Composting Deactivation of CWD Prions

S. Lichtenberg¹, R. Michitsch², J. Pedersen¹, A. Smith², D. Storm³, A. Thomas²

UW-Madison¹, UW-Stevens Point², WI Dept. Natural Resources³

Dealing with Prions/Mortalities

typical methods unsustainable

- burial not practical, especially in winter
- landfilling is problematic and incineration is costly
- transport of carcasses between counties is problematic

disposal must be <u>quick</u>, <u>cost-effective</u>, <u>safe</u>

- previous composting research has been inconclusive
 - Xu et al. 2014 (BSE)
 - Huang et al. 2007, Xu et al 2012 (Scrapie)
- alternative method is composting <u>biopiles</u>

Current Research:

Specific Aim 1: Adapt RT-QuIC for the detection of CWD prions in environmental samples

Specific Aim 2: Compost CWD infected deer remains in a Summer and Winter Wisconsin climate

Specific Aim 3: Assess the composting process for bacterial indicator and CWD prion deactivation in soil, leachate and compost samples

Sampling & Monitoring

- ongoing measurements
 - compost & soil temperature
 - soil moisture content, effluent
 - indicator bacteria (*E. coli* NAR, others)

weather & environmental parameters

- air temperature, precipitation
- visual observations, odor, vermin

Ending Experiment #1

- Were desired compost temperatures attained?
- Did the CWD prion degrade, persist or leave the composting environment?
- How is the performance of RT-QuIC for analyses?

Average Cell and Ambient Air Temperature

Experiment 1 never reached desired peak average temperatures but we still obtained good data

0 CWD Sampling

Time to Threshold: A proxy for prion abundance

<u>A faster time to threshold implies a larger</u> <u>concentration of seeding material</u>

Results from Compost and

<u>Tissues</u>

All remaining animal tissues seeded RT-QuIC. Seeding material migrated down compost layers to soil layers. All dialysis controls remained positive.

Results from Cell #5 Effluent

duration of composting in Cell #5

Nutrient Analyses

- pH and Electrical Conductivity
- Extractable Nitrogen
- Extractable Ammonium
- Extractable Phosphorus
- Extractable Potassium
- Total Nutrients and Heavy Metals
- Total Carbon and Nitrogen
- % Water Content

Current Experiment

Plus Up – Experiment #3

Continue expanded bacterial analyses

- indicator bacteria (Total coliforms, E. coli, E. Faecalis, E. coli NAR)
- Chicken feathers
 - to encourage establishment of keratin degrading microbial community
 - (i.e. $\uparrow \beta$ -sheet content proteins that may lead to prion degradation)
- Re-build CWD negative cell

Other future possibilities

- Biochar addition in effluent barrels to immobilize prion
- Inoculate with thermophilic bacteria or their proteases
- Modify soil type, C-substrate type, etc.

Ongoing Benefits

Leveraging MI funding for future opportunities
APHIS, NSF, Alberta funding opportunities

Manuscripts

- Use as DNR reports and outreach/extension

Ongoing collaborations

- MI and WI Departments of Natural Resources
- Michigan State University, UW-Madison, UW-Stevens Point
- WI Department of Agriculture, Trade and Consumer Protection
- Composting Research and Education Foundation
- Agriculture and Agri-Food Canada, University of Alberta, CFIA
- University of Vermont

Outreach Presentations

Oral

- Wisconsin Integrated Resource Management Conference. Green Bay, WI. 23-25 Feb. 2022.
- US Composting Council's 28th Annual Conference and Tradeshow. Austin, TX. 24-27 Jan. 2022.
- Agronomy, Crop & Soil Science Societies of America Annual Meetings. Salt Lake City, UT. 7-10 Nov. 2021.
- International Symposium on Animal Mortality Management. Virtual. 18-19 May 2021.
- Wisconsin Integrated Resource Management Conference. Virtual. 22-25 Feb. 2021.
- US Composting Council's 29th Annual Conference and Tradeshow. Virtual. 26-28 Jan. 2021.
- Agronomy, Crop & Soil Science Societies of America Annual Meetings. Virtual. 9-13 Nov. 2020.
- Wisconsin Integrated Resource Management Conference. Wisconsin Dells, WI. 26-28 Feb. 2020.
- US Composting Council's 28th Annual Conference and Tradeshow. Charleston, SC. 28-31 Jan. 2020.
- Agronomy, Crop & Soil Science Societies of America Annual Meetings. San Antonio, TX. 10-13 Nov. 2019.

Poster

- Agronomy, Crop & Soil Science Societies of America Annual Meetings. Salt Lake City, UT. 7-10 Nov. 2021.
- The Wildlife Society's 28th Annual Conference. 1-5 Nov. 2021.
- UWSP CNR Undergraduate Student Research Symposium. Stevens Point, WI. 9 Apr. 2021.
- University of Wisconsin Undergraduate Student Research Symposium. Virtual. May 2021.
- Agronomy, Crop & Soil Science Societies of America Annual Meetings. San Antonio, TX. 10-13 Nov. 2019.

Questions?

Acknowledgments:

MI and WI Dept. Natural Resources, Composting Res. and Educ. Found. Michigan State University, UW-Madison, UW-Stevens Point WI Dept. Agriculture, Trade and Consumer Protection