

c. Regulation		
Noxious/Regulated ² :	СТ	
Minnesota Regulations:	Not regulated	
Michigan Regulations:	Not regulated	
Washington Regulations:	Not regulated	
II. Establishment Potential and Life History Traits		
a. Life History	Submersed to amphibious aquatic monoecious herb ⁴ ; annual ^{3,6} ; perennial ^{2,4}	
Fecundity	Can be high (self-pollinator) ⁴	
Reproduction	Sexual ¹² ; Asexual ⁶	
Importance of Seeds:	Primary unit of dispersal ⁵ ; fruits only in quiet waters or mudflats ^{4,6}	
Vegetative:	Clonally spread by fragmentation ⁴	
Hybridization	Hybridizes with C. platycarpa (believed to be short-lived) ¹³ , and C.	
	cophocarpa ¹⁴	
Overwintering		
Winter Tolerance:	High [°]	
Phenology:	Flowering period from April to November in North America ³	
b. Establishment		
Climate		
Weather:	Undocumented	
Wisconsin-Adapted:	Yes	
Climate Change:	Undocumented	
Taxonomic Similarity		
Wisconsin Natives:	High ⁸ ; five native <i>Callitriche</i> spp. recorded in Wisconsin ^{2,3}	
Other US Exotics:	Low	
Competition	9	
Natural Predators:	Ducks eat seeds and foliage ⁸ ; contains catalpol and aucubin (unpalatable	
	iridoid glucosides which are herbivore-deterrent) ¹³	
Natural Pathogens:	Undocumented	
Competitive Strategy:	Disturbance and stress tolerant ²	
Known Interactions:	Outcompeted <i>Potamogeton crispus</i> in non-stressed, undisturbed	
	experimental conditions'	
Reproduction		
Rate of Spread:	Low; distribution concentrated around points of introduction; lack of seed	
	dispersal vector	
Adaptive Strategies:	Vegetative spread; disturbance-tolerant	
Timeframe	Undocumented	
c. Dispersal		
Intentional:	Listed as good oxygenator for ponds	
Unintentional:	Ballast and aquarium disposal; seed transport in mud attached to motor	
	vehicles"; birds	
Propagule Pressure:	May be high as plant is recommended for use in aquarium trade	

Figure 3: Courtesy of Clayton Antieau, Washington State Department of Ecology¹⁶ Figure 4: Courtesy of Leslie J. Mehrhoff, University of Connecticut, Bugwood.org¹⁷

III. Damage Potential	
a. Ecosystem Impacts	
Composition	Invertebrate abundance and diversity increases relative to unvegetated areas
_	(in riffle sections of a Scottish river) ¹⁹ ; dense clonal growth less common,
	but can impact native species ⁶
Structure	Undocumented
Function	Undocumented
Allelopathic Effects	Contains catalpol and aucubin (unpalatable iridoid glucosides which are
	herbivore-deterrent) ¹⁵
Keystone Species	Undocumented
Ecosystem Engineer	Undocumented
Sustainability	Undocumented
Biodiversity	Increases in certain cases, may decrease in others ^{6,19}
Biotic Effects	Can impact native species ⁶
Abiotic Effects	Undocumented
Benefits	May provide some cover for young fish and aquatic insects ^{8,19}
b. Socio-Economic Effects	
Benefits	Pond oxygenator (recommended by aquarium trade)
Caveats	Risk of release and population expansion outweighs benefits of use
Impacts of Restriction	Increase in monitoring, education, and research costs
Negatives	Dense growth may inhibit recreation
Expectations	Seems to have mild and localized effects when compared to other highly
Cost of Impacts	Decreased recreational and aesthetic value: decline in ecological integrity:
Cost of impacts	increased research and management expenses
"Eradication" Cost	Undocumented
IV Control and Prevention	
a Detection	
Crupsis:	Vary high: confused with notive Callitriche and provide to distinguish.
Crypsis.	may also be confused with <i>Elating</i> spp. ⁸
Benefits of Farly Response:	Indy also be confused with <i>Elaune</i> spp.
Denemis of Earry Response.	Ondocumented

b. Control	
Management Goal 1	Nuisance relief
Tool:	Diquat, paraquat, chlorinated aromatics ²⁰ , mechanical removal
Caveat:	Harvesting causes fragmentation which increases distribution and density;
	non-target species may be negatively impacted
Cost:	Undocumented
Efficacy, Time Frame:	Undocumented
	21.22
Tool:	Grass carp (<i>Ctenopharyngodon idella</i>) ^{21,22}
Caveat:	Non-selective grazers; stocking is illegal due to occasional fertility
Cost:	Unknown
Efficacy, Time Frame:	Reduced standing crop of <i>C. stagnalis</i> ^{21} , but not preferred food choice ^{22}

USDA, ARS, National Genetic Resources Program. 2008. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. Retrieved on December 21, 2010 from: http://www.ars-grin.gov/cgibin/npgs/html/tax_search.pl?Callitriche%20stagnalis

- ¹¹ Mesters, C.M.L. 1995. Shifts in macrophyte species composition as a result of eutrophication and pollution in Dutch transboundary streams over the past decades. Journal of Aquatic Ecosystem Health 4(4):295-305.
- ¹² Philbrick, C.T. and J.M. Osborn. 1994. Exine reduction in underwater flowering *Callitriche* (Callitrichaceae): implications for the evolution of hypohydrophily. Rhodora 96(888):370-381.

² United States Department of Agriculture, Natural Resource Conservation Service. 2010. The PLANTS Database. National Plant Data Center, Baton Rouge, LA, USA. Retrieved December 21, 2010 from: http://plants.usda.gov/java/profile?symbol=CAST

³ University of Wisconsin – Madison. 2005. Family Callitrichaceae. Wisconsin Botanical Information System, Wisflora. Retrieved December 21, 2010 from: http://www.botany.wisc.edu/cgi-bin/SearchResults.cgi?Genus=Callitriche

 ⁴ Invasive Plant Atlas of New England. 2004. University of Connecticut. Retrieved December 21, 2010 from: http://nbii-nin.ciesin.columbia.edu/ipane/icat/browse.do?specieId=43

⁵ Philbrick, C.T., R.A. Aakjar and R. Stuckey. 1998. Invasion and spread of *Callitriche stagnalis* (Callitrichaceae) in North America. Rhodora 100(901):25-38.

⁶ Les, D.H. and L.J. Mehrhoff. 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biological Invasions 1:281-300.

⁷ O'Hare, M.T., K.A. Hutchinson and R.T. Clarke. 2007. The drag and reconfiguration experienced by five macrophytes from a lowland river. Aquatic Botany 86:253-259.

⁸ Washington State Department of Ecology Water Quality Program. 2007. Submersed Plants Species *Callitriche stagnalis* Scop., pond water-starwort. Retrieved December 21, 2010 from: http://www.ecy.wa.gov/programs/wq/plants/plantid2/descriptions/calsta.html

⁹ Sabbatini, M.R. and K.J. Murphy. 1996. Response of *Callitriche* and *Potamogeton* to cutting, dredging and shade in English drainage channels. Journal of Aquatic Plant Management 34:8-12.

¹⁰ Onaindia, M., I. Amezaga, C. Garbisu and B. Garcia-Bikuna. 2005. Aquatic macrophytes as biological indicators of environmental conditions of rivers in north-eastern Spain. Annales de Limnologie 41(3):175-182.

- ¹³ Martinsson, K. 1991. Natural hybridization within the genus *Callitriche* (Callitrichaceae) in Sweden. Nordic Journal of Botany 11(2):143-151.
- ¹⁴ Cooper, R.L., J.M. Osborn and C.T. Philbrick. 2000. Comparative pollen morphology and ultrastructure of the Callitrichaceae. American Journal of Botany 87(2):161-175.
- ¹⁵ Damtoft, S., S.R. Jensen, J. Thorsen, P. Molgard and C.E. Olsen. 1994. Iridoids and verbascoside in Callitrichaceae, Hippuridaceae, and Lentibulariaceae. Phytochemistry 36(4):927-929.
- ¹⁶ Antieau, C. Washington State Department of Ecology. Submersed Plants. Retrieved December 21, 2010 from:
- http://www.ecy.wa.gov/programs/wq/plants/plantid2/photopages/calstagnalis.html
- ¹⁷ Mehrhoff, L. European waterstarwort. *Callitriche stagnalis* Scop. University of Connecticut, Bugwood.org
- ¹⁸ ANGFA: Aquatic Survey Database. Retrieved December 21, 2010 from: http://db.angfa.org.au/album.php?dir=plants&page=32
- ¹⁹ O'Hare, M.T. and K.J. Murphy. 1999. Invertebrate hydraulic microhabitat and community structure in *Callitriche stagnalis* Scop. patches. Hydrobiologia 415:169-176.
- ²⁰ Matthews, L.J. 1962. Aquatic Weed Control. Proceedings of the 15th NZ Weed Control Conference 198-201.
- ²¹ Edwards, D.J. and E. Moore. 1975. Control of water weeds by grass carp in a drainage ditch in New Zealand. New Zealand Journal of Marine and Freshwater Research 9(3):283-292.
- ²² Edwards, D.J. 1975. Taking a bite at the waterweed problem. New Zealand Journal of Agriculture 130(1):33-36.