

Nick Bertolas
Waste Water Specialist – Bureau of Water Quality
Wisconsin Department of Natural Resources
South Central Region
3911 Fish Hatchery Rd
Fitchburg WI 53711

Subject:

Discharge Monitoring Report – Groundwater Extraction and Treatment System (GETS) Madison-Kipp Corporation (MKC) Site, 201 Waubesa Street, Madison, Wisconsin.

Dear Mr. Bertolas:

On behalf of MKC, this letter summarizes the activities completed from July 1 through July 31, 2015 as part of the Groundwater Extraction and Treatment System at the MKC site located at 201 Waubesa Street in Madison, Wisconsin (site) under Wisconsin Pollution Discharge Elimination System (WPDES) Permit WI-0046566-6. Wisconsin Department of Natural Resources (WDNR) approved the sodium permanganate neutralization for WPDES discharge memo electronically on July 9, 2015. A revised discharge monitoring report DMR form was provided by the WDNR on August 5, 2015 and is included as Attachment A, for the GETS monitoring events completed during the reporting period. A summary of operation and activities completed through July 31, 2015 is presented below.

GETS Operation and Monitoring

The GETS system was started on July 14, 2015 after confirmation of sodium permanganate neutralization by addition of hydrogen peroxide. The system was started at approximately 8:40 am July 14, 2015 at the design flow rate of 45 gallons per minute. Initial compliance samples were collected the morning of July 15, 2015 within the first 24 hours of operation per the permit. The initial sample results were received Friday July 17, 2015 and indicated an elevated concentration for tetrachloroethe (PCE) and trichloroethene (TCE). A complete list of all GETS WDPES Compliance Sample Results is included in Table 1. Upon review of the data the system was shutdown pending further system review. On Tuesday July 21, 2015, a mechanical issue at the booster Blower B-202 was identified and repaired before restarting the system. Additional mechanical issues were identified and corrected at Discharge Flow Meter FT-211 and Transfer Pump P-103 on July 26 through July 29, 2015. Upon repair of Transfer Pump P-103 the system ran continuously through July

ARCADIS U.S., Inc. 126 North Jefferson Street Suite 400 Milwaukee Wisconsin 53202 Tel 414 276 7742 Fax 414 276 7603

www.arcadis-us.com

ENVIRONMENT

Date:

August 14, 2015

Contact:

Jennine Trask

Phone:

414.277.6203

Email

Jennine.Trask@arcadisus.com

Our ref:

WI001368.0026

ARCADIS

Nick Bertolas

August 14, 2015

31, 2015. WPDES compliance samples were only taken during days when the system was operating to collect both influent and effluent samples.

Per the August 4, 2015 notification email, initial results indicate an exceedance of PCE above the established monthly WPDES discharge limit for the Madison-Kipp GETS. The initial WPDES compliance sample, collected on July 15, 2015, contained a concentration for PCE and TCE above the WPDES discharge limits. As such the monthly average is above the discharge limit for PCE; however, the TCE concentration is below the monthly average limit. After mechanical modifications, the compliance samples after the initial test have shown an improved treatment efficiency and are below the discharge criteria when operating at design conditions. We continue to optimize treatment. An additional sample collected after a pump motor replacement was slightly above the discharge criteria on July 29, 2015; however, after air flow modifications to the air stripper were made the next sample was below the discharge criteria for the daily grab samples and at the discharge limit for the monthly limit after that initial July 15, 2015 sample. Madison-Kipp recognizes the importance of effective treatment and is working to maintain the system operation as such. All other compliance samples are below the monthly average limit as shown on Table 1.

Sodium permanganate neutralization is documented in Attachment B. Concentrations observed continue to fall in the 3.8 milligram per liter range on the *Ground Water Sample Preservation at In-Situ Chemical Oxidation Sites – Recommended Guidelines* colormetric chart dated August 2012, Attachment C. The hydrogen peroxide is dosed to the Mix Tank T-102 via a chemical feed pump. Hydrogen peroxide dosing is adjusted manually based on the neutralization observations and the level in the hydrogen peroxide storage drum. Process modifications are being designed to send notification if the neutralization process is interrupted. This design will be finalized for implementation in August.

ARCADIS

Nick Bertolas

August 14, 2015

If you have any questions or require any additional information, please contact us at 414.276.7742.

Sincerely,

ARCADIS U.S., Inc.

Rebecca Robbennolt

Rebeica A Rubbennal

Remediation Specialist

Christopher D. Kubacki, PE Senior Engineer

Kutt DKell

Table 1 GETS WPDES Compliance Sample Results

Attachment A Discharge Monitoring Report Form

Attachment B Neutralization Log

Attachment C Ground Water Sample Preservation at In-Situ Chemical Oxidation

Sites - Recommended Guidelines colormetric chart dated August

2012

Copies:

Alina Satkoski – Madison Kipp

Mike Schmoller – WDNR (electronic)

George Parrino - Madison Department of Health (electronic)

Discharge Monitoring Report – Groundwater Extraction and Treatment System Madison-Kipp Corporation Site 201 Waubesa Street Madison, Wisconsin

		Location Sample Date	Influent 7/15/2015	Influent 7/24/2015	Influent 7/27/2015	Influent 7/29/2015	Influent 7/30/2015	Influent 7/31/2015	Influent Monthly Average	Influent Composite 7/15/2015
	Permit									
_	Discharge									
Parameter	Limits	Unit								
Miscellaneous										
Oil & Grease	10	mg/L	1.7 JB	1.2 JB	NA	NA	2.9 JB	NA	1.9	NA
Chloride	395	mg/L	210	200	NA	NA	190	NA	200	NA
Total Suspended Solids	40	mg/L	<1.6	4.0 J	NA	NA	2.0 J	NA	3.0	2.0 J
Biological Oxygen Demand	20	mg/L	<2.0	<2.0	NA	NA	<2.0	NA	ND	NA
VOCs										
1,1,1-Trichloroethane	50	μg/L	<2.0	<1.0	<1.0	<1.0	< 0.40	<2.0	ND	NA
1,1,2,2-Tetrachloroethane	50	μg/L	<2.3	<1.2	<1.2	<1.2	< 0.47	<2.3	ND	NA
1,1,2-Trichloroethane	50	μg/L	<2.8	<1.4	<1.4	<1.4	<0.56	<2.8	ND	NA
1,1-Dichloroethene	50	μg/L	<3.1	<1.5	<1.5	<1.5	<0.61	<3.1	ND	NA
1,2-Dichloroethane	180	μg/L	<2.9	<1.4	<1.4	<1.4	<0.57	<2.9	ND	NA
Benzene	50	μg/L	< 0.74	< 0.37	< 0.37	< 0.37	<0.15	<0.74	ND	NA
Bromodichloromethane	120	μg/L	<1.7	<0.87	<0.87	<0.87	< 0.35	<1.7	ND	NA
Bromoform	120	μg/L	<3.3	<1.7	<1.7	<1.7	< 0.67	<3.3	ND	NA
Bromomethane	NE	μg/L	<3.1	<1.5	<1.5	<1.5	<0.61	<3.1	ND	NA
Carbon Tetrachloride	150	μg/L	<2.6	<1.3	<1.3	<1.3	<0.51	<2.6	ND	NA
cis-1,2-Dichloroethene	NE	μg/L	530	470	580	480	350	320	455	NA
Dichloromethane	NE	μg/L	<1.9	<0.93	<0.93	<0.93	<0.37	<1.9	ND	NA
Ethylbenzene	NE	μg/L	<1.3	< 0.63	< 0.63	< 0.63	< 0.25	<1.3	ND	NA
Tetrachloroethene	50	μg/L	2,600	3,000	2,700	3,000	2,200	2,900	2,733	NA
Toluene	NE	μg/L	<1.2	<0.58	<0.58	<0.58	< 0.23	<1.2	ND	NA
Total Xylenes	NE	μg/L	< 0.69	< 0.34	< 0.34	< 0.34	<0.14	< 0.69	ND	NA
trans-1,2-Dichloroethene	NE	μg/L	<2.5	<1.3	<1.3	<1.3	< 0.50	<2.5	ND	NA
Trichloroethene	50	μg/L	340	300	340	330	300	270	313	NA
Vinyl chloride	10	μg/L	<2.9	<1.5	<1.5	<1.5	<0.58	<2.9	ND	NA
Total BTEX	750	μg/L	ND	NA						
Total VOCs (includes BTEX)	NE	μg/L	3,470	3,770	3,620	3,810	2,850	3,490	3,502	NA

Notes on Page 2.

Discharge Monitoring Report – Groundwater Extraction and Treatment System Madison-Kipp Corporation Site 201 Waubesa Street Madison, Wisconsin

		Location Sample Date	Influent 7/15/2015	Influent 7/24/2015	Influent 7/27/2015	Influent 7/29/2015	Influent 7/30/2015	Influent 7/31/2015	Influent Monthly Average	Influent Composite 7/15/2015
Parameter	Permit Discharge Limits	Unit								
PAHs		5 15								
Benzo(a)anthracene	NE	μg/L	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA
Benzo(a)pyrene	0.1	μg/L	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA
Benzo(b)fluoranthene	NE	μg/L	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA
Benzo(g,h,i)perylene	NE	μg/L	<0.045	<0.046	NA	NA	<0.046	NA	ND	NA
Benzo(k)fluoranthene	NE	μg/L	<0.045	<0.046	NA	NA	<0.046	NA	ND	NA
Chrysene	NE	μg/L	< 0.045	<0.046	NA	NA	<0.046	NA	ND	NA
Dibenzo(a,h)anthracene	NE	μg/L	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA
Fluoranthene	NE	μg/L	< 0.045	<0.046	NA	NA	<0.046	NA	ND	NA
Indeno(1,2,3-cd)pyrene	NE	μg/L	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA
Naphthalene	70	μg/L	<0.045	<0.046	NA	NA	<0.046	NA	ND	NA
Phenanthrene	NE	μg/L	< 0.045	0.048 J	NA	NA	<0.046	NA	0.048	NA
Pyrene	NE	μg/L	< 0.045	<0.046	NA	NA	<0.046	NA	ND	NA
PAHs Group of 10	0.1	μg/L	ND	0.048	NA	NA	ND	NA	0.048	NA

Acronyms and Abbreviations:

μg/L = Micrograms per liter

PAHs Group of 10 = PAH group of 10 includes the sum of the following individual compounds: benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene

< = Less Than

B = Compound was found in the blank and sample.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

mg/L = Milligrams per liter

NA = Not Analyzed

ND = Not Detected

NE = Not Established

VOCs = Volatile Organic Compounds

PAHs = Polynuclear Aromatic Hydrocarbons

Discharge Monitoring Report – Groundwater Extraction and Treatment System Madison-Kipp Corporation Site 201 Waubesa Street Madison, Wisconsin

	Effluent 7/15/2015	Effluent 7/24/2015	Effluent 7/27/2015	Effluent 7/29/2015	Effluent 7/30/2015	Effluent 7/31/2015	Effluent Monthly Average	Effluent Composite 7/15/2015	Effluent Composite 7/24/2015	Effluent Composite 7/31/2015
	1713/2013	1/24/2013	1/21/2013	112312013	773072013	7/31/2013	Average	771372013	1124/2013	773172013
Parameter										
Miscellaneous										
Oil & Grease	1.3 JB	2.0 JB	NA	NA	3.0 JB	NA	2.1	NA	NA	NA
Chloride	220	200	NA	NA	190	NA	203	NA	NA	NA
Total Suspended Solids	<1.6	3.5 J	NA	NA	<1.6	NA	3.5	<1.6	<1.6	<1.6
Biological Oxygen Demand	<2.0	<2.0	NA	NA	<2.0	NA	ND	NA	NA	NA
VOCs	•									
1,1,1-Trichloroethane	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	ND	NA	NA	NA
1,1,2,2-Tetrachloroethane	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	ND	NA	NA	NA
1,1,2-Trichloroethane	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	ND	NA	NA	NA
1,1-Dichloroethene	<0.31	<0.31	<0.31	< 0.31	< 0.31	<0.31	ND	NA	NA	NA
1,2-Dichloroethane	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	ND	NA	NA	NA
Benzene	< 0.074	<0.074	< 0.074	<0.074	< 0.074	<0.074	ND	NA	NA	NA
Bromodichloromethane	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	ND	NA	NA	NA
Bromoform	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	ND	NA	NA	NA
Bromomethane	<0.31	<0.31	<0.31	<0.31	<0.31	<0.31	ND	NA	NA	NA
Carbon Tetrachloride	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	ND	NA	NA	NA
cis-1,2-Dichloroethene	150	53	53 F1	61	60	64	73.5	NA	NA	NA
Dichloromethane	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	ND	NA	NA	NA
Ethylbenzene	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	ND	NA	NA	NA
Tetrachloroethene	270	46	46	54	47	48	85.2	NA	NA	NA
Toluene	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	ND	NA	NA	NA
Total Xylenes	< 0.069	< 0.069	<0.069	<0.069	<0.069	<0.069	ND	NA	NA	NA
trans-1,2-Dichloroethene	0.41 J	<0.25	<0.25	<0.25	<0.25	<0.25	ND	NA	NA	NA
Trichloroethene	52	12	12	13	13	14	19.3	NA	NA	NA
Vinyl chloride	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	ND	NA	NA	NA
Total BTEX	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
Total VOCs (includes BTEX)	472	111	111	128	120	126	178	NA	NA	NA

Notes on Page 4.

Discharge Monitoring Report – Groundwater Extraction and Treatment System Madison-Kipp Corporation Site 201 Waubesa Street Madison, Wisconsin

	Effluent 7/15/2015	Effluent 7/24/2015	Effluent 7/27/2015	Effluent 7/29/2015	Effluent 7/30/2015	Effluent 7/31/2015	Effluent Monthly Average	Effluent Composite 7/15/2015	Effluent Composite 7/24/2015	Effluent Composite 7/31/2015
	7713/2013	1124/2013	112112013	1723/2013	1730/2013	773172013	Average	7713/2013	1/24/2013	775172015
Parameter										
PAHs										
Benzo(a)anthracene	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA	NA	NA
Benzo(a)pyrene	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA	NA	NA
Benzo(b)fluoranthene	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA	NA	NA
Benzo(g,h,i)perylene	<0.045	<0.046	NA	NA	<0.046	NA	ND	NA	NA	NA
Benzo(k)fluoranthene	< 0.045	< 0.046	NA	NA	< 0.046	NA	ND	NA	NA	NA
Chrysene	<0.045	<0.046	NA	NA	< 0.046	NA	ND	NA	NA	NA
Dibenzo(a,h)anthracene	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA	NA	NA
Fluoranthene	<0.045	<0.046	NA	NA	<0.046	NA	ND	NA	NA	NA
Indeno(1,2,3-cd)pyrene	< 0.023	< 0.023	NA	NA	< 0.023	NA	ND	NA	NA	NA
Naphthalene	<0.045	<0.046	NA	NA	< 0.046	NA	ND	NA	NA	NA
Phenanthrene	< 0.045	0.047 J	NA	NA	<0.046	NA	0.047	NA	NA	NA
Pyrene	< 0.045	<0.046	NA	NA	<0.046	NA	ND	NA	NA	NA
PAHs Group of 10	ND	0.047	NA	NA	ND	NA	0.047	NA	NA	NA

Acronyms and Abbreviations:

μg/L = Micrograms per liter

PAHs Group of 10 = PAH group of 10 includes the sum of the following individual compounds: benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene

< = Less Than

B = Compound was found in the blank and sample.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

mg/L = Milligrams per liter

NA = Not Analyzed

ND = Not Detected

NE = Not Established

VOCs = Volatile Organic Compounds

PAHs = Polynuclear Aromatic Hydrocarbons

ARCADIS

Attachment A

Discharge Monitoring Report Form

DISCHARGE MONITORING REPORT FORM

Year:__ July 2015

 ${\bf Contaminated\ Groundwater\ from\ Remedial\ Action\ Operations\ -\ Surface\ Water\ Discharge}$

Permit No. WI-0046566-6 Rev. December 16, 2013

Facility Name and Location

Madison Kipp Corporation 201 Waubesa St

Madison, WI 53704

Consultant Managing Project: Arcadis

FIN#:

Outfall # an	d Description	Flow (gal/day)	Oil & Grease (mg/L)	BOD ₅ (mg/L)	Total BETX (µg/L)	PAHs group of 10 (µg/L)	Benzo(a) pyrene (µg/L)	Naphthalene (µg/L)	Potassium Permanganate (mg/L)	Benzene (µg/L)	TSS (mg/L)
001 Influent	Month:7/15/2015	64,800	Χ	Х	Х	Х	Х	Х	Х	Χ	Х
001 Effluent	Month:7/15/2015	64,800	Х	Х	Х	Х	Х	Х	Х	Х	Х
001 Influent	Month:7/24/2015	64,800	Х	Х	Х	Х	Х	Х	Х	Х	Х
001 Effluent	Month:7/24/2015	64,800	Х	Х	Х	Х	Х	Х	Х	Х	Х
001 Influent	Month:7/27/2015	64,800			Х		Х	Х	Х	Х	
001 Effluent	Month:7/27/2015	64,800			Х		Х	Х	Х	Х	
001 Influent	Month:7/29/2015	64,800			Х		Х	Х	Х	Х	
001 Effluent	Month:7/29/2015	64,800			Х		Х	Х	Х	Х	
001 Influent	Month:7/30/2015	64,800			Х		Х	Х	Х	Х	
001 Effluent	Month:7/30/2015	64,800			Х		Х	Х	Х	Х	
001 Influent	Month:7/31/2015	64,800	Х	Х	Х	Х	Х	Х	Х	Х	Х
001 Effluent	Month:7/31/2015	64,800	Х	Х	Х	Х	Х	Х	Х	Х	Х
See Footnotes	-				(1)	(2)			(3)		
Effluent Limits (re permit)	fer to sec. 4 of the		10 mg/l	20 mg/L	750 μg/L	0.1 μg/l	0.1 μg/l	70 μg/l		50 μg/l	40 mg/L
Sample Frequency	: Pre-treatment	Daily	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Sample Frequency	: Post-treatment	Daily	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Sample Type		Estimate	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab
Impaired or TMDI	_ surface waters		Does this facil	ity discharge a pol	lutant of concern to	o an impaired surface	water or to a s	urface water with a	a TMDL allocation?	D No	□ Yes

Facility Name and Location

Madison Kipp Corporation

201 Waubesa St Madison, WI 53704

Consultant Managing Project: Arcadis

FIN#:

Outfall # and	d Description	VOCs (μg/L)	Vinyl Chloride (µg/L)	trans-1,2- Dichloroethen e (µg/L)	1,1- Dichloroethen e (µg/L)	Tetrachloroethene (µg/L)	Chloride (mg/L)	cis-1,2- Dichloroethen e (µg/L)	Trichloroethene (µg/L)	
001 Influent	Month:7/15/2015	Х	Х	Х	Х	Х	Х	Х	Х	
001 Effluent	Month:7/15/2015	Х	Х	Х	Х	Х	Х	Х	Х	
001 Influent	Month:7/24/2015	Х	Х	Х	Х	Х	Х	Х	Х	
001 Effluent	Month:7/24/2015	Х	Х	Х	Х	Х	Х	Х	Х	
001 Influent	Month:7/27/2015	Х	Х	Х	Х	Х		Х	Х	
001 Effluent	Month:7/27/2015	Х	Х	Х	Х	Х		Х	Х	
001 Influent	Month:7/29/2015	Х	Х	Х	Х	Х		Х	Х	
001 Effluent	Month:7/29/2015	Х	Х	Х	Х	Х		Х	Х	
001 Influent	Month:7/30/2015	Х	Х	Х	Х	Х		Х	Х	
001 Effluent	Month:7/30/2015	Х	Х	Х	Х	Х		Х	Х	
001 Influent	Month:7/31/2015	Х	Х	Х	Х	Х	Х	Х	Х	
001 Effluent	Month:7/31/2015	Х	Х	Х	Х	Х	Х	Х	Х	
See Footnotes										
Effluent Limits (ref	fer to sec. 4 of the		10 ug/L		50 μg/L	50 μg/L	395 mg/L		50 μg/L	
Sample Frequency:	: Pre-treatment	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	
Sample Frequency:	: Post-treatment	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	
Sample Type		Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	

FOOTNOTES:

- (1) Total BETX is the sum of the benzene, ethylbenzene, toluene and xylene concentrations.
- (2) PAH group of 10 (Polynuclear Aromatic Hydrocarbons) include the sum of the following individual compounds: benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene
- (3)) Madison Kipp/Arcadis will conduct visual monitoring for this compound.

DIRECTIONS:

- For "Outfall # and Description" enter the number of the outfall you are reporting (001 or 002, etc.)
- Monitoring for a given parameter depends on if the discharge is to surface water or groundwater.
- The value entered must be the highest value of all samples analyzed for that day.
- Print additional DMRs as necessary for monthly reporting.

RETURN REPORT BY: February 15, of the year following completion of monitoring

RETURN TO: ATTN: Nicholas Bertolas

Department of Natural
Resources 3911 Fish
Hatchery Rd.

Fitchburg, WI 53711

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment, (40 CFR 122.5). I also certify that the values being submitted are the actual values found in the samples; no values have been modified or changed in any manner. Wherever I believe a value being reported is inaccurate, I have added an explanation indicating the reasons why the value is inaccurate.

Signature of Person Completing Form	Date
alina Sarkasi	8/13/15
Signature of Principal Exec. or Authorized Agent	Date

ARCADIS

Attachment B

Neutralization Log

July 14, 2015

Description:

Influent – Left Effluent – Right

July 15, 2015

Description:

Influent – Left Effluent – Right

July 16, 2015

Description:

Influent – Right Effluent – Left

July 17, 2015

Description:

Influent – Left Effluent – Right

July 18, 2015	System off pending mechanical modifications.
July 19, 2015	System off pending mechanical modifications.
July 20, 2015	System off pending mechanical modifications.
July 21, 2015	Visual confirmation of neutralization made by ARCADIS personnel.
July 22, 2015	Visual confirmation of neutralization made by Madison-Kipp personnel.
July 23, 2015	System off pending plumbing modifications.

July 24 th , 2015	
Description:	
Influent – Left	
Effluent – Right	
	The state of the s
	A PROMISED AND A PROM
	A STATE OF THE STA
	The state of the s

July 25th, 2015

Description:

Influent – Right Effluent – Left

July 26, 2015

System off pending mechanical modification.

July 27, 2015

Description:

Influent – Left Effluent – Right

July 28, 2015	System off pending mechanical modification.
July 29, 2015	
Description: Influent – Right Effluent – Left	
July 30, 2015	Visual confirmation of neutralization made by Madison-Kipp personnel.
July 31, 2015	Visual confirmation of neutralization made by Madison-Kipp personnel.

ARCADIS

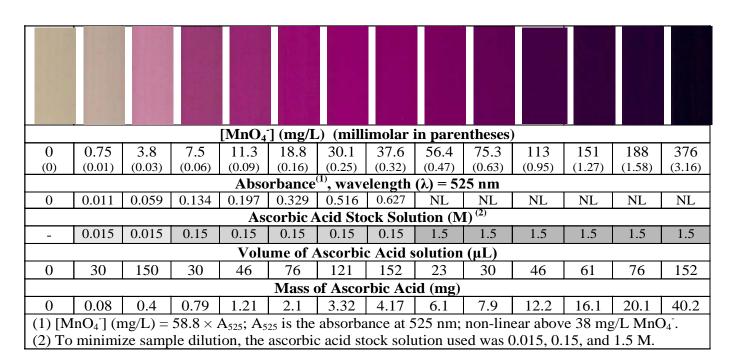
Attachment C

Ground Water Sample Preservation at In-Situ Chemical Oxidation Sites – Recommended Guidelines colormetric chart dated August 2012 plan, or in general EPA documents such as the Resource Conservation and Recovery Act (RCRA) guidance document (U.S. EPA, 1992) or EPA SW-846 (U.S. EPA, 1982). Additional direction on ground water sampling techniques can be found in Yeskis and Zavala (2002).

2.1. Permanganate (MnO₄)

Data and information presented below are reported in terms of the permanganate anion (MnO₄; 118.9 grams per mole (g/mol)). Permanganate is purchased either as sodium permanganate (NaMnO₄; 141.9 g/mol) or potassium permanganate (KMnO₄; 158.0 g/mol) and as a result conversion to the permanganate anion concentration is needed to determine sample preservation needs as per the *Issue Paper*. Specifically, the ratios 118.9/141.9 (g-mole/g-mole) and 118.9/158.0 (g-mole/g-mole) are used to convert NaMnO₄ and KMnO₄, respectively to MnO₄.

2.1.1. Analysis by Visual Observation


The characteristic pink or purple color of MnO₄ in a 40 mL VOA vial can be used as a general guideline to

estimate the concentration by using the MnO_4^- colorimetric scale (Table 1). This method should be used with caution because ground water turbidity and colloidal manganese dioxide solids ($MnO_2(s)$) can affect sample color and result in deviations from the tabulated color scale. Field filtration can help minimize these interferences, but may not fully remove all color if sub-micron colloidal and/or dissolved constituents are present.

2.1.2. Spectrophotometric Analysis

The permanganate concentration can be determined using commercially available field test kits (SenSafeTM, 2011; CHEMetrics, 2011). Additionally, an accurate measurement of the permanganate concentrations can be determined using a field spectrophotometer (maximum absorbance wavelength (λ) = 525 nanometers (nm) (A₅₂₅)) and a calibration curve involving a linear correlation between MnO₄ concentration and A₅₂₅ (Figure 2, Table 1). Filtered samples (0.2-0.45 micron) may be required to eliminate background colloidal or suspended solid materials that can absorb light at 525 nm and interfere with permanganate measurement. Volatilization of

Table 1. Permanganate concentration, spectrophotometric absorbance at 525 nm, and required amount of ascorbic acid required to neutralize the oxidant in a 40 mL vial. The color scale represents actual photos of MnO₄ vials and is included for conceptual guidance. Actual colors vary based on background lighting, and color printers. Additionally, photographs of low concentrations (i.e., clear solutions) do not accurately capture transparency.

