	4.0	304	239	0								2	1.12	N.R.
2	7.4	3.2	279	226	0								2	1.19	N.R.
Adjusted Averages	7.4	3.6	292	233											

- 1. Composite samples for Field R3 Collected in May 2018.
- 2. Area partially unavailable for soil sampling due to construction activities.
- 3. Followed UW Exention guidance A2100
- 4. See Figure B2 for approximate locations

Sludge Hauling Records

Batterman

1 inch = 500 feet

	SLUDGE HAULING RECORDS FOR 2004								
	Gallons	Field		Suspended Solids					
Date	Applied	Location	Crop	Applied (lb)					
05/27/04	23,000	TN-1	corn	16,341					
05/28/04	18,400	TN-1	corn	13,073					
06/29/04	10,200	TN-1	corn	9,253					
06/30/04	23,000	TN-1	corn	20,864					
07/07/04	27,600	TN-1	corn	17,373					
07/08/04	11,500	TN-1	corn	7,239					
07/12/04	18,400	TN-1	corn	9,553					
07/13/04	16,100	TN-1	corn	8,359					
07/14/04	23,000	TN-1	corn	11,941					
08/18/04	23,000	TN-1	corn	11,061					
08/19/04	18,400	TN-1	corn	8,849					
08/20/04	16,100	TN-1	corn	7,743					
08/23/04	23,000	TN-1	corn	14,068					
08/24/04	23,000	TN-1	corn	14,068					
09/13/04	20,700	TN-1	corn	11,444					
09/14/04	20,700	TN-1	corn	11,444					
09/15/04	16,100	TN-1	corn	8,901					
09/21/04	23,000	TN-1	corn	25,036					
11/02/04	11,500	TN-1	corn	26,384					
11/08/04	20,700	TN-1	corn	14,180					
11/09/04	16,100	TN-1	corn	11,029					
11/10/04	23,000	TN-1	corn	15,205					
11/11/04	13,800	TN-1	corn	9,123					

	I otal Gallons	Acres in	Gallons /	
Field	Applied	field	Acre	TSS (lb/ac)
TN-1	440,300	20	22,015	15,126
Total Gallons	440,300			

	SLUDGE HAULING RECORDS FOR 2005								
	Gallons			Suspended Solids					
Date	Applied	Field Location	Crop	Applied (lb)					
05/09/05	10,000	TN-3	Corn	17,773					
05/10/05	5,000	TN-3	Corn	8,887					
05/24/05	20,700	TN-3	Corn	11,374					
05/25/05	25,300	TN-3	Corn	13,902					
05/26/05	29,900	TN-3	Corn	10,200					
05/27/05	29,900	TN-3	Corn	10,200					
05/31/05	27,600	TN-3	Corn	12,262					
06/01/05	23,000	TN-3	Corn	10,218					
06/02/05	23,000	TN-3	Corn	14,620					
06/03/05	23,000	TN-3	Corn	14,620					
06/06/05	16,100	TN-3	Corn	11,088					
06/13/05	29,900	TN-3	Corn	20,592					
06/14/05	23,000	TN-3	Corn	21,928					
06/15/05	9,000	TN-3	Corn	8,580					
06/16/05	23,000	TN-3	Corn	20,134					
06/17/05	23,000	TN-3	Corn	20,134					
10/03/05	34,500	TN-3	Corn	9,857					
10/04/05	34,500	TN-3	Corn	9,857					
10/05/05	23,000	TN-3	Corn	6,571					
10/06/05	32,000	TN-3	Corn	11,401					
10/07/05	36,400	TN-3	Corn	12,968					
10/10/05	39,100	TN-3	Corn	15,836					
10/11/05	29,300	TN-3	Corn	11,867					
10/12/05	45,000	TN-3	Corn	8,130					
10/13/05	29,900	TN-3	Corn	5,402					
10/19/05	4,600	TN-3	Corn	27,292					
10/20/05	36,800	TN-3	Corn	20,994					
10/21/05	25,000	TN-3	Corn	14,262					

	I otal Gallons			
Field	Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-3	711,500	23	30,935	16,563
Total Gallons	711,500			

	SLUDGE HAULING RECORDS FOR 2006								
				Suspended Solids					
Date	Gallons Applied	Field Location	Crop	Applied (lb)					
05/24/06	34,500	TN-4	Corn	31,692					
05/25/06	20,700	TN-4	Corn	31,692					
06/08/06	28,000	TN-4	Corn	27,416					
06/09/06	28,000	TN-4	Corn	27,416					
06/16/06	54,000	TN-4	Corn	25,648					
06/29/06	46,000	TN-4	Corn	29,220					
07/10/06	38,000	TN-4	Corn	23,148					
07/11/06	28,000	TN-4	Corn	23,148					
07/13/06	30,000	TN-4	Corn	25,368					
07/14/06	28,000	TN-4	Corn	25,368					
07/17/06	20,000	TN-4	Corn	28,284					
07/18/06	20,000	TN-4	Corn	28,284					
10/29/06	20,000	Field 4	Beans	26,040					
10/30/06	20,000	Field 4	Beans	26,040					
10/31/06	30,000	Field 4	Beans	26,040					
11/01/06	30,000	Field 4	Beans	26,040					
11/02/06	20,000	Field 4	Beans	33,450					
11/06/06	34,000	Field 4	Beans	33,450					
11/07/06	34,000	Field 4	Beans	33,450					
11/08/06	34,000	Field 4	Beans	33,450					
11/09/06	20,000	Field 4	Beans	33,450					
11/10/06	22,000	Field 4	Beans	33,450					

	Total Gallons		Gallons /	
Field	Applied	Acres in field	Acre	TSS (lb/ac)
TN-4	375,200	20	18,760	16,334
Field 4	264,000	9	29,333	33,873
Total Gallons	639,200			

	SLUDGE I	HAULING RE	CORDS FOR	2007
	Gallons			Suspended Solids
Date	Applied	Field Location	Crop	Applied (lb)
05/24/07	16,800	TN-2	Corn	29,960
05/25/07	20,000	TN-2	Corn	29,960
07/30/07	23,000	TN-2	Corn	29,960
07/31/07	23,700	TN-2	Corn	29,960
08/01/07	23,000	TN-2	Corn	30,216
08/02/07	27,400	TN-2	Corn	30,216
08/06/07	33,700	TN-2	Corn	25,152
08/07/07	33,000	TN-2	Corn	25,152
09/14/07	27,600	TN-2	Corn	27,569
10/23/07	33,000	TN-2	Corn	29,728
10/24/07	25000	TN-3	Beans	29,728
10/26/07	18400	TN-3	Beans	29,736
10/29/07	32,500	TN-2	Corn	29,736
10/30/07	46,000	TN-2	Corn	29,736
10/31/07	32,000	Field 4	Beans	30,248
11/01/07	32,000	Field 4	Beans	30,248
11/02/07	32,000	Field 4	Beans	30,248

Field	l otal Gallons Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-2	339,700	23	14,770	15,102
TN-3	43,400	23	1,887	2,585
Field 4	96,000	9	10,667	10,083
Total Gallons	479,100			

	SLUDGE HAULING RECORDS FOR 2008					
	Gallons			Suspended Solids		
Date	Applied	Field Location	Crop	Applied (lb)		
05/21/08	27,600	TN-1	Corn	30,152		
06/18/08	36,800	TN-1	Corn	41,648		
06/19/08	34,500	TN-1	Corn	41,648		
06/20/08	29,900	TN-1	Corn	41,648		
07/02/08	30,000	TN-1	Corn	27,492		
07/15/08	55,200	TN-1	Corn	23,774		
07/16/08	36,800	TN-1	Corn	23,774		
07/30/08	20,000	TN-1	Corn	31,212		
07/31/08	30,000	TN-1	Corn	31,212		
08/11/08	32,000	TN-1	Corn	14,080		
08/12/08	30,000	TN-1	Corn	14,080		
08/13/08	40,000	TN-1	Corn	23,072		
08/14/08	21,600	TN-1	Corn	23,072		
08/15/08	18,400	TN-1	Corn	23,072		
09/23/08	41,400	TN-1	Corn	26,916		
09/24/08	46,000	TN-1	Corn	26,916		
10/13/08	48,300	TN-2	Corn	30,604		
11/04/08	34,500	TN-2	Corn	27,420		

	I otal Gallons			
Field	Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-1	530,200	20	26,510	22,188
TN-2	82,800	23	3,600	2,523
Total Gallons	613,000			

	SLUDGE HA	ULING RE	CORDS FO	
		Field		Suspended Solids Applied
Date	Gallons Applied	Location	Crop	(lb)
05/11/09	35,900	TN-3	Corn	26,240
05/18/09	35,000	TN-3	Corn	28,840
05/20/09	37,500	TN-2	Corn	28,620
05/21/09	62,100	TN-2	Corn	28,620
05/22/09	42,500	TN-2	Corn	28,620
05/26/09	29,900	TN-2	Corn	28,620
05/27/09	29,900	TN-2	Corn	28,696
05/28/09	25,300	TN-2	Corn	28,696
06/11/09	23,000	TN-2	Corn	28,576
06/12/09	18,400	TN-2	Corn	28,576
06/15/09	35,000	TN-2	Corn	28,408
06/16/09	48,300	TN-2	Corn	28,408
07/07/09	31,200	TN-2	Corn	26,448
07/14/09	39,100	TN-2	Corn	26,448
07/15/09	42,500	TN-2	Corn	26,448
07/21/09	32,000	TN-2	Corn	27,792
07/27/09	23,000	TN-2	Corn	24,780
07/28/09	25,300	TN-2	Corn	24,780
07/29/09	62,100	TN-2	Corn	24,780
08/19/09	32,200	TN-2	Corn	17,636
08/20/09	45,000	TN-2	Corn	17,636
08/25/09	37,500	TN-2	Corn	20,552
08/26/09	41,400	TN-2	Corn	20,552
10/20/09	40,000	TN-4	Beans	29,300
10/21/09	40,000	TN-4	Beans	29,300

	Total Gallons			
Field	Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-2	763,200	23	33,183	23,639
TN-3	70,900	23	3,083	2,395
TN-4	80,000	20	4,000	2,930
Total Gallons	914,100			

SLUDGE HAULING RECORDS FOR 2010					
				Suspended Solids	
Date	Gallons Applied	Field Location	Crop	Applied (lb)	
06/28/10	25,000	T-3	Corn	30,048	
06/29/10	30,600	T-3	Corn	30,048	
06/30/10	20,000	T-3	Corn	30,048	
07/01/10	32,500	T-3	Corn	29,548	
07/02/10	30,000	T-3	Corn	29,548	
07/06/10	25,300	T-3	Corn	28,188	
07/07/10	30,000	T-3	Corn	28,188	
07/08/10	23,000	T-3	Corn	27,922	
07/09/10	16,100	T-3	Corn	27,922	
07/12/10	62,600	T-3	Corn	30,712	
07/13/10	27,600	T-3	Corn	30,712	
07/14/10	51,200	T-3	Corn	30,712	
07/15/10	25,600	T-3	Corn	19,000	
07/20/10	24,400	T-3	Corn	28,780	
07/21/10	24,400	T-3	Corn	28,780	
11/05/10	30,000	T-3	Corn	19,388	
11/06/10	30,000	T-3	Corn	19,388	
11/08/10	41,400	T-3	Corn	34,488	
11/09/10	45,000	T-3	Corn	34,488	
11/16/11	28,750	T-3	Corn	29,184	
11/17/10	28,750	T-3	Corn	29,184	
11/18/10	23,000	T-3	Corn	22,932	
11/19/10	23,000	T-3	Corn	22,868	
11/24/10	36,800	T-3	Corn	33,232	
11/25/10	40,000	T-3	Corn	33,232	

	I otal Gallons			
Field	Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-3	775,000	23	33,696	30,806
Total Gallons	775,000			

	SLUDGE HAULING RECORDS FOR 2011					
				Suspended Solids Applied		
Date	Gallons Applied	Field Location	Crop	(lb)		
06/26/11	30000	TN-4	Corn	24,348		
06/27/11	30000	TN-4	Corn	24,348		
06/28/11	40000	TN-4	Corn	22,508		
06/29/11	27600	TN-4	Corn	22,508		
06/30/11	37500	TN-4	Corn	22,508		
07/01/11	27600	TN-4	Corn	22,508		
07/19/11	55200	TN-4	Corn	25,664		
07/20/11	25300	TN-4	Corn	25,664		
08/02/11	24500	TN-4	Corn	25,956		
08/03/11	26100	TN-4	Corn	25,956		
08/04/11	37500	TN-4	Corn	25,956		
08/06/11	20000	TN-4	Corn	25,956		
08/16/11	39100	TN-4	Corn	19,312		
08/30/11	52900	TN-4	Corn	9,628		
08/31/11	32500	TN-4	Corn	9,628		
09/13/11	46,000	TN-1	Wheat	17,344		
09/14/11	25,000	TN-1	Wheat	17,344		
09/15/11	46,000	TN-1	Wheat	15,892		
09/16/11	27,500	TN-1	Wheat	15,892		
10/31/11	25,000	TN-1	Wheat	16,512		
11/01/11	45,000	TN-1	Wheat	16,512		
11/02/11	35,000	TN-1	Wheat	29,184		
11/07/11	41,400	TN-1	Wheat	19,972		

	I otal Gallons			
Field	Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-1	290,900	20	14,545	7,433
TN-4	505,800	20	25,290	16,622
Total Gallons	505,800			

	SLUDGE HAULING RECORDS FOR 2012					
		Field		Suspended Solids		
Date	Gallons Applied	Location	Crop	Applied (lb)		
05/14/12	39100	TN-1	Wheat	30,268		
05/15/12	46000	TN-1	Wheat	30,268		
05/16/12	34500	TN-1	Wheat	29,476		
05/17/12	37500	TN-1	Wheat	29,476		
05/18/12	23000	TN-1	Wheat	29,476		
05/21/12	36800	TN-1	Wheat	29,476		
06/05/12	46000	TN-1	Wheat	25,372		
06/06/12	25000	TN-1	Wheat	24,818		
06/18/12	35000	TN-1	Wheat	26,704		
06/19/12	57500	TN-1	Wheat	26,704		
06/25/12	25000	TN-1	Wheat	21,272		
06/26/12	23000	TN-1	Wheat	21,272		
06/27/12	23000	TN-1	Wheat	27,688		
06/28/12	34500	TN-1	Wheat	27,688		
10/15/12	36800	Field 4	Beans	32660		
10/16/12	39100	Field 4	Beans	32660		
10/17/12	35000	Field 4	Beans	21340		
10/18/12	34000	Field 4	Beans	21340		
10/31/12	27600	Field 4	Beans	25564		
11/01/12	27600	Field 4	Beans	25564		
11/02/12	27600	7-2	Beans	22396		
11/05/12	27600	7-2	Beans	22396		
11/06/12	36800	7-2	Beans	23936		
11/07/12	36800	7-2	Beans	23936		
11/08/12	23000	7-2	Beans	18196		
11/09/12	28750	7-2	Beans	25900		
11/13/12	28750	7-2	Beans	25900		

Field	l otal Gallons Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-1	485900	20	24295	18998
Field 4	200100	9	22233	17681
7-2	209300	10	20930	16266
Total Gallons	895,300			

SLUDGE HAULING RECORDS FOR 2013					
Date	Gallons Applied	Field Location	Crop	Suspended Solids Applied (lb)	
06/03/13	32,100	Field 4	Wheat/Soy Beans	7351	
06/03/13	30,000	7-2	Wheat/Soy Beans	6870	
06/04/13	40,000	7-2	Wheat/Soy Beans	9160	
06/05/13	25,600	7-2	Wheat/Soy Beans	6090	
06/05/13	20,000	Field 4	Wheat/Soy Beans	4758	
06/06/13	62,900	Field 4	Wheat/Soy Beans	14964	
06/10/13	36,800	7-2	Wheat/Soy Beans	29,012	
06/11/13	34,500	Field 4	Wheat/Soy Beans	7620	
06/12/13	38,400	7-2	Wheat/Soy Beans	8481	
06/13/13	16,800	7-2	Wheat/Soy Beans	3711	
10/21/13	40,000	TN-2	Beans	19,476	
10/22/13	54,000	TN-2	Beans	25,932	
10/23/13	34000	TN-3	Beans	25,972	
10/23/13	24,000	TN-2	Beans	25,972	
10/24/13	70,000	TN-2	Beans	11,004	
10/25/13	62,000	TN-1	Beans	10,088	
11/04/13	26,000	TN-1	Beans	26,592	
11/04/13	18000	TN-4	Beans	26,592	
11/05/13	30000	TN-4	Beans	3,304	
11/05/13	30000	TN-3	Beans	3,304	
11/11/13	36,000	TN-1	Beans	7,816	
11/20/13	28000	TN-3	Beans	18,692	
11/20/13	30000	TN-4	Beans	18,692	

	l otal Gallons			
Field	Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-1	124,000	20	6,200	2,225
TN-2	188,000	23	8,174	3,582
TN-3	92,000	23	23	2,086
TN-4	78,000	20	3,900	2,429
Field 4	149,500	9	16611	3,855
7-2	187,600	10	18760	6,332
Total Gallons	819,100			

	SLUDGE HAU	JLING RE	CORDS FOR	2014
		Field		Suspended Solids
Date	Gallons Applied	Location	Crop	Applied (lb)
05/05/14	38000	TN-1	Beans	7,307
05/05/14	40000	TN-2	Beans	7,691
05/05/14	22000	TN-3	Beans	4,230
05/06/14	60000	TN-1	Beans	11,537
05/06/14	22000	TN-2	Beans	4,230
05/06/14	40000	TN-3	Beans	7,691
05/07/14	50000	TN-2	Beans	9,614
05/07/14	42000	TN-3	Beans	8,076
05/08/14	12000	TN-2	Beans	2,307
05/08/14	28000	TN-3	Beans	5,384
10/23/14	54600	TN-3	Beans	10,498
10/27/14	94000	TN-3	Beans	18,074
10/28/14	16000	TN-4	Beans	3,076
10/29/14	78000	TN-4	Beans	14,998
10/30/14	58000	TN-4	Beans	11,152

	I otal Gallons	Acres in		
Field	Applied	field	Gallons / Acre	TSS (lb/ac)
TN-1	98,000	20	4,900	942
TN-2	124,000	23	124,000	1,037
TN-3	280,600	23	280,600	2,346
TN-4	152,000	23	152,000	1,271
Total Gallons	654,600			

	SLUDGE HA	ULING REC	ORDS FOR 2	015
				Suspended Solids
Date	Gallons Applied	Field Location	Crop	Applied (lb)
04/15/15	50,000	TN-4	Corn	30,372
04/16/15	40,000	TN-4	Corn	35,050
04/23/15	44,000	TN-4	Corn	29,332
04/24/15	76,000	TN-4	Corn	28,432
04/27/15	40,000	TN-4	Corn	34,420
04/28/15	50,000	TN-4	Corn	33,404
04/29/15	54,000	TN-4	Corn	14,032
09/22/15	3,200	TN-2	Wheat	28,140
09/23/15	78,000	TN-2	Wheat	27,372
09/24/15	26,000	TN-2	Wheat	24,604
10/19/15	66,000	TN-1	Wheat	20,156
10/20/15	82,000	TN-1	Wheat	11,596
10/21/15	84,000	TN-2	Wheat	11,596
10/22/15	68,000	TN-2	Wheat	19,624
10/26/15	60,000	TN-1	Wheat	16,544

	I otal Gallons			
Field	Applied	Acres in field	Gallons / Acre	TSS (lb/ac)
TN-1	208,000	20	10,400	2,415
TN-2	259,200	23	11,270	4,841
TN-4	354,000	23	15,391	8,915
Total Gallons	821,200			

Gallons of Sludge Applied

Year	TN-1	TN-2	TN-3	TN-4	Field 4	7-2	Total
2004	440,300						440,300
2005			711,500				711,500
2006				375,200	264,000		639,200
2007		339,700	43,400		96,000		479,100
2008	530,200	82,800					613,000
2009		763,200	70,900	80,000			914,100
2010			746,250				746,250
2011	290,900		28,750	505,800			825,450
2012	485,900				200,100	209,300	895,300
2013	124,000	188,000	92,000	78,000	149,500	187,600	819,100
2014	98,000	124,000	280,600	152,000			654,600
2015	208,000	259,200		354,000			821,200
Total	2,177,300	1,756,900	1,973,400	1,545,000	709,600	396,900	8,559,100

Suspended Solids Applied

	TN-1	TN-2	TN-3	TN-4	Field 4	7-2	Total
2004	302,528						302,528
2005			380,947				380,947
2006				326,684	304,860		631,544
2007		347,345	59,464		90,744		497,553
2008	443,768	58,024					501,792
2009		543,692	55,080	58,600			657,372
2010			679,356				679,356
2011	148,652		29,184	332,448			510,284
2012	379,958				159,128	162,660	701,746
2013	44,496	82,384	47,968	48,588	34,692	63,324	321,452
2014	18,843	23,843	53,954	29,227			125,866
2015	48,296	111,336		205,042			364,674
Total	1,386,541	1,166,624	1,305,953	1,000,589	589,424	225,984	5,675,114

Sludge Analysis Results

Year	% Solids	TP
2011	2.6%	3.3%
2012	-	-
2013	2.7%	3.0%
2014	2.3%	2.8%
2015	1.9%	2.5%
2016	2.7%	3.8%

Sludge Analysis Results

CHARACTERISTIC (Municipal Sludge Reporting Period: Form Due Date:	REPORT: s 283.55(1), Wis.Stats. , Industrial Sludge, Liquid Industrial V 01/01/2011 to 12/31/2011 01/31/2012	Form 3400-49 Naste and By-Produ Frequency: Annual	roduct Solids) nnual	Rev. 12-98	Permit No.: WI- 0026930 Facility: BELOIT TO 2871 Sout Beloit, WI	1- 0026930 BELOIT TOWN WASTEM 2871 South Afton Road Beloit, WI 53511	N WASTEWA Afton Road 511	t No.: WI- 0026930 Facility: BELOIT TOWN WASTEWATER TREATMENT FACILITY 2871 South Afton Road Beloit, WI 53511	NT FACILITY	Page 1 of 1
Did you land ap If yes & Munici A) Were Class B) Were Vecto	Did you land apply this period? <u>Yes</u> (Y/N) If yes & Municipal Sludge: A) Were Class <u>B</u> (A/B) Pathogen Requirements Satisified? B) Were Vector Control Requirements Satisified? <u>Yes</u> (Y/N	ttisified? (Y/N)	Yes (V/N)		FIN: 6162 FID: 396022138 Return	Form To:	Region: South Centra Office: FITCHBURG Bureau of Watershed PO Box 7921	Region: South Central Office: FITCHBURG Date Rece Bureau of Watershed Management/3 PO Box 7921	Date Received: 223300 gement/3	300
If Municipal ! Include copy	If Municipal Sludge then complete section B and C on the reverse side of this form. Include copy of lab sheets, unless instructed otherwise	e reverse sid	e of this form.	Darameters to he Samuled	A A M D A D A		101 South Webster Stree Madison, WI 53707-7921 DND Contact	Madison, WI 53707-7921 DNIP Contact: Doris Thiele	Doris Thiele	
Parameter Number	Parameter	Sample Point Number	Date Sample Taken	Sample Type	Analytical Results	Units	Limit	Munic Nunic Ouality	Municipal Sludge Only Date Smpl Analyzed fility for Organics	Lab Certification Number
461 33	Solids, Total Arsenic Drv Wt	002 002	7/12/2011 7/11/2011	comp	2.6 2.9	Percent ma/ka	**** 75	41	* * * * *	617013980 617013980
86	Cadmium Dry Wt	002	7/11/2011	comp	< 2.2	mg/kg	85	39	* * * *	617013980
145	Copper Dry Wt	002	7/11/2011	comp	458	mg/kg	4300	1500	* * * *	617013980
262 278	Lead Dry Wt Mercury Dry Mt	002	1102/11//	comp	91 1 2	mg/kg mg/kg	840 57	300	****	61/013980 617013980
295	Molybdenum Dry Wt	002	7/11/2011	comp	9.7	mg/kg	75	****	* * * *	617013980
313	Nickel Dry Wt	002	7/11/2011	comp	24.6	mg/kg	420	420	****	617013980
421	Selenium Dry Wt	002	7/11/2011	comp	6.5	mg/kg	100	100	* * * *	617013980
551	Zinc Dry Wt	002	7/11/2011	comp	665	mg/kg	7500	2800	****	617013980
335	Nitrogen, Total Kjeldahl Nitrogen, Ammonium (NH4 NN Total	002	7/13/2011	comp	46.9 1 6	Percent	* * * * * * *	* * * * *	* * * * *	617013980 617013980
388	Phosphorus, Total	002	7/11/2011	comp	3.3	Percent	* * * *	****	* * * *	617013980
686	Phosphorus, Water Extractable	002	7/11/2011	comp	3.9	% of Tot P	****	****	****	617013980
395	Potassium, Total Recoverable	002	7/11/2011	comp	0.3	Percent	* * * *	****	****	617013980
Description (Description of Facility Sampling Point:	Sample fauc	Sample faucet on Stand Pipe that fills sludge hauling trucks at sludge storage facility.	at fills sludge haulin	g trucks at sludge s	storage facility.		Completion of t	Completion of this form is required. Failure to	0
Comments:								complete this fc Wis. Stats., may	complete this form, as required by s. 283.55(1), Wis. Stats., may result in penalties pursuant to	(1), to
I certify, under under my direc am aware that	l certify, under penalty of law that metal testing, pathogen monitoring and testing, and the vector control requirements; if reported on this form have been prepared under my direction and supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated this information. I am aware that there are significant penalities for false certification including the possibility of fine and imprisonment.	ing and testing signed to ensu ncluding the pc	, and the vector conture that qualified person ssibilty of fine and in	ol requirements; if r onnel properly gathe nprisonment.	eported on this form red and evaluated th	n have been pre his information.	pared I	s. 283.91(4), Wis. Stats. Per- information on this form is r used for any other purpose.	 28.3.91(4), Wis. Stats. Personally identifiable information on this form is not intented to be used for any other purpose. 	ple be

B) Municipal Sludge Only PATHOGEN CONTROL (EITHER CLASS A or B)	FECAL COLIFORM 2 MPN/g TS SALMONELLA MPN/4g TS 25 SALMONELLA 25 MPN/4g TS 25 SALMONELLA	SAMPLE DATES to to to to SAMPLE DATE	AND one of the following	Alkaline Treatment Composting Thermophilic Aerobic Digestion Prior test for Enteric Virus/Viable Helminth Ova	Heat Drying Beta Ray Irradiation Temp/Time based on % Solids	Heat Treatment Gama Ray Irradiation Pasteurization PFRP Equivalent Helminth Ova	Description of which process is used & operating parameters	X Class B	2 CFU/a or 145.571	7/6/2011 to 7/6/2011	OR one of the following, as specified in Ch. NR 204	X Aerobic Digestion Air Drying Alkaline Stabilization Anaerobic Digestion Composting PSRP Equivalent	Description of which process used & operating parameters:		VECTOR ATTRACTION REDUC Check which option below is used and enter analy	ANALYTICAL DATE	tuction ≥ 38 % % VSR % % VSR % % Prying With Unstabilized Solids > 90 % TS % 75 % 75 % 75 % 75 % 75 % 75 % 75 %	e < 15 % VSR	Anaerobic Bench Scale < 17 % VSR % VSR % VSR	Injection when land apply	Approved Equivalent Process
		MPN/g TS SALMONELLA	RM ² MPN/g TS OR SALMONELLA ^{1.3} OR SAMPLE DATE ^{1.3}	RM ² MPN/g TS OR SALMONELLA OR I SALMONELLA A AND one of the following AND one of the following	RM MPN/g TS SALMONELLA 1.3 LO OR 1.3 to SAMPLE DATE 1.3 AND AND one of the following atment Composting Thermophilic Aerobic Digestion	RM	RM	OR SALMONELLA OR SAMPLE DATE AND one of the following AND one of the following Thermophilic Aerobic Digestion Temp/Time based on % Solids Pasteurization PFRP Equivalent	OR SALMONELLA SAMPLE DATE 1 AND one of the following Thermophilic Aerobic Digestion 1 Temp/Time based on % Solids Pasteurization 1 PFRP Equivalent 1 PFRP Equivalent 1 Class B	OR SALMONELLA OR SAMPLE DATE AND one of the following AND one of the following Thermophilic Aerobic Digestion Temp/Time based on % Solids PERP Equivalent PFRP Equivalent 145.571	OR SALMONELLA OR SAMPLE DATE AND one of the following AND one of the following Thermophilic Aerobic Digestion Temp/Time based on % Solids Pasteurization PFRP Equivalent T45,571	OR SALMONELLA OR SAMPLE DATE AND one of the following AND one of the following Thermophilic Aerobic Digestion Temp/Time based on % Solids PSRP Equivalent PFRP Equivalent 145,571 AND one of the following, as specified in Ch. N	OR SALMONELLA OR SAMPLE DATE AND one of the following AND one of the following Thermophilic Aerobic Digestion Temp/Time based on % Solids PSRP Equivalent PFRP Equivalent 145,571 MPN/g TS ne of the following, as specified in Ch. N ne of the following, as specified in Ch. N	OR SALMONELLA AND one of the following AND one of the following Thermophilic Aerobic Digestion Temp/Time based on % Solids PSFRP Equivalent PFRP Equivalent 145,571 MPN/g TS Allaline Stabili Allaline Stabili PSRP Equivalent	OR SALMONELLA OR SAMPLE DATE AND one of the following Thermophilic Aerobic Digestion Temp/Time based on % Solids Pasteurization PFRP Equivalent 145,571 MPN/g TS ne of the following, as specified ne of the following, as specified	FECAL COLIFORM MPN/g TS SALMONELLA SAMPLE DATE3 0R SAMPLE DATE AND AND one of the following AND one of the following Image: Sample Data Image: Sample Data AND one of the following Image: Sample Data Image: Sample Data AND one of the following Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Data Image: Sample Sample Data Image: Sample Data Image: Sample Data Image: Sample Sample Data Image: Sample Data Image: Sample Data Image: Sample Sampl	FECAL COLIFORM MPN/g TS SALMONELLA SAMPLE DATES to SAMPLE DATE SAMPLE DATES AND one of the following SAMPLE DATE AND one of the following AND one of the following SAMPLE DATE AND one of the following Thermophilic Aerobic Digestion Thermophilic Aerobic Digestion Heat Treatment Compositing Thermophilic Aerobic Digestion Thermophilic Aerobic Digestion Heat Treatment Beta Ray Irradiation Temp/Time based on % Solids Solids Heat Treatment Bescription of which process is used & operating parameters PFRP Equivalent X ECAL COLFORM 7/6/2011 145,571 MPN/g TS X SAMPLE DATES 7/6/2011 0 7/6/2011 X X Anaerobic Digestion 0 7/6/2011 145,571 MPN/g TS SAMPLE DATES 7/6/2011 0 7/6/2011 X X CFUOR 7/6/2011 0 7/6/2011 X X X FECAL COLFORM 7/6/2011 0 7/6/2011 X X X Total 7/6/2011 0	FECAL COLFORM MPN/g1S SAMPLE DATE MPN/4g TS SAMPLE DATES In AND one of the following AND one of the following MPN/4g TS SAMPLE DATES In Annone of the following Annone of the following Annone of the following Annone Interrupting Interrupting Interrupting Interrupting Interrupting Heat Treatment Compositing Interrupting Pesteurization Interrupting Interrupting Heat Treatment Compositing Interrupting Pesteurization Interrupting Interrupting Description of which process is used & operating parameters Interrupting Pesteurization Interrupting Description of which process is used & operating parameters Interrupting Interrupting Interrupting Description of which process is used & operating parameters Interrupting Interrupting Interrupting Aerobic Digestion Interrupting Interrupting Interrupting Interrupting Aerobic Digestion Interrupting Interrupting Interrupting Interrupting Aerobic Digestion Interrupting Interrupting Interrupting <t< td=""><td>FECAL COLFORM MPN/4g TS SAMONE LATE MPN/4g TS SAMPLE DATES </td><td>FECAL COLIFORM MPV/g TS SAMPLE DATES to SAMPLE DATES MPV/4g TS SAMPLE DATES AND one of the following AND one of the following MPV/4g TS AND one of the process is used & operating parameters AND one of the following Perturbation Perturbation Heat Treatment Composing Themphilic Aerobic Digestion Perturbation Perturbation Heat Treatment Cam start reatment Composing Themphilic Aerobic Digestion Perturbation Bescription of which process is used & operating parameters MPV/4g TS Post treatment Post treatment Anamotic Digestion Perturbation THS.571 MPV/g TS Post treatment Post operating arameters Anaerobic Digestion OR one of the following as specified in Ch. NR 204 Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Description of which process used & operating parameters Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion CFUJ of THRACTION REDUCTION Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Dig</td><td>FECAL COLIFORM MPN/4g TS AMMPLE DATES 0 SAMMPLE DATE MPN/4g TS SAMMPLE DATES Incompositing Incompositing Incompositing Incompositing Admine Treatment Compositing Temp/Time based on % Solids Perior text for Enteric Virus/Vieble Heat Drying Beat Ray Trradiation Parateurization Perior text for Enteric Virus/Vieble Heat Drying Beat Ray Trradiation Perior text for Enteric Virus/Vieble Heat Drying Beat Ray Trradiation Perior text for Enteric Virus/Vieble Description of which process is used & operating parameters Perior text for Enteric Virus/Vieble Admine Treatment Cana Ray Trradiation Perior text for Enteric Virus/Vieble Description of which process is used & operating parameters X Datase Arrandot Process is used & operating parameters X Datase Arrandot Instructure Anarerobic Digestion Anarerobic Digestion Anarerobic Digestion Anarerobic Digestion Anarerobic States Solids Solids<!--</td--></td></t<>	FECAL COLFORM MPN/4g TS SAMONE LATE MPN/4g TS SAMPLE DATES	FECAL COLIFORM MPV/g TS SAMPLE DATES to SAMPLE DATES MPV/4g TS SAMPLE DATES AND one of the following AND one of the following MPV/4g TS AND one of the process is used & operating parameters AND one of the following Perturbation Perturbation Heat Treatment Composing Themphilic Aerobic Digestion Perturbation Perturbation Heat Treatment Cam start reatment Composing Themphilic Aerobic Digestion Perturbation Bescription of which process is used & operating parameters MPV/4g TS Post treatment Post treatment Anamotic Digestion Perturbation THS.571 MPV/g TS Post treatment Post operating arameters Anaerobic Digestion OR one of the following as specified in Ch. NR 204 Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Description of which process used & operating parameters Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion CFUJ of THRACTION REDUCTION Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Digestion Anaerobic Dig	FECAL COLIFORM MPN/4g TS AMMPLE DATES 0 SAMMPLE DATE MPN/4g TS SAMMPLE DATES Incompositing Incompositing Incompositing Incompositing Admine Treatment Compositing Temp/Time based on % Solids Perior text for Enteric Virus/Vieble Heat Drying Beat Ray Trradiation Parateurization Perior text for Enteric Virus/Vieble Heat Drying Beat Ray Trradiation Perior text for Enteric Virus/Vieble Heat Drying Beat Ray Trradiation Perior text for Enteric Virus/Vieble Description of which process is used & operating parameters Perior text for Enteric Virus/Vieble Admine Treatment Cana Ray Trradiation Perior text for Enteric Virus/Vieble Description of which process is used & operating parameters X Datase Arrandot Process is used & operating parameters X Datase Arrandot Instructure Anarerobic Digestion Anarerobic Digestion Anarerobic Digestion Anarerobic Digestion Anarerobic States Solids Solids </td

FECAL COLIFORM	PAT MPN/gTS		Municipal Sludge Only I CONTROL (EITHER CL/ Class A salmonella	Municipal Sludge Only HOGEN CONTROL (EITHER CLASS A or B) Image: Discourse of the state of the stateoo the state of the state of the state of the stateoo the state of
SAMPLE DATES	р р	AND or	AMPLE DATE	ving
atment	Composting	Thermophili	Thermophilic Aerobic Digestion	Prior test for Enteric Virus/Viable Helminth Ova
Heat Drying Heat Treatment Ga	Beta Ray Irradiation C Gama Ray Irradiation	Temp/Time based on % Solids Pasteurization PFRP Equivalent	d on % Solids	Post test for Enteric Virus/Viable Helminth Ova
Description of which process is used & operating parameters	ng parameters			
			X Cla	Class B
FECAL COLIFORM 1,3 SAMPLE DATES	CFU/g ortoto		MPN/gTS	
	OR on	one of the follov	wing, as specifi	e of the following, as specified in Ch. NR 204
X Aerobic Digestion Anaerobic Digestion Description of which process used & operating parameters	Air Drying Composting parameters:		Alkali PSRP	Alkaline Stabilization PSRP Equivalent
1 - Each sample to be analyzed	2 - Geometric mean	an of 7 discrete samples	Se	3 - Range should not be more than 3 weeks
	Check which opti	VECTOR AT ion below is use	VECTOR ATTRACTION REDUCTION below is used and enter analytical	VECTOR ATTRACTION REDUCTION Check which option below is used and enter analytical result if appropriate
Volatile Solids Reduction ≥ 38 % Aerobic SOUR Test ≤ 1.5 @ 20° C Aerobic Bench Scale < 15 % VSR	% VSR mg O ₂ /hr/g TS % VSR % VSR	TS ANALYTICAL DATE	AL DATE	Drying With Unstabilized Solids > 90 % TS % ts Drying With Stabilized Solids > 75 % TS % ts Aerobic Composting Process > 40° C % ts Injection when land apply X Incorporation when land apply

CHARAC (Municipal S	TERISTIC Iudge, Industri	CHARACTERISTIC REPORT: s.283.55(1), Wis. Stats. Form 3400-49 R (Municipal Sludge, Industrial Sludge, Liquid Industrial Waste and By-Product Solids)		3400-49 Rev. 1-98 uct Solids)		Permit No: 0026930 Facility: BELOIT TOWI	N WASTEW	0026930 Pag BELOIT TOWN WASTEWATER TREATMENT FACILITY	Page 1 of 2 ENT FACILITY	of 2
Reporting P(Form Due D	Reporting Period: 01/01/201 Form Due Date: 01/31/2014	Reporting Period: 01/01/2013 - 12/31/2013 Form Due Date: 01/31/2014				2871 S. Afton Rd. Beloit, WI 53511 6162		Region: South Central Region		DOC: 304346
Did you land	Did you land apply this period? Yes	iod? Yes			FID:	154001760	Date R	Date Received:		
If yes and M	If yes and Municipal Sludge:	e:				Forms require electronic submittal	electronic s	ubmittal.		
A) Were C B) Were V	Slass B Pathog	 A) Were Class B Pathogen Requirements Satisfied? Yes B) Were Vector Control Requirements Satisfied? Yes 				Submit form	electronica	IIy and keep a v	Submit form electronically and keep a version of the form for your records.	for your records.
Submit a co	py of your lal	Submit a copy of your lab reports, to your facility's DNR sludge representative or basin engineer unless instructed otherwise. Email submittal is preferred.	ndge represen	tative or basin e	ngineer unles:	s instructed othe	erwise. Ema	il submittal is pre	sferred.	
A)				Parameters to be Sampled	to be Sar	npled		DNR Conta	DNR Contact: Phillip A. Spranger	Spranger
Sample Point	Parameter Number	Parameter	Date Sample Taken	Sample Type	Analytical Results	Units	Limit	Municipal (Municipal Sludge Only	Lab Certification
Number			i avoi		21000			Limit	for Organics	Number
002	461	Solids, Total	06/03/2013	COMP	2.7	Percent			06/06/2013	617013980
002	33	Arsenic Dry Wt	06/03/2013	COMP	2.4	mg/kg	75	41	06/10/2013	617013980
002	86	Cadmium Dry Wt	06/03/2013	COMP	<2.0	mg/kg	85	39	06/10/2013	617013980
002	145	Copper Dry Wt	06/03/2013	COMP	744	mg/kg	4300	1500	06/10/2013	617013980
002	262	Lead Dry Wt	06/03/2013	COMP	18.3	mg/kg	840	300	06/10/2013	617013980
002	278	Mercury Dry Wt	06/03/2013	COMP	1.7	mg/kg	57	17	06/11/2013	617013980
002	295	Molybdenum Dry Wt	06/03/2013	COMP	6.9	mg/kg	75		06/10/2013	617013980
002	313	Nickel Dry Wt	06/03/2013	COMP	19.6	mg/kg	420	420	06/10/2013	617013980
002	421	Selenium Dry Wt	06/03/2013	COMP	4.9	mg/kg	100	100	06/10/2013	617013980
002	551	Zinc Dry Wt	06/03/2013	COMP	006	mg/kg	7500	2800	06/10/2013	617013980
002	335	Nitrogen, Total Kjeldahl	06/03/2013	COMP	7.1	Percent			06/12/2013	617013980
002	324	Nitrogen, Ammonium (NH4-N) Total	06/03/2013	COMP	1.1	Percent			06/07/2013	617013980
002	388	Phosphorus, Total	06/03/2013	COMP	3.0	Percent			06/10/2013	617013980
002	686	Phosphorus, Water Extractable	06/03/2013	COMP	3.3	%ofTotP			06/10/2013	617013980
002	395	Potassium, Total Recoverable	06/03/2013	COMP	0.3	Percent			06/10/2013	617013980

OUTFALLS 002 - SLUDGE

(Municipal \$	Sludge, Industria	al Sludg∈	(Municipal Sludge, Industrial Sludge, Liquid Industrial Waste and By-Product Solids)	oduct Solids)	Fa	Facility: BELO	IT TOWN WAS	BELOIT TOWN WASTEWATER TREATMENT FACILITY	IENT FAC	ILITY
Reporting F	Reporting Period: 01/01/2013 - 12/31/2013	13 - 12/3	11/2013			2871	2871 S. Afton Rd.			
Form Due [Form Due Date: 01/31/2014	4			EINI		Beloit, WI 53511 6162 D	Dogion: South Control Dogion	Docion	DOC: 30/376
					-		2		Indian	
			Municipal Sludge Only							
Pathogens	S									
Sample	Requirement	Class	Process Code	Bacteria	Amount	Unit	Start Date	End Date		
Point Number	Met		Process Description	ription						
002	Yes	В		Fecal Coliform	222143	MPN/g TS	06/03/2013	06/10/2013		
			222,143 MPN/g TS average							
Vectors										
Sample Point Number	Requirement Met		Vector Reduction			Amount	Date			
002	Yes	Incorpors	Incorporation when land apply			Yes				
Descrip	Description of Facility Sample Point:	ity San	ıple Point:							
Faucet on s	Faucet on stand pipe that fills sludge hauling trucks.	s sludge h	auling trucks.							
Comments:	nts:									

Page 2 of 2

CHARACTERISTIC REPORT: s.283.55(1), Wis. Stats. Form 3400-49 Rev. 1-98 Permit No: 0026930

CHARAC (Municipal S	CTERISTIC Sludge, Industri	CHARACTERISTIC REPORT: s.283.55(1), Wis. Stats. Form 3400-49 R (Municipal Sludge, Industrial Sludge, Liquid Industrial Waste and By-Product Solids)		3400-49 Rev. 1-98 uct Solids)		Permit No: 0026930 Facility: BELOIT TOW	N WASTEW	0026930 Pag BELOIT TOWN WASTEWATER TREATMENT FACILITY	Page 1 of 2 ENT FACILITY	of 2
Reporting P. Form Due D	Reporting Period: 01/01/201 Form Due Date: 01/31/2015	Reporting Period: 01/01/2014 - 12/31/2014 Form Due Date: 01/31/2015				2871 S. Afton Rd. Beloit, WI 53511		the Control		
Did you lanc	Did you land apply this period? Yes	iod? Yes				0102 154001760	Date Re	Region: South Ceniral Region Date Received:		000: 322812
If yes and M	If yes and Municipal Sludge:	.0				Forms require electronic submittal	electronic s	ubmittal.		
A) Were (Class B Pathog	A) Were Class B Pathogen Requirements Satisfied? Yes				Submit form	electronical	ly and keep a v	ersion of the form	Submit form electronically and keep a version of the form for your records.
B) Were ¹ Submit a co	Vector Control	B) Were Vector Control Requirements Satisfied? Yes Submit a copy of your lab reports , to your facility's DNR sludge representative or basin engineer unless instructed otherwise. Email submittal is preferred.	udge represer	tative or basin e	ngineer unles:	s instructed othe	erwise. Ema	il submittal is pre	sferred.	
(Parameters to be Sampled	to be Sar	npled		DNR Conta	DNR Contact: Phillip A. Spranger	Spranger
Sample	Parameter	Parameter	Date Sample	Sample Type	Analytical	Units	Limit	Municipal 3	Municipal Sludge Only	Lab
Point Number	Number		Taken		Results			High Quality Limit	Date Analyzed for Organics	Certification
002	461	Solids, Total	06/03/2014	COMP	2.3	Percent			06/04/2014	617013980
002	33	Arsenic Dry Wt	06/03/2014	COMP	2.0	mg/kg	75	41	06/06/2014	617013980
002	86	Cadmium Dry Wt	06/03/2014	COMP	<1.9	mg/kg	85	39	06/09/2014	617013980
002	145	Copper Dry Wt	06/03/2014	COMP	280	mg/kg	4300	1500	06/09/2014	617013980
002	262	Lead Dry Wt	06/03/2014	COMP	23.3	mg/kg	840	300	06/09/2014	617013980
002	278	Mercury Dry Wt	06/03/2014	COMP	1.8	mg/kg	57	17	06/16/2014	617013980
002	295	Molybdenum Dry Wt	06/03/2014	COMP	4.9	mg/kg	75		06/09/2014	617013980
002	313	Nickel Dry Wt	06/03/2014	COMP	8.8	mg/kg	420	420	06/09/2014	617013980
002	421	Selenium Dry Wt	06/03/2014	COMP	4.3	mg/kg	100	100	06/06/2014	617013980
002	551	Zinc Dry Wt	06/03/2014	COMP	552	mg/kg	7500	2800	06/09/2014	617013980
002	335	Nitrogen, Total Kjeldahl	06/03/2014	COMP	6.7	Percent			06/11/2014	617013980
002	324	Nitrogen, Ammonium (NH4-N) Total	06/03/2014	COMP	0.9	Percent			06/13/2014	617013980
002	388	Phosphorus, Total	06/03/2014	COMP	2.8	Percent			06/09/2014	617013980
002	686	Phosphorus, Water Extractable	06/03/2014	COMP	2.6	%ofTotP			06/09/2014	617013980
002	395	Potassium, Total Recoverable	06/03/2014	COMP	0.2	Percent			06/09/2014	617013980

OUTFALLS 002 - SLUDGE

CHARA (Municipal :	CTERISTIC Sludge, Industria	REPO al Sludge	CHARACTERISTIC REPORT: s.283.55(1), Wis. Stats. Form 3400-49 Rev. 1-98 (Municipal Sludge, Industrial Sludge, Liquid Industrial Waste and By-Product Solids)	n 3400-49 Rev duct Solids)		Permit No: 0026930 Facility: BELOIT	30 T TOWN WAS	TEWATER TREA	0026930 Page 2 of 2 BELOIT TOWN WASTEWATER TREATMENT FACILITY	N
Reporting F Form Due [Reporting Period: 01/01/2014 - 12/31/2014 Form Due Date: 01/31/2015	14 - 12/3 5	1/2014				2871 S. Afton Rd. Beloit, WI 53511			
		,			FIN:	6162	Ř	Region: South Central Region	ral Region DOC: 322912	912
			Municipal Sludge Only							
Pathogens										
Sample	Requirement	Class	Process Code E	Bacteria	Amount	Unit	Start Date	End Date		
Number	Met		Process Description	ption						
002	Yes	в	Anaerobic Digestion Fec	Fecal Coliform	1700000	MPN/g TS	06/03/2014	06/03/2014		
			7 samples were taken from separate truck loads during a day of land spreading.	ck loads during	l a day of land					
Vectors	-									
Sample Point Number	Requirement Met		Vector Reduction			Amount	Date			
002	Yes	Incorpora	Incorporation when land apply			Yes				
Descrip	Description of Facility Sample Point:	ity Sam	nple Point:							
Comments:	ents:									

Commercial Testing Laboratory, Inc.

۵

514 Main StreetP.O. Box 526Phone: 715-962-3121www.ctlcolfax.com

Colfax, Wisconsin 54730 Fax: 715-962-4030

ANALYTICAL REPORT

Howard Hemmer Town of Beloit 2871 Afton Road Beloit WI 53511 Report Number: 16032225 Page: 1 Report Date: 11/30/16 Date Received: 11/15/16

		SLUDGE CHARACTI	ERISTICS		
		Sample Number: Sample ID:	16-S683 Sludge-List 1 WEP 11/10/16	, 2	
). N. R. #	Parameter	Wet Weight (As Is)	Dry Weight (Dry Basis)	Date of Analysis	Method Used
789	Ammonia-Nitrogen, %	0.031	1.1	11/18/16	SM4500NH3C
33	Arsenic, mg/kg	0.070	2.6	11/22/16	7010
16	Cadmium, mg/kg	(0.067	(2.5	11/22/16	6010A
45	Copper, mg/kg	13.0	481	11/22/16	6010A
35	Kjeldahl-Nitrogen, %	0.151	5.6	11/29/16	SM4500NH3C
62	Lead, mg/kg	(0.673	< 24.9	11/22/16	6010A
278	Mercury, mg/kg	0.032	1.2	11/28/16	245.5
:95	Molybdenum, mg/kg	(0.161	(6.0	11/22/16	6010A
313	Nickel, mg/kg	0.534	19.8	11/22/16	6010A
388	Phosphorous, %	0.102	3.8	11/22/16	200.7 R4.4
395	Potassium, %	0.005	0.2	11/22/16	6010A
124	Selenium, mg/kg	0.152	5.6	11/22/16	7010
61	Total Solids, %	2.7		11/15/16	SM2540G
551	Zinc, mg/kg	19.8	733	11/22/16	6010A

WDNR Laboratory ID Number: 617013980

{ Means "LESS THAN" Detectable Level

Authorized by: Pamela Gane,Lab Manager

Reviewed by: 7Kella

Appendix C – Model Input/Output

											Slope	Below Field	Below Field Slope	Soil	Soil Test	Soil	Soil			
County Rock	Farm Alliant Riverside Full Trading	Field O1: ATC Laydown		PTP 100	Acres	Soil Series	Soil Symbol LoC2	Crop Soybeans 30-36 inch row	Tillage Fall Chisel, no disk	Slope 2.1	Length 390	Slope	Length 1001 - 5000	Group B	_	Test P 211		Contour F	FilterStrip Tiled 0 FALSE	Contraction of the local division of the loc
	Analysis							•												
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2019	64		LORENZO	LoC2	Wheat spring (grain)	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	в	2.1	211	7.4	0	0 FALSE	
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2020	40	6.0	LORENZO	LoC2	Wheat spring (grain)	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	4.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2021	46	6.0	LORENZO	LoC2	Corn grain	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	5.4	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading	O1: ATC Laydown	2022	31	6.0	LORENZO	LoC2	Corn grain	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	3.6	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O1: ATC Laydown	2023	32	6.0	LORENZO	LoC2	Corn grain	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	3.8	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O1: ATC Laydown	2024	37	6.0	LORENZO	LoC2	Soybeans 30-36 inch row	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	4.4	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O1: ATC Laydown	2025	98	6.0	LORENZO	LoC2	Soybeans 30-36 inch row	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	12.1	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O1: ATC Laydown	2026	63	6.0	LORENZO	LoC2	Wheat spring (grain)	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	7.4	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O1: ATC Laydown	2027	39	6.0	LORENZO	LoC2	Wheat spring (grain)	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	4.5	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O1: ATC Laydown	2028	45	6.0	LORENZO	LoC2	Corn grain	Fall Chisel, no disk	2.1	390	2.1 - 6	1001 - 5000	В	2.1	211	5.4	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2018	94	12.2	LORENZO	LoB	Wheat spring (grain)	Fall Chisel, no disk	2	340	0 - 2	1001 - 5000	В	2.4	506	2.2	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2019	103	12.2	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	340	0 - 2	1001 - 5000	В	2.4	506	2.6	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2020	69	12.2	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	340	0 - 2	1001 - 5000	В	2.4	506	1.7	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2021	73	12.2	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	340	0 - 2	1001 - 5000	В	2.4	506	1.8	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2022	83	12.2	LORENZO	LoB	Soybeans 30-36 inch row	Fall Chisel, no disk	2	340	0 - 2	1001 - 5000	В	2.4	506	2.1	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2023	209	12.2	LORENZO	LoB	Soybeans 30-36 inch row	Fall Chisel, no disk	2	340	0 - 2	1001 - 5000	В	2.4	506	5.7	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2024			LORENZO	LoB	Wheat spring (grain)	Fall Chisel, no disk	2	340		1001 - 5000	В		506	3.5	0	0 FALSE	
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2025			LORENZO	LoB	Wheat spring (grain)	Fall Chisel, no disk	2	340		1001 - 5000	В		506	2.2	0	0 FALSE	
Rock	Analysis Alliant Riverside Full Trading	O2: ATC Substation	2023			LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	340		1001 - 5000	В		506	2.2	0	0 FALSE	
	Analysis							-		2										
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2027			LORENZO	LoB	Corn grain	Fall Chisel, no disk		340		1001 - 5000	В		506	1.7	0	0 FALSE	
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2028	72	12.2	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	340	0 - 2	1001 - 5000	В	2.4	506	1.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2018	85	20.1	WARSAW	WaB	Soybeans 30-36 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	3.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2019	78	20.1	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	2.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2020	86	20.1	WARSAW	WaB	Soybeans 30-36 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2021	80	20.1	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2022	88	20.1	WARSAW	WaB	Soybeans 30-36 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2023	82	20.1	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2024	90	20.1	WARSAW	WaB	Soybeans 30-36 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2025	83	20.1	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading	O3-A: Plant Operating Area	2026	91	20.1	WARSAW	WaB	Soybeans 30-36 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O3-A: Plant Operating Area	2027	84	20.1	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O3-A: Plant Operating Area	2028	93	20.1	WARSAW	WaB	inch row Soybeans 30-36 inch row	No Till	3.9	165	2.1 - 6	301 - 1000	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O3-B: Plant Green Space	2018	16	3.8	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	В	2.5	27	3.2	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O3-B: Plant Green Space	2019	15	3.8	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30	No Till	4.4	230	2.1 - 6	301 - 1000	В	2.5	27	2.8	0	0 FALSE	FALSE
	Analysis							inch row												

D			0000	- 10				0 1 00 00 1	NI T '''		000		004 4000		0.5	07	0.0	0	0 54 05	541.05
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2020	16	3.8	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	в	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2021	15	3.8	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2022	17	3.8	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2023	16	3.8	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2024	17	3.8	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2025	16	3.8	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading	O3-B: Plant Green Space	2026	17	3.8	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	в	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O3-B: Plant Green Space	2027	16	3.8	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	в	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2028	18	3.8	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.4	230	2.1 - 6	301 - 1000	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2018	16	4.8	LORENZO	LoB	Soybeans 30-36 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.4	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2019	15	4.8	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.1	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2020	16	4.8	LORENZO	LoB	Soybeans 30-36 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.4	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2021	15	4.8	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.1	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2022	17	4.8	LORENZO	LoB	Soybeans 30-36 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2023	15	4.8	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2024	17	4.8	LORENZO	LoB	Soybeans 30-36 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2025	16	4.8	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2026	17	4.8	LORENZO	LoB	Soybeans 30-36 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2027	16	4.8	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2028	18	4.8	LORENZO	LoB	Soybeans 30-36 inch row	No Till	1.7	300	2.1 - 6	301 - 1000	В	2.5	27	2.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2018	13	7.5	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2019	12	7.5	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2020	13	7.5	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2021	13	7.5	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2022	13	7.5	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2023	13	7.5	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2024	14	7.5	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2025	14	7.5	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2026	14	7.5	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2027	14	7.5	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2028	14	7.5	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.1	180	2.1 - 6	301 - 1000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2018	105	24.0	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	3.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2019	97	24.0	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	2.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2020	108	24.0	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2021	100	24.0	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2022	110	24.0	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2023	102	24.0	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	2.9	0	0 FALSE	FALSE

Rock	Alliant Riverside Full Trading	O5: Solar and Green Space	2024	112	24.0	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Analysis Alliant Riverside Full Trading	O5: Solar and Green Space	2025	103	24.0	WARSAW	WaB	Winter wheat (forage) to Souheaps 20	No Till	4.6	270	6.1 - 12	0 - 300	P	2.5	27	2.9	0	0 FALSE	FALSE
RUCK	Analysis	05. Solar and Green Space	2025	103	24.0			Winter wheat (forage) to Soybeans, 30 inch row		4.0		0.1 - 12	0 - 300	ь	2.5	21	2.9	0		
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2026	114	24.0	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2027	105	24.0	WARSAW	WaB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	2.9	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2028	116	24.0	WARSAW	WaB	Soybeans 30-36 inch row	No Till	4.6	270	6.1 - 12	0 - 300	В	2.5	27	3.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2018	3	1.7	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2019	3	1.7	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2020	3	1.7	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2021	3	1.7	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2022	3	1.7	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2023	3	1.7	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2024	3	1.7	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2025	3	1.7	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2026	3	1.7	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2027	3	1.7	WARSAW	WaA	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2028	3	1.7	WARSAW	WaA	Soybeans 30-36 inch row	No Till	4.5	80	0 - 2	1001 - 5000	В	2.5	27	0.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2018	68	9.0	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.4	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2019	62	9.0	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.1	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2020	69	9.0	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.4	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2021	63	9.0	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.1	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2022	70	9.0	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2023	64	9.0	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2024	71	9.0	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2025	65	9.0	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2026	71	9.0	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2027	66	9.0	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2028	72	9.0	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.1	400	6.1 - 12	0 - 300	В	3.4	192	2.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2018	61	9.3	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	1.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2019	64	9.3	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	1.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2020	73	9.3	LORENZO	LoB	Soybeans 30-36 inch row	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	2.1	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2021	184	9.3	LORENZO	LoB	Soybeans 30-36 inch row	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	5.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2022	127	9.3	LORENZO	LoB	Wheat spring (grain)	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	3.5	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2023	82	9.3	LORENZO	LoB	Wheat spring (grain)	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	2.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2024	90	9.3	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	2.6	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2025	60	9.3	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	1.7	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2026	64	9.3	LORENZO	LoB	Corn grain	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	1.8	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2027	29	9.3	LORENZO	LoB	Soybeans 30-36 inch row	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	1.5	199	2.1	0	0 FALSE	FALSE
										(1									

Rock	Alliant Riverside Full Trading	R2: SW Green Space	2028	185	9.3	LORENZO	LoB	Soybeans 30-36 inch row	Fall Chisel, no disk	2	400	2.1 - 6	1001 - 5000	В	2.3	567	5.7	0	0 FALSE	FALSE
	Analysis																			
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2018	111	14.4	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.4	0	0 FALSE	FALSE
	Analysis																			
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2019	102	14.4	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30	No Till	4.5	290	2.1 - 6	0 - 300	в	3.2	203	2.1	0	0 FALSE	FALSE
	Analysis							inch row												
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2020	112	14.4	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.4	0	0 FALSE	FALSE
	Analysis																			
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2021	103	14.4	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.1	0	0 FALSE	FALSE
	Analysis							inch row												
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2022	113	14.4	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.5	0	0 FALSE	FALSE
	Analysis																			
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2023	105	14.4	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.2	0	0 FALSE	FALSE
	Analysis							inch row												
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2024	115	14.4	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.5	0	0 FALSE	FALSE
	Analysis																			
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2025	106	14.4	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.2	0	0 FALSE	FALSE
	Analysis							inch row												
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2026	116	14.4	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.5	0	0 FALSE	FALSE
	Analysis																			
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2027	107	14.4	LORENZO	LoB	Winter wheat (forage) to Soybeans, 30	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.2	0	0 FALSE	FALSE
	Analysis							inch row												
Rock	Alliant Riverside Full Trading	R3: Transmission Green Space	2028	118	14.4	LORENZO	LoB	Soybeans 30-36 inch row	No Till	4.5	290	2.1 - 6	0 - 300	В	3.2	203	2.5	0	0 FALSE	FALSE
	Analysis							-												

WQ1: P Trade Report

Reported For	Alliant Riverside Full Trading Analysis
Printed	2018-06-11
Plan Completion/Update Date	2017-11-17
SnapPlus Version 17.0 built on	2018-05-07

Prepared for:

Alliant Riverside Full Trading Analysis attn:Alliant Riverside Full Trading Analysis Town of Beloit.

P:\1723 - Alliant - P Trade analysis for Riverside Energy Center\Analysis \SNAP PLUS\Alliant Riverside Full Trading Analysis.snapDb

The P Trade Report estimates the annual pounds of phosphorus (P) in surface runoff from cropland entering surface waters. These P loss calculations are based on a field's soil test P concentration, crops, tillage, nutrient management practices and estimates of average runoff and sheet and rill erosion for the predominant soil type. Losses from concentrated flow channel or gully erosion with a field are not included in these calculations. Field runoff losses are calculated for each year as **PTP** (lb P/field/yr). Fields are only included if there are at least 2 years of crops before the selected start year. Before using this report as part of a Water Quality Trade activity, phosphorus losses (PTP) must be converted into 'P credits' according to DNR guidance.

For more information go to http://dnr.wi.gov/ and type keyword: Water Quality Trading

Questions? Please contact DNRphosphorus@wisconsin.gov

This report was developed for Wisconsin DNR Water Quality Trading and Adaptive Management purposes and cannot be used to demonstrate compliance with NR 151 or NRCS 590 NM plan requirements.

P Trade Report									PTP					
Field Name	Soil Series	Soil Symbol	Acres	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
O1: ATC Laydown	LORENZO	LoC2	6	100	64	40	46	31	32	37	98	63	39	45
O2: ATC Substation	LORENZO	LoB	12	94	103	69	73	83	209	144	93	102	69	72
O3-A: Plant Operating Area	WARSAW	WaB	20	85	78	86	80	88	82	90	83	91	84	93
O3-B: Plant Green Space	WARSAW	WaB	4	16	15	16	15	17	16	17	16	17	16	18
O3-C: Plant Operating Area	LORENZO	LoB	5	16	15	16	15	17	15	17	16	17	16	18
O4: Offsite Plant Green Space	WARSAW	WaA	7	13	12	13	13	13	13	14	14	14	14	14
O5: Solar and Green Space	WARSAW	WaB	24	105	97	108	100	110	102	112	103	114	105	116

AlliantRiversideFullTradingAnalysis

P Trade Report									PTP					
Field Name	Soil Series	Soil Symbol	Acres	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
O6: Substation	WARSAW	WaA	2	3	3	3	3	3	3	3	3	3	3	3
R1: SE Green Space	LORENZO	LoB	9	68	62	69	63	70	64	71	65	71	66	72
R2: SW Green Space	LORENZO	LoB	9	61	64	73	184	127	82	90	60	64	29	185
R3: Transmission Green Space	LORENZO	LoB	14	111	102	112	103	113	105	115	106	116	107	118
Total	Î		113	672	615	605	695	671	722	708	656	672	547	755

											Slope	Below Field	Below Fie Sloj	ld be Soil	Soil Test	Soil	Soil			
County Rock	Farm Alliant Riverside Full Trading	Field O1: ATC Laydown	Year 2018	PTP 9	Acres 6.0	Soil Series	Soil Symbol LoC2	Crop Grasslands, permanent, not harvested	Tillage None	Slope 2	Length 380	Slope 2.1 - 6	Leng 1001 - 50	and the state of a	OM	Test P 211	Loss 0.4	Contour Filter	Strip Tiled 0 FALSE	Irrigated FALSE
Rock	Analysis Alliant Riverside Full Trading	O1: ATC Laydown	2019	7	6.0		LoC2	Grasslands, permanent, not harvested	None	2			1001 - 50			211	0.1	0	0 FALSE	FALSE
	Analysis																			
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2020	6	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	00 B	2.1	211	0.1	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2021	5	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	00 B	2.1	211	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2022	5	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	00 B	2.1	211	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2023	5	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	00 B	2.1	211	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2024	5	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	00 B	2.1	211	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2025	5	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	00 B	2.1	211	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2026	5	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	00 B	2.1	211	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2027	5	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	0 B	2.1	211	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O1: ATC Laydown	2028	5	6.0	LORENZO	LoC2	Grasslands, permanent, not harvested	None	2	380	2.1 - 6	1001 - 50	00 B	2.1	211	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2018	47	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	0 B	2.4	506	0.3	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2019	31	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.1	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2020	27	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2021	24	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	0 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2022	23	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2023	23	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2024	22	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2025	22	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2026	22	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2027	22	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O2: ATC Substation	2028	22	12.2	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	330	0 - 2	1001 - 50	00 B	2.4	506	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2018	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2019	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2020	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2021	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2022	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2023	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2024	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	0 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2025	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2026	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2027	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	0 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-A: Plant Operating Area	2028	3	20.1	WARSAW	WaB	Grasslands, permanent, not harvested	None	3.8	155	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2018	1	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2019	1	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 10	00 B	2.5	27	0.0	0	0 FALSE	FALSE

Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2020	1	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	в	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2021	1	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2022	1	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2023	0	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2024	0	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2025	0	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2026	0	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2027	0	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-B: Plant Green Space	2028	0	3.8	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.3	220	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2018	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2019	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2020	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2021	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2022	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2023	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2024	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2025	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2026	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2027	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O3-C: Plant Operating Area	2028	1	4.8	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.6	290	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2018	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2019	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2020	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2021	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2022	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2023	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2024	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2025	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2026	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2027	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O4: Offsite Plant Green Space	2028	1	7.5	WARSAW	WaA	Grasslands, permanent, not harvested	None	4	170	2.1 - 6	301 - 1000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2018	4	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2019	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2020	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2021	3	24.0	WARSAW		Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2022	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2023	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE

-				-										-				-		
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2024	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2025	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2026	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2027	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O5: Solar and Green Space	2028	3	24.0	WARSAW	WaB	Grasslands, permanent, not harvested	None	4.5	260	6.1 - 12	0 - 300	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2018	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2019	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2020	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2021	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2022	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2023	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2024	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2025	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2026	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2027	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	O6: Substation	2028	0	1.7	WARSAW	WaA	Grasslands, permanent, not harvested	None	4.4	70	0 - 2	1001 - 5000	В	2.5	27	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2018	14	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2019	8	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2020	8	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2021	7	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2022	7	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2023	7	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2024	7	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2025	7	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2026	7	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2027	7	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R1: SE Green Space	2028	7	9.0	LORENZO	LoB	Grasslands, permanent, not harvested	None	4	390	6.1 - 12	0 - 300	В	3.4	192	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2018	25	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.1	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2019	23	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2020	21	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2021	20	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2022	20	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2023	20	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2024	20	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2025	20	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2026	20	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2027	20	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE

Rock	Alliant Riverside Full Trading Analysis	R2: SW Green Space	2028	19	9.3	LORENZO	LoB	Grasslands, permanent, not harvested	None	1.9	390	2.1 - 6	1001 - 5000	В	2.3	567	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2018	23	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.2	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2019	14	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2020	13	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2021	12	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2022	12	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2023	12	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2024	12	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2025	12	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2026	12	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2027	12	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE
Rock	Alliant Riverside Full Trading Analysis	R3: Transmission Green Space	2028	12	14.4	LORENZO	LoB	Grasslands, permanent, not harvested	None	4.4	280	2.1 - 6	0 - 300	В	3.2	203	0.0	0	0 FALSE	FALSE

WQ1: P Trade Report

Reported For	Alliant Riverside Full Trading Analysis	
Printed	2018-06-11	
Plan Completion/Update Date	2018-05-09	
SnapPlus Version 17.0 built on	2018-05-07	1

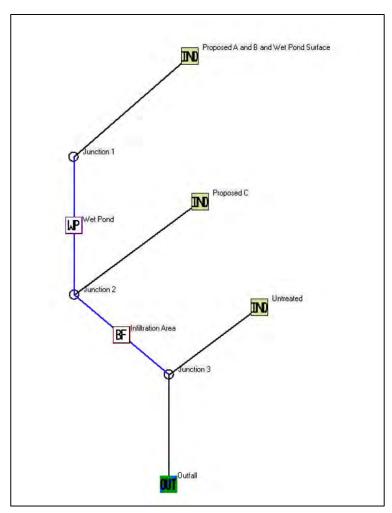
Prepared for:

Alliant Riverside Full Trading Analysis attn:Alliant Riverside Full Trading Analysis Town of Beloit.

P:\1723 - Alliant - P Trade analysis for Riverside Energy Center\Analysis \SNAP PLUS\Alliant Riverside Full Trading Analysis - Prairie.snapDb

The P Trade Report estimates the annual pounds of phosphorus (P) in surface runoff from cropland entering surface waters. These P loss calculations are based on a field's soil test P concentration, crops, tillage, nutrient management practices and estimates of average runoff and sheet and rill erosion for the predominant soil type. Losses from concentrated flow channel or gully erosion with a field are not included in these calculations. Field runoff losses are calculated for each year as **PTP** (lb P/field/yr). Fields are only included if there are at least 2 years of crops before the selected start year. Before using this report as part of a Water Quality Trade activity, phosphorus losses (PTP) must be converted into 'P credits' according to DNR guidance.

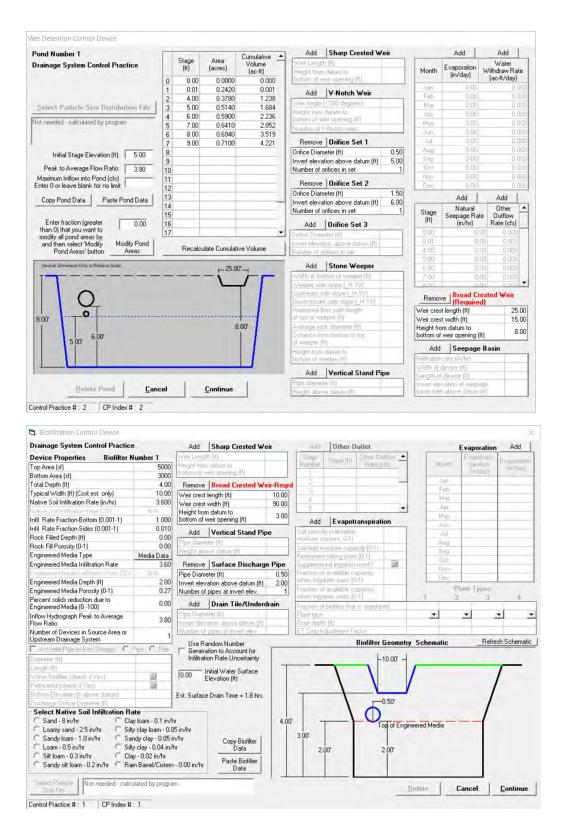
For more information go to http://dnr.wi.gov/ and type keyword: Water Quality Trading


Questions? Please contact DNRphosphorus@wisconsin.gov

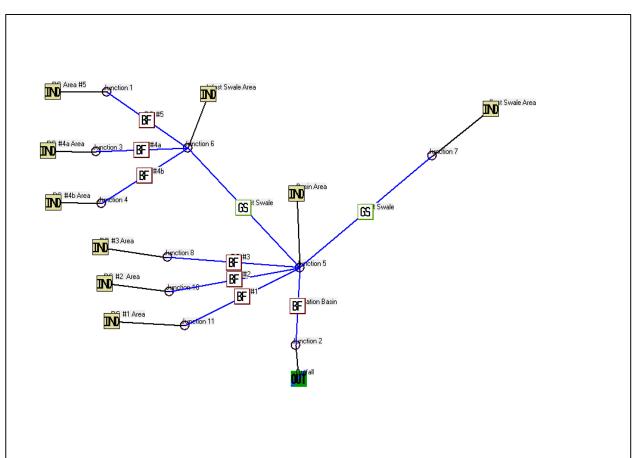
This report was developed for Wisconsin DNR Water Quality Trading and Adaptive Management purposes and cannot be used to demonstrate compliance with NR 151 or NRCS 590 NM plan requirements.

P Trade Report									РТР					
Field Name	Soil Series	Soil Symbol	Acres	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
O1: ATC Laydown	LORENZO	LoC2	6	9	7	6	5	5	5	5	5	5	5	5
O2: ATC Substation	LORENZO	LoB	12	47	31	27	24	23	23	22	22	22	22	22
O3-A: Plant Operating Area	WARSAW	WaB	20	3	3	3	3	3	3	3	3	3	3	3
O3-B: Plant Green Space	WARSAW	WaB	4	1	1	1	1	1	0	0	0	0	0	0
O3-C: Plant Operating Area	LORENZO	LoB	5	1	1	1	1	1	1	1	1	1	1	1
O4: Offsite Plant Green Space	WARSAW	WaA	7	1	1	1	1	1	1	1	1	1	1	1
05: Solar and Green Space	WARSAW	WaB	24	4	3	3	3	3	3	3	3	3	3	3

AlliantRiversideFullTradingAnalysis


P Trade Report									PTP					
Field Name	Soil Series	Soil Symbol	Acres	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
O6: Substation	WARSAW	WaA	2	0	0	0	0	0	0	0	0	0	0	0
R1: SE Green Space	LORENZO	LoB	9	14	8	8	7	7	7	7	7	7	7	7
R2: SW Green Space	LORENZO	LoB	9	25	23	21	20	20	20	20	20	20	20	19
R3: Transmission Green Space	LORENZO	LoB	14	23	14	13	12	12	12	12	12	12	12	12
Total			113	128	91	82	78	76	75	74	74	74	74	74

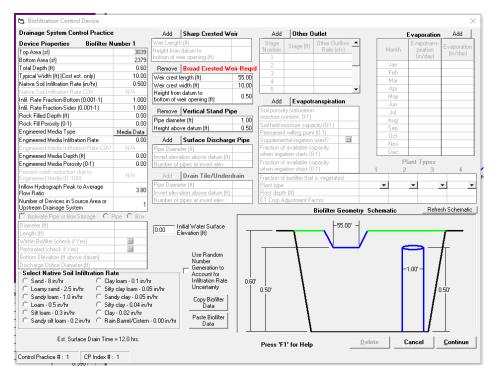
Kittyhawk Substation Proposed Conditions


Land Use #	Land Use Type	La	Land Use Area (acres)	
1	Industrial	Proposed A a	nd B and Wet Pond Surfa	8.145
2	Industrial	Proposed C		0.320
3	Industrial	Untreated		0.120
CP #	Control Pr	actice Type	Control Practice Nam	e or Location
CP #	Control Pr Biofilter	actice Type	Control Practice Nam Infiltration Area	e or Location

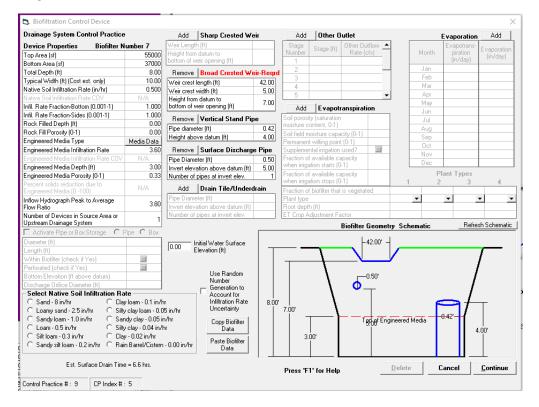
WinSLAMM Analysis

WinSLAMM Analysis

-	Land Uses		1	Junctio	ńs		Cor
File Nar	me;						
P:\172	3 - Alliant - P Trade analysis for Rive	erside Energy Ce	nter\Analysis\SLAM	M\Kittyhawk.SS\Pro	posed.mdb		
			Outfall Outp	out Summary	,		
		Runoff Volu (cu. ft.)	me Percent Runol Reduction	Runolf Coefficient (R∨)	Particulate Solids Conc. (mg/L)	s Particulate Solids Yield (lbs)	Percent Particulate Solids Reduction
Total o	of All Land Uses without Controls	52859	99	0.32	138.3	4564	
	Outfall Total with Controls	22239	96 57.93 %	0.14	64.33	893.1	80.43 %
Cuner	nt File Output: Annualized Total After Outfall Controls	22300	07 Years in M	odel Run: 1	1.00	895.6	
	Pollutant	Concen- tration - No Controls	tration - With tra		Pollutant Yield	Ilutant Frield Percent Yield Juits Reduction	
	Particulate Solids	138.3					
	Total Solids	209.4	141.2 mg/		the second se	and the second se	-
	Total Phosphorus	Total Area M	0.4148 mg/	L 16.73	, <u> </u>	00.07 %	<u>.</u>
	ary to Text Summary to .csv File File	14,	020		Rece	iving Water Im	pacts
	Control Practice Cost	S			Due T	o Stormwater	
		-			10	VP Impervious Cover M.	odell
Capital C	Cost N/A				101	WP Impervious Cover M	
Capital C Land Co	ost N/A st N/A					Calculated	Approximate Jrban Stream
Capital C Land Co: Annual M	tost N/A st N/A taintenance Cost N/A	-		Perform Outfall	1	Calculated Rv	Approximate Jirban Stream Classification
Capital C Land Co Annual M Present \	ost N/A st N/A	-		Perform Outfall Flow Duration Curve Calculations	Without C	Calculated Rv	Approximate Jrban Stream



West Riverside Energy Center Proposed Conditions


Land								
Use #	Land Use Type	Lan	d Use Label	Area (acres)				
1	Industrial	RG Area #5		0.680	1			
2	Industrial	RG #4a Area						
3	Industrial	RG #4b Area	1.690	1				
4	Industrial	West Swale Ar	West Swale Area					
5	Industrial	East Swale Are	a	9.240				
6	Industrial	RG #3 Area		0.600				
7	Industrial	Basin Area		7.620				
8	Industrial	RG #2 Area		0.390]			
9	Industrial	RG #1 Area		0.390	1			
				0.550				
				0.530	-			
CP #	Control Pra	actice Type	Control Practice Nam		- -			
1	Control Pra Biofilter		RG #5					
1 2	Control Pra Biofilter Biofilter		RG #5 RG #4a					
1 2 3	Control Pra Biofilter Biofilter Biofilter		RG #5 RG #4a RG #4b					
1 2 3 4	Control Pro Biofilter Biofilter Biofilter Grass Swales		RG #5 RG #4a RG #4b West Swale					
1 2 3 4 5	Control Pro Biofilter Biofilter Biofilter Grass Swales Grass Swales		RG #5 RG #4a RG #4b West Swale East Swale					
1 2 3 4 5 6	Control Pra Biofilter Biofilter Grass Swales Biofilter Biofilter		RG #5 RG #4a RG #4b West Swale East Swale RG #3					
1 2 3 4 5 6 7	Control Pro Biofilter Biofilter Biofilter Grass Swales Grass Swales Biofilter Biofilter		RG #5 RG #4a RG #4b West Swale East Swale RG #3 RG #2					
1 2 3 4 5 6	Control Pra Biofilter Biofilter Grass Swales Biofilter Biofilter		RG #5 RG #4a RG #4b West Swale East Swale RG #3					

rainage System Co	ntrol Practice G	rass Swale Nur	nber 1 Press 'F1' for Help
Grass S	wale Data		-Select dynamic infiltration rate by soil type
otal Drainage Area (ac)	9.360	C Sand - 4 in/hr
action of Drainage Are wale Density (ft/ac)	ea Served by Swales (0-1)	76,71	C Loamy sand - 1.25 in/hr C Sandy Ioam - 0.5 in/hr
otal Swale Length (ft)		650	C Loam - 0.25 in/hr C Silt Ioam - 0.15 in/hr
verage Swale Length I vpical Bottom Width (ft		200	C Sandy clay loam - 0.1 in/hr
ypical Swale Side Slop ypical Longitudinal Slo		3.0	Clay loam - 0.05 in/hr Silty clay loam - 0.025 in/hr
wale Retardance Fact	tor	C 🔻	Sandy clay - 0.025 in/hr Silty clay - 0.02 in/hr
ypical Grass Height (in wale Dynamic Infiltratio	/	6.0 0.250	C Clay - 0.01 in/hr
) for Cost Analysis (Optiona attal laste and of Surals	l) 3.0	
Density for Infiltration	ngth Instead of Swale Calculations		Total area served by swales (acres): 9.360 Total area (acres): 9.360
elect Particle Size	Particle Size Distributi	on File Name	View
ot needed - calculated	l by program		Retardance Table
	Swale Density by Lan density residential - 240 ft/		ping center - 90 ft/ac
C Med	lium density residential - 35	0 ft/ac 🖸 Indus	trial - 260 ft/ac
	n density residential - 375 ft i commercial - 410 ft/ac	-	vays (shoulder only) - 480 ft/ac vays (center and shoulder) - 540 ft/ac
Copy Swale Data	Paste Swale Dat	a	Delete Cancel Continu
trol Practice # : 4	CP Index # : 4		
	CF Index # . 4		
Grass Swales			
	ontrol Practice (Grass Swale Nu	mber 2
	ontrol Practice (Grass Swale Nu	mber 2 Press 'F1' for Help
	ontrol Practice (Grass Swale Nu	mber 2 Press 'F1' for Help
rainage System Co	ontrol Practice (Swale Data	Grass Swale Nu	Press †1' for Help
rainage System Co Grass S	Swale Data	Grass Swale Nu	Press 7-1' for Help
rainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar	Swale Data	9.240	Press 71' tor Help Select dynamic infiltration rate by soil ty
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (M/ac) otal Swale Length (ft)	S wale Data c) rea Served by Swales (0-1	9.240	Press +1' for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Sandy Ioam - 0.5 in/hr Coam - 0.25 in/hr
rainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Density (11/ac) otal Swale Length (ft) verage Swale Length	Swale Data c) rea Served by Swales (0-1 r to Outlet (ft)	9.240) 1.00 54.95 1070 367	Press 1-1' for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Sand - 4 in/hr Sandy loam - 0.5 in/hr
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (ff/ac) otal Swale Length (ff/ verage Swale Length spical Bottom Wridth (i	Swale Data c) rea Served by Swales (0-1 to Outlet (ft) ft)	9.240) 1.00 54.95 1070	Press +1' for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Sitt loam - 0.15 in/hr Sandy loam - 0.1 in/hr Clay loam - 0.05 in/hr
rainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Density (It/Agt) varage Swale Length (It) verage Swale Length ypical Bottom Width () ypical Swale Side Slo ypical Longitudinal Sk	Swale Data c) rea Served by Swales (0-1 rto Outlet (ft) ft) pe (ft H : 1 ft V) ope (ft/ft, V/H)	9.240) 1.00 54.95 1070 367 6.0 3.0 3.0 0.005	Press 1-1 for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Sandy loam - 0.5 in/hr Sandy loam - 0.5 in/hr Clay loam - 0.15 in/hr Clay loam - 0.15 in/hr Sitt loam - 0.05 in/hr Clay loam - 0.05 in/hr Sitty clay loam - 0.025 in/hr
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (It/ac) otal Swale Length (R) verage Swale Length ypical Bottom Width (I ypical Swale Side Sio ypical Longitudinal Sk wale Retardance Fac	Swale Data c) rea Served by Swales (0-1 ito Outlet (ft) ft) pe (ft H : 1 ft V) ope (ft/ft, V/H) tor	9.240) 1.00 54.95 1070 367 6.0 3.00 0.005 C V	Press 11' for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Loam - 0.25 in/hr Loam - 0.25 in/hr Silt Joam - 0.15 in/hr Clay loam - 0.05 in/hr Silty clay - 0.05 in/hr Silty clay - 0.025 in/hr Silty clay - 0.025 in/hr Silty clay - 0.025 in/hr
rainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Density (ft/ac) otal Swale Length (ft/ ypical Bottom Width (i ypical Stude Silo ypical Longitudinal Sik wale Retardance Fac ypical Grass Height (ir	Swale Data c) tea Served by Swales (0-1 to Outlet (ft) ft) pe (9.240) 1.00 54.95 1070 367 6.0 3.0 0.005 C ↓ 6.0 0.250	Press 1-1 for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Sandy loam - 0.15 in/hr Clay loam - 0.15 in/hr Salty loam - 0.05 in/hr Salty loam - 0.05 in/hr Salty loam - 0.025 in/hr
rainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Denstly (IV/ac) otal Swale Length (I) verage Swale Length (I) verage Swale Length (I) vpical Swale Side Slo ppical Longitudinal Sk wale Retardance Fac ppical Grass Height (ir wale Dynamic Infiltrati ypical Swale Depth (If	Swale Data c) rea Served by Swales (0-1 rto Outlet (ft) ft) pe (ft H : 1 ft V) ope (ft/ft, V/H) ctor n) ion Rate (in/hr) t) for Cost Analysis (Option	3.240) 1.00 54.95 1070 367 6.0 3.0 0.005 C ↓ 6.0 0.250	Press 1-1 for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Sandy olap loam - 0.1 in/hr Clay loam - 0.05 in/hr Sandy olap loam - 0.25 in/hr Sandy olay - 0.025 in/hr Clay loay - 0.025 in/hr Clay - 0.02 in/hr Clay - 0.02 in/hr Clay - 0.01 in/hr
rainage System Co Grass S dal Drainage Area (a taction of Drainage Ar wale Density (It/ac) dal Swale Length (It) verage Swale Length (It) verage Swale Length (It) verage Swale Length (It) wale Retardance Fac ypical Grass Height (It wale Dynamic Infiltrati ypical Swale Depth (It)	Swale Data c) rea Served by Swales (0-1 tto Outlet (ft) ft) pe (ft H : 1 ft V) ope (ft/ft, V/H) tor n) ion Rate (in/hr) t) for Cost Analysis (Option ngath Instead of Swale	3.240) 1.00 54.95 1070 367 6.0 3.0 0.005 C ↓ 6.0 0.250	Press 1-1 for Help Select dynamic infiltration rate by soil by Sand - 4 in/hr Comy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Sandy loam - 0.5 in/hr Sitt loam - 0.15 in/hr Sitt loam - 0.15 in/hr Sitt loam - 0.05 in/hr Sitty clay - 0.025 in/hr Sitty clay - 0.025 in/hr Clay loam - 0.025 in/hr Clay - 0.02 in/hr Clay - 0.02 in/hr Clay - 0.01 in/hr Clay - 0.01 in/hr
rainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Density (If/ac) otal Swale Length (if) ypical Bottom Width (i ypical Swale Length verage Swale Length ypical Swale Side Side Side Side Side ypical Grass Height (ir wale Retardance Fac ypical Grass Height (ir wale Retardance Fac ypical Swale Depth (if) Use Total Swale Le	Swale Data c) rea Served by Swales (0-1 tto Outlet (ft) ft) pe (ft H : 1 ft V) ope (ft/ft, V/H) tor n) ion Rate (in/hr) t) for Cost Analysis (Option ngath Instead of Swale	3.240) 1.00 54.95 1070 367 6.0 3.0 0.005 C ↓ 6.0 0.250	Press 1-1 for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Sandy olap loam - 0.1 in/hr Clay loam - 0.05 in/hr Sandy olap loam - 0.25 in/hr Sandy olay - 0.025 in/hr Clay loay - 0.025 in/hr Clay - 0.02 in/hr Clay - 0.02 in/hr Clay - 0.01 in/hr
trainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Density (It/Ag) varage Swale Length ypical Bottom Width () ypical Swale Side Slo ypical Congitudinal Sk wale Retardance Fac ypical Grass Height (if wale Dynamic Infiltrati ypical Swale Depth (if - Use Total Swale Le Density for Infiltration Select Particle Size	Swale Data c) rea Served by Swales (0-1 it to Outlet (it) it pe [ft H : 1 ft V] ope (t/ft, V/H) tor n) ion Rate (in/hr) it) for Cost Analysis (Option ingth Instead of Swale n Calculations	9.240) 1.00 54.95 1070 367 6.0 0.30 0.005 C ↓ 6.0 0.250 0.30 3.0	Press 11' for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Loam - 0.25 in/hr Loam - 0.25 in/hr Sandy loam - 0.1 in/hr Clay loam - 0.05 in/hr Sitly clay - 0.025 in/hr Sitly clay - 0.025 in/hr Clay loam - 0.05 in/hr Clay - 0.025 in/hr
trainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Density (It/Ag) varage Swale Length ypical Bottom Width () ypical Swale Side Slo ypical Grass Height (it wale Dynamic Infiltrati ypical Swale Depth (it - Use Total Swale Le Density for Infiltration Select Particle Size Distribution File	Swale Data c) rea Served by Swales (0-1 it to Outlet (it) it pe [ft H : 1 ft V] ope (ft/ft, V/H) tor n) it for Cost Analysis (Option ngth Instead of Swale n Calculations Particle Size Distribut	9.240) 1.00 54.95 1070 367 6.0 0.30 0.005 C ↓ 6.0 0.250 0.30 3.0	Press 1-1 for Help Select dynamic infiltration rate by soil by Sand - 4 in/hr Comy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Sandy loam - 0.5 in/hr Sitt loam - 0.15 in/hr Sitt loam - 0.15 in/hr Sitt loam - 0.05 in/hr Sitty clay - 0.025 in/hr Sitty clay - 0.025 in/hr Clay loam - 0.025 in/hr Clay - 0.02 in/hr Clay - 0.02 in/hr Clay - 0.01 in/hr Clay - 0.01 in/hr
trainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Density (It/Ag) varage Swale Length ypical Bottom Width () ypical Swale Side Slo ypical Grass Height (it wale Dynamic Infiltrati ypical Swale Depth (it - Use Total Swale Le Density for Infiltration Select Particle Size Distribution File	Swale Data c) rea Served by Swales (0-1 it to Outlet (it) it pe [ft H : 1 ft V] ope (ft/ft, V/H) tor n) it for Cost Analysis (Option ngth Instead of Swale n Calculations Particle Size Distribut	9.240) 1.00 54.95 1070 367 6.0 0.30 0.005 C ↓ 6.0 0.250 0.30 3.0	Press 1-1 for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Silt loam - 0.25 in/hr Silt loam - 0.15 in/hr Silt loam - 0.05 in/hr Silty clay loam - 0.025 in/hr Silty clay - 0.02 in/hr Clay - 0.02 in/hr Clay - 0.01 in/hr Total area served by swales (acres): 9.240 Total area (acres): 9.240 View
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (II/ac) otal Swale Length ypical Bottom Width (j ypical Swale Length ypical Bottom Width (j ypical Congitudinal Sk wale Retardance Fac ypical Grass Height (in wale Dynamic Infiltrati ypical Swale Depth (fi use Total Swale Le Density for Infiltration Select Particle Size Distribution File	Swale Data c) rea Served by Swales (0-1 rto Outlet (ft) ft) pe (ft H : 1 ft V) ope (t/ft, V/H) rtor n) ion Rate (in/hr) t) for Cost Analysis (Option ngth Instead of Swale n Calculations Particle Size Distribut d by program	9.240 1.00 54.96 1070 367 6.0 0.005 C • 0.005 C • 0.250 a) 3.0 3.0 0.250 a) 3.0	Press 1-1 for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Loam - 0.25 in/hr Loam - 0.25 in/hr Cay loam - 0.15 in/hr Cay loam - 0.05 in/hr Cay loam - 0.05 in/hr Sitly clay loam - 0.025 in/hr Sitly clay loam - 0.025 in/hr Cay loam - 0.02 in/hr Cay loam - 0.02 in/hr Cay - 0.02 in/hr Cay - 0.02 in/hr Total area served by swales (acres): 9.240 Total area (acres): 9.240 View Retardance
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (II/ac) 'otal Swale Length ypical Bottom Width (I ypical Swale Length ypical Swale Length ypical Swale Stee ypical Grass Height (in wale Petardance Fac ypical Grass Height (in wale Density for Infiltration Select Particle Size Distribution File ot needed - calculated	Swale Data c) rea Served by Swales (0-1 rea Served by Swales (0-1 rto Outlet (ft) ft) pe (ft H : 1 ft V) ope (ft/ft, V/H) tor n) ion Rate (in/hr) t) for Cost Analysis (Option ngth Instead of Swale n Calculations Particle Size Distribut d by program	9.240 1.00 54.95 1070 367 6.0 3.0 0.005 C ✓ 6.0 0.250 a) 3.0 	Press +1' for Help Select dynamic infiltration rate by soil by Sand - 4 in/hr Comy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Sitt loam - 0.15 in/hr Sitt loam - 0.15 in/hr Sitt loam - 0.05 in/hr Sitty clay - 0.025 in/hr Sitty clay - 0.025 in/hr Colay loam - 0.05 in/hr Colay - 0.02 in/hr Colay - 0.01
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (It/ac) otal Swale Length ypical Bottom Width (i ypical Swale Length ypical Swale Length ypical Swale Length ypical Swale Side Sio ypical Congitudinal Sk wale Retardance Fac ypical Grass Height (i wale Dynamic Infiltration Select Particle Size Distribution File ot needed - calculated	Swale Data c) rea Served by Swales (0-1 rto Outlet (ft) ft) pe (ft H : 1 ft V) ope (t/ft, V/H) rtor n) ion Rate (in/hr) t) for Cost Analysis (Option ngth Instead of Swale n Calculations Particle Size Distribut d by program	9.240 1.00 54.95 1070 367 6.0 0.005 C ↓ 6.0 0.250 al) 3.0 100 File Name nd Use Vac C Sho	Press 1-1 for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Loam - 0.25 in/hr Loam - 0.25 in/hr Cay loam - 0.15 in/hr Cay loam - 0.05 in/hr Cay loam - 0.05 in/hr Sitly clay loam - 0.025 in/hr Sitly clay loam - 0.025 in/hr Cay loam - 0.02 in/hr Cay loam - 0.02 in/hr Cay - 0.02 in/hr Cay - 0.02 in/hr Total area served by swales (acres): 9.240 Total area (acres): 9.240 View Retardance
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (II/ac) otal Swale Length ypical Bottom Width (i ypical Swale Length ypical Bottom Width (i ypical Congitudinal Sk wale Partice Fac ypical Grass Height (in wale Dynamic Infiltration wale Dynamic Infiltration Select Particle Size Distribution File Dot needed - calculated Select Particle Size Distribution File C Low C Mer C High	Swale Data c) rea Served by Swales (0-1 rea Served by Particle Size Distribut d by program t Swale Density residential - 376 h density residential - 376 h density residential - 376 h	9.240 1.00 54.95 1070 367 6.0 0.005 C ♥ 6.0 0.250 0.250 al) 3.0 ton File Name Muse Muse C Sho C Sho C Sho C ♥ C ♥ C ♥ C ♥ C ♥ C ♥ C ♥ C ♥ C ♥ C ♥	Press 1-1 for Help Select dynamic infiltration rate by soil ty G Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr Sandy olay loam - 0.1 in/hr G lay loam - 0.15 in/hr G lay loam - 0.05 in/hr G sandy olay - 0.025 in/hr G silty clay - 0.025 in/hr G silty clay - 0.025 in/hr G silty clay - 0.025 in/hr G lay loam - 0.05 in/hr G lay loam - 0.05 in/hr G lay loam - 0.05 in/hr G lay loam - 0.1 in/hr G lay - 0.02 in/hr G lay - 0.02 in/hr G lay - 0.02 in/hr G lay - 0.01 in/hr G lay - 0.02 in/hr G lay - 0.01 in/hr G lay - 0.02 in/hr G lay - 0.01 in/hr G lay - 0.02 in/hr G lay - 0.01 in/hr G lay - 0.02 in/hr G lay - 0.02 in/hr G lay - 0.01 in/hr G lay - 0.02 in/hr G lay - 0.01 in/hr G lay - 0.02 in/hr G lay - 0.01 in/hr G
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (II/ac) otal Swale Length ypical Bottom Width (I ypical Swale Length ypical Bottom Width (I ypical Swale Steel ypical Grass Height (in wale Particle Steel Density for Infiltration Select Particle Steel Distribution File ot needed - calculater Select	Swale Data c) rea Served by Swales (0-1 rea Served by Swales f(n/hr) f(n Cost Analysis (Dption n Calculations Particle Size Distribut d by program t Swale Density by La v density residential - 240 f dium density residential - 240 f	9.240 1.00 54.95 1070 367 6.0 0.005 C ♥ 6.0 0.250 0.250 al) 3.0 ton File Name Muse Muse C Sho C Sho C Sho C ♥ C ♥ C ♥ C ♥ C ♥ C ♥ C ♥ C ♥ C ♥ C ♥	Press 1-1 for Help Select dynamic infiltration rate by soil ty Sand - 4 in/hr Loamy sand - 1.25 in/hr Loam - 0.25 in/hr Loam - 0.25 in/hr Sandy loam - 0.1 in/hr Clay loam - 0.05 in/hr Silty clay - 0.02 in/hr Silty clay - 0.025 in/hr Silty clay - 0.025 in/hr Clay loam - 0.05 in/hr Clay loam - 0.05 in/hr Clay loam - 0.05 in/hr Silty clay - 0.02 in/hr View Retardance Table gping center - 90 ft/ac strial - 260 ft/ac
trainage System Co Grass S otal Drainage Area (ar raction of Drainage Ar wale Density (II/ ac) otal Swale Length ypical Bottom Witht () ypical Swale Length ypical Bottom Witht () ypical Swale Length ypical Swale Length ypical Grass Height (i wale Pynamic Infiltration ypical Swale Depth (fi - Use Total Swale Le Density for Infiltration Select Particle Size Distribution File ot needed - calculated C Ling C Strip	Swale Data c) rea Served by Swales (0-1 rea Served by Se	9.240 1.00 54.95 1070 367 6.0 3.0 0.005 C ✓ 6.0 0.250	Press 1-1 for Help Select dynamic infiltration rate by soil ty G Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr G Sandy olay loam - 0.1 in/hr G Sandy olay loam - 0.1 in/hr G Sandy olay loam - 0.1 in/hr G Sandy olay - 0.025 in/hr G Silty clay - 0.025
rainage System Co Grass S otal Drainage Area (a raction of Drainage Ar wale Density (II/ac) otal Swale Length ypical Bottom Width (I ypical Swale Length ypical Bottom Width (I ypical Swale Steel ypical Grass Height (in wale Particle Steel Density for Infiltration Select Particle Steel Distribution File ot needed - calculater Select	Swale Data c) rea Served by Swales (0-1 rea Served by Particle Size Distribut d by program t Swale Density residential - 376 h density residential - 376 h density residential - 376 h	9.240 1.00 54.95 1070 367 6.0 3.0 0.005 C ✓ 6.0 0.250	Press 1-1 for Help Select dynamic infiltration rate by soil ty G Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr G Sandy olay loam - 0.1 in/hr G Sandy olay loam - 0.1 in/hr G Sandy olay oam - 0.1 in/hr G Sandy olay - 0.025 in/hr G Silty clay - 0.025 in/hr G Sandy clay - 0.025 in/hr G Silty clay - 0.02
Total Drainage Area (a raction of Drainage Ar wale Density (It/ac) Total Swale Length (It/ ypical Bottom Width () ypical Stude Length with ypical Construction State ypical Construction State ypical Grass Height (in wale Retardance Fac ypical Grass Height (in wale Dynamic Infiltration Select Pyriotal Swale Le Density for Infiltration Select Particle Size Distribution File Tot needed - calculated C Low C Mer C Ling Strip	Swale Data c) rea Served by Swales (0-1 rea Served by Se	9.240 1.00 54.95 1070 367 6.0 3.0 0.005 C ✓ 6.0 0.250	Press 1-1 for Help Select dynamic infiltration rate by soil ty G Sand - 4 in/hr Loamy sand - 1.25 in/hr Sandy loam - 0.5 in/hr G Sandy olay loam - 0.1 in/hr G Sandy olay loam - 0.1 in/hr G Sandy olay loam - 0.1 in/hr G Sandy olay - 0.025 in/hr G Silty clay - 0.025

All Rain gardens modeled the same

Large Infiltration Area

La	and Uses		Junctions	I	Control F	Practices		Outfall	ľ	Output Su
File Nam	e:									
P:\1723	- Alliant - P Trade an	alysis for Rive	rside Energy Ce	nter\Analysis\S	LAMM\PI	ant WREC_ENV	/ISION.mdb			
,				Outfall O	utput	Summary	,			
			Runoff Volur (cu. ft.)	me Percent F Reduc		Runoff Coefficient (R∨)	Particulate S Conc. (mg.		Particulate Solids Yield (lbs)	Percent Particulate Solids Reduction
Total of	All Land Uses witho	ut Controls	1.256E+0)6	Г	0.39	10	8.7	8519	
	Outfall Total wi	th Controls	1858	30 98.5	28 [0.01	10	9.7	127.2	98.51 %
			,	, ,			,		,	1
Current	File Output: Annual After Outfa		1863	31 Years	in Model	Run: 1	.00		127.5	
										_
			Concen-	Concen-	Concen-			Polluta	nt –	▲
	Pollutant	: (1)	tration - No	tration - With	tration		Pollutant Yield - With Controls	Yield	Percent Yield	
			Controls	Controls	Units	- NO CONTOIS	- with controls	Units	neuccion	
	Particulate Solids		108.7	109.7	mg/L	8519	127.2	lbs	98.51 %	
	Particulate Phosph	orus	0.2926	0.3295	mg/L	22.94	0.3822	lbs	98.33 %	
	Total Phosphorus		0.4041	0.4848	mg/L	31.68	0.5624	lbs	98.22 %	+
Summar	ytoText Summa	Output ary to .csv File	Total Area M	odeled (ac) 600						
							Re	ceivir	ng Water Im	pacts
otal C	Control Pract	ice Cost	S				Due	To S	Stormwater	Runoff
Capital Co	ist	N/A	-					(CWP I	mpervious Cover M	lodel)
and Cost		N/A	-							Approximate Urban Stream
Annual Ma	aintenance Cost	N/A	-			Perform Outfall	1		Rv	Classification
^o resent Va	alue of All Costs	N/A	-			Flow Duration	Witho	out Contr	ols 0.39	Poor
	d Value of All Costs	N/A	-			rve Calculations	l w	ith Contr	ols 0.01	Good
Innualize		1 10/0								1

Appendix D – Restoration and Maintenance Plans

Riverside Energy Center Water Quality Trading Operation and Maintenance Plan

> Town of Beloit Rock County, WI

Prepared for: Alliant Energy, Wisconsin Power & Light Co.

November 30, 2017

Montgomery Associates

Resource Solutions. LLC • ma-rs.org

MARS Project #1723

Table of Contents

1	Bac	kground	.1
	1.1	Areas Described	.1
	1.2	Access	.1
	1.3	Contact information	.2
2	Ope	eration, Inspection, and Maintenance	.2
	-	Restoration Areas	
	2.2	Stormwater Facilities	.3

List of Attachments

Figures

Approved Maintenance Agreements Prairie Restoration Maintenance Plans Stormwater Facility Inspection Report Templates

1 Background

This plan has been prepared to describe the operation and maintenance of the areas described in the Riverside Energy Center Water Quality Trading Plan. These areas will be managed to reduce the export of sediment and phosphorus from the site to meet the conditions of the trading plan. These management practices will control phosphorus export by reducing sediment export from erosion as well as reducing runoff volume. The management practices and contributing areas shall be inspected annually by Alliant Energy, or an authorized representative, with reports prepared and submitted to the Wisconsin DNR.

1.1 Areas Described

All areas described in this plan are part of the Riverside Energy Center Water Quality Trading Plan and identified on the attached *Figure 1*. The total site is approximately 112 acres south of WBR Townline Rd, on the east and west side of S Walters Rd in the Town of Beloit, Rock County, WI. The land is primarily divided into two land use types, perennial vegetation (primarily prairie restoration) areas and developed areas draining to stormwater facilities. Additional descriptions of the areas are provided in *Section 2*.

1.2 Access

All areas described within this plan shall be accessed by foot during inspections. Several parking areas are available at existing field access drives and driveways. The two fenced areas (West Riverside Energy Center and Kittyhawk Substation) will have more specific access conditions.

The areas and stormwater facilities within the fence at the Riverside Energy Center shall be inspected within the fence. Access to these areas shall be coordinated by contacting the Plant Manager (contact information below).

Observations of stormwater facilities and site conditions at Kittyhawk Substation shall be made by walking the site. Parking is available at one of the driveways on the west side of S Walters Rd. The general site conditions and stormwater facility inspections shall be performed on foot outside of the substation fence, additionally, conditions of the gravel pad shall be made from outside of the fence. Access within the fence is not anticipated unless significant erosion or runoff issues develop.

If it is determined that maintenance is required on any of the land management areas or stormwater practices, a specific access plan should be developed. The access plan will consider the scope of work and equipment needs. Ground disturbance shall be minimized to the extent possible, and environmentally sensitive areas avoided.

1.3 Contact information

The following people shall be contacted prior to performing any inspections on the areas described in this plan and if any maintenance is required. This section shall be updated if other individuals fill these rolls in the future.

Riverside Energy Center Plant Manager Paul Gregor 401 W B-R Townline Road, Beloit WI 53511 Office: (608) 361-5116 paulgregor@alliantenery.com

Manager – Environmental Services, Compliance Bill Skalitzky 4902 N. Biltmore Lane, Madison, WI 53718 Office: (608) 458-3108 | Cell: (608) 575-5831 williamskalitzky@alliantenergy.com

2 Operation, Inspection, and Maintenance

2.1 Restoration Areas

Areas covered

The areas converted to native prairie restoration, or perennial vegetative "green space" are as follows; the South West Green Space, the Transmission Green Space, the South East Green Space and, the Plant Green Space, the Solar and Green Space area, and the ATC laydown area. These areas are being evaluated and established over several years due to construction activities on the site, as described in the Water Quality Trading Plan. As each area is evaluated and restored, a unique maintenance plan will be developed amended to this plan.

The ATC laydown area shall be included as part of the restoration area operation and maintenance procedures when the area is restored after transmission line construction (2019). The area is set aside for future expansion of the Kittyhawk Substation. A planned schedule for this expansion has not been established at this time. Prior to this expansion, and after use for laydown, this area will be restored to perennial vegetation. When the substation expansion is planned and designed this location will be revaluated and this plan updated.

Inspections

The inspections will evaluate the overall vegetative cover as well as identify areas of rill or gulley erosion. Meander surveys will be conducted annually on all areas of native prairie restoration annually

in August. More frequent inspections are recommended in the first two years of vegetation establishment. These surveys will report the vegetation density and richness as well as note the presence of invasive species. Any areas of erosion will be noted and recommendations for maintenance provided (if necessary).

Maintenance

Maintenance of the perennial vegetation areas will be performed at the recommendation of an ecologist or trained engineer. In the first year of establishment it is recommended that the native restoration areas are mowed when the vegetation reaches a height of 12-14". Vegetation should be cut to a height of 6-8" to allow sunlight to reach slower growing vegetation and compete with weeds or invasive species. In the second growing season vegetation should be mowed after reaching a height of 24-26" and cut to a height of 12-14".

After the second growing season spot mowing or herbicide treatment may be needed to control invasive species. Areas of poor vegetation establishment shall be re-seeded as necessary. If areas of erosion are identified appropriate vegetation and/or structural practices shall be recommended.

Reporting

Detailed inspection and maintenance reports shall be created after each inspection and meander survey. These reports shall include descriptions of the vegetative cover and condition. Photo logs shall be included as an attachment to the report. These reports shall be provided to the DNR as described in the Riverside Energy Center Water Quality Trading Plan.

2.2 Stormwater Facilities

Areas Covered

The areas to be covered by these inspections include the stormwater facilities, as well as, the areas draining to the facilities. These areas include the Kittyhawk Substation, the Plant Parking and Green Space, the Plant Operating Area, the Plant Stormwater Facilities, and the Alliant Substation.

Inspections and Maintenance

Inspections on all stormwater facilities shall be completed a minimum of once per year. Permitted storm water facilities shall be inspected and maintained according to any recorded maintenance agreements. Both the West Riverside Energy Center and Kittyhawk Substation stormwater facilities have maintenance agreements with the Town of Beloit (see attached).

Contributing Areas

Contributing areas to stormwater facilities should be maintained to limit erosion and sediment losses. Areas of excessive erosion or poor ground cover shall be noted. The export of soil or other sediment from contributing areas can result in failure of stormwater facilities or increased maintenance frequency.

Areas of minor erosion or with poor vegetative cover may be maintained by seeding and mulching to re-establish good cover. Areas of significant erosion, such as large rills or gullies, may require minor regrading to convey channelized flow. Any areas of significant sediment generation, such as grave, or dirt roads, should be managed to prevent the transport of sediment to stormwater facilities. Recommendations may be made by a qualified engineer upon identification of an issue

Wet Ponds

Wet ponds maintenance shall conform to the recommendations of WDNR Conservation practice standard 1001 and any approved maintenance agreement. All inflow points to the pond shall be inspected for stability and areas of erosion noted. Embankments shall be inspected for erosion, seepage, or growth of woody vegetation. The permanent pool shall be evaluated to ensure an average depth of at least 3.5 ft. The outlet structure shall be inspected to ensure it is in good condition and functioning as designed.

Wet ponds shall be dredged to remove accumulated sediment when the permanent pool depth is less than 3.5 ft., to achieve a pool depth of at least 5 ft. Spoils shall be appropriately handled and disposed of according to NR 500, Wis Adm. Code. Woody vegetation shall be removed from the embankments or within the pond. Any additional issues that may impact the functionality of the pond shall be addressed as recommended by a qualified engineer.

Rain Garden and Infiltration Areas

Rain gardens and infiltration areas shall be inspected and maintained in conformance with WDNR Conservation Practice Standard 1003 and any approved maintenance agreement. All embankments and side slopes shall be inspected for areas of erosion, seepage or extensive woody vegetation growth. Infiltration areas shall be inspected for signs of extended ponding such as dead vegetations or sediment rings, a sign of a clogged infiltration surface. Standing water should not be present in the infiltration area more than 3 days after rainfall. Vegetation should be maintained so that there are no areas bare of vegetation or have excessive vegetative growth that would limit the facility storage.

If surface infiltration has been impacted by accumulated sediment the top 3-4 inches of engineered soil media shall be removed and tilled to promote infiltration. Appropriate vegetation management will also help to promote infiltration by breaking up the sediment layer. Any additional issues that may impact the functionality of the facilities shall be addressed as recommended by a qualified engineer.

<u>Swales</u>

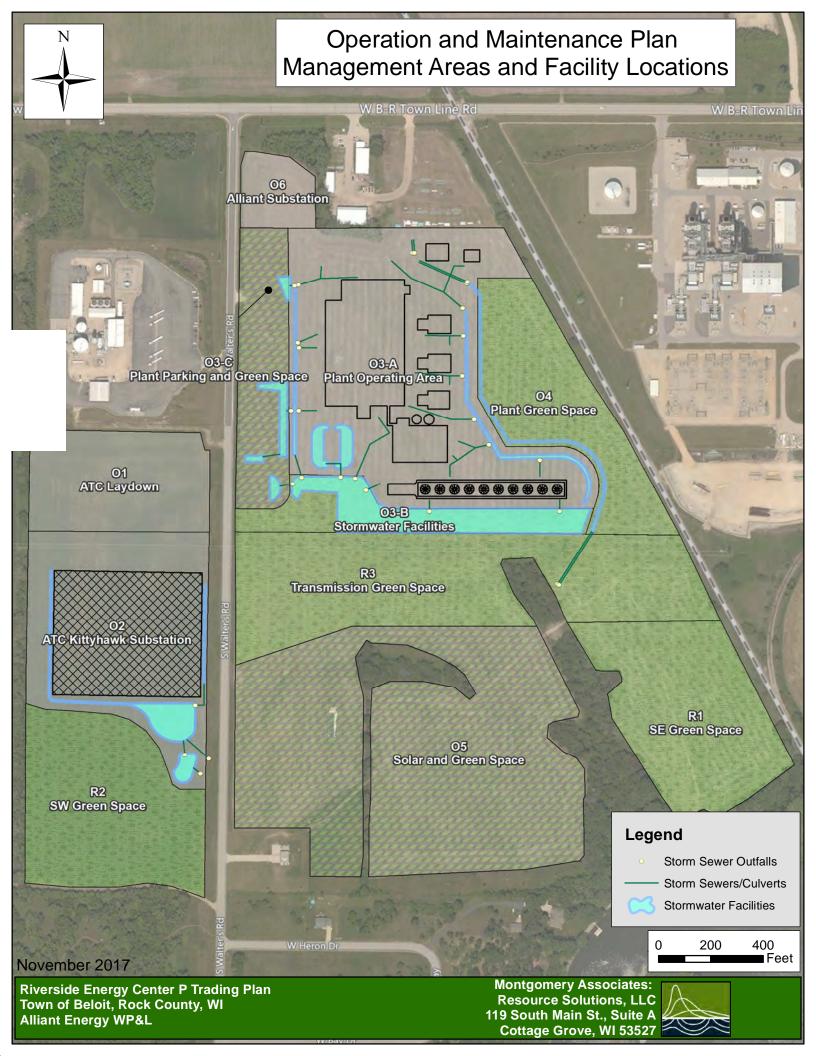
Vegetated swales shall be inspected and maintained in conformance with WDNR Conservation Practice Standard 1005 and any approved maintenance agreement. Swales should have good vegetative

cover in all areas, especially the channel flow line. Areas of erosion, dead vegetation, or sediment accumulation shall be noted as these factors may indicate insufficient swale conveyance capacity. Areas of excessive vegetation shall also be noted as it may reduce the swale conveyance capacity.

If persistent ponding is occurring within swales with grades less than 1%, an underdrain may be added to reduce ponding and improve drainage. Minor areas of dead vegetation shall be restored with seed and mulch, or erosion mat if located on the channel flow line. Grassed swales shall be mowed regularly to maintain channel capacity. With vegetation being cut to approximately 4" or shorter if vegetative growth exceeds 8". Any additional issues that may impact the functionality of the facilities shall be addressed as recommended by a qualified engineer.

Storm Sewers and Culverts

Storm sewers and culverts shall be inspected to ensure they are in good working condition. Pipes should not have accumulation of sediment or debris. Inlets and outlets shall be inspected for the presence of significant erosion or blockage. Driveway culverts should not be crushed or deformed.


Any accumulated debris and sediment shall be removed if the depth exceeds 2". Upstream sources of sediment shall be identified and remedied if possible. Areas of erosion around outlets shall be stabilized with a properly sized rip-rap pad. Any deformed or damaged culverts and storm sewers shall be replaced in a timely manner. Any additional issues that may impact the functionality of the facilities shall be addressed as recommended by a qualified engineer.

Reporting

Detailed inspection and maintenance reports shall be prepared after each inspection. These reports shall include descriptions of the vegetative cover and condition as well as the conditions of impervious areas. Stormwater facility conditions and recommended maintenance provisions (if needed) shall also be described. Photo logs shall be included as an attachment to the report. The attached inspection logs shall be completed during each inspection and attached to the report. These reports shall be provided to the DNR as described in the Riverside Energy Center Water Quality Trading Plan.

Figures

Approved Maintenance Agreements

STORM WATER MANAGEMENT PRACTICES MAINTENANCE AGREEMENT

THIS AGREEMENT, made and entered into this _____ day of _____, 2017, by and between Alliant Energy/Wisconsin Power and Light Company hereinafter called the "Owner", and the Township of Beloit, hereinafter called the "Town".

WITNESSETH:

WHEREAS, the Owner is the owner of the following described lands situated in the Town of Beloit, County of Rock County, State of Wisconsin, to-wit:

ASSESSORS PLAT PT OUTLOTS 4 & 5 COM 50.01' S OF N1/4 COR E 276.19', SE ALG RR R/W 2798.43' SW 25', SE 569.36', W 2416.85' TO E LN RD, N 2885.59', NE 92.53', E 245.51', S 399.99', E 200' N 399.99' TO POB (EXC CSM 36-78)

hereinafter called the "Property".

WHEREAS, the Owner is developing the property; and

WHEREAS, the development provides for on-site storm water management practices within the confines of the Property; and

WHEREAS, the Town and the Owner, its successors and assigns, require that on-site storm water management practices as defined in Chapter 8 of the Town of Beloit Ordinance be constructed and maintained on the Property; and

WHEREAS, the Town requires that on-site storm water management practices as shown on the Plan be constructed and adequately maintained by the Owner, its successors and assigns.

NOW, THEREFORE, in consideration of the foregoing premises, the mutual covenants contained herein, and the following terms and conditions, the parties hereto agree as follows:

- 1. The on-site storm water management practices shall be constructed by the Owner, its successors and assigns, in accordance with the development plans and specifications and applicable statutes, ordinances and rules.
- 2. The Owner, its successors and assigns, shall regularly inspect the storm water management practices and specifically the function of the approved storm water

management system as often as conditions require, but in any event at least once each year.

- 3. The Owner, its successors and assigns, shall adequately maintain the storm water management practices, including but not limited to pipes, channels, structures, improvements, and vegetation provided to control the quantity and quality of the storm water. Adequate maintenance is herein defined as keeping the storm water management devices in good working condition.
- 4. The Owner, its successors and assigns, hereby grant permission to the Community Development Department as the authorized agent and employees of the Town, to enter upon the Property and to inspect the storm water management practices as necessary to ascertain that the practices are being maintained and operated in accordance with the agreement.
- 5. The Town shall maintain public records of the results of the site inspections, inform the Owner of the inspection results, and to specifically indicate any corrective actions required to bring the storm water management practice into proper working condition.
- 6. The Owner, as the responsible for long term maintenance of the storm water management practices, shall be notified by the Town, Community Development Department or Public Works Department(s) of maintenance problems which require corrections. The specified corrective actions shall be undertaken within a reasonable time frame as set by the Community Development Department.
- 7. If the Owner does not make the required corrections in the specified time period, the Community Development Department has authorization to perform the corrected actions identified in the inspection report. The Town Finance Director/Treasurer shall enter the amount due on the tax rolls and collect the money as a special charge against the property pursuant to <u>Subch. VII of Chapter 66</u>, Wis. Stats.

Signatures

The undersigned agrees to the provisions set forth in this agreement.

Signature or Authorized Agent for Owner

Name and Title

Exhibit A Minimum Storm Water Practice Maintenance Requirements

This exhibit explains the basic function of each of the storm water practices and the maintenance requirements beyond the minimum requirements to remain compliant with this Agreement. The maintenance activities listed below are aimed to ensure these practices continue serving their intended functions. The list of activities is not all inclusive, but rather indicates the minimum type of maintenance that can be expected for this particular site.

WET DETENTION POND OPERATION AND MAINTENANCE

I. ROUTINE MAINTENANCE

A. Mowing

- 1. Side slopes, embankments, and emergency spillways that are not rock lined which have been planted with turf grasses should be mowed at least twice a year to prevent woody growth and control noxious weeds.
- 2. More frequent mowing, typically once a week during a normal growing season, is recommended for aesthetic and allergy control purposes.
- 3. Native grasses should be mowed to a height of 6" in mid to late summer or after they have achieved a height of 1-1/2 feet during the first growing season. Further mowing in subsequent growing seasons will not be required
- B. Inspections
 - 1. Inspections of the ponds shall he completed on a quarterly basis or after significant rainfall events.
 - 2. The inspections should be completed during wet weather conditions to determine if the ponds are functioning properly.
 - 3. Inspection priorities shall be as follows:
 - a. Inspect the embankments for subsidence, erosion, cracking and tree growth.
 - b. Inspect the condition of the emergency spillway and overland flow path.
 - c. Inspect the pond for accumulation of sediment.
 - d. Inspect the outlet control structure for clogs, debris and material failures.
 - e. Inspect upstream and downstream channels from an erosion perspective.
 - f. Inspect any modifications that may have been done to the ponds following their initial construction.

- g. Inspect the side slopes of the pond for erosion, slumping, cracking or woody plant materials.
- 4. As-built plans shall accompany the person responsible for the pond inspections.
- 5. Documentation of the inspections should be completed and filed. Documentation should include at a minimum:
 - a. Inspectors name, affiliation and professional credentials if applicable.
 - b. Date, time and weather conditions.
 - c. Approximate rainfall total over a 24 hour period if applicable.
 - d. Existing embankment, outlet and inlet conveyance systems and vegetation condition.
 - e. Sediment depth at the outlet control structure and at a minimum one other location.
 - f. Identification of potential structural failures and repair needs
 - g. Other pond conditions such as vegetation growth, algae growth and emergency spillway conditions.
 - h. Repair recommendations.
- C. Debris and Litter Removal.
 - 1. Debris and litter removal from the pond surface shall be completed at least once a month.
 - 2. Particular attention should be paid to debris accumulating around the riser pipe to prevent potential clogging.
- D. Erosion Control.
 - 1. The pond side slopes, embankments and emergency spillways may suffer from periodic slumpage and erosion.
 - 2. Corrective measures shall include re-grading, filling and re-vegetation of the eroded or slumping areas.

- 3. Rip rap at the pond outlet and emergency spillways should be inspected for displacement or undermining. Repairs shall be made upon discovery.
- E. Nuisance Control.
 - 1. Biological control of algae and mosquitoes is preferred over chemical control. Consultation with local WDNR officials is recommended prior to the introduction of any biological control.
 - 2. Maintaining the native grass perimeter will aide in the control of geese.
 - 3. Mechanical controls should be used when feasible.

II. NON-ROUTINE MAINTENANCE

- A. Structural Repairs and Replacement.
 - 1. Annual inspection of the outlet structures will disclose any potential structural problems. If structural problems appear, repair or replace the outlet.
 - 2. Excessive or chronic drawdown of the ponds may cause leaks or seepage through the embankments. Excessive drawdown should be avoided and thus corrective measures for leakage and seepage can be avoided.
- B. Sediment Removal
 - 1. A sediment clean out cycle of 10 to 15 years is recommended. Sediment removal may be necessary prior to 10 years if there is a substantial amount of land disturbance occurring within the contributory watershed. Annual inspections shall be made to insure that the design depth of the permanent water pool is maintained.
 - 2. Sediment removed from the ponds shall be hauled to an upland area, spread and stabilized with vegetative material or disposed of in accordance with Chapter NR 528 of the Wisconsin Administrative Code.
 - 3. Surveyed depths of the sediment storage area and permanent pool elevations shall be made immediately following the construction of the ponds and recorded on the as-built plans. Annual inspections shall include measure downs to determine sediment elevations in relation to the permanent pool elevation.

III. ADDITIONAL CONSIDERATIONS TO IMPROVE POND WATER QUALITY AND REDUCE MAINTENANCE COSTS.

- A. General.
 - 1. Improper disposal of yard wastes will affect the water quality of the wet ponds and may cause clogging of the outlet structure.
 - 2. Improper fertilizer and pesticide application will affect the water quality of the wet ponds and add to algae growth.
 - 3. Excess lawn watering will affect the water quality of the ponds due to increased water runoff that may contain fertilizers and pesticides.
- B. Yard Care
 - 1. It is recommended to consider routine yard care maintenance that is practical and environmentally sound.
 - 2. Refer to the U.W. Extension's "Rethinking Yard Care" for additional information.
- C. Leaves and Yard Trimmings.
 - 1. It is recommended that leaves and yard trimmings be properly disposed of.
 - 2. Refer to the U.W. Extension's "Managing Leaves and Yard Trimmings" for further information.
- D. Lawn and Garden Fertilizers.
 - 1. It is recommended to control fertilizer applications on lawn and gardens so as not to be detrimental to the water quality of the ponds.
 - 2. Refer to the U.W. Extension's "Lawn and Garden Fertilizers" for further information.
- E. Lawn and Garden Pesticides.
 - 1. Lawn and garden pesticides may pollute surface and ground water.
 - 2. Refer to the U.W. Extension's "Lawn and Garden Pesticides" for further information.
- F. Lawn Watering.

- 1. Excess lawn watering will wash pollutants into the wet ponds.
- 2. Refer to the U.W. Extension's "Lawn Watering" for further information.
- G. Lawn Weed Control.
 - 1. Proper turf management will lower the amount of the chemicals that may runoff into the wet ponds during rain events.
 - 2. Refer to the U.W. Extension's "Lawn Weed Control" for further information.

VEGETATED FILTER STRIPS OPERATION AND MAINTENANCE

I. INSPECTION

- A. Inspect quarterly and after every major storm event.
- B. Inspect for erosion, accumulation of sediment, diversions and short circuiting, standing water and the accumulation of litter.

II. MAINTENANCE

- A. Do not mow vegetation to a height lower than the design flow depth.
- B. Minimize the use of fertilizers and pesticides.
- C. Do not use heavy equipment to mow. Mowing should occur during dry periods to avoid compaction.
- D. Repair and reseed eroded areas immediately upon discovery.

GRASSED SWALES OPERATION AND MAINTENANCE

I. INSPECTION

- A. Inspection should occur seasonally and after major rainfall events.
- B. Inspect for sediment deposition, check dam bypassing, erosion and litter.
- C. Nuisance conditions such as woody plant growth and mosquito breeding areas should also be identified and removed.

II. MAINTENANCE

- A. Mow only to maintain the vegetation at a height greater than the design flow depth.
- B. Maintain the vegetated liner in a vigorous condition.
- C. Depending on the vegetative material, mowing may be infrequent or unnecessary.
- D. Remove woody plants that may invade the swale.
- E. If the swale is damaged by road salts, remove the damaged area and replant with salt tolerant grasses.
- F. Discourage deposition of leaf litter and grass clippings by informing, typically by signage, local residents of the swales purpose.

CULVERTS OPERATION AND MAINTENANCE

I. INSPECTION

- A. Culverts should be inspected twice a year and after heavy rainfall.
- B. Inspect for sediment deposition, scour at the ends of pipe, accumulations of trash and obstructions.

II. MAINTENANCE

- A. Scour areas should be repaired with clean fill and replacement of end treatment (rip rap, TRM, etc.). Scour areas with no end treatment should be stabilized with topsoil, seed and erosion control mat at a minimum.
- B. Sediment deposits, trash and obstructions should be removed from the pipe ends.
- C. Material deposited within the pipe should be promptly removed to maintain the conveyance capacity of the pipe.

Description of Property:

Owner: Alliant Energy Wisconsin Power and Light Company

Property Address: (To be provided upon receipt of driveway permit)

Property is located in the SE ¼ - NW ¼ of Section 2, T1N, R12E town of Beloit, Rock County.

Maintenance provisions:

Stormwater Management Maintenance Measures

- Facilities showing signs of soil erosion should be repaired with emphasis put on grassed waterways being maintained for proper stormwater conveyance.
- Facilities or parts of facilities with no vegetation shall be restored to good vegetated catch.
- To maximize filtration, mowing in buffer areas around stormwater ponds should be minimized. If occasional mowing is necessary, the mowing height is recommended to be no shorter than 6 inches.

Wet Detention Basins:

- The landowner shall visually inspect the wet detention basin outfalls and outlet structures annually. The inspections shall include checking for potential problems such as: subsidence erosion, tree growth in and around the embankment and outfall areas, sediment accumulation, clogging of the outfall structure, and damage to emergency spillway. Problems identified by the inspections shall be repaired as soon as is practical.
- All undesirable vegetation and volunteer tree growth shall be removed, including close proximity to any outfall and the outlet structures.
- Sediment accumulations shall be removed by dredging when sediment accumulation results in a permanent pool depth less than 3 feet. The dredged material shall be removed and disposed of in accordance with NR 347.
- The owner shall at a minimum maintain records of installation, inspections, mowing, clearing, and other maintenance of the system.

Infiltration Basins

• Inspections of the infiltration basins shall be done at least semi-annually in early spring and early fall, until permanent vegetation is established. Infiltration area inspections shall include inlet pipe and condition of vegetation as part of inspection. If standing water is observed over 50% of the pond floor 3 days after rainfall, the pond is clogged and measures should be undertaken to unclog it. Acceptable measures include removing the top 2 to 3 inches, chisel plowing and replacing engineered soil material. If deep tilling is used, the pond shall be drained and the soils dried to a depth of 8 inches. After procedures, the owner /operator shall replant with State-approved native plugs.

Prairie Restoration Maintenance Plans

MEMORANDUM

TO: ROBERT MONTGOMERY, RYAN STENJEM – MONTGOMERY ASSOCIATES: RESOURCE SOLUTIONS (MARS)

FROM: ECO-RESOURCE CONSULTING, INC.

SUBJECT: ALLIANT ENERGY RIVERSIDE ENERGY PARK – SW GREEN SPACE RESTORATION PLAN

DATE: 11/8/2017

CC: STEVE HJORT, CLAY FRAZER

RE: SW Green Space Preliminary Findings and Recommendations

Summary:

On October 31, 2017 ERC senior ecological staff members Clayton Frazer and Daniel Fuhs conducted a precursory field investigation of the 8 +/- acre "SW Green Space" unit at Alliant Energy's Riverside Energy Park. Observations were made on current vegetation, land use, and soil conditions with the intent of developing a Native Prairie Restoration Plan for this field/unit.

Three soil test pits were advanced to classify soil structure, type, horizons, and to collect soil for lab testing. The location of the test pits can be viewed on ERC Figure 4 (enclosed).

Vegetation:

The eastern 2/3 of the unit was planted (drilled) into a temporary cover crop of soybeans, winter wheat, and rye. This was likely a late season planting as the soybeans are underdeveloped (approx. 8"). Annual weeds are sparse and include pigweed, lambsquarters, and curly dock.

The western 1/3 of the unit was planted into corn in spring of 2017. This was presumably Roundup-Ready corn as weed control was excellent. The corn was harvested and heavy/dense residue persists (stalks, leaves, cobs).

Soil Type/Structure:

Mapped soils include loams and silt loams. The largest portion of the unit is mapped as a Lorenzo Loam with 2-5% slopes. Mapped soils on the balance of the field include; Warsaw Silt Loam 0-2% slope Warsaw Silt loam 2-6% slope, and Lorenzo Loam 6-12% slope – eroded. These mapped soils were consistent with ERC's on-site findings (see ERC Figure 2).

Soil Compaction:

Soils across the unit are generally lacking porosity and are heavily compacted down to a 20" depth. This is likely a hard pan layer that has developed following years of agricultural use. *Topography:*

Topography on this unit is lightly rolling and trends from the northwest to the southeast. Drainage is more pronounced in the eastern third of the unit through a shallow swale.

Soil Test Results:

Soil pH was low on two samples. Organic Matter (OM) percentage is low (<2% on two samples) and very low (<1%) on sample 3. Phosphorus levels are high to excessive on each sample.

Additional Considerations:

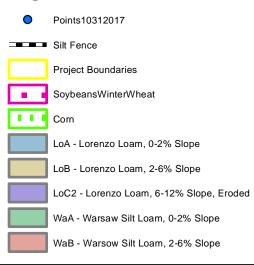
- Silt fence currently extends into the unit near the northeast corner (see ERC Figure 4).
- The tree lines along the west and south edges of the unit contain high densities of mature common buckthorn and Asian bush honeysuckle. These woody invasive species will propagate seedlings into the restoration unit and should be eradicated.

Preliminary Recommendations:

Based on the amount of surface vegetation, crop residue, compaction, and low pH levels, ERC recommends that seedbed preparation be conducted prior to installation of native seed. A heavy disk-ripper should be used to turn over surface residue and breakup the plow-pan layer. This action may also serve to increase soil pH slightly. During this seedbed preparation, Dolomitic limestone should be applied at 2.5- 3 tons per acre. Surface soils should be finished with a harrow-finisher. This will smooth clods and root balls, and will prepare an ideal soil surface for either broadcast seeding or no-till drill installation of a native seed mix.

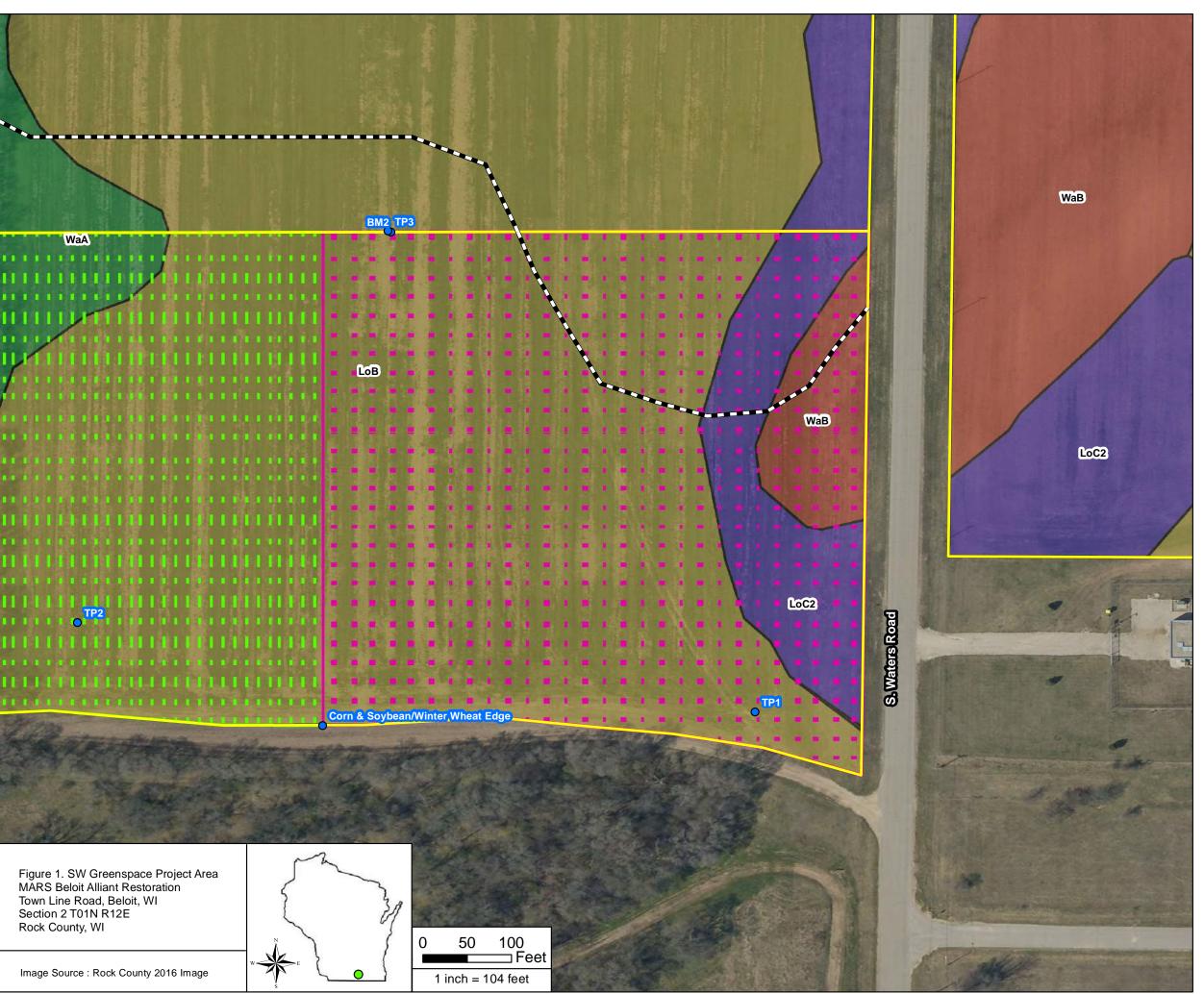
If this seedbed preparation can be conducted in November or December, native seed can be broadcasted in the winter months up to the time 3-5 inches of snow exists on the site. A dormant winter seeding will increase seed germination rates of forbs and will result in a longer 2018 growing season. If site preparation cannot be conducted until the spring of 2018, the native seed mix can be drilled in May or June with a specialized no-till native seed drill.

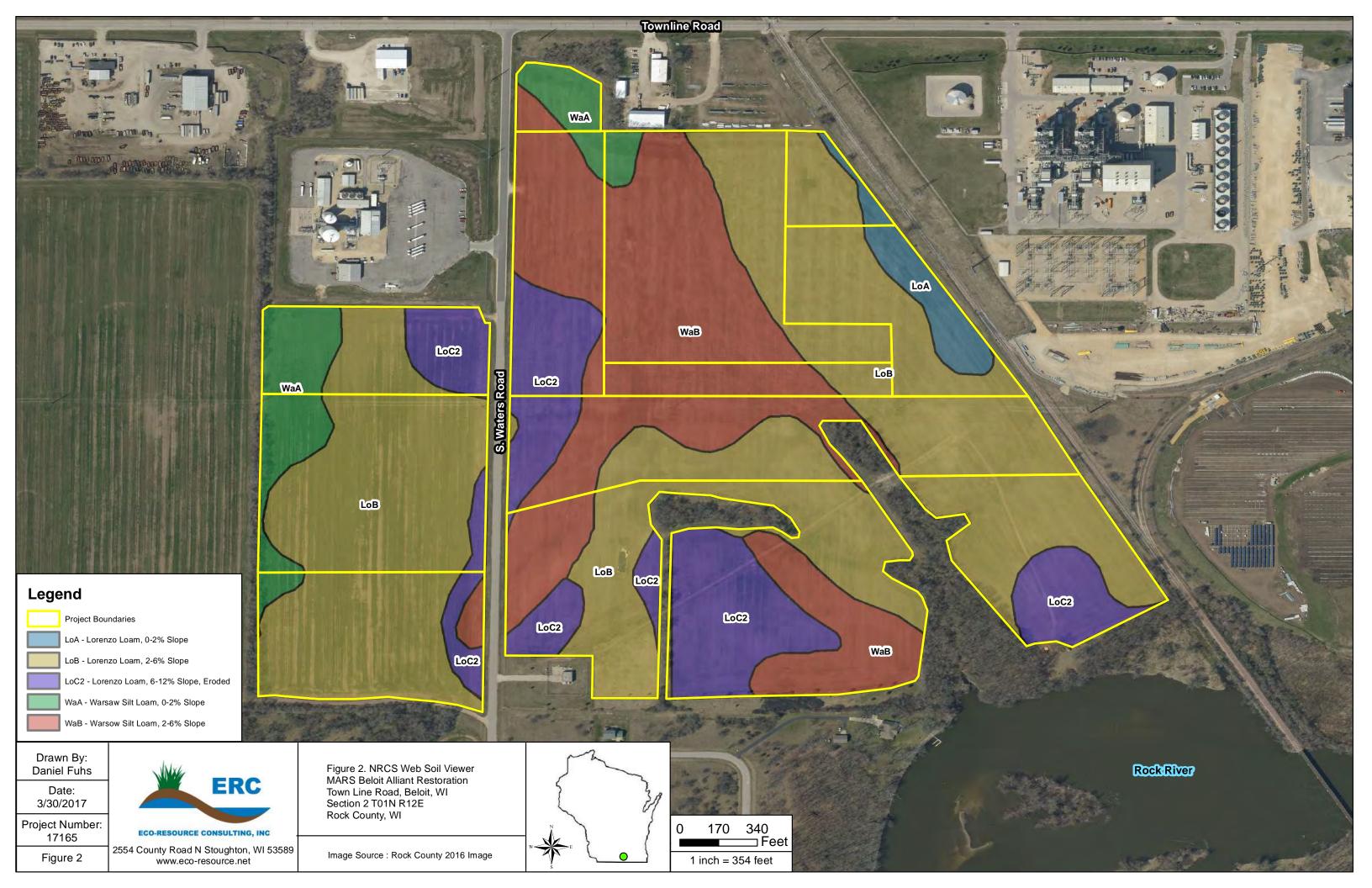
Native Seed Mix:


ERC Ecologists will design a native seed mix ideal for soil and hydrology conditions which meets the client's objectives. Based on current conditions, ERC recommends a mix with a base of tall-stature C4 (warm season) grasses. Representative C4 grass species would be big bluestem, Indiangrass, and switchgrass along with a modest array of native forbs and legumes to help prevent broad-leaved weed incursion and to maximize nutrient uptake.

Attachments:

ERC Figure 2 – NRCS Web Soil Viewer ERC Figure 4 – 10/31 Site Visit Site Assessment Photos Available for Review


The information contained in this communication may be confidential, is intended only for the use of the recipient(s) named above, and may be legally privileged. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication, or any of its contents, is strictly prohibited. If you have received this communication in error, please return it to the sender immediately and delete the original message and any copy of it from your computer system. If you have any questions concerning this message, please contact the sender.


Legend

Drawn By: Daniel Fuhs Date: 3/30/2017 Project Number: 17165 Figure 1

Stormwater Facility Inspection Report Templates

General Information

Date of last inspection	
Date of current inspection	
Date of next inspection	
This inspection completed by: (include name of inspector, company, and phone number)	
Does inspector have a copy of the Stormwater Management Plan (Y/N)?	
Has the inspector reviewed the previous inspection report (Y/N, N/A)?	
Are there Maintenance Action Items that need to be checked during this inspection (Y/N)?	

Current weather conditions	
Recent weather conditions and	
precipitation (cite data source such as	
NOAA NOWData at www.weather.gov/	
climate/xmacis.php?wfo=mkx)	

Other people/equipment on site	
--------------------------------	--

Stormwater/Drainage Facility Inspection Report

West Riverside Energy Center Site Location: Rock County, WI Joint Use: Alliant Energy Year Constructed: 2017-2019

General Site Conditions

Note: Mark on the "Site Plan" sheet as needed to clarify items on this sheet

General Site Conditions	Y/N	Describe Specific Location	Describe Condition (Notes)	Photo Number(s)	Maintenance Required? If "yes" see "Maintenance Action Items" sheet
Is there any erosion or are there any rills or gullies anywhere on site,					
other than the specific areas described on the "Specific Facility Conditions" sheet?					
Are there any bare spots (<70% cover) in areas that are to be vegetated?					
Are there any areas of erosion on site, outside of the stormwater facilities (not listed on the specific facility conditions pages)?					
Are there any temporary					
erosion control measures that should be removed from the site?					

Specific Facility Conditions (1 of 4)

Note: Mark on the "Outlet Structure Details" sheet or "Site Plan" sheet as needed to clarify items on this sheet

Stor	mwater/Drainage Facilities	Describe Condition (Notes)	Photo Number(s)	Is Maintenance Required? If "yes" see "Maintenance Action Items" sheet
	Condition of the stone weeper leading out of the basin (freely draining or outflow affected by debris)			
	Description of vegetation			
Wet Pond	Water level relative to basin outlet structure, indication of high water mark (if any)			
Wet	Sediment in basin			
	Sloughing, uneven settling, eroding of berm around basin, etc.			
	Condition of receiving area (from downstream end of stone weeper leading out of basin to property boundary)			
	Condition of the outlet structure of the basin (freely draining or outflow affected by debris)			
	Condition of curb cut or flume leading into basin			
5	Description of vegetation			
Rain Garden 1	Any indications of extended ponding within the basin.			
	Sediment accumulation in basin			
	Sloughing, uneven settling, erosion around basin, etc.			
	Condition of receiving area (from downstream end of outlet pipe into swale or pond)	ter\Reports\OM Plan\West Riverside Energy Center 171204 xls		

Specific Facility Conditions (2 of 4)

Note: Mark on the "Outlet Structure Details" sheet or "Site Plan" sheet as needed to clarify items on this sheet

Stormwater/Drainage Facilities		Describe Condition (Notes)		Is Maintenance Required? If "yes" see "Maintenance Action Items" sheet
	Condition of the outlet structure of the basin (freely draining or outflow affected by debris)			
	Condition of curb cut or flume leading into basin			
in 2	Description of vegetation			
Rain Garden 2	Any indications of extended ponding within the basin.			
Rai	Sediment accumulation in basin			
	Sloughing, uneven settling, erosion around basin, etc.			
	Condition of receiving area (from downstream end of outlet pipe into swale or pond)			
	Condition of the outlet structure of the basin (freely draining or outflow affected by debris)			
	Condition of curb cut or flume leading into basin			
en 3	Description of vegetation			
	Any indications of extended ponding within the basin.			
	Sediment accumulation in basin			
	Sloughing, uneven settling, erosion around basin, etc.			
	Condition of receiving area (from downstream end of outlet pipe into swale or pond)			

Specific Facility Conditions (3 of 4)

Note: Mark on the "Outlet Structure Details" sheet or "Site Plan" sheet as needed to clarify items on this sheet

Stormwater/Drainage Facilities		Describe Condition (Notes)		Is Maintenance Required? If "yes" see "Maintenance Action Items" sheet
	Condition of the outlet structure of the basin (freely draining or outflow affected by debris)			
	Condition of curb cut or flume leading into basin			
n 4	Description of vegetation			
Rain Garden 4	Any indications of extended ponding within the basin.			
Rai	Sediment accumulation in basin			
	Sloughing, uneven settling, erosion around basin, etc.			
	Condition of receiving area (from downstream end of outlet pipe into swale or pond)			
	Condition of the outlet structure of the basin (freely draining or outflow affected by debris)			
	Condition of curb cut or flume leading into basin			
in 5	Description of vegetation			
Rain Garden 5	Any indications of extended ponding within the basin.			
	Sediment accumulation in basin			
	Sloughing, uneven settling, erosion around basin, etc.			
	Condition of receiving area (from downstream end of outlet pipe into swale or pond)			

Specific Facility Conditions (4 of 4)

Note: Mark on the "Outlet Structure Details" sheet or "Site Plan" sheet as needed to clarify items on this sheet

Stormwater/Drainage Facilities		Describe Condition (Notes)	Photo Number(s)	Is Maintenance Required? If "yes" see "Maintenance Action Items" sheet
		Swale 1 (WesVegetated Swale):		
	Perimeter Swales (surrounding substation): Include description of vegetation, erosion, debris, sediment, etc. Swale 2 (East Vegetated Swale): Swale 3 (East Bypass Swale): Swale 3 (East Bypass Swale):			
ies	Storm Sewers: Include description of upstream end, downstream end, riprap, debris, sediment, overtopping, etc. Outlets from raingardens are not included in the storm sewer outfalls. Please note the conditions of outlet structures from rain gardens on the previous page.	Storm Sewer 1 (West Swale Outlet):		
Other Facilities		Storm Sewer 2 (Bypass Swale Upstream Pipe):		
		Storm Sewer 3 (Bypass Swale Outlet Pipe):		
		Storm Sewer Outfalls to Swale 1 (OF 1-4):		
		Storm Sewer Outfalls to Swale 2 (OF 5-8):		
		Storm Sewer Outfalls to Wet Pond (OF 9-14):		

Stormwater/Drainage Facility Inspection Report

West Riverside Energy Center Site Location: Rock County, WI Joint Use: Alliant Energy Year Constructed: 2017-2019

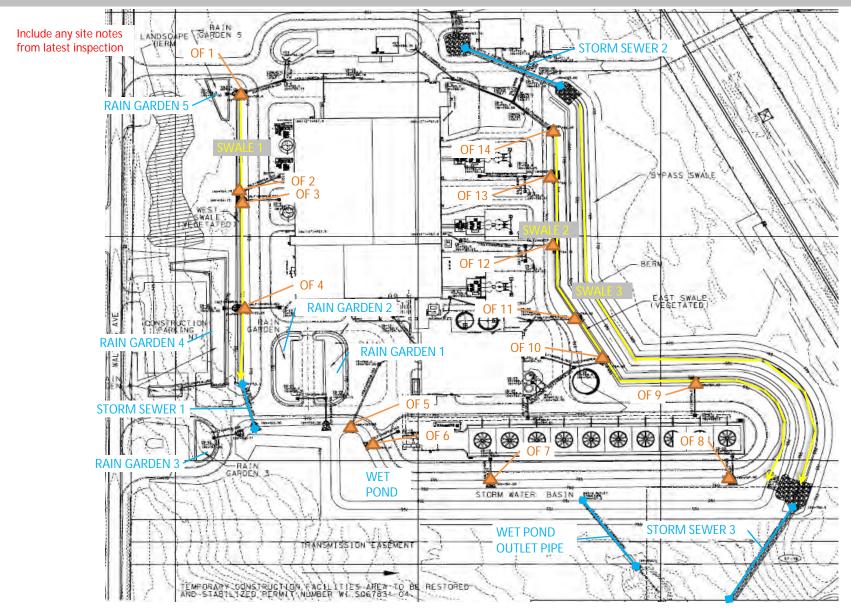
Maintenance Action Items

Note: Include one Maintenance Action Item for each issue that needs maintenance (each stormwater/drainage facility may have multiple Maintenance Action Items)

		MAI Status			Urgency			
		Identified during current inspection	Identified previously, maint.completed	Identified previously, needs additional maint.	Identified previously, maint. not completed			Not Urgent ³
MAI Number	Maintenance Action Item Description	denti	denti	denti	denti	Critical ¹	Urgent ²	Not L

Notes:

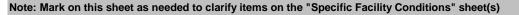
1. Public safety could be at risk if MAI is not completed.

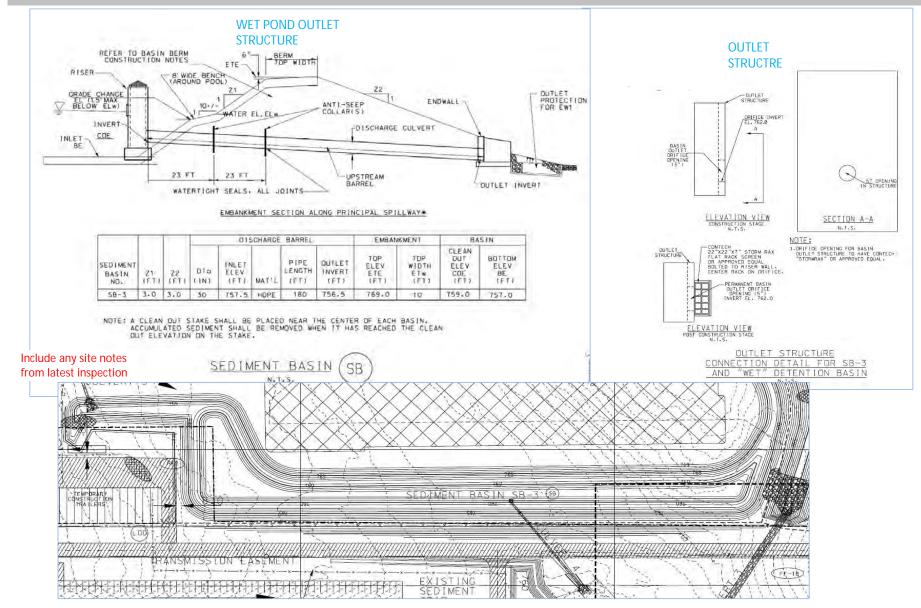

2. The site is not in compliance with the approved SWM plan if MAI is not completed.

3. MAI needs to be completed, but public safety is not at risk and site is still in compliance with SWM plan.

Stormwater/Drainage Facility Inspection Report

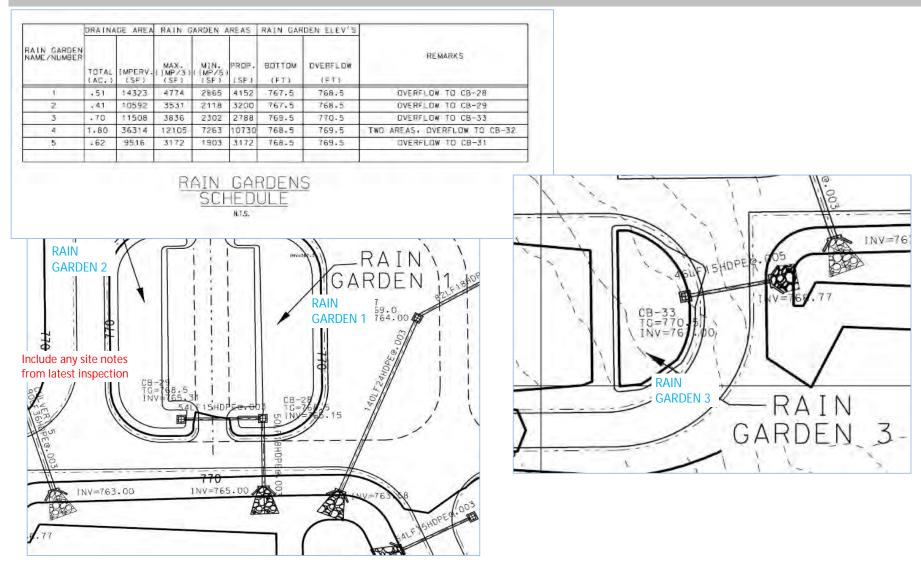
Site Plan




Note: Mark on this "Site Plan" sheet as needed to clarify items on the "General Site Conditions" and "Specific Facility Conditions" sheets

Stormwater/Drainage Facility Inspection Report

Outlet Structure Details

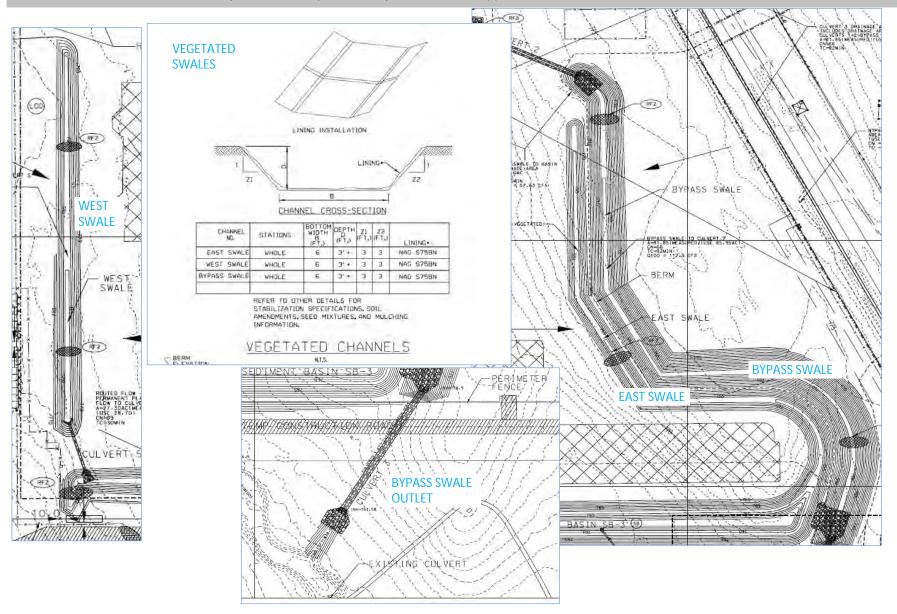


Stormwater/Drainage Facility Inspection Report

Outlet Structure Details

Note: Mark on this sheet as needed to clarify items on the "Specific Facility Conditions" sheet(s)

Outlet Structure Details


Note: Mark on this sheet as needed to clarify items on the "Specific Facility Conditions" sheet(s) DRAINAGE AREA RAIN GARDEN AREAS RAIN GARDEN ELEV'S RAIN GARDEN REMARKS RAIN MIN. (MP/5 (SF) MAX. IMP/3 BOTTOM OVERFLOW ROP. TOTAL (AC.) IMPERV (SF) **GARDEN 4** SF) (FT) (ET)-(SF) .51 14323 4774 2865 4152 767.5 768.5 OVERFLOW TO CB-28 1 .41 10592 3531 2118 3200 767.5 768.5 OVERFLOW TO CB-29 2 OVERFLOW TO CB-33 3 .70 11508 3836 2302 2788 769.5 770.5 TWO AREAS, OVERFLOW TO CB-32 4 1.80 36314 12105 7263 10730 768.5 769.5 .62 9516 3172 3172 768.5 769.5 OVERFLOW TO CB-31 5 1903 RAIN GARDENS 6 SCHE DUL CH N.T.S. 5 6.00 IN \triangleleft NG RMANEN F12H í ONCRETE LL 44 4 EQ. G =10 24HD 2 INV HDE 804 16 .5 后馬 Ee.O RAIN **GARDEN 5** 12LF12"HOPCe.0 151-12 "HOAP"=767. 嗣 Include any site notes

from latest inspection

Stormwater/Drainage Facility Inspection Report Outlet Structure Details

Note: Mark on this sheet as needed to clarify items on the "Specific Facility Conditions" sheet(s)

P:\1723 - Alliant - P Trade analysis for Riverside Energy Center\Reports\OM Plan\West Riverside Energy Center 171204.xls

West Riverside Energy Center Site Location: Rock County, WI Joint Use: Alliant Energy Year Constructed: 2017-2019

Stormwater/Drainage Facility Inspection Report

Photo Log

Note: Attach photo log to this report and list file path of document, if available. Photo log should include direction the photographer was facing when the photo was taken, a description of the photograph subject, and any problems or issues identified in the photograph.

Stormwater/Drainage Facility Inspection Report

Kittyhawk Substation Site Location: Rock County, WI Joint Use: ATC Only Year Constructed: 2017-18

General Information

Date of last inspection	
Date of current inspection	
Date of next inspection	
This inspection completed by: (include name of inspector, company, and phone number)	
Does inspector have a copy of the Stormwater Management Plan (Y/N)?	
Has the inspector reviewed the previous inspection report (Y/N, N/A)?	
Are there Maintenance Action Items that need to be checked during this inspection (Y/N)?	

Current weather conditions	
Recent weather conditions and	
precipitation (cite data source such as	
NOAA NOWData at www.weather.gov/	
climate/xmacis.php?wfo=mkx)	

Other people/equipment on site		
--------------------------------	--	--

Stormwater/Drainage Facility Inspection Report

Kittyhawk Substation Site Location: Rock County, WI Joint Use: ATC Only Year Constructed: 2017-18

General Site Conditions

Note: Mark on the "Site Plan" sheet as needed to clarify items on this sheet

General Site Conditions	Y/N	Describe Specific Location	Describe Condition (Notes)	Photo Number(s)	Maintenance Required? If "yes" see "Maintenance Action Items" sheet
Is there any erosion or are there any rills or					
gullies anywhere on site, other than the specific areas described on the					
"Specific Facility Conditions" sheet?					
Are there any bare spots (<70% cover) in areas that are to be vegetated?					
Is the gravel edge around the substation eroding in any way?					
Are there any temporary erosion control measures					
that should be removed from the site?					

P:\1723 - Alliant - P Trade analysis for Riverside Energy Center\Reports\OM Plan\Kittyhawk Substation 171204.xls

Specific Facility Conditions (1 of 2)

Note: Mark on the "Outlet Structure Details" sheet or "Site Plan" sheet as needed to clarify items on this sheet

Stor	mwater/Drainage Facilities	Describe Condition (Notes)	Photo Number(s)	Is Maintenance Required? If "yes" see "Maintenance Action Items" sheet
	Condition of the stone weeper leading out of the basin (freely draining or outflow affected by debris)			
	Description of vegetation			
Wet Pond	Water level relative to basin outlet structure, indication of high water mark (if any)			
Wet	Sediment in basin			
	Sloughing, uneven settling, eroding of berm around basin, etc.			
	Condition of receiving area (from downstream end of stone weeper leading out of basin to property boundary)			
	Condition of the stone weeper leading out of the basin (freely draining or outflow affected by debris)			
	Condition of riprap flume leading into basin			
asin	Description of vegetation			
Infiltration Basin	Water level relative to basin outlet structure, indication of high water mark (if any)			
Infil	Sediment in basin			
	Sloughing, uneven settling, eroding of berm around basin, etc.			
	Condition of receiving area (from downstream end of stone weeper leading out of basin to property boundary) P:\1723 - Alliant - P Trade analysis for Riverside Energy Cent	In Departs OM Plan With the ult Substation 474004 via		

P:\1723 - Alliant - P Trade analysis for Riverside Energy Center\Reports\OM Plan\Kittyhawk Substation 171204.xls

Specific Facility Conditions (2 of 2)

Note: Mark on the "Outlet Structure Details" sheet or "Site Plan" sheet as needed to clarify items on this sheet

Stor	mwater/Drainage Facilities	Describe Condition (Notes)	Photo Number(s)	Is Maintenance Required? If "yes" see "Maintenance Action Items" sheet
		Swale 1 (West and South of Pad):		
S	Perimeter Swales (surrounding substation): Include description of vegetation, erosion, debris, sediment, etc.	Swale 2 (East Side of Pad):		
Other Facilities		Culvert 1 (North Driveway):		
	Driveway Culverts two total): Include description of upstream end, downstream end, riprap, debris, sediment, overtopping, etc.	Culvert 2 (South Driveway):		

Maintenance Action Items

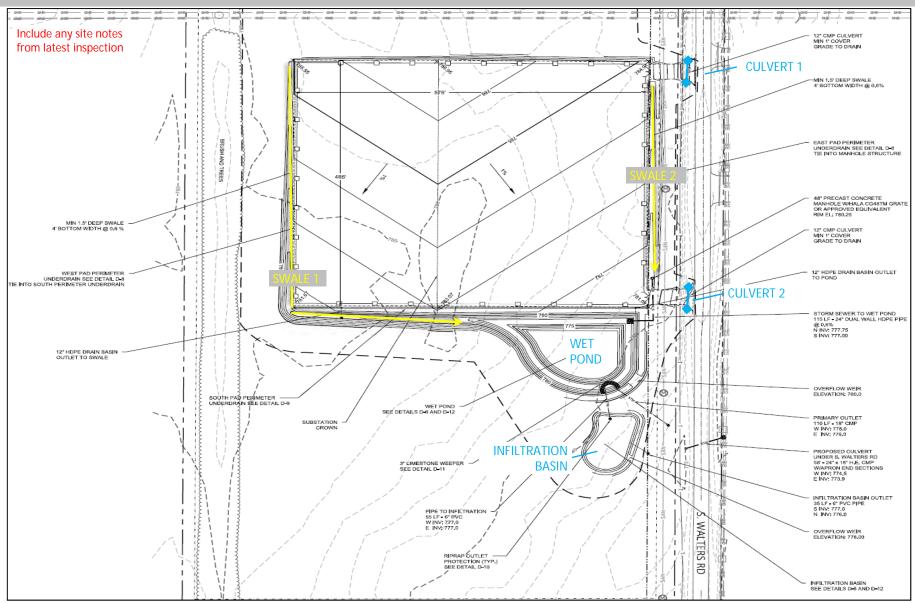
Note: Include one Maintenance Action Item for each issue that needs maintenance (each stormwater/drainage facility may have multiple Maintenance Action Items)

			MAIS	Status		l	Jrgenc	у
		Identified during current inspection	Identified previously, maint.completed	Identified previously, needs additional maint.	Identified previously, maint. not completed			Not Urgent ³
MAI Number	Maintenance Action Item Description	dent	dent	dent	dent	Critical ¹	Urgent ²	Not L

Notes:

1. Public safety could be at risk if MAI is not completed.

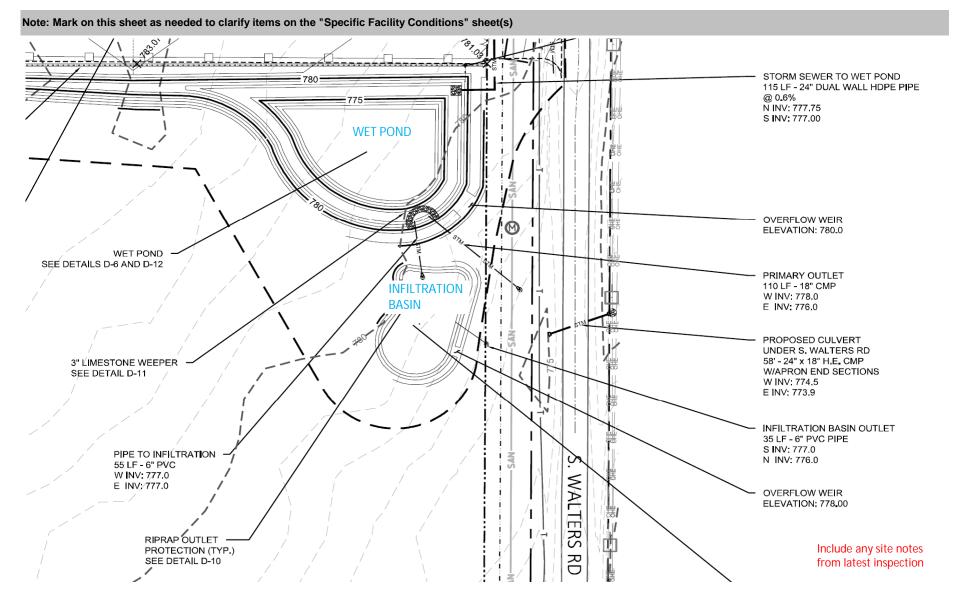
2. The site is not in compliance with the approved SWM plan if MAI is not completed.


3. MAI needs to be completed, but public safety is not at risk and site is still in compliance with SWM plan.

Stormwater/Drainage Facility Inspection Report

Kittyhawk Substation Site Location: Rock County, WI Joint Use: ATC Only Year Constructed: 2017-18

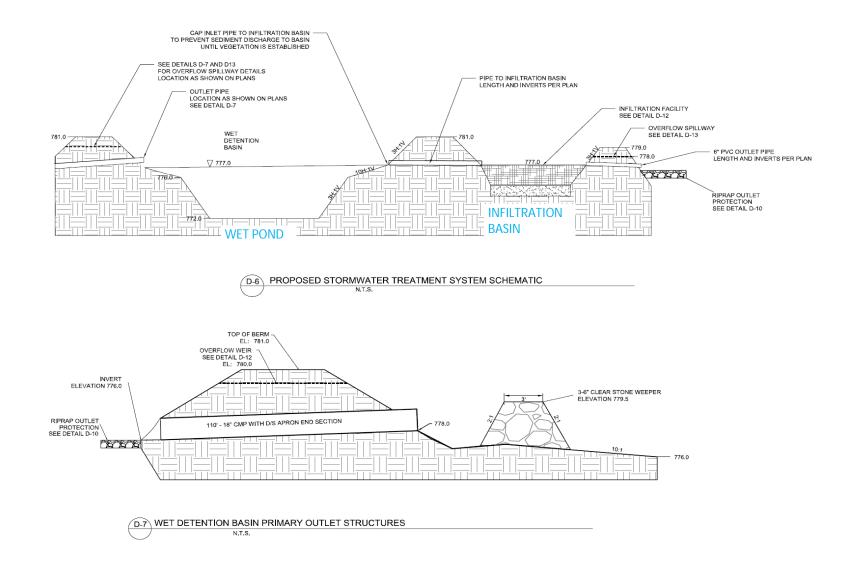
Site Plan


Note: Mark on this "Site Plan" sheet as needed to clarify items on the "General Site Conditions" and "Specific Facility Conditions" sheets

P:\1723 - Alliant - P Trade analysis for Riverside Energy Center\Reports\OM Plan\Kittyhawk Substation 171204.xls

Stormwater/Drainage Facility Inspection Report

Outlet Structure Details



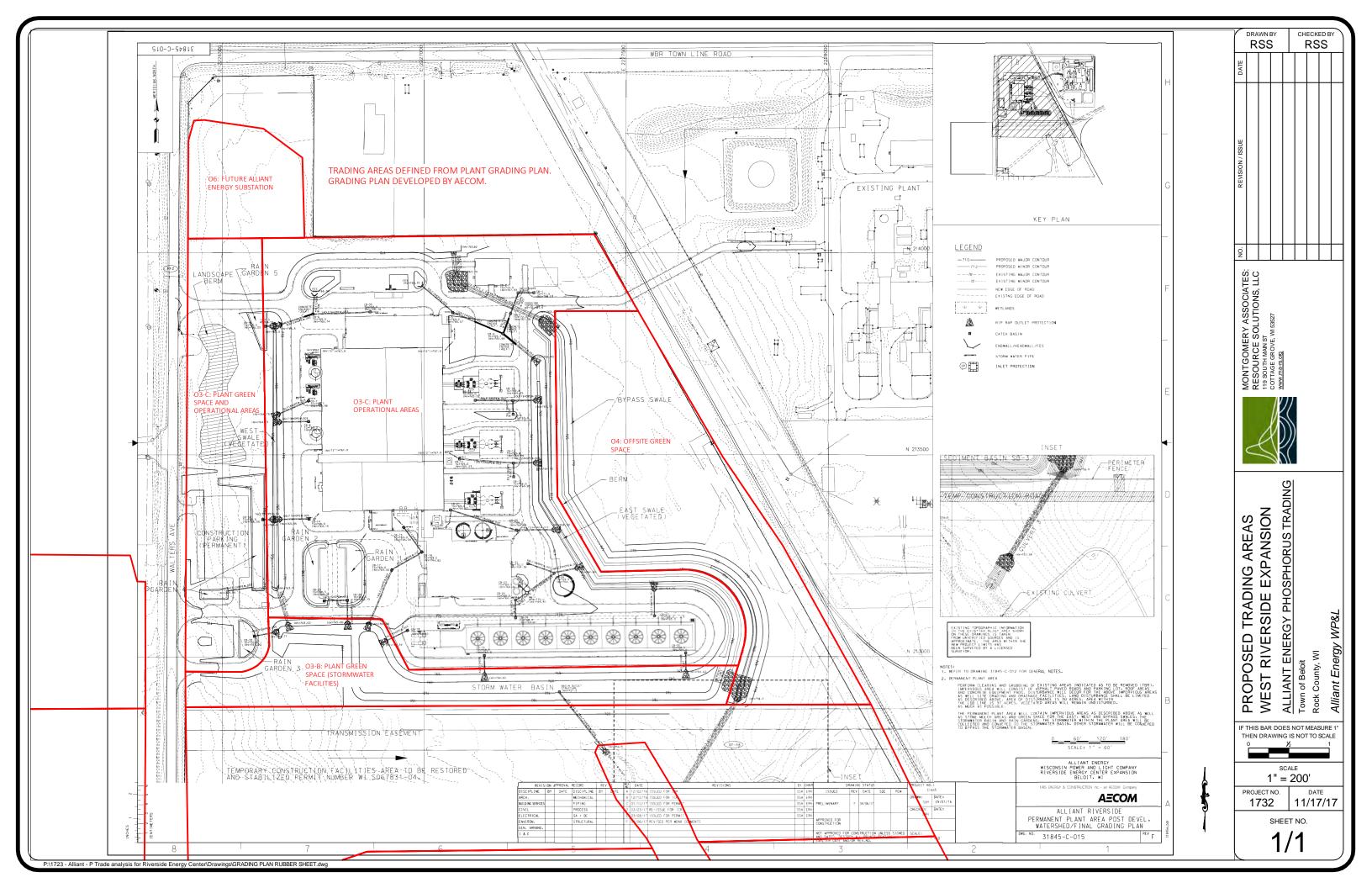
Stormwater/Drainage Facility Inspection Report

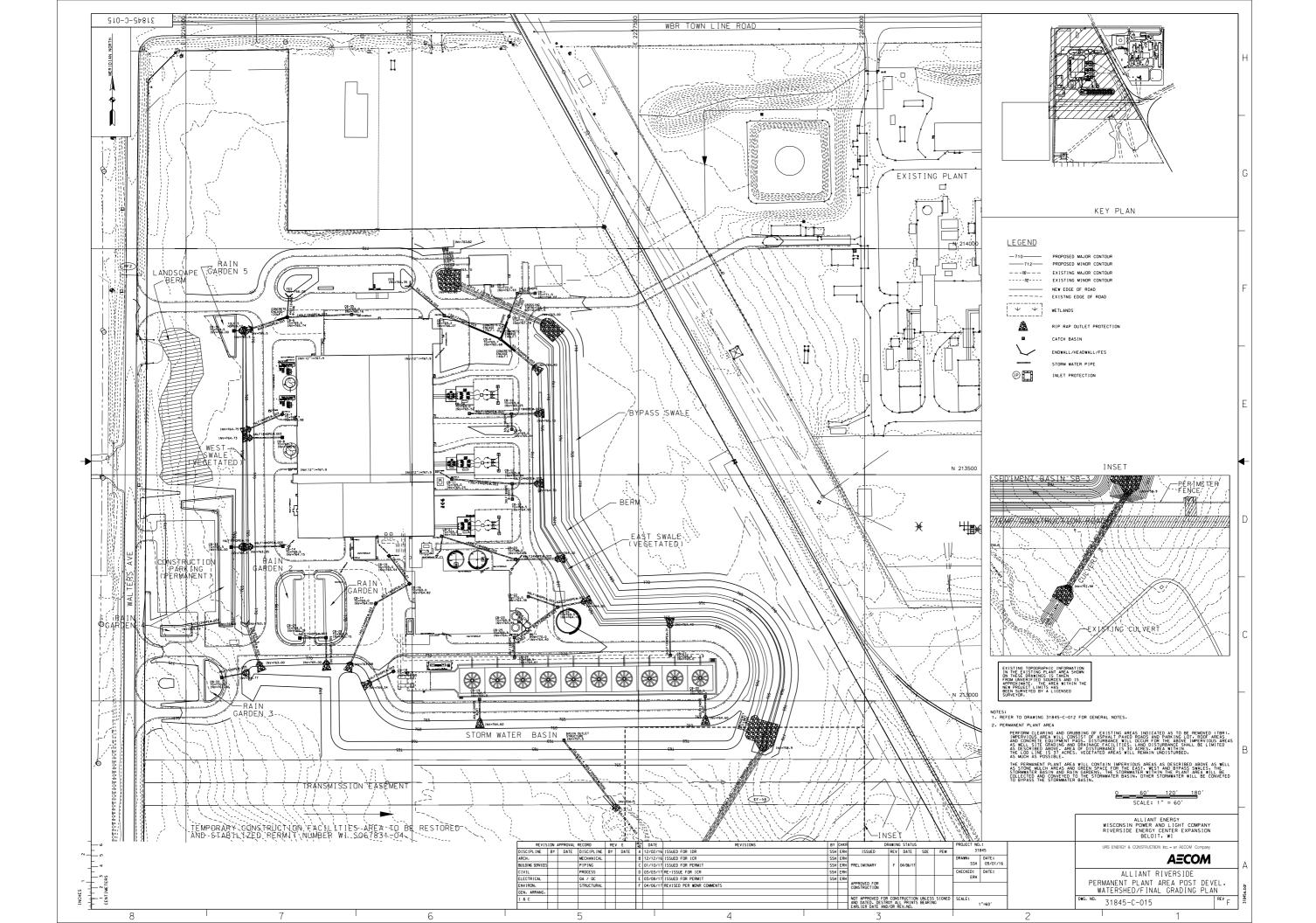
Outlet Structure Details

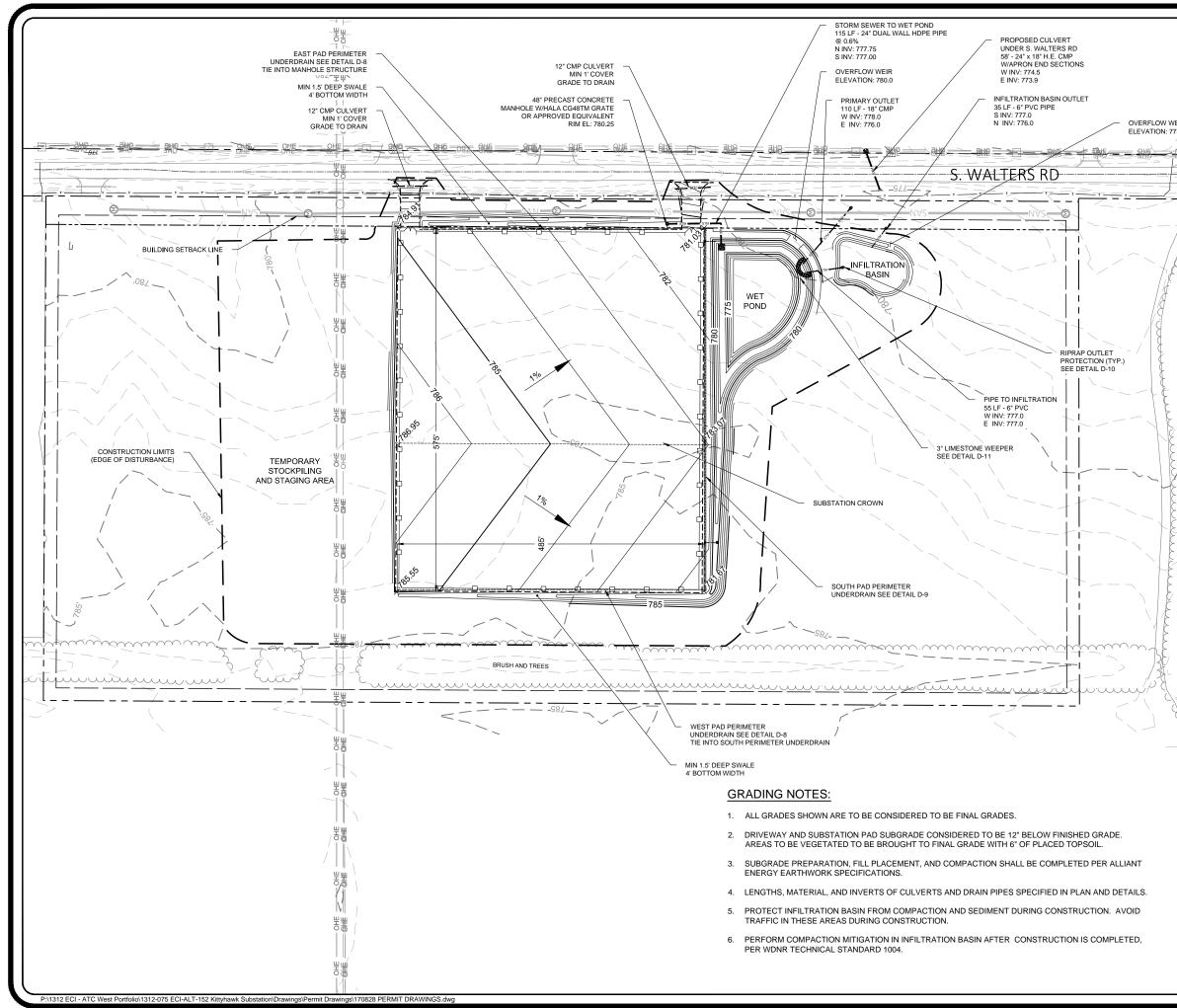
Note: Mark on this sheet as needed to clarify items on the "Specific Facility Conditions" sheet(s)

Stormwater/Drainage Facility Inspection Report

Kittyhawk Substation Site Location: Rock County, WI Joint Use: ATC Only Year Constructed: 2017-18


Photo Log




Note: Attach photo log to this report and list file path of document, if available. Photo log should include direction the photographer was facing when the photo was taken, a description of the photograph subject, and any problems or issues identified in the photograph.

Appendix E – Construction Drawings

		1							
			DATE						
EIR 8.00			REVISION / ISSUE						
	LEGEND								
_	— — 780 — — EXISTING MAJOR (CONTOUR	v						
	EXISTING MINOR O ROAD CENTERLINE OHE SAN EXISTING OVERHE SAN EXISTING SANITAR PROPOSED MAJOF 790 PROPOSED MAJOF 789 PROPOSED FENCE STM PROPOSED FENCE STM PROPOSED STORM X 783.86 PROPOSED PAD SI T-LINE POLES ISTRIBUTION POL	E AD CONDUCTOR Y SEWER R CONTOUR CONTOUR ELINE M SEWER POT ELEVATION	MONTGOMERY ASSOCIATES:		119 SOUTH MAIN ST COTTAGE GROVE WI 53527	MWW.ma-rs.org			
1. 2. 3. 4. 5.	 CONSTRUCTION SEQUENCE INSTALL STONE TRACKING PAD AND SI (EXISTING GRAVEL CAN BE UTILIZED A IF MATERIAL DETERMINED TO BE SUIT. STRIP, STOCKPILE, OR HAUL OFF TOPS ROUGH GRADE SITE TO SUBGRADE WI EXCEPTION OF THE INFILTRATION BASS PIPE TO INFILTRATION AREA. RESTORE SWALES PROMPTLY PER RE PLAN AND INSTALL STONE WEEPERS. RESTORE REMAINING SITE WITH THE E THE SUBSTATION PAD WHICH WILL BE SUBBASE ONLY. GRADE THE INFILTRATION BASIN. PLA SOIL MIX AND SAND STORAGE LAYER I AND RESTORE PER THE RESTORATION 	- ILT FENCE. S TRACKING PAD ABLE). SOIL. TH THE IN. CAP OUTLET STORATION EXCEPTION OF GRADED TO THE CE ENGINEERED PER DETAILS				ALT JEO Kittukowy Substation	AL I - I JZ NILLYLIAWN JUDSLALIUL		

- 7. COMPLETE BELOW GRADE WORK INTERIOR TO THE SUBSTATION FENCE AND PLACE SUBSTATION PAD AGGREGATE.
- 8. REMOVE TEMPORARY EROSION CONTROL MEASURES WHEN SITE IS FULLY STABILIZED.
- 9. CONSTRUCTION SHALL BE IN CONFORMANCE WITH ALLIANT ENERGY CONSTRUCTION SPECIFICATIONS.
- 10. BEFORE GRADING, CONTRACTOR SHALL CONFIRM THE EXISTING GROUNDING WELL LOCATION.

Appendix F – Credit Calculations

Existing PTP From SnapPlus (total lb)													
Field	PTP												
Field	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028		
O1: ATC Laydown	100.0	64.0	40.0	46.0	31.0	32.0	37.0	98.0	63.0	39.0	45.0		
O2: ATC Substation	94.0	103.0	69.0	73.0	83.0	209.0	144.0	93.0	102.0	69.0	72.0		
O3-A: Plant Operating Area	85.0	78.0	86.0	80.0	88.0	82.0	90.0	83.0	91.0	84.0	93.0		
O3-B: Plant Green Space	16.0	15.0	16.0	15.0	17.0	16.0	17.0	16.0	17.0	16.0	18.0		
O3-C: Plant Operating Area	16.0	15.0	16.0	15.0	17.0	15.0	17.0	16.0	17.0	16.0	17.0		
O4: Offsite Plant Green Space	13.0	12.0	13.0	13.0	13.0	13.0	14.0	14.0	14.0	14.0	14.0		
O5: Solar and Green Space	105.0	97.0	108.0	100.0	110.0	102.0	112.0	103.0	114.0	105.0	116.0		
O6: Substation	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
R1: SE Green Space	68.0	62.0	69.0	63.0	70.0	64.0	71.0	65.0	71.0	66.0	72.0		
R2: SW Green Space	61.1	64.3	72.9	183.9	126.9	81.9	89.6	60.5	63.6	28.7	185.2		
R3: Transmission Green Space	111.0	102.0	112.0	103.0	113.0	105.0	115.0	106.0	116.0	107.0	117.0		
	672	615	605	695	672	723	710	657	672	548	752		

Existing Loss (Ib/ac) from SnapPlus

Field	PTP										
Field	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
O1: ATC Laydown	16.6	10.6	6.7	7.7	5.2	5.3	6.2	16.3	10.5	6.5	7.5
O2: ATC Substation	7.7	8.4	5.7	6.0	6.8	17.1	11.8	7.6	8.4	5.7	5.9
O3-A: Plant Operating Area	4.2	3.9	4.3	4.0	4.4	4.1	4.5	4.1	4.5	4.2	4.6
O3-B: Plant Green Space	4.2	3.9	4.2	3.9	4.5	4.2	4.5	4.2	4.5	4.2	4.7
O3-C: Plant Operating Area	3.3	3.1	3.3	3.1	3.5	3.1	3.5	3.3	3.5	3.3	3.5
O4: Offsite Plant Green Space	1.7	1.6	1.7	1.7	1.7	1.7	1.9	1.9	1.9	1.9	1.9
O5: Solar and Green Space	4.4	4.0	4.5	4.2	4.6	4.2	4.7	4.3	4.7	4.4	4.8
O6: Substation	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
R1: SE Green Space	7.6	6.9	7.7	7.0	7.8	7.1	7.9	7.2	7.9	7.3	8.0
R2: SW Green Space	6.6	6.9	7.9	19.8	13.7	8.8	9.7	6.5	6.9	3.1	20.0
R3: Transmission Green Space	7.7	7.1	7.8	7.2	7.9	7.3	8.0	7.4	8.1	7.4	8.1

Proposed PTP from Snap Plus

Field	PTP										
Field	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
O1: ATC Laydown	9.4	6.7	5.8	5.2	5.0	4.9	4.8	4.8	4.8	4.7	4.7
O2: ATC Substation	47.4	30.8	26.7	24.2	23.1	22.6	22.3	22.1	22.0	21.9	21.9
O3-A: Plant Operating Area	3.2	2.8	2.7	2.7	2.6	2.6	2.6	2.6	2.6	2.6	2.6
O3-B: Plant Green Space	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
O3-C: Plant Operating Area	0.8	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
O4: Offsite Plant Green Space	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
O5: Solar and Green Space	4.0	3.5	3.4	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
O6: Substation	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
R1: SE Green Space	13.6	8.3	7.5	7.4	7.3	7.3	7.2	7.2	7.2	7.2	7.2
R2: SW Green Space	25.2	22.8	21.2	20.5	20.1	19.8	19.7	19.6	19.5	19.5	19.5
R3: Transmission Green Space	22.7	14.0	12.8	12.5	12.3	12.3	12.2	12.2	12.2	12.2	12.2
	128	91	82	78	76	75	74	74	74	74	74

Proposed PTP (lb/ac) from SnapPlus

Field	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027	PTP 2028
O1: ATC Laydown	1.6	1.1	1.0	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.8
O2: ATC Substation	3.9	2.5	2.2	2.0	1.9	1.9	1.8	1.8	1.8	1.8	1.8
O3-A: Plant Operating Area	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O3-B: Plant Green Space	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O3-C: Plant Operating Area	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O4: Offsite Plant Green Space	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O5: Solar and Green Space	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O6: Substation	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
R1: SE Green Space	1.5	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
R2: SW Green Space	2.7	2.5	2.3	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.1
R3: Transmission Green Space	1.6	1.0	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.8	0.8

Reduction in P Export Predicted by SnapPlus

Field	PTP	PTP	PTP	PTP	PTP	PTP	PTP	PTP	PTP	PTP	PTP
Field	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
O1: ATC Laydown	90.6	57.3	34.2	40.8	26.0	27.1	32.2	93.2	58.2	34.3	40.3
O2: ATC Substation	46.6	72.2	42.3	48.8	59.9	186.4	121.7	70.9	80.0	47.1	50.1
O3-A: Plant Operating Area	81.8	75.2	83.3	77.3	85.4	79.4	87.4	80.4	88.4	81.4	90.4
O3-B: Plant Green Space	15.4	14.5	15.5	14.5	16.5	15.5	16.5	15.5	16.5	15.5	17.5
O3-C: Plant Operating Area	15.2	14.3	15.4	14.4	16.4	14.4	16.4	15.4	16.4	15.4	16.4
O4: Offsite Plant Green Space	11.9	11.0	12.0	12.0	12.0	12.0	13.0	13.0	13.0	13.0	13.0
O5: Solar and Green Space	101.0	93.5	104.6	96.7	106.7	98.7	108.7	99.7	110.7	101.7	112.7
O6: Substation	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
R1: SE Green Space	54.4	53.7	61.5	55.6	62.7	56.7	63.8	57.8	63.8	58.8	64.8
R2: SW Green Space	35.9	41.5	51.6	163.4	106.8	62.1	70.0	40.9	44.1	9.2	165.7
R3: Transmission Green Space	88.3	88.0	99.2	90.5	100.7	92.7	102.8	93.8	103.8	94.8	104.8
	544	524	522	617	596	648	635	583	598	474	678

Existing PTP SnapPlus and WinSLAMM combined results

Field	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O1: ATC Laydown	100.0	64.0	40.0	46.0	31.0	32.0	37.0	98.0	63.0	39.0
O2: ATC Substation	Areas mode	led in WinS	LAMM not	modeled u	nder existir	g condition	IS			
O3-A: Plant Operating Area	Areas mode	led in WinS	LAMM not	modeled u	nder existir	g condition	IS			
O3-B: Plant Green Space	Areas mode	led in WinS	LAMM not	modeled u	nder existir	g condition	IS			
O3-C: Plant Operating Area	Areas mode	led in WinS	LAMM not	modeled u	nder existir	g condition	IS			
O4: Offsite Plant Green Space	13.0	12.0	13.0	13.0	13.0	13.0	14.0	14.0	14.0	14.0
O5: Solar and Green Space	105.0	97.0	108.0	100.0	110.0	102.0	112.0	103.0	114.0	105.0
O6: Substation	Areas mode	led in WinS	LAMM not	modeled u	nder existir	g condition	IS			
R1: SE Green Space	68.0	62.0	69.0	63.0	70.0	64.0	71.0	65.0	71.0	66.0
R2: SW Green Space	61.1	64.3	72.9	183.9	126.9	81.9	89.6	60.5	63.6	28.7
R3: Transmission Green Space	111.0	102.0	112.0	103.0	113.0	105.0	115.0	106.0	116.0	107.0
	458.1	401.3	414.9	508.9	463.9	397.9	438.6	446.5	441.6	359.7

Existing Loss (Ib/ac) SnapPlus and WinSLAMM combined results

Field PTP 2018 PTP 2019 PTP 2020 PTP 2021 PTP 2022 PTP 2022 PTP 2024 PTP 2024 PTP 2026 PTP 2026 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
O2: ATC Substation Areas modeled in WinSLAMM not modeled under existing conditions Areas modeled in WinSLAMM not modeled under existing conditions O3:A: Plant Operating Areas Areas modeled in WinSLAMM not modeled under existing conditions Areas modeled in WinSLAMM not modeled under existing conditions O3:B: Plant Green Space Areas modeled in WinSLAMM not modeled under existing conditions Areas modeled in WinSLAMM not modeled under existing conditions O4: Offsite Plant Green Space 1.7 1.7 1.7 1.9 1.9 1.9 O5: Solar and Green Space 4.4 4.0 4.5 4.2 4.6 4.2 4.7 4.3 4.7 4.4 O5: Subarand Green Space 7.6 6.9 7.7 7.0 7.8 7.1 7.9 7.2 7.9 7.3 R1: SE Green Space 6.6 6.9 7.9 1.3 8.8 9.7 6.5 6.9 3.1	Field	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O3A: Plant Operating Area O3-B: Plant Green Space Areas modeled in WinSLAMM not modeled under existing conditions Second tions O3-B: Plant Operating Area O3: C Plant Operating Area O4: Offsite Plant Green Space 1.7 1.6 1.7 1.7 1.7 1.9 1.9 1.9 1.9 O5: Solar and Green Space 4.4 4.0 4.5 4.2 4.6 4.2 4.7 4.3 4.7 4.4 O6: Substation Areas modeled in WinSLAMM not modeled under existing conditions 4.7 4.4 4.6 4.2 4.7 4.3 4.7 4.4 O6: Substation Areas modeled in WinSLAMM not modeled under existing conditions 7.6 6.9 7.7 7.0 7.8 7.1 7.9 7.2 7.9 7.3 7.2 7.9 7.3 7.2 7.9 7.3 7.1 7.9 7.5 6.6 9 7.9 1.3 8.8 9.7 6.5 6.9 3.1	O1: ATC Laydown	16.6	10.6	6.7	7.7	5.2	5.3	6.2	16.3	10.5	6.5
O3-B: Plant Green Space Areas modeled in WinSLAMM not modeled under existing conditions Version O3-C: Plant Operating Area Areas modeled in WinSLAMM not modeled under existing conditions Version Version O4: Offsite Plant Green Space 1.7 1.6 1.7 1.7 1.7 1.9 1.9 1.9 O5: Solar and Green Space 4.4 4.0 4.5 4.2 4.6 4.2 4.7 4.3 4.7 4.4 O5: Solar and Green Space Areas modeled in WinSLAMM not modeled under existing conditions Participant Conditions	O2: ATC Substation	Areas model	led in WinS	LAMM not	modeled u	nder existin	g condition	s			
O3-C: Plant Operating Area Areas modeled in WinSLAMM not modeled under existing conditions O4: Offsite Plant Green Space 1.7 1.6 1.7 1.7 1.7 1.9 1.9 1.9 1.9 O5: Solar and Green Space 4.4 4.0 4.5 4.2 4.6 4.2 4.7 4.3 4.7 4.4 O6: Substation Areas modeled in WinSLAMM not modeled under existing conditions 7.8 6.9 7.7 7.8 7.1 7.9 7.2 7.9 7.3 R1: SE Green Space 6.6 6.9 7.9 1.3.7 8.8 9.7 6.5 6.9 3.1	O3-A: Plant Operating Area	Areas model	led in WinS	LAMM not	modeled u	nder existin	g condition	s			
O4: Offsite Plant Green Space 1.7 1.6 1.7 1.7 1.7 1.7 1.9 1.9 1.9 1.9 O5: Solar and Green Space 4.4 4.0 4.5 4.2 4.6 4.2 4.7 4.3 4.7 4.4 O6: Substation Areas modeled in WinSLAMM not modeled under existing conditions 7.8 6.9 7.7 7.8 7.1 7.9 7.2 7.9 7.3 7.2 7.9 7.3 7.2 7.9 7.3 7.1 7.9 7.9 7.3 7.2 7.9 7.3 7.1 7.9 7.2 7.9 7.3 7.1 7.9 7.2 7.9 7.3 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.3 7.9 7.3 7.3 7.9 7.9 <	O3-B: Plant Green Space	Areas model	led in WinS	LAMM not	modeled u	nder existin	g condition	s			
OS: Solar and Green Space 4.4 4.0 4.5 4.2 4.6 4.2 4.7 4.3 4.7 4.4 OD: Substation Areas modeled in WinSLAMM not modeled under existing conditions Areas modeled in WinSLAMM not modeled under existing conditions 7 7.8 7.1 7.9 7.2 7.9 7.3 7.1 7.9 7.2 7.9 7.3 7.1 7.9 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.2 7.9 7.3 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.9 7.2 7.9 7.3 7.1 7.4 </td <td>O3-C: Plant Operating Area</td> <td>Areas model</td> <td>led in WinS</td> <td>LAMM not</td> <td>modeled u</td> <td>nder existin</td> <td>g condition</td> <td>s</td> <td></td> <td></td> <td></td>	O3-C: Plant Operating Area	Areas model	led in WinS	LAMM not	modeled u	nder existin	g condition	s			
Of: Substation Areas modeled in WinSLAMM not modeled under existing conditions R1: SE Green Space 7.6 6.9 7.7 7.8 7.1 7.9 7.2 7.9 7.3 R2: SW Green Space 6.6 6.9 7.9 19.8 13.7 8.8 9.7 6.5 6.9 3.1	O4: Offsite Plant Green Space	1.7	1.6	1.7	1.7	1.7	1.7	1.9	1.9	1.9	1.9
R1: SE Green Space 7.6 6.9 7.7 7.0 7.8 7.1 7.9 7.2 7.9 7.3 R2: SW Green Space 6.6 6.9 7.9 19.8 13.7 8.8 9.7 6.5 6.9 3.1	O5: Solar and Green Space	4.4	4.0	4.5	4.2	4.6	4.2	4.7	4.3	4.7	4.4
R2: SW Green Space 6.6 6.9 7.9 19.8 13.7 8.8 9.7 6.5 6.9 3.1	O6: Substation	Areas model	led in WinS	LAMM not	modeled u	nder existin	g condition	s			
	R1: SE Green Space	7.6	6.9	7.7	7.0	7.8	7.1	7.9	7.2	7.9	7.3
R3: Transmission Green Space 7.7 7.1 7.8 7.2 7.9 7.3 8.0 7.4 8.1 7.4	R2: SW Green Space	6.6	6.9	7.9	19.8	13.7	8.8	9.7	6.5	6.9	3.1
	R3: Transmission Green Space	7.7	7.1	7.8	7.2	7.9	7.3	8.0	7.4	8.1	7.4

Proposed PTP SnapPlus and WinSLAMM combined results

Field	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O1: ATC Laydown	9.4	6.7	5.8	5.2	5.0	4.9	4.8	4.8	4.8	4.7
O2: ATC Substation	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
O3-A: Plant Operating Area	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
O3-B: Plant Green Space	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
O3-C: Plant Operating Area	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
O4: Offsite Plant Green Space	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
O5: Solar and Green Space	4.0	3.5	3.4	3.3	3.3	3.3	3.3	3.3	3.3	3.3
O6: Substation										
R1: SE Green Space	13.6	8.3	7.5	7.4	7.3	7.3	7.2	7.2	7.2	7.2
R2: SW Green Space	25.2	22.8	21.2	20.5	20.1	19.8	19.7	19.6	19.5	19.5
R3: Transmission Green Space	22.7	14.0	12.8	12.5	12.3	12.3	12.2	12.2	12.2	12.2
	83.0	63.3	58.7	56.8	56.0	55.5	55.2	55.0	54.9	54.9

Proposed PTP (lb/ac) SnapPlus and WinSLAMM combined results

Field	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O1: ATC Laydown	1.6	1.1	1.0	0.9	0.8	0.8	0.8	0.8	0.8	0.8
O2: ATC Substation	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
O3-A: Plant Operating Area	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
O3-B: Plant Green Space	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
O3-C: Plant Operating Area	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
O4: Offsite Plant Green Space	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O5: Solar and Green Space	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
O6: Substation										
R1: SE Green Space	1.5	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
R2: SW Green Space	2.7	2.5	2.3	2.2	2.2	2.1	2.1	2.1	2.1	2.1
R3: Transmission Green Space	1.6	1.0	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.8

Reduction in P Export Predicted SnapPlus and WinSLAMM combined results

Field	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O1: ATC Laydown	90.6	57.3	34.2	40.8	26.0	27.1	32.2	93.2	58.2	34.3
O2: ATC Substation										
O3-A: Plant Operating Area										
O3-B: Plant Green Space										
O3-C: Plant Operating Area										
O4: Offsite Plant Green Space	11.9	11.0	12.0	12.0	12.0	12.0	13.0	13.0	13.0	13.0
O5: Solar and Green Space	101.0	93.5	104.6	96.7	106.7	98.7	108.7	99.7	110.7	101.7
O6: Substation										
R1: SE Green Space	54.4	53.7	61.5	55.6	62.7	56.7	63.8	57.8	63.8	58.8
R2: SW Green Space	35.9	41.5	51.6	163.4	106.8	62.1	70.0	40.9	44.1	9.2
R3: Transmission Green Space	88.3	88.0	99.2	90.5	100.7	92.7	102.8	93.8	103.8	94.8
	382.1	345.0	363.2	459.1	414.9	349.5	390.5	398.5	393.7	311.9

Credit Calculations June 2018

Long Term Credits

Field	Trade Ratio	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O1: ATC Laydown	1.2			13.2	13.7	13.9	14.0	14.0	14.0	14.1	14.1
O2: ATC Substation	2.1		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
O3-A: Plant Operating Area	2			1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
O3-B: Plant Green Space	2			0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
O3-C: Plant Operating Area	2		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
O4: Offsite Plant Green Space	1.2			10.0	10.0	10.0	10.0	10.9	10.9	10.9	10.9
O5: Solar and Green Space	1.2				69.3	69.3	69.3	69.3	69.3	69.3	69.4
O6: Substation	2.1										
R1: SE Green Space	1.2			20.7	20.8	20.9	20.9	20.9	20.9	20.9	20.9
R2: SW Green Space	1.2	6.8	8.8	10.1	10.7	11.1	11.3	11.4	11.5	11.5	7.7
R3: Transmission Green Space	1.2				32.7	32.9	32.9	32.9	33.0	33.0	33.0
		6.8	10.3	57.5	160.8	161.5	161.9	163.0	163.1	163.2	159.4

Intermediate Credits

Field	Trade Ratio	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O1: ATC Laydown	1.2			15.3	20.3	7.8					
O2: ATC Substation	2.1										
O3-A: Plant Operating Area	2										
O3-B: Plant Green Space	2										
O3-C: Plant Operating Area	2										
O4: Offsite Plant Green Space	1.2			0.0	0.0	0.0					
O5: Solar and Green Space	2				6.8	11.8					
O6: Substation	2.1										
R1: SE Green Space	1.2			30.6	25.6	31.4					
R2: SW Green Space	1.2	23.1	25.8	32.9	125.4	77.9					
R3: Transmission Green Space	1.2				42.7	51.0					
		23.1	25.8	78.8	220.8	179.9	0.0	0.0	0.0	0.0	0.0

Total Credits

Field	Trade Ratio	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O1: ATC Laydown	1.2	0.0	0.0	28.5	34.0	21.7	14.0	14.0	14.0	14.1	14.1
O2: ATC Substation	2.1	0.0	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
O3-A: Plant Operating Area	2	0.0	0.0	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
O3-B: Plant Green Space	2	0.0	0.0	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
O3-C: Plant Operating Area	2	0.0	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
O4: Offsite Plant Green Space	1.2	0.0	0.0	10.0	10.0	10.0	10.0	10.9	10.9	10.9	10.9
O5: Solar and Green Space	2	0.0	0.0	0.0	76.1	81.1	69.3	69.3	69.3	69.3	69.4
O6: Substation	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
R1: SE Green Space	1.2	0.0	0.0	51.2	46.4	52.3	20.9	20.9	20.9	20.9	20.9
R2: SW Green Space	1.2	29.9	34.6	43.0	136.2	89.0	11.3	11.4	11.5	11.5	7.7
R3: Transmission Green Space	1.2	0.0	0.0	0.0	75.4	83.9	32.9	32.9	33.0	33.0	33.0
		29.9	36.1	136.3	381.5	341.4	161.9	163.0	163.1	163.2	159.4

Total Credits accounting for Timeline

Field	Trade Ratio	PTP 2018	PTP 2019	PTP 2020	PTP 2021	PTP 2022	PTP 2023	PTP 2024	PTP 2025	PTP 2026	PTP 2027
O1: ATC Laydown	1.2			28.5	34.0	21.7	14.0	14.0	14.0	14.1	14.1
O2: ATC Substation	2.1		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
O3-A: Plant Operating Area	2			1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
O3-B: Plant Green Space	2			0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
O3-C: Plant Operating Area	2		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
O4: Offsite Plant Green Space	1.2			10.0	10.0	10.0	10.0	10.9	10.9	10.9	10.9
O5: Solar and Green Space	2				76.1	81.1	69.3	69.3	69.3	69.3	69.4
O6: Substation	2.1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
R1: SE Green Space	1.2			51.2	46.4	52.3	20.9	20.9	20.9	20.9	20.9
R2: SW Green Space	1.2	29.9	34.6	43.0	136.2	89.0	11.3	11.4	11.5	11.5	7.7
R3: Transmission Green Space	1.2				75.4	83.9	32.9	32.9	33.0	33.0	33.0
		29.9	36.1	136.3	381.5	341.4	161.9	163.0	163.1	163.2	159.4

Gray cells indicate areas analyzed with WinSLAMM

Green cells indicate areas analyzed with SnapPlus

Appendix G – Forms

State of Wisconsin Department of Natural Resources 101 South Webster Street Madison WI 53707-7921 dnr.wi.gov

Notice: Pursuant to s. 283.84, Wis. Stats., this form must be completed by any WPDES permittee that is using water quality trading as a method of complying with a permit limitation. Failure to complete this form would not result in penalties. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31 - 19.39, Wis. Stats.).

Applicant Information	on							
Permittee Name		Permit Number WI-				Facility Site Nu	umber	
Facility Address					City		State	e ZIP Code
Project Contact Name	e (if applicable) Ad	ldress	_		City		State	e ZIP Code
Project Name								4
Broker/Exchange In Was a broker/exchang			4					-11
Broker/Exchange Org	anization Name	0110	Contac	t Name				
Address			Phone	Number	E	Email		
Trade Registration I	nformation (Use	a separate form for ea	ach trad	le agreem	ent)		4000	
Туре	Trade Agreement Number	Practices Used to Ge Credits	enerate	Anticipate Reductio		Trade Ratio	Method of	Quantification
 Urban NPS Agricultural NPS Other 								
County	Clos	est Receiving Water Na	me	Land Par	cel ID(s) P	arameter(s) be	eing traded
I certify that the in	this document to t formation in this d	ving: he best of my knowledg ocument is true to the b			je.		ation.	
Signature of Preparer					Dat	e Signed		
inquiry of those perso	of law that this do ns directly respons nd complete. I am	cument and all attachme ible for gathering and e aware that there are sig	ntering th	he informa	tion, the	information is,	to the best of	my knowledge
Signature of Authorize	ed Representative		1		Dat	e Signed		_
Dett. Described		Leave Blank – Fo	or Depar	rtment Us	e Only	T. J. B		
Date Received						Trade Docket N	umber	
Entered in Tracking Syst	tem 🔲 Yes	Date Entered				Name of Depart	ment Reviewer	

State of Wisconsin Department of Natural Resources 101 South Webster Street Madison WI 53707-7921 dnr.wi.gov

Notification of Water Trade Agreement Termination

Form 3400-209 (1/14)

Notice: Pursuant to s. 283.84, Wis. Stats., and ch. NR 217 Wis. Adm. Code, this form must be completed by any WPDES permittee that is using water quality trading as a method of complying with a permit limitation. Failure to complete this form would not result in penalties. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31 - 19.39, Wis. Stats.).

Applicant Information		the second se			The second se		
Permittee Name		Permit Number			Facility Site Numb	er	
		WI-		10:4-1		low	
Facility Address				City		State	ZIP Code
Project Contact Name (if applicable)	Address	5		City		State	ZIP Code
Project Name	-P		_	1		¢	
Credit Generator Information		al a second					
Credit generator type (select all that apply):		nitted Discharge (no	on-MS4/CAFO)		oan nonpoint source		
apply)-	Pern	nitted MS4		Ag	ricultural nonpoint so	ource discha	rge
		nitted CAFO			ner - Specify:		
Trade Agreement number(s) to be te	rminated	including affected I	and parcel ID(s):			
Amount of trading credit being termin	ated		Effective date	of termi	ination		
			1				
a commentaria da companya d			1				
Reason for termination							
	eplaced?			þ			
ls this agreement being updated or re) Isure	2'		
Is this agreement being updated or re Will this termination result in non-con			O No O Ur nit O Ye) nsure es; Name	Ð <u>!</u>		
Is this agreement being updated or re Will this termination result in non-con			O No O Ur nit O Ye O No) nsure es; Name	91		
Is this agreement being updated or re Will this termination result in non-con or other permit requirements?	npliance	with the effective lin	O No O Ur nit O Ye) nsure es; Name	9:		
Is this agreement being updated or re Will this termination result in non-con or other permit requirements? The preparer certifies all of the fo • I am familiar with the specificatio addressed.	npliance i Illowing: Ins submi	with the effective lin	No Ur nit. Ye No Ur tion, and I believ	o nsure es; Name o nsure ve all ap	plicable items in this		ave been
Is this agreement being updated or re Will this termination result in non-con or other permit requirements? The preparer certifies all of the fo • I am familiar with the specificatio	npliance i Illowing: Ins submi	with the effective lin	No Ur nit. Ye No Ur tion, and I believ	o nsure o nsure ve all ap xcluded	plicable items in this		ave been
Is this agreement being updated or re Will this termination result in non-con or other permit requirements? The preparer certifies all of the fo • I am familiar with the specificatio addressed. • I have completed this document Signature of Preparer	npliance (Illowing: ons submi to the be	with the effective lin	No Ur nit. Ye No Ur tion, and I believ	o nsure o nsure ve all ap xcluded	plicable items in this pertinent information		ave been
Is this agreement being updated or re Will this termination result in non-con or other permit requirements? The preparer certifies all of the fo • I am familiar with the specificatio addressed. • I have completed this document	npliance v illowing: ons submi to the be ture document oonsible for am award	with the effective lin tted for this applica st of my knowledge nt and all attachmen or gathering and en e that there are sign	No No O No O No O No O No O No O Vr O No O Vr O No O Vr tion, and I believ and have not e nts were prepare tering the inform	o nsure o nsure ve all ap xcluded D ed unde	plicable items in this pertinent information ate Signed r my direction or sup ne information is, to t	n. pervísion. Ba the best of n	sed on my

Appendix H – DNR Reviewer Comments

Comments Issued by Amy Garbe on 4/20/2018, MARS responses to comments in red

WPL – Riverside Water Quality Trading Plan

Plan Comments and Suggested Revisions

Draft: 4/20/2018, Amy Garbe

Section 1.4 – Credit Needed

Pleas provide more explanation of current operations and anticipated expansion as it relates to the 0.65 lbs/day existing phosphorus limits. Based on the values provided in the narrative, it would appear that 0-150 lbs/yr is the needed offset. More detailed calculations should be provided.

Additionally, through discussions with Riverside, there are plans to provide wastewater treatment to reduce the effluent from the expansion. Please provide more detail if available and how that would affect the needed credits.

Section 1.4 has been added to better described the proposed P discharge from the existing plant as well as the new plant. A very brief description of the wastewater treatment system and the contracted design parameters are provided.

Section 1.5 (previously 1.4) has been updated to describe the range of credits Alliant will require to be in compliance with the WPDES permit.

Section 2.3 – Soil Sampling

The UW Extension Soil Sampling Guidance (A2100) recommends taking a composite sample for every 5 acres of a field at plow depth or at least 6". According to the narrative, only 2 soil samples were taken. From the results provided in appendix B, samples were split by depth and not enough samples were taken for the acreage amount. There should have been at least 19 samples split-up by field.

Due to construction already in progress, some fields might not be available for additional sampling; however, for those fields not under construction soil sampling should be performed following the UW Extension guidance. Specifically focus on those fields using SnapPlus for modelling. Please include a map of the location of all samples taken by field.

Additional soil samples were collected in May 2018 following UW Extension guidance. Soil sampling was concentrated in areas analyzed with SnapPlus and areas to be restored to prairie. Due to construction activities on site new soil samples were not able to be collected for fields O4 and O5. Additionally, portions of fields O2, R2, and R1 were unable to be sampled due to construction activities. A soil sampling map has been provided in figure B1, all soil analysis results are provided in Appendix B, additional discussion is also provided in Section 2.3 of the trading plan.

Section 2.4 – Phosphorus Runoff Modeling Approach

Please rerun SnapPlus using the newest version (version 16) and update all applicable tables.

In reviewing the SnapPlus files, the incorrect soil type was used for fields O1 and O4. Both fields use LoB soil type, while the correct soil types are LoC2 and WaA, respectively. Please rerun SnapPlus to account for these changes and update the tables accordingly.

At the time of updating this analysis the latest version of SnapPlus available is SnapPlus version 17.0, build 18127.1502. Version 17.0 was downloaded and used for the revised analysis/, including the recommended changes to the soil types (described above) and the new addition of the new soil samples.

Section 2.5 – Potentially Tradeable Phosphorus

WPL-Riverside cannot take credit for reductions needed under another WPDES permit. Stormwater new construction permits require an 80% TSS reduction which does correlate to a phosphorus percent reduction as well. Therefore, credits are not generated at 100% as calculated, but rather a certain percent less is generated on the stormwater practices. This Is not considered a new threshold and no interim credits are generated in this process.

The 80% TSS reduction is approximately 60% for urban stormwater out of SLAMM but it depends on the practices being employed and the source areas. SLAMM can simulate both TSS and TP by switching the TP reports for the models and this is the best way to get a correlation between TSS and TP. For those fields using stormwater practices (O2, O3 and O6) please rerun SLAMM using the TP report to calculate the correlation and required TP percent reduction. Then apply that reduction to the potentially tradeable phosphorus and update the applicable tables. Please include a section in the WQT plan describing this.

Additional discussion of the credit generation from areas covered under other WPDES Permits has been added to section 2.5. A TP:TSS ratio has been calculated for each developed area allowing for a calculation of the TP load associated with a TSS reduction of 80%. The excess TP removed by the stormwater facilities was calculated and used to calculate P credits by applying the trade ratios. The description of this analysis has been added to Section 3.4.

Section 3.2 – Design

It is unclear what fields O1, O4 and O5 will be planted in; prairie or some other perennial vegetation. Please clarify.

Fields O4, and O5 will be planted with WisDOT standard seed mixes or similar mixes. Field O1 will be seeded with ATC pasture mix or a similar seed mix. Additional discussion has been added to section 3.2. Detailed designs have not been fully developed for these areas. In the event that the restoration plans for this area are changed these changes will be reflected in the annual water quality trading report to DNR.

Please state what NRCS standards will be followed for all best management practices.

All vegetative restoration management practices shall follow NRCS Conservation practice standard 327. This has been added in Section 3.2.

Section 4.2 – Trade Ratios

For the downstream trade factor, please show the calculation that lead to the factor used. Upon more detailed investigation of the drainage patterns and available LiDAR data, it was determined that the fields on the west of Walters Rd (O1, O2, R2) drain to culverts under the roadway. Therefore, the eventual discharge location for all fields in the trading plan is effectively the same location as the Riverside outfall, and the downstream trade ratio does not apply.

Please rephrase the uncertainty factor. The practice is incorrectly listed as "whole field" management, but rather a conservation easement (land in perennial vegetation) is being used. It results in the same 1 uncertainty factor.

The text description under the uncertainty factor description has been updated.

Section 5.2 – Reporting

The stormwater reports should be included as part of inspection reports and annual WQT report. Please state this in the WQT plan in the inspection reporting section.

The notification of practice failure should be rephrased to make sure that maintenance activities and repairs will be included within the 5-day written notice. Additionally, any information should be included as to what Riverside's back-up plan is should a practice fail.

The requested change has been made to the plan. Proposed practice restorative measures shall be provided in writing within 5-days of noticing practice failure. Some proposed discharge mitigation measures have been provided in section 5.2.

Trade Agreement

Pursuant s. 283.84(1), Wis. Stats, a trade agreement is required to be in place prior to using trading to help demonstrate compliance with the final phosphorus limits. In this case, WPL-Riverside is generating the credits themselves and s. 283.84(1)(e), Wis. Stats applies, meaning that Riverside must enter into an agreement with WDNR. This agreement should be in place prior to conditional approval of the WQT plan.

Alliant Energy's legal department is currently working to develop the trade agreement with the DNR. The trade agreement will be provided as soon as it is approved by Alliant and the DNR. Language from this comment was added to Section 5.2 of the report to acknowledge this.