

Chemical Upcycling of Waste Plastics

BIOENERGY TECHNOLOGIES OFFICE

Chemical Upcycling of Waste Plastics (CUWP)

George W. Huber, twitter: @gwhuber2 University of Wisconsin-Madison Department of Chemical & Biological Engineering www.cuwp.org

CUWP Research Team:

18 – Principal Investigators 29 Industrial Advisory Board **Members** 5 – Post-Doctoral Researchers 18 – Graduate Students 7+ - Undergraduate **Students**

GW Huber has a financial interest in Anellotech.

Organizational Chart

CUWP supports 36 graduate students and post-doctoral researchers.

CEVER Center for Chemical Upcycling of Waste Plastics

Chemical Recycling in Circular Economy

The objective of CUWP is to develop the scientific and engineering principles that will enable the circular upcycling of plastic wastes into virgin plastic resins using chemical technology.

• Start Date: April 2021

The First Step in Recycling: Material Recovery Facilities (MRF)

Bailed Plastics

Modeling the Material Recovery Facility

Some key assumptions and results

- Capacity: 120,000 MT/year
- Total Fixed Capital Cost: \$5.15 MM
- Operating Cost: \$Operating hours: 4160 hours/year (2 8-hours shift, 5 days a week)
- Net Present Value (NPV): 3.57 60 MM USD

Dr. Mark Mba-

Techno-Economic Analysis NPV Sensitivity Analysis

■ +30% ■ -30% 70 Net Present Value (\$MM)

Composition reference

- US EPA, "Municipal Solid Waste Generation, Recycling, and Disposal in the United States Tables and Figures for 2010 https://www.epa.gov/sites/production/files/2015-09/documents/2010 msw fs.pdf," US Environ. Prot. Agency, no. February, p. 63, 2010.
- R.W. Beck Inc., "Pennsylvania Recovered Material Composition Study," 2005.
- P. Spendelow, "Composition of Commingled Recyclables Before and After Processing," no. March. 2011.
- C. C. Group, S. Public, and U. Staff, "Seattle Public Utilities Residential Waste Stream Composition Study FINAL Report," no. November, 2007.

National MRF Survey

- Partnered with Environmental Research and Education Foundation.
- Questions: MRF type, waste source, handled materials (type and quantity), % revenue, type of equipment.
- 49 responses, but only 38 provided waste mass information, and 23 provided plastics information.

#3-7 Plastic Bale Composition from MRFs

Victor Cecone Greg Curtzwiler Keith Vorst

Package Design: Natural Cheese—1966

1966

- 1.5 billion lb
 - 45% cans, boxes and rigid plastic containers
 - 35% packaged in paper and foil
 - 20% plastic film
- PVDC-coated cellophane + PE
- Polyester (PET)-PVDC-PE

Inventor Howard Curter 🛸 Glenn E. Lineburg Jann Brown & Mc Williams

Howard Curler UW-Madison (1948)

Howard Curler CBE Distinguished Chair (1997)

Sacharow, Stanley, and Roger C. Griffin. Food Packaging; a Guide for the Supplier, Processor, and Distributor. Westport, CT: AVI Pub., 1970.

Package Design: Natural Cheese—1966

- flex fatigue resistance layer
- adhesive layer
- oxygen barrier layer
- stiffness layer
- oxygen barrier layer
 - seal layer

Solvent-Targeted Recovery and Precitation (STRAP) of multilayer plastic packaging

TW Walker, N Frelka, Z Shen, AK Chew, J Banick, S Grey, MS Kim, JA Dumesic, RC Van Lehn, GW Huber, Recycling of multilayer plastic packaging materials by solvent targeted recovery and precipitation, ScienceAdvances (2020), 6, eaba7599.

We have Processed a Large Variety of Plastics with STRAP

- Clear rigid multilayer film used in food containers
- Mixed multilayer plastic waste
- Face masks
- Printed multilayer polyester flexible films
- Printed multilayer nylon flexible films
- PVDC flexible films
- Marine plastics
- Polycarbonates (eye glass waste)
- Waste flexible PE films
- Municipal Solid Waste (MSW)

Panzheng Zhou

Thermodynamic computational tools are used to design solvents

Database of 9+ polymers in more than 1000 solvents

Panzheng Zhou, Kevin L Sánchez-Rivera, George W Huber, Reid C Van Lehn, Computational Approach for Rapidly Predicting Temperature-Dependent Polymer. Solubilities Using Molecular-Scale Models, (2021) ChemSusChem 14 (19), 4307-4316.

Have database with 9+ polymers, 1000+ solvents

ahhr	loh nomo	Solvent name in	CAS	BP	Th	EVOH		H PE		PET		PP		PS		PVC		Nylon 6		Nylon 66	
addr	lap name	cosmobase	numbe	(°C)	(°C)	RT	Th	RT	Th	RT	Th	RT	Th	RT	Th	RT	Th	RT	Th	RT	Th
	methanol	methanol	67-56-1	64.6	63.6	0.0	0.8	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.8	0.0	0.3	0.0	0.1
DCM	dichloromethane	ch2cl2	75-09-2	40	39.0	0.0	0.0	0.0	0.1	0.3	0.8	0.2	0.5	4.6	8.5	2.7	4.6	0.9	1.7	0.2	0.5
	ethylene glycol	glycol	107-21-1	197.3	120.0	0.0	10.6	0.0	0.9	0.0	0.0	0.0	0.1	0.0	0.0	0.0	1.6	0.0	0.4	0.0	0.2
	Acetone	propanone	67-64-1	56	55.0	0.0	0.2	0.0	0.3	0.1	0.7	0.3	1.4	9.2	21.3	10.9	19.8	0.0	0.2	0.0	0.1
	Isopropanol	2-propanol	67-63-0	82.3	81.3	0.0	1.4	0.0	1.6	0.0	0.0	0.1	2.3	0.0	1.2	0.2	2.9	0.0	1.0	0.0	0.4
	1-propanol	propanol	71-23-8	97.2	96.2	0.0	4.1	0.0	4.2	0.0	0.1	0.1	4.1	0.0	2.8	0.1	5.4	0.0	2.6	0.0	1.1
	toluene	toluene	108-88-3	110.6	109.6	0.0	0.3	0.1	22.6	0.0	2.5	1.1	30.9	3.6	41.0	0.7	14.8	0.0	1.3	0.0	0.4
	chloroform	ch cl 3	67-66-3	61.1	60.1	0.0	0.0	0.0	0.6	0.2	1.0	0.5	3.1	2.3	9.8	1.1	4.2	4.4	6.2	1.9	2.9
THF	tetrahydrofuran	thf	109-99-9	65	64.0	0.1	0.9	0.1	1.7	0.0	0.8	2.0	10.1	14.0	31.3	8.9	19.1	0.0	0.4	0.0	0.2
THP	tetrahydropyran	thp	142-68-7	88	87.0	0.0	1.1	0.1	7.3	0.0	0.8	2.0	20.9	7.2	33.7	3.9	17.9	0.0	0.7	0.0	0.3
	cyclohexane	cyclohexane	110-82-7	80.7	79.7	0.0	0.0	0.1	6.9	0.0	0.0	4.0	24.0	0.2	4.6	0.1	1.2	0.0	0.0	0.0	0.0
	heptane	n-heptane	142-82-5	98.5	97.5	0.0	0.0	0.1	15.3	0.0	0.0	2.9	29.3	0.1	5.2	0.0	1.7	0.0	0.0	0.0	0.0
	triethylamine	triethylamine	121-44-8	89	88.0	nan	7.7	0.1	8.7	0.0	0.0	2.8	23.2	0.8	12.9	0.5	4.7	0.0	0.2	0.0	0.1
	1,2-propanediol	propyleneglycol	57-55-6	187.6	120.0	0.0	12.4	0.0	3.2	0.0	0.0	0.0	0.6	0.0	0.3	0.0	3.8	0.0	1.7	0.0	0.7
DMSO	dimethyl sulfoxide	dimethylsulfoxide	67-68-5	189	120.0	1.3	35.3	0.0	5.3	0.0	8.3	0.0	1.7	1.5	18.2	8.4	33.2	0.0	3.0	0.0	1.6
	hexane	hexane	110-54-3	68.7	67.7	0.0	0.0	0.1	3.1	0.0	0.0	3.6	16.2	0.1	1.9	0.1	0.6	0.0	0.0	0.0	0.0
	acetylacetone	acetylacetone	123-54-6	138	120.0	0.0	6.6	0.0	8.2	0.0	2.0	0.0	3.0	0.5	23.0	2.1	23.7	0.0	1.7	0.0	0.7
	tert-butanol	tert-butanol	75-65-0	82.4	81.4	0.0	0.9	0.0	2.1	0.0	0.0	0.3	3.8	0.0	2.0	0.2	3.3	0.0	0.7	0.0	0.3

Experimental validation

Pred. solubilities are in good agreement with expts at

P Zhou, KL Sanchez-Rivera, GW Huber, RC Van Lehn, *ChemSusChem* 2021; P Zhou, J Yu, KL Sanchez-Rivera, GW Huber, RC Van Lehn, *Green Chemistry*

Food Grade Resins from Reverse Laminated Printed Flexible Films

Kevin L Sánchez-Rivera, Aurora del Carmen Munguía-López, Panzheng Zhou, Victor S Cecon, Jiuling Yu, Kevin Nelson, Daniel Miller, Steve Grey, Zhuo Xu, Ezra Bar-Ziv, Keith L Vorst, Greg W Curtzwiler, Reid C Van Lehn, Victor M Zavala, George W Huber, <u>Recycling of a post-industrial printed multilayer plastic film containing polyurethane inks by solvent-targeted recovery and precipitation</u>, Resources, Conservation and Recycling, (2023) 197, 107086.

Polymer Characterization

Thermal Properties do not Change During STRAP

Thermal and molecular parameters for virgin resins and polymers recovered from the printed multilayer film by STRAP.									
Resin	T _c (°C)	T _{m,2} (° C)	ΔH _c (J/g)	ΔH _{m,2} (J/g)	Crystallinity				
PE STRAP	105.0	119.7	76.0	82.3	28.38%				
LDPE Virgin	98.3	112.0	84.8	86.1	29.69%				
LLDPE Virgin 45G	106.1	122.4	83.3	85.5	29.48%				
LLDPE Virgin 47N	107.0	122.2	70.2	73.3	25.28%				
EVOH STRAP	150.4	175.7	41.8	37.4	17.17%				
EVOH Virgin	147.8	176.4	54.2	54.3	24.93%				
PET STRAP	209.6	246.0	41.7	22.7	16.21%				
PET Virgin	169.2	244.6	30.0	38.5	27.50%				

- Melt temperature (T_{m,2}) of recovered resins (printed film) were comparable to original
- Differences were some samples of PET & EVOH are due to residuals
- Additional ink/other-resin removal to ensure PET is free of any contaminants

Cecon, V., Da Silva, P.F., Vorst, K., Curtzwiler, G.W., The effect of post-consumer recycled polyethylene (PCRPE) on the properties of polyethylene blends of different densities. Polymer Deg. and Stability, 190, 2021.

Printed Flexible Film to High Quality PE

Shredded post-industrial multilayer printed plastic film Recovery of PE component from printed film via STRAP

Production of 100% recycled PE film

STRAP has 60-70% lower greenhouse gas emissions than the Virgin Resins production process.

Aurora Munguia

Kevin L Sánchez-Rivera, Aurora del Carmen Munguía-López, Panzheng Zhou, Victor S Cecon, Jiuling Yu, Kevin Nelson, Daniel Miller, Steve Grey, Zhuo Xu, Ezra Bar-Ziv, Keith L Vorst, Greg W Curtzwiler, Reid C Van Lehn, Victor M Zavala, George W Huber, <u>Recycling of a post-industrial printed multilayer plastic</u> <u>film containing polyurethane inks by solvent-targeted recovery and precipitation</u>, Resources, Conservation and Recycling, (2023) 197, 107086.

Aurora del Carmen Munguía-López, Dilara Göreke, Kevin L Sánchez-Rivera, Horacio A Aguirre-Villegas, Styliani Avraamidou, George W Huber, Victor M Zavala, Quantifying the Environmental Benefits of a Solvent-Based Separation Process for Multilayer Plastic Films, Green Chemistry, (2023) 25, 4, 1611-1625

STRAP is moving towards commercialization

- Successfully demonstrated STRAP technology with a range of postindustrial and post-consumer plastic materials
- Generated laboratory scale high quality resins for food packaging applications
- Designed (and are building) a 25 kg/hr STRAP system at Michigan Tech University (with Ezra Bar-Ziv)
- Identified location to build first commercial STRAP system at Convergen Energy in Green Bay, WI
- Looking for partners who want to help us commercialize or implement STRAP technology

Pyrolysis/Liquefaction of Plastics produces a Plastic Oil

CUWF

Jiayang Wu

Mixing Colored HDPE (PCR)

Fluidized bed reactor at University of Wisconsin-Madison

Distilled Plastic oil at 165 °C Light oil: 50 wt% Heavy oil: 18 wt%

Pyrolysis is not burning plastics

Plastic combustion products are CO_2 , H_2O , and heat

Combustion = Burning = Incineration

Plastic Pyrolysis products are an oil and light gases

Pyrolysis or thermal depolymerizati on (also liquefaction)

- Pyrolysis of plastic has a significantly lower carbon footprint compared to incineration GHG emission of pyrolyzing one tonne of plastic waste is 500-1000kg CO₂e.^a GHG emission of combusting one tonne of plastic waste is 2200-3000kg/CO₂e.^b
- 2. Pyrolysis enables a circular economy for plastic

a. RTI International. (2012). Environmental and Economic Analysis of Emerging Plastics Conversion Technologies.
b. Rudolph, N., Kiesel, R., & Aumnate, C. (2020). Understanding plastics recycling: Economic, ecological, and technical aspects of plastic waste handling.

8 Companies have made Announcement on Plastic Pyrolysis/thermal depolymerization Commercial Facilities

Company name	Plant location	Scale (kton/year)	Status	Reactor type	Feedstocks	Product	Collaborators
Agilyx	Tigard	3	Operational since 2018	Stirred tank reactor	PS	Styrene monomer	Toyo, ExxonMobil, Braskem, AmSty, Lucite, and NextChem
QuantaFuel —	Skive Amsterdam	20 100	Operational since 2017 2023-2024	Fluidized bed reactor	HDPE, LDPE, PP, PS, and PET	Liquid oil, non- condensable gas, and carbon rich ash	BASF, VITOL, and VITTI
	Sunderland	100	2024			curo on mon ush	
Pryme	Rotterdam	40-60	Plan to start up in 2022	Stirred tank reactor	PS, PE, and PP	Kerosine, naphtha, and wax	Shell
Brightmark	Brightmark Asheley 100		Not reported	Auger Rector	PET, HDPE, PVC, LDPE, PP, and PS	Ultra-low sulfur diesel, naphtha and wax	BP, Chevron, Clean fuel Partners, and Northeast Indiana Solid Waste Management District
	Seville	5	Operational since 2017			Diesel and Naphtha	
Plastic Energy	Le Havre	25	Design phase planned to start up in 2023	Stirred tank reactor	LDPE, HDPE, PP, PS		SABIC, ExxonMobil, and Freepoint Eco-Systems
	Almeria	Not reported	Operational since 2014				
	Houston	33	Start up in Mid-2024	Not reported	LDPE, HDPE, PP,	~	Plastic Energy, and
Freepoint Eco-Systems —	Obetz	90	Start up in 2023	Ĩ	PS	Synthetic oil	TotalEnergies
Shell	Pulau Bukom	50	2022	Not reported	Not reported	Not reported	Pryme
ExxonMobil	Baytown	30	Start up in End 2022	Fluidized Bed Reactor	Not reported	Not reported	Cyclyx, Agilyx, and Plastic Energy

H Li, HA Aguirre-Villegas, RD Allen, X Bai, CH Benson, GT Beckham, SL Bradshaw, JL Brown, RC Brown, MA Sanchez Castillo, VS Cecon, JB Curley, GW Curtzwiler, S Dong, S
Gaddameedi, JE Garcia, I Hermans, MSKim, J Ma, LO Mark, M Mavrikakis, OO Olafasakin, TA Osswald, KG Papanikolaou, H Radhakrishnan, KL Sánchez-Rivera, KN Tumu, RC Van Lehn,
KL Vorst, MM Wright, J Wu, VMZavala, P Zhou, GW Huber, Expanding Plastics Recycling Technologies: Chemical Aspects, Technology Status and Challenges, Green Chemistry, (2022) 4/18

Plastic Pyrolysis Oil Contain High Amount of Olefins

H. Li, J. Wu, Z. Jiang, J. Ma, VM Zavala, CR Landis, M Mavrikakis, GW Huber, (2023). Hydroformylation of pyrolysis oils to aldehydes and alcohols from polyolefin waste. Science, 30 381(6658), 660-666.

An array of chemicals can be produced from aldehydes by Hydroformylation

- Does the chemistry work for waste plastic pyrolysis oil?
- High-purity products?

Down shifting of the blobs suggests the formation of aldehydes

H. Li, J. Wu, Z. Jiang, J. Ma, VM Zavala, CR Landis, M Mavrikakis, GW Huber, (2023). Hydroformylation of pyrolysis oils to aldehydes and alcohols from polyolefin waste. Science, 381(6658), 660-666.

High conversion (>90%) of aldehydes was achieved

TOS=5 h, Co catalyst Removal, Continuous Flow Reactor

H. Li, J. Wu, Z. Jiang, J. Ma, VM Zavala, CR Landis, M Mavrikakis, GW Huber, (2023). Hydroformylation of pyrolysis oils to aldehydes and alcohols from polyolefin waste. Science, 381(6658), 660-666.

We can apply hydroformylation chemistry to upgrade waste pyrolysis oils

H. Li, J. Wu, Z. Jiang, J. Ma, VM Zavala, CR Landis, M Mavrikakis, GW Huber, (2023). Hydroformylation of pyrolysis oils to aldehydes and alcohols from polyolefin waste. Science, 34 381(6658), 660-666.

Combination of pyrolysis and hydroformylation is a *platform technology* to recycle/upcycle waste plastics, thus enables *carbon circularity*

Houqian Li @houqian_li

Jiayang Wu

CEVER Center for Chemical Upcycling of Waste Plastics

Chemical Recycling in Circular Economy

The objective of CUWP is to develop the scientific and engineering principles that will enable the circular upcycling of plastic wastes into virgin plastic resins using chemical technology.

• Start Date: April 2021

WISCONSIN-MADISON