

Imagine the result

Madison-Kipp Corporation

Basis of Design for Proposed Groundwater Extraction and Treatment System

Madison-Kipp Corporation Madison, Wisconsin

April 2014

Rebuca A Rubbernalt

Rebecca Robbennolt Remediation Specialist

Scott Murphy, PE Principal Engineer

hask

Jennine Trask, PE Project Manager

Basis of Design for Proposed Groundwater Extraction and Treatment System

Madison-Kipp Corporation Madison, Wisconsin

Prepared for: Madison-Kipp Corporation

Prepared by: ARCADIS U.S., Inc. 126 North Jefferson Street Suite 400 Milwaukee Wisconsin, 53202 Tel 414 276 7742 Fax 414.276.7603

Our Ref.: WI001368.0011

Date: 1 April 2014

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

Acronyms and Abbreviations	iii
Introduction	1
Groundwater Extraction Well Design and Installation	2
Step Test at Groundwater Extraction Well GWE-1	4
Groundwater Extraction Effectiveness	6
Influent Water Quality and Treatment Objectives	7
Treated Groundwater Discharge	8
On-Site Reuse – Facility Water	8
Storm Sewer Discharge	8
GETS Design	9
Pretreatment	10
First Stage Air Stripper	11
VGAC Treatment	12
Electrical Load	13
Schedule	13

Table

Table 1	Step Test Groundwater Discharge Analytical Results
---------	--

Figures

Figure 1	Site Location Map
Figure 2	Well Locations Map
Figure 3	Extraction Well Detail
Figure 4	40 GPM Test Drawdown
Figure 5	Remediation Building Layout

Table of Contents

Appendices

- A Submittal Certification
- B Step Test Analyical Reports
- C GETS Equipment Documentation
- D GETS Piping and Instrumentation Diagram

Table of Contents

Acronyms and Abbreviations

bls	Below land surface
cfm	Cubic feet per minute
cis-1,2-DCE	cis-1,2-dichloroethylene
COC	Contaminants of concern
GAC	Granular activated carbon
GETS	Groundwater extraction and treatment system
gpm	Gallons per minute
HP	Horsepower
Hz	Hertz
lbs	Pounds
µg/L	Micrograms per liter
mg/L	Milligrams per liter
MMSD	Madison Metropolitan Sewerage District
PCE	Tetrachloroethene
PH	Phase
PVC	Polyvinyl chloride
TCE	Trichloroethylene
TDH	Total dynamic head
Trans-1,2-DCE	trans-1,2-dichloroethylene
VC	Vinyl chloride
VGAC	Vapor granular active carbon
VOC	Volatile organic compound
WDNR	Wisconsin Department of Natural Resources
WPDES	Wisconsin Pollutant Discharge Elimination System

Basis of Design for Proposed Groundwater Extraction and Treatment System

Madison-Kipp Corporation Madison, Wisconsin

Introduction

ARCADIS has been retained to assist the Madison-Kipp Corporation with environmental remediation activities at the facility located at 201 Waubesa Street in Madison, Wisconsin (Site) (Figure 1). Investigation and remediation activities at the Site are being conducted under the Wisconsin Department of Natural Resources (WDNR) Bureau for Remediation and Redevelopment Tracking System #0213001569 and Facility ID #113125320.

Investigation and remediation activities have been ongoing at the Site since 1994. Activities completed prior to February 2013 have been previously documented in the *Site Investigation Work Plan,* dated May 31, 2012, the *Site Investigation and Interim Actions Report,* February 2012 – January 2013, dated March 15, 2013 and addenda.

The current groundwater monitoring well network includes 61 sampling intervals. The sampling intervals collect samples from four geologic units including from shallowest to deepest: The Unconsolidated Aquifer; Lone Rock Formation; Wonewoc Formation; and the Eau Claire Formation. Figure 2 presents the location of the Site monitoring wells.

Based on the October 2013 data, the hydraulic gradient direction in the Unconsolidated Aquifer is to the southeast. The hydraulic gradient direction in the Lower Lone Rock Formation is generally to the south and southeast in the southern half of the Site, and to the north in the northern half of the Site. The hydraulic gradient direction in the Lower Wonewoc Formation is to the east-southeast. The hydraulic direction of east-southeast is consistent with the regional hydraulic gradient. The direction of the vertical gradients for the Site was nearly consistently downward and within the same order of magnitude from the unconsolidated to the bedrock, as well as within each bedrock formation and between bedrock formations. This finding is consistent with a mathematical groundwater flow model commissioned by Dane County (WGNHS, 1999).

As summarized in the October 15, 2013 *Groundwater Remedial Strategy* letter approved by WDNR in electronic correspondence dated October 16, 2013, Madison-Kipp will incorporate groundwater extraction to minimize off-Site volatile organic carbon (VOC) migration, facilitate the removal of VOC mass and provide hydraulic influence. This remedial action includes the following:

- Pre-design Investigations
 - Installation of one groundwater extraction well (GWE-1) in the northern parking lot to a depth of approximately 185 feet below land surface (bls).

Madison-Kipp Corporation Madison, Wisconsin

- Completion of a step test to determine the necessary operational requirements of the extraction well and to guide design specifications for the groundwater extraction and treatment system (GETS).
- Design and Construction
 - Preparation of a basis of design for the GETS, including a step test summary.
 - Installation and operation of a GETS.
- Monitoring
 - Hydraulic gradients
 - Mass removal
 - VOC concentration trends

This basis of design has been prepared to describe the methods and results of the step test that was conducted on January 20, 2014, and to outline the proposed GETS.

This basis of design includes equipment sizing for the development of a preliminary treatment building layout and electrical load calculations. System optimization is also considered in relation to the existing soil vapor extraction system and process wastewater operations at the Madison-Kipp facility (Facility). A Facility water reuse evaluation is being completed under a separate scope. The intention will be to confirm effluent water quality from the GETS is sufficient for reuse at the facility. This evaluation is ongoing and will be finalized concurrently with the GETS design. Extracted groundwater (which is treated in the GETS system) that cannot be reused for Facility operations will be discharged to the storm sewer.

This document has been prepared in accordance with Wisconsin Administrative Code Chapter NR 712.09. The submittal certification is included as Appendix A.

Groundwater Extraction Well Design and Installation

Groundwater Extraction Well GWE-1 was designed to intersect the key bedrock zones where the chlorinated VOCs contaminant mass was identified during previous investigation activities including a shallow zone from approximately 60 to 90 feet bls, an

Madison-Kipp Corporation Madison, Wisconsin

intermediate zone from 110 to 140 feet bls, and a deeper depth at approximately 160 feet bls. The groundwater extraction well was also designed with considerations for the spatial variability of source zone contaminant mass distribution and the heterogeneity of the fracture network and rock matrix characteristics. Figure 3 presents the construction details of Groundwater Extraction Well GWE-1.

Five bedrock samples were submitted to Giles Engineering & Associates, Waukesha, Wisconsin, for grain-size and hydrometer analysis to select an appropriately sized screen slot and filter pack across the different formations. One bedrock sample was submitted from the Lone Rock Formation (68 to 69 feet) and four bedrock samples were submitted from the Wonewoc Formation (96 to 97 feet, 117 to118 feet, 145 to146 feet, and 165 to 166 feet).

Groundwater Extraction Well GWE-1 was installed by Cascade Drilling, in Schofield, Wisconsin, between December 5, 2013 and January 9, 2014. The purpose of this groundwater extraction well was to facilitate removal of groundwater by targeting the known primary fracture intervals in the bedrock. The borehole was blind drilled using mud rotary drilling techniques. A 14-inch diameter borehole was advanced from ground surface to 34 feet bls through the unconsolidated soils and to 55 feet bls into competent bedrock. The remainder of the borehole was advanced as a 12-inch diameter borehole to approximately 185 feet bls.

The Groundwater Extraction Well GWE-1 was installed with an 8-inch diameter Schedule 80 polyvinyl chloride (PVC) casing. A 10-foot Schedule 80 PVC sump was installed from approximately 175 to 185 feet bls. The sump was flush-threaded into a 0.020-inch slot size (20-slot) screen installed across the Wonewoc Formation from approximately 113 to 175 feet bls. A 0.010-inch slot size (10 slot) screen was threaded into the 20-slot screen and extended across the Lone Rock Formation from approximately 60 to 113 feet bls. The screens were constructed of Johnson Large Diameter Free-Flow 316[™] "v"-shaped trapezoidal stainless steel wire, continuously wrapped. A solid Schedule 80 PVC riser was threaded into the 10-slot screen from approximately 60 feet to 1.5 feet bls. The riser was capped with a well seal with penetrations for the pump drop pipe and support cable and two drop pipes to facilitate the collection of groundwater elevation measurements and samples while the pump operates. The well was temporarily completed at the surface with an 18-inch diameter steel traffic-rated well compartment with an 18-inch diameter deep skirt set in concrete. Figure 3 presents the well construction. A Grundfos 40S50-15, 5 horsepower (HP) pump with shroud, capable of pumping up to a maximum of 60 gallons per minute (gpm) at 200 feet of total dynamic head (TDH), was installed in the extraction well with a 2-inch diameter steel drop pipe.

Madison-Kipp Corporation Madison, Wisconsin

Groundwater Extraction Well GWE-1 was developed by Cascade Drilling between January 10 and 11, 2014. Well development was completed using a decontaminated Grundfos RSQ15-220 submersible pump surging each 10-foot interval for a minimum of 30 minutes, followed by pumping out the turbid water. This procedure was completed twice for each 10-foot interval until clear, non-turbid water was obtained. Approximately 21,000 gallons of water was removed to complete the well development. The water was transported off-site for treatment at CWT of Wisconsin, in West Allis, Wisconsin or Crystal Springs, in Milwaukee, Wisconsin.

Step Test at Groundwater Extraction Well GWE-1

On January 20, 2014, ARCADIS performed a step test on Groundwater Extraction Well GWE-1, including pumping rates of 20, 40, and 60 gpm. The step test was performed to meet the following objectives:

- Determine the zone of hydraulic response that was used to estimate the groundwater capture zone around Groundwater Extraction Well GWE-1.
- Determine the maximum sustained flow rate that can maintain the water level above the top of the well screen, while achieving the zone of hydraulic response, at Groundwater Extraction Well GWE-1 (e.g., keep the screen fully submerged during long term groundwater extraction).

Water levels at Groundwater Extraction Well GWE-1 and 14 monitoring wells (MW-2D, MW-3D, MW-3D2, MW-4D2, MW-5D, MW-5D2, MW-5D3, MW-6D, MW-9D2, MP-13 (81 to 85 feet), MP-14 (135 to 140 feet), MP-15 (120 to 125 feet), MW-17, and MW-22D) (Figure 2) were monitored during the test using pressure transducers equipped with data loggers to evaluate drawdown. Additionally, groundwater samples were collected from Groundwater Extraction Well GWE-1 at the beginning of the test sequence and end of each pumping rate period for laboratory analysis of VOCs and total and dissolved (field filtered) iron and manganese. Groundwater samples were also collected and submitted for laboratory analysis of total suspended solids at the end of each pumping rate period and for total and dissolved (field filtered) polychlorinated biphenyls at the end of the 40 gpm test. Groundwater samples were collected to determine if variations in groundwater chemistry were observed at variable flow rates. The analytical data were also used for the design of the proposed treatment system. Contaminant concentrations were used for major process equipment specification; while, water chemistry data were used for process treatment evaluation including the potential for scaling. A summary of the groundwater analytical results are presented in Table 1.

Madison-Kipp Corporation Madison, Wisconsin

The proposed pumping test was attempted on January 24, 2014. However, due to inclement weather, the complete pump test work plan was not completed. An evaluation of the available step test data indicate a sufficient hydraulic response in the monitoring well network and adequate groundwater sampling was completed during the step test to proceed with the basis of design. Additional groundwater sampling at Groundwater Extraction Well GWE-1 was completed on February 12, 2014 to collect total suspended solids and supplemental water chemistry data for design purposes. A pumping test will be performed during startup of the GETS to confirm the step test data.

Below is a summary of the key observations from the groundwater analytical results collected during the step test activities that were used to develop the basis of design:

- Tetrachloroethene (PCE) concentrations ranging from 1,200 micrograms per liter (μg/L) to 3,200 μg/L were the highest detected concentrations during the step test.
- PCE concentrations were generally stable throughout the 20 gpm test. PCE concentrations increased between the 20 and 40 gpm tests, but were generally stable between 40 and 60 gpm tests.
- Iron and manganese concentrations indicated a low potential for scaling.
- Total dissolved solid concentrations remained stable between each step test. The total dissolved solid concentrations were evaluated for potential system maintenance.
- Total and dissolved polychlorinated biphenyls were not detected above the laboratory detection limits as anticipated; consequently, the treatment system does not need to consider removal of these compounds.

Drawdown in Groundwater Extraction Well GWE-1 was 5.8 feet after the 20 gpm test, 13.9 feet after the 40 gpm test, and 15.8 feet after the 60 gpm test. Below is a summary of the static groundwater elevation and groundwater elevation at the end of each pumping rate period for on-Site and off-Site monitoring wells in relation to the distance from the extraction well, with key observations.

• The objective to determine the zone of hydraulic response that will be used to estimate the groundwater influence around Groundwater Extraction Well GWE-1 was achieved.

Basis of Design for Proposed Groundwater Extraction and Treatment System

Madison-Kipp Corporation Madison, Wisconsin

- Drawdown was observed in all wells where water levels were measured with the exception of Monitoring Well MW-4D2 in the southwest parking lot and Multiport Well MP-14 (135 to 140 feet bls) located in the western parking lot. The lack of measureable drawdown at these locations may be attributed to where the screen is located and lack of fractures or connected fractures (MW-4D2) or related to the short duration of the step tests (MP-14). Longer term pumping may result in drawdown at these locations.
- As expected, more drawdown was observed in the monitoring wells and multiport wells located closest to the extraction well and less drawdown in the wells located farther from the extraction well, and the drawdown increased in each well with an increase in the pumping rate.
- Drawdown in the north parking lot (where the highest contaminant mass has been reported) in wells located up to 313 feet from the extraction well ranged from 0.37 to 1.26 feet when pumping at 20 gpm; 0.71 to 2.41 feet when pumping at 40 gpm; and 0.95 to 3.26 feet when pumping at 60 gpm.
- Drawdown in wells located off-Site or greater than 350 feet from the extraction well ranged from 0.12 to 0.40 feet when pumping at 20 gpm in wells located up to 815 feet from the extraction well; 0.23 to 0.72 feet when pumping at 40 gpm; and 0.31 to 1.0 feet when pumping at 60 gpm (with the exception of the wells where no drawdown was observed).
- The objective to determine a sustained flow rate that achieves the hydraulic response objective above and maintains the water level above the top of the well screen at Groundwater Extraction Well GWE-1 was achieved. The top of the screen in GWE-1 is approximately 60 feet bls. The maximum drawdown observed in GWE-1 at 60 gpm was 15.8 feet from the static levels of 22 feet bls. Therefore, water levels remained above the top of the screen during the short step test.

Based on the observed drawdown in the wells monitored (Figure 4), minimizing off-Site VOC migration, removal of VOC mass, and creating hydraulic influence will be achieved with the extraction well at a pumping rate of 45 gpm.

Groundwater Extraction Effectiveness

The step test indicates sufficient drawdown and influence of contaminant mass will be achieved with the operation of GWE-1 at 45 gpm. Overall effectiveness of the GETS, to minimize off-Site VOC migration, facilitate the removal of VOC mass, and provide

Madison-Kipp Corporation Madison, Wisconsin

hydraulic influence, will be confirmed during operation of the full-scale GETS as follows:

- Hydraulic response and minimizing off-Site VOC migration will be evaluated by the collection of groundwater level measurements from the groundwater monitoring well network.
- Removal of contaminant mass will be evaluated using the GETS influent concentrations over time.
- A long term monitoring and sampling plan will be developed and submitted to the WDNR for review and approval following one year of system operation.

Influent Water Quality and Treatment Objectives

The table below summarizes the analytical results of the sample collected at the end of the 40 gpm test for the five COCs. These results are the highest concentrations reported from the step test and were used for the anticipated treatment system influent concentration. Complete analytical data is included in Appendix B.

VOCs	Concentration (μg/L)		
PCE	3,200		
TCE	610		
cis-1,2-DCE	1,400		
trans-1,2-DCE	21		
VC	56		

The purpose of the proposed GETS is to reduce the primary contaminants of concern (COCs) at the Site, including PCE, trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-1,2-DCE), trans-1,2-dichloroethylene (trans-1,2-DCE) and vinyl chloride (VC) from groundwater extracted from Groundwater Extraction Well GWE-1 to meet necessary storm water discharge requirements regulated through the Wisconsin Pollutant Discharge Elimination System (WPDES) Permit and water quality requirements for Facility reuse and subsequent sanitary discharge from the Facility processes. Additional information is provided in subsequent sections.

Madison-Kipp Corporation Madison, Wisconsin

Treated Groundwater Discharge

On-Site Reuse – Facility Water

A complete wastewater assessment is currently in process for the Facility. A full evaluation of the water needs and available water use locations will be summarized for Madison-Kipp. It is anticipated that reuse of extracted groundwater will be implemented for Facility processes noted below.

Currently on Site, city water is used for Facility processes at three primary process locations including:

- Cooling towers;
- Process cooling for hot oil machines, die cast machines, trim presses and dies; and,
- Die lube stations (requiring reverse osmosis treatment).

The full-scale groundwater treatment system is designed to treat 45 gpm of impacted groundwater. Facility water consumption is being evaluated for reuse of treated groundwater in the manufacturing process at the Facility.

The initial assessment indicates the treated groundwater can be used as the primary supply of water for all of the Facility processes listed above. While the final determinate of water reuse alternatives for the Facility will be identified in the full scale design, preliminary evaluation indicates approximately 22 gpm can be reused for Facility processes. Water from the City of Madison is currently used for these processes and will be used to supplement the extracted groundwater to maintain Facility operations in the event extracted groundwater is not available for Facility process.

Currently the Facility is permitted under an Industrial Wastewater Discharge Permit through the Madison Metropolitan Sewerage District (MMSD). Upon confirmation of reuse of extracted groundwater for Facility operations this permit will require revision to incorporate the GETS. Additional monitoring for the COCs may be required to ensure compliance with Site discharge limits with the MMSD.

Storm Sewer Discharge

As presented above, approximately 22 of the 45 gpm of treated groundwater discharged from the GETS can be reused for the Facility. A storm sewer discharge will

Madison-Kipp Corporation Madison, Wisconsin

be required for the remaining 23 gpm of treated groundwater during normal operation. However, there will be periods of time (i.e. Facility shutdowns due to holidays or maintenance) when the Facility cannot reuse the treated groundwater. Therefore, a discharge permit application for the full 45 gpm capacity will be prepared.

Storm sewer discharge will require completion of a WPDES Discharge Permit application and a permit application for non-stormwater discharge from the City of Madison. The City of Madison storm sewer identification number is IN5941-041 for the proposed discharge location in Waubesa Street.

The design effluent discharge limits from the GETS for the COCs will meet the established WPDES discharge permit requirements as presented below.

WPDES Discharge Permit I	Effluent Limits.
--------------------------	------------------

COCs	Discharge Standard in WPDES ¹ (μg/L)
PCE	50
TCE	50
cis-1,2-DCE	NE
trans-1,2-DCE	NE
VC	10
4 M	

1 Monthly average NE Not Established

In addition to VOCs, the WPDES permit requires total maximum daily load monitoring of total phosphorus and total suspended solids. Samples will be required to be collected and reported annually on the discharge monitoring report.

GETS Design

The proposed GETS design includes volatilization of VOC contaminants in an air stripper to achieve suitable quality water for potential reuse at the Site for Facility operations or for discharge to the local storm sewer in accordance with state and discharge limits. Off-gas vapors from the air stripper will also be treated using vapor phase granular activated carbon (GAC) before discharge to the atmosphere. Effluent sampling will be used to evaluate the need for treatment of gas vapors in accordance with State regulations.

Madison-Kipp Corporation Madison, Wisconsin

Process modelling for the designed air stripper confirmed the proposed full-scale GETS is anticipated to remove greater than 99 percent of the influent VOC contaminants. The proposed air stripper manufacturer and model is included as Appendix C.

Vapor phase GAC (VGAC) vessels are designed to be plumbed in series with a lead/lag vessel configuration, and will be monitored closely to allow for process adjustment and carbon change-out, outlined below. The treated water discharge will be plumbed for Facility reuse with the balance discharged to the storm sewer located on Waubesa Street, south of the north parking lot entrance. The storm sewer proposed for discharge is illustrated on Figure 2.

Pretreatment

Influent groundwater from Groundwater Extraction Well GWE-1 will be collected in an equalization tank, T-100, with an approximate capacity of 2,000 gallons. Analyses of groundwater sampled from Groundwater Extraction Well GWE-1 indicate total suspended solids were present at a concentration of 1.5 milligrams per liter. The equalization tank will also be monitored for solids retention and cleanout procedures will be specified in the GETS operation and maintenance plan.

Groundwater will be transferred from the equalization tank to a small pretreatment mix tank, T-200, with a capacity of approximately 550 gallons, to allow for addition of a sequestrant. Sequestrant is chemical added to the influent groundwater to prevent scaling of process equipment. Initial evaluation of the langlier saturation index for the groundwater indicates the water has minimal scaling tendencies; however, based on previous process experience and sampling conducted on February 12, 2014 outlined in the table below, pretreatment of the influent groundwater will be completed to minimize long-term operation and maintenance costs. Figure 5 and Appendix D show a proposed Remediation Building layout and Piping and Instrumentation Diagrams, respectively.

Madison-Kipp Corporation Madison, Wisconsin

Analyte	Result	Unit
Iron (Total)	35	µg/L
Manganese (Total)	64	µg/L
Iron (Dissolved)	12	µg/L
Manganese (Dissolved)	61	µg/L
Hardness as CaCO ₃	760	mg/L
Alkalinity	470	mg/L
TSS	1.5	mg/L
TDS	1,100	mg/L
Temp	48	F
pН	6.6	

Groundwater Chemistry Results, Groundwater Extraction Well GWE-1, Madison-Kipp Corporation.

Initial specification of sequestrant indicated approximately 0.25-0.5 pounds (lbs) of sequestrant should be added to 1,000 gallons of influent groundwater using a chemical feed pump. One stainless steel mixer is designed for the mixing of sequestrant with the extracted groundwater at the mix tank, T-200. The 0.25 HP mixer is designed to operate at 1,150 revolutions per minute. The mixer will operate using 3 phase (PH), 60 hertz (Hz), and 460 volt power.

A stainless steel process transfer pump with viton gaskets is designed with the following parameters: maximum capacity of 60 gpm flow and 50 TDH. The 1.5 HP pump will operate using 3 PH, 60 Hz, and 460 volt power to transfer water from the mix tank, T-200, to the air stripper.

First Stage Air Stripper

Pre-treated groundwater will be pumped to the air stripper. The air stripper is designed for volatilization of VOCs; specifications for this unit are outlined below.

Madison-Kipp Corporation Madison, Wisconsin

Design Criteria	Design Hydraulic Flow Rate 45 GPM
Active Area of Air Stripper (ft ³)	2.8
Length of Air Stripper (in)	27
Width of Air Stripper (in)	27
Height of Air Stripper (in)	102
Number of Trays	6
System Vapor Flow Rate cubic feet per minute	210

Air Stripper Design Specifications, Groundwater Extraction Well GWE-1.

One pressure blower will supply the air stripper. The 5 HP blower is designed to operate at 210 cubic feet per minute (cfm) at 1.2 pound per square inch operating pressure into the air stripper. The blower will operate using 3 PH, 60 Hz, and 460 volt power. Effluent vapor from the air stripper will be processed through the VGAC before discharge to the atmosphere.

A stainless steel discharge pump with viton gaskets is designed with the following parameters: capacity of 60 gpm flow and 50 TDH. The 1.5 HP pump will operate using 3 PH, 60 Hz, 460 volt power. This pump will discharge water to the discharge point. Specifications for this pump will be completed upon finalization of the discharge location for the GETS to both the Facility and the final storm water manhole.

VGAC Treatment

VGAC will be used to remove residual VOCs in the air stream from the air stripper based on the design air flow rate of 210 cfm.

- VGAC treatment will include two 68-inch diameter vessels. Each vessel will hold approximately 2,000 lbs of carbon, for a total of 4,000 lbs of carbon. Vessels will be plumbed in series with a lead/lag vessel configuration. Evaluation for consolidation of the proposed VGAC units for the GETS system and the existing soil vapor extraction treatment system is ongoing.
- Loading to the VGAC vessel series is estimated to be 8.3 cfm per square foot of cross-sectional vessel area for average flow conditions.
- Vessels will be designed with multiple sample ports for breakthrough monitoring. Carbon change out will be scheduled upon initial COC breakthrough at the effluent

Madison-Kipp Corporation Madison, Wisconsin

sample port in the lead vessel to allow for sufficient treatment capacity. Once the lead vessel carbon has been replaced, the lag vessel will then become the lead vessel, and the original lead vessel will become the lag vessel.

 Carbon consumption was based on models run by Tigg Corporation in Oakdale, Pennsylvania. Based on throughput from that system, carbon consumption was calculated to be 21.6 lbs of carbon per day, approximately 7,900 lbs of carbon per year. Carbon consumption was modelled using effluent vapor concentrations from the air stripper model provided in Appendix C, at the design flow rate of 210 cfm, and a relative humidity of 50 percent.

Electrical Load

The following table provides electrical load requirements for system components for a 460 volt system (note: lighting, outlets, controls and heaters are estimates):

Equipment*	Required Load (Amps)
Extraction Well Pump	8
Air Stripper Blower	16
Mixer	0.3
Transfer Pumps (1)	2.4
Air Stripper Discharge Pump	2.4
Building Requirements	
Lighting/Outlets/Controls	20
Heaters	40

*Assume 460 volt system

Schedule

With concurrence from WDNR regarding the information contained herein, the design of the GETS would be completed this spring with subsequent permitting, installation and startup of the system anticipated in summer 2014.

Sample ID	Preventive	Enforcement	Pre Step Test	End 20 gpm Test	End 40 gpm Test	End 60 gpm Test
Sample Date	Action Limit	Standard	1/20/2014	1/20/2014	1/20/2014	1/20/2014
VOCs (µg/L)						
cis-1,2-Dichloroethene	7	70	650	700	1,400	1,300
Tetrachloroethene	0.5	5	1,200	1,400	3,200	3,100
trans-1,2-Dichloroethene	20	100	9.8	10	21	20
Trichloroethene	0.5	5	270	300	610	570
Vinyl chloride	0.02	0.2	20	21	56	51
Metals (µg/L)						
Iron	150	300	350 B	38 J B	35 J B	35 J B
Iron (Dissolved)	150	300	50 J B	18 J B	12 J B	20 J B
Manganese	60	300	26	39	64	86
Manganese (Dissolved)	60	300	21	25	61	79
Total Dissolved Solids mg/L	NE	NE	NA	1,100	1,100	1,200
Total PCBs (µg/L)						
Aroclor 1016	0.003	0.03	NA	NA	< 0.023	NA
Aroclor 1221	0.003	0.03	NA	NA	<0.06	NA
Aroclor 1232	0.003	0.03	NA	NA	< 0.037	NA
Aroclor 1242	0.003	0.03	NA	NA	< 0.04	NA
Aroclor 1248	0.003	0.03	NA	NA	<0.045	NA
Aroclor 1254	0.003	0.03	NA	NA	<0.026	NA
Aroclor 1260	0.003	0.03	NA	NA	<0.034	NA
Dissolved PCBs (µg/L)						
Aroclor 1016	0.003	0.03	NA	NA	< 0.023	NA
Aroclor 1221	0.003	0.03	NA	NA	< 0.06	NA
Aroclor 1232	0.003	0.03	NA	NA	< 0.037	NA
Aroclor 1242	0.003	0.03	NA	NA	< 0.04	NA
Aroclor 1248	0.003	0.03	NA	NA	<0.045	NA
Aroclor 1254	0.003	0.03	NA	NA	<0.026	NA
Aroclor 1260	0.003	0.03	NA	NA	< 0.034	NA

Table 1. Step Test Groundwater Discharge Analytical Results, Madison-Kipp Corporation, 201 Waubesa Street, Madison, Wisconsin

Footnotes on Page 2.

HUV`Y`%"GhYd`HYgh; fci bXk UhYf`8]gW Uf[Y`5 bU'mhjWU`F Ygi `hgžA UX]gcb!?]dd`7 cfdcfUfjcbž&\$%K Ui VYgU'GhYYhžA UX]gcbžK]gWcbg]b

Only VOCs detected in one or more water samples are listed on the table. Refer to laboratory analytical reports for a complete list of constituents analyzed.

Concentration exceeds the NR 140 Wis. adm. code Preventive Action Limit.
Concentration exceeds the NR 140 Wis. adm. code Enforcement Standard.
Constituent not detected above noted laboratory detection limit.
Compound was found in the blank and the sample.
Gallons per minute.
Result is between the method detection limit and the limit of quantitation.
Milligrams per liter.
Micrograms per liter.
Not analyzed.
Not established.
Polychlorinated Biphenyls.
Volatile Organic Compounds.

VIVIAN

MADISON-KIPP LD: TS 1 -03\StepT В VDV DB: N ArcMap/20 ND/NI DIV/GROUP: MPLS CITY:

žä												
0 3' 6' 9' 1"=3' SCALE(S) AS INDICATED							Professional En SCOTT I Professional En	gineer's Name //URPHY alneer's No.				MADISON-KIPP CORPORATION MADISON-KIPP CORPORATION MADISON
							36269 State Date Signed		Project Mar	-		REMEDIATION
THIS BAR	JSE TO VERIFY	0	03/07/14	BASIS OF DESIGN	VY	RR	wi		JT			
REPRESENTS ONE INCH ON THE ORIGINAL DRAWING	FIGURE EPRODUCTION SCALE	THIS DE NO	A Date RAWING IS THE PROPERTY OF T BE REPRODUCED OR ALTER	REVISIONS THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BL EED IN WHOLE OR IN PART WITHOUT THE EXPRESS PERMISSION OF SAME.	OCK AND WRITTEN	MAY I	Designed by RR	Drawn by VY	Checked by RR		ARCADIS U.S., INC.	MECHANICAL

MADISON, WISCONSIN ID TREATMENT SYSTEM	ARCADIS Project No. WI001368.0011.00004	
	Date MARCH, 2014	F
BUILDING	ARCADIS 126 N. JEFFERSON ST. SUITE 400 MILWAUKEE, WI 53202	5

Appendix A

Submittal Certification

Submittal Certification

This attachment was prepared to satisfy the requirements of Wisconsin Administrative Code Chapter NR 712.09 and is applicable to the following document.

Basis of Design for Proposed Groundwater Extraction and Treatment System Madison-Kipp Corporation 201 Waubesa Street Madison, Wisconsin

I, $\underline{S_{cott}}$ B Murphy, hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

Principal Engineer 36269 ture, title and P.E. number

Appendix B

Step Test Analytical Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-70505-1 Client Project/Site: MadisonKipp - WI001368.0011

For: ARCADIS U.S., Inc. 126 North Jefferson Street Suite 400 Milwaukee, Wisconsin 53202

Attn: Ms. Toni Schoen

Sanda bredenk

Authorized for release by: 1/29/2014 11:50:19 AM Sandie Fredrick, Project Manager II (920)261-1660 sandie.fredrick@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	17
QC Association	18
Surrogate Summary	19
QC Sample Results	20
Chronicle	24
Certification Summary	26
Chain of Custody	27
Receipt Checklists	28

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-70505-1

Comments

No additional comments.

Receipt

The samples were received on 1/23/2014 10:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.9° C.

GC/MS VOA

Method(s) 8260B: The following samples were diluted to bring the concentration of target analytes within the calibration range: End Step 1 (500-70505-3), End Step 2 (500-70505-4), End Step 3 (500-70505-5), Pre Step Test (500-70505-2). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Field Service / Mobile Lab

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Client Sample ID: Trip Blank

No Detections.

Client Sample ID: Pre Step Test

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	9.8		2.0	0.50	ug/L	2	_	8260B	Total/NA
Trichloroethene	270		1.0	0.38	ug/L	2		8260B	Total/NA
Vinyl chloride	20		1.0	0.20	ug/L	2		8260B	Total/NA
cis-1,2-Dichloroethene - DL	650		20	2.4	ug/L	20		8260B	Total/NA
Tetrachloroethene - DL	1200		20	3.4	ug/L	20		8260B	Total/NA
Iron	350	В	100	12	ug/L	1		6020	Total
									Recoverable
Manganese	26		2.5	0.76	ug/L	1		6020	Total
									Recoverable
Iron	50	JB	100	12	ug/L	1		6020	Dissolved
Manganese	21		2.5	0.76	ug/L	1		6020	Dissolved

Client Sample ID: End Step 1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	10		2.0	0.50	ug/L	2	_	8260B	Total/NA
Trichloroethene	300		1.0	0.38	ug/L	2		8260B	Total/NA
Vinyl chloride	21		1.0	0.20	ug/L	2		8260B	Total/NA
cis-1,2-Dichloroethene - DL	700		20	2.4	ug/L	20		8260B	Total/NA
Tetrachloroethene - DL	1400		20	3.4	ug/L	20		8260B	Total/NA
Iron	38	JB	100	12	ug/L	1		6020	Total
									Recoverable
Manganese	39		2.5	0.76	ug/L	1		6020	Total
									Recoverable
Iron	18	JB	100	12	ug/L	1		6020	Dissolved
Manganese	25		2.5	0.76	ug/L	1		6020	Dissolved
Total Dissolved Solids	1100		10	5.6	mg/L	1		SM 2540C	Total/NA

Client Sample ID: End Step 2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	21		5.0	1.3	ug/L	5	_	8260B	Total/NA
Trichloroethene	610		2.5	0.95	ug/L	5		8260B	Total/NA
Vinyl chloride	56		2.5	0.50	ug/L	5		8260B	Total/NA
cis-1,2-Dichloroethene - DL	1400		50	6.0	ug/L	50		8260B	Total/NA
Tetrachloroethene - DL	3200		50	8.5	ug/L	50		8260B	Total/NA
Iron	35	JB	100	12	ug/L	1		6020	Total
									Recoverable
Manganese	64		2.5	0.76	ug/L	1		6020	Total
									Recoverable
Iron	12	JB	100	12	ug/L	1		6020	Dissolved
Manganese	61		2.5	0.76	ug/L	1		6020	Dissolved
Total Dissolved Solids	1100		10	5.6	mg/L	1		SM 2540C	Total/NA

Client Sample ID: End Step 3 Lab Sample ID: 500-7									ID: 500-70505-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	20		5.0	1.3	ug/L	5	_	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 500-70505-1

Lab Sample ID: 500-70505-1

Lab Sample ID: 500-70505-2

Lab Sample ID: 500-70505-3

Lab Sample ID: 500-70505-4

Client Sample ID: End Step 3 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	lethod	Prep Type
Trichloroethene	570		2.5	0.95	ug/L	5	8	260B	Total/NA
Vinyl chloride	51		2.5	0.50	ug/L	5	8	260B	Total/NA
cis-1,2-Dichloroethene - DL	1300		50	6.0	ug/L	50	8	260B	Total/NA
Tetrachloroethene - DL	3100		50	8.5	ug/L	50	8	260B	Total/NA
Iron	35	JB	100	12	ug/L	1	6	020	Total
									Recoverable
Manganese	86		2.5	0.76	ug/L	1	6	020	Total
									Recoverable
Iron	20	JB	100	12	ug/L	1	6	020	Dissolved
Manganese	79		2.5	0.76	ug/L	1	6	020	Dissolved
Total Dissolved Solids	1200		10	5.6	mg/L	1	S	SM 2540C	Total/NA

Lab Sample ID: 500-70505-5

This Detection Summary does not include radiochemical test results.

Client: ARCADIS U.S., Inc. Project/Site: MadisonKipp - WI001368.0011

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
6020	Metals (ICP/MS)	SW846	TAL CHI
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: MadisonKipp - WI001368.0011 TestAmerica Job ID: 500-70505-1

Project/Site: Madiso	.S., Inc. onKipp - WI001368.0011		restamenca jod id: 500-70505					
Lab Sample ID	Client Sample ID	Matrix	Collected	Received				
500-70505-1	Trip Blank	Water	01/20/14 00:00	01/23/14 10:30				
500-70505-2	Pre Step Test	Water	01/20/14 12:25	01/23/14 10:30	_			
500-70505-3	End Step 1	Water	01/20/14 16:45	01/23/14 10:30	5			
500-70505-4	End Step 2	Water	01/20/14 19:45	01/23/14 10:30				
500-70505-5	End Step 3	Water	01/20/14 22:30	01/23/14 10:30	6			
					8			
					9			
					13			

Client Sample ID: Trip Blank

Date Collected: 01/20/14 00:00 Date Received: 01/23/14 10:30

Method: 8260B - Volatile Orga Analyte	nic Compounds (Result	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.25		1.0	0.25	ug/L			01/24/14 14:48	1
1,1,1-Trichloroethane	<0.20		1.0	0.20	ug/L			01/24/14 14:48	1
1,1,2,2-Tetrachloroethane	<0.23		1.0	0.23	ug/L			01/24/14 14:48	1
1,1,2-Trichloroethane	<0.28		1.0	0.28	ug/L			01/24/14 14:48	1
1,1-Dichloroethane	<0.19		1.0	0.19	ug/L			01/24/14 14:48	1
1,1-Dichloroethene	<0.31		1.0	0.31	ug/L			01/24/14 14:48	1
1,1-Dichloropropene	<0.34		1.0	0.34	ug/L			01/24/14 14:48	1
1,2,3-Trichlorobenzene	<0.24		1.0	0.24	ug/L			01/24/14 14:48	1
1,2,3-Trichloropropane	<0.45		1.0	0.45	ug/L			01/24/14 14:48	1
1,2,4-Trichlorobenzene	<0.31		1.0	0.31	ug/L			01/24/14 14:48	1
1,2,4-Trimethylbenzene	<0.14		1.0	0.14	ug/L			01/24/14 14:48	1
1,2-Dibromo-3-Chloropropane	<0.87		2.0	0.87	ug/L			01/24/14 14:48	1
1,2-Dibromoethane	<0.36		1.0	0.36	ug/L			01/24/14 14:48	1
1,2-Dichlorobenzene	<0.27		1.0	0.27	ug/L			01/24/14 14:48	1
1,2-Dichloroethane	<0.28		1.0	0.28	ug/L			01/24/14 14:48	1
1,2-Dichloropropane	<0.20		1.0	0.20	ug/L			01/24/14 14:48	1
1,3,5-Trimethylbenzene	<0.18		1.0	0.18	ug/L			01/24/14 14:48	1
1,3-Dichlorobenzene	<0.15		1.0	0.15	ug/L			01/24/14 14:48	1
1,3-Dichloropropane	<0.13		1.0	0.13	ug/L			01/24/14 14:48	1
1,4-Dichlorobenzene	<0.15		1.0	0.15	ug/L			01/24/14 14:48	1
2,2-Dichloropropane	<0.32		1.0	0.32	ug/L			01/24/14 14:48	1
2-Chlorotoluene	<0.21		1.0	0.21	ug/L			01/24/14 14:48	1
4-Chlorotoluene	<0.20		1.0	0.20	ug/L			01/24/14 14:48	1
Benzene	<0.074		0.50	0.074	ug/L			01/24/14 14:48	1
Bromobenzene	<0.25		1.0	0.25	ug/L			01/24/14 14:48	1
Bromochloromethane	<0.40		1.0	0.40	ug/L			01/24/14 14:48	1
Bromodichloromethane	<0.17		1.0	0.17	ug/L			01/24/14 14:48	1
Bromoform	<0.28		1.0	0.28	ug/L			01/24/14 14:48	1
Bromomethane	<0.31		1.0	0.31	ug/L			01/24/14 14:48	1
Carbon tetrachloride	<0.26		1.0	0.26	ug/L			01/24/14 14:48	1
Chlorobenzene	<0.14		1.0	0.14	ug/L			01/24/14 14:48	1
Chloroethane	<0.34		1.0	0.34	ug/L			01/24/14 14:48	1
Chloroform	<0.20		1.0	0.20	ug/L			01/24/14 14:48	1
Chloromethane	<0.18		1.0	0.18	ug/L			01/24/14 14:48	1
cis-1,2-Dichloroethene	<0.12		1.0	0.12	ug/L			01/24/14 14:48	1
cis-1,3-Dichloropropene	<0.18		1.0	0.18	ug/L			01/24/14 14:48	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			01/24/14 14:48	1
Dibromomethane	<0.33		1.0	0.33	ug/L			01/24/14 14:48	1
Dichlorodifluoromethane	<0.20		1.0	0.20	ug/L			01/24/14 14:48	1
Ethylbenzene	<0.13		0.50	0.13	ug/L			01/24/14 14:48	1
Hexachlorobutadiene	<0.26		1.0	0.26	ug/L			01/24/14 14:48	1
Isopropyl ether	<0.15		1.0	0.15	ug/L			01/24/14 14:48	1
lsopropylbenzene	<0.14		1.0	0.14	ug/L			01/24/14 14:48	1
Methyl tert-butyl ether	<0.24		1.0	0.24	ug/L			01/24/14 14:48	1
Methylene Chloride	<0.68		5.0	0.68	ug/L			01/24/14 14:48	1
Naphthalene	<0.16		1.0	0.16	ug/L			01/24/14 14:48	1
n-Butylbenzene	<0.13		1.0	0.13	ug/L			01/24/14 14:48	1
N-Propylbenzene	<0.13		1.0	0.13	ug/L			01/24/14 14:48	1
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			01/24/14 14:48	1

Lab Sample ID: 500-70505-1

Matrix: Water
RL

1.0

1.0

1.0

1.0

0.50

1.0

1.0

0.50

1.0

0.50

1.0

Limits

75 - 125

75 - 120

75 - 120

75 - 120

MDL Unit

0.15 ug/L

0.10 ug/L

0.14 ug/L

0.17 ug/L

0.11 ug/L

0.25 ug/L

0.21 ug/L

0.19 ug/L

0.19 ug/L

0.10 ug/L

0.068 ug/L

D

Prepared

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

<0.15

<0.10

<0.14

<0.17

<0.11

<0.25

<0.21

<0.19

<0.19

<0.10

<0.068

%Recovery Qualifier

102

100

93

104

Client Sample ID: Trip Blank Date Collected: 01/20/14 00:00

Date Received: 01/23/14 10:30

Analyte

Styrene

Toluene

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Surrogate

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Lab Sample ID: 500-70505-1 Matrix: Water

Analyzed

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

Analyzed

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

01/24/14 14:48

Dil Fac 1 1 Dil Fac 1

1

1

1

1

1

1

1

1

1

1

1

Lab Sample ID: 500-	70505-2
---------------------	---------

Matrix: Water

Client Sample ID: Pre Step Test Date Collected: 01/20/14 12:25

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane

Toluene-d8 (Surr)

Date Received: 01/23/14 10:30

Method: 8260B - Volatile Organ	ic Compounds (GC/MS)				_			
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.50	2.0	0.50	ug/L			01/24/14 15:42	2
1,1,1-Trichloroethane	<0.40	2.0	0.40	ug/L			01/24/14 15:42	2
1,1,2,2-Tetrachloroethane	<0.46	2.0	0.46	ug/L			01/24/14 15:42	2
1,1,2-Trichloroethane	<0.56	2.0	0.56	ug/L			01/24/14 15:42	2
1,1-Dichloroethane	<0.38	2.0	0.38	ug/L			01/24/14 15:42	2
1,1-Dichloroethene	<0.62	2.0	0.62	ug/L			01/24/14 15:42	2
1,1-Dichloropropene	<0.68	2.0	0.68	ug/L			01/24/14 15:42	2
1,2,3-Trichlorobenzene	<0.48	2.0	0.48	ug/L			01/24/14 15:42	2
1,2,3-Trichloropropane	<0.90	2.0	0.90	ug/L			01/24/14 15:42	2
1,2,4-Trichlorobenzene	<0.62	2.0	0.62	ug/L			01/24/14 15:42	2
1,2,4-Trimethylbenzene	<0.28	2.0	0.28	ug/L			01/24/14 15:42	2
1,2-Dibromo-3-Chloropropane	<1.7	4.0	1.7	ug/L			01/24/14 15:42	2
1,2-Dibromoethane	<0.72	2.0	0.72	ug/L			01/24/14 15:42	2
1,2-Dichlorobenzene	<0.54	2.0	0.54	ug/L			01/24/14 15:42	2
1,2-Dichloroethane	<0.56	2.0	0.56	ug/L			01/24/14 15:42	2
1,2-Dichloropropane	<0.40	2.0	0.40	ug/L			01/24/14 15:42	2
1,3,5-Trimethylbenzene	<0.36	2.0	0.36	ug/L			01/24/14 15:42	2
1,3-Dichlorobenzene	<0.30	2.0	0.30	ug/L			01/24/14 15:42	2
1,3-Dichloropropane	<0.26	2.0	0.26	ug/L			01/24/14 15:42	2
1,4-Dichlorobenzene	<0.30	2.0	0.30	ug/L			01/24/14 15:42	2
2,2-Dichloropropane	<0.64	2.0	0.64	ug/L			01/24/14 15:42	2
2-Chlorotoluene	<0.42	2.0	0.42	ug/L			01/24/14 15:42	2
4-Chlorotoluene	<0.40	2.0	0.40	ug/L			01/24/14 15:42	2
Benzene	<0.15	1.0	0.15	ug/L			01/24/14 15:42	2
Bromobenzene	<0.50	2.0	0.50	ug/L			01/24/14 15:42	2
Bromochloromethane	<0.80	2.0	0.80	ug/L			01/24/14 15:42	2

Client Sample ID: Pre Step Test Date Collected: 01/20/14 12:25 Date Received: 01/23/14 10:30

Styrene

Toluene

tert-Butylbenzene

Trichloroethene

Vinyl chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	<0.34		2.0	0.34	ug/L			01/24/14 15:42	2
Bromoform	<0.56		2.0	0.56	ug/L			01/24/14 15:42	2
Bromomethane	<0.62		2.0	0.62	ug/L			01/24/14 15:42	2
Carbon tetrachloride	<0.52		2.0	0.52	ug/L			01/24/14 15:42	2
Chlorobenzene	<0.28		2.0	0.28	ug/L			01/24/14 15:42	2
Chloroethane	<0.68		2.0	0.68	ug/L			01/24/14 15:42	2
Chloroform	<0.40		2.0	0.40	ug/L			01/24/14 15:42	2
Chloromethane	<0.36		2.0	0.36	ug/L			01/24/14 15:42	2
cis-1,3-Dichloropropene	<0.36		2.0	0.36	ug/L			01/24/14 15:42	2
Dibromochloromethane	<0.64		2.0	0.64	ug/L			01/24/14 15:42	2
Dibromomethane	<0.66		2.0	0.66	ug/L			01/24/14 15:42	2
Dichlorodifluoromethane	<0.40		2.0	0.40	ug/L			01/24/14 15:42	2
Ethylbenzene	<0.26		1.0	0.26	ug/L			01/24/14 15:42	2
Hexachlorobutadiene	<0.52		2.0	0.52	ug/L			01/24/14 15:42	2
Isopropyl ether	<0.30		2.0	0.30	ug/L			01/24/14 15:42	2
lsopropylbenzene	<0.28		2.0	0.28	ug/L			01/24/14 15:42	2
Methyl tert-butyl ether	<0.48		2.0	0.48	ug/L			01/24/14 15:42	2
Methylene Chloride	<1.4		10	1.4	ug/L			01/24/14 15:42	2
Naphthalene	<0.32		2.0	0.32	ug/L			01/24/14 15:42	2
n-Butylbenzene	<0.26		2.0	0.26	ug/L			01/24/14 15:42	2
N-Propylbenzene	<0.26		2.0	0.26	ug/L			01/24/14 15:42	2
p-Isopropyltoluene	<0.34		2.0	0.34	ug/L			01/24/14 15:42	2
sec-Butylbenzene	<0.30		2.0	0.30	ug/L			01/24/14 15:42	2

Xylenes, Total	<0.14		2.0	0.14 ug/L		01/24/14 15:42	2
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 125			01/24/14 15:42	2
4-Bromofluorobenzene (Surr)	102		75 - 120			01/24/14 15:42	2
Dibromofluoromethane	95		75 - 120			01/24/14 15:42	2
Toluene-d8 (Surr)	104		75 - 120			01/24/14 15:42	2

2.0

2.0

1.0

2.0

2.0

1.0

2.0

1.0

0.20 ug/L

0.28 ug/L

0.22 ug/L

0.50 ug/L

0.42 ug/L

0.38 ug/L

0.38 ug/L

0.20 ug/L

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

<0.20

<0.28

<0.22

<0.42

270

20

<0.38

9.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	650		20	2.4	ug/L			01/24/14 16:10	20
Tetrachloroethene	1200		20	3.4	ug/L			01/24/14 16:10	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 125			-		01/24/14 16:10	20
4-Bromofluorobenzene (Surr)	103		75 _ 120					01/24/14 16:10	20
Dibromofluoromethane	96		75 - 120					01/24/14 16:10	20
Toluene-d8 (Surr)	102		75 - 120					01/24/14 16:10	20

Lab Sample ID: 500-70505-2 Matrix: Water

01/24/14 15:42

01/24/14 15:42

01/24/14 15:42

01/24/14 15:42

01/24/14 15:42

01/24/14 15:42

01/24/14 15:42

01/24/14 15:42

2

2

2

2

2

2

2

2

7 12 13

Client Sample Results

Client: ARCADIS U.S., Inc. Project/Site: MadisonKipp - WI001368.0011

Client Sample ID: Pre Step	ient Sample ID: Pre Step Test							Lab Sample ID: 500-70505-2				
Date Collected: 01/20/14 12:25								Matrix	k: Water			
Date Received: 01/23/14 10:30									. Hator			
Method: 6020 - Metals (ICP/MS	5) - Total Recover	rable Qualifier	PI	MDI	Unit	п	Propared	Analyzod	Dil Eac			
	350	R	100	12			01/24/14 08:30	01/24/14 15:02	1			
Manganese	26	5	2.5	0.76	ug/L		01/24/14 08:30	01/24/14 15:02	1			
	20		2.0	0.70	ug/L		01/24/14 00.00	01/24/14 10:02				
Method: 6020 - Metals (ICP/MS	6) - Dissolved											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Iron	50	JB	100	12	ug/L		01/24/14 08:30	01/24/14 15:06	1			
Manganese	21		2.5	0.76	ug/L		01/24/14 08:30	01/24/14 15:06	1			
Client Sample ID: End Step	p 1						Lab Sam	ple ID: 500-7	0505-3			
Date Collected: 01/20/14 16:45								Matrix	k: Water			
Date Received: 01/23/14 10:30												
Mothod: 8260P Valatila Orac	nic Compounds											
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac			
1 1 1 2-Tetrachloroethane			20	0.50				01/24/14 16:37	2			
1 1 1-Trichloroethane	<0.40		2.0	0.40	ug/l			01/24/14 16:37	2			
1 1 2 2-Tetrachloroethane	<0.46		2.0	0.46	ug/L			01/24/14 16:37	2			
1 1 2-Trichloroethane	<0.40		2.0	0.56	ug/L			01/24/14 16:37	2			
1 1-Dichloroethane	<0.00		2.0	0.00	ug/L			01/24/14 16:37	2			
1 1-Dichloroethene	<0.00		2.0	0.00	ug/L			01/24/14 16:37	2			
1 1-Dichloropropene	<0.02		2.0	0.62	ug/L			01/24/14 16:37	····· 2			
1,2,3 Trichlorobonzono	<0.00		2.0	0.00	ug/L			01/24/14 16:37	2			
1,2,3 Trichloropropage	<0.40		2.0	0.40	ug/L			01/24/14 10:37	2			
	<0.90		2.0	0.90	ug/L			01/24/14 10:37				
1,2,4-Trichlorobenzene	< 0.02		2.0	0.02	ug/L			01/24/14 10.37	2			
1.2 Dibromo 3 Chloropropano	<0.20		2.0	0.20	ug/L			01/24/14 10:37	2			
1.2 Dibromoethano	<0.72		4.0	0.72	ug/L			01/24/14 10:37				
	<0.72		2.0	0.72	ug/L			01/24/14 10.37	2			
1,2-Dichloroothana	<0.54		2.0	0.54	ug/L			01/24/14 10.37	2			
	<0.00		2.0	0.50	ug/L			01/24/14 10:37				
1,2-Dichloropropane	<0.40		2.0	0.40	ug/L			01/24/14 16:37	2			
	<0.30		2.0	0.30	ug/L			01/24/14 10.37	2			
1,3-Dichloropenzene	<0.30		2.0	0.30	ug/L			01/24/14 16:37				
	<0.26		2.0	0.26	ug/L			01/24/14 16:37	2			
	< 0.30		2.0	0.30	ug/L			01/24/14 16:37	2			
2,2-Dichloroproparie	<0.04		2.0	0.04	ug/L			01/24/14 10.37	ے م			
	<0.42		2.0	0.42	ug/L			01/24/14 10.37	2			
4-Chlorotoluene	<0.40		2.0	0.40	ug/L			01/24/14 16:37	2			
Benzene	<0.15		1.0	0.15	ug/L			01/24/14 10.37				
Bromoshloromethere	<0.50		2.0	0.50	ug/L			01/24/14 16:37	2			
	<0.80		2.0	0.80	ug/L			01/24/14 16:37	2			
	<0.34		2.0	0.34	ug/L			01/24/14 10:37	2			
Bromomothers	<0.56		2.0	0.56	ug/L			01/24/14 16:37	2			
	<0.62		2.0	0.62	ug/L			01/24/14 10:37	2			
	<0.52		2.0	0.52	ug/L			01/24/14 10:37	2			
Chioropthana	<0.28		2.0	0.28	ug/L			01/24/14 16:37	2			
Chioroethane	<0.68		2.0	0.68	ug/L			01/24/14 16:37	2			
	<0.40		2.0	0.40	ug/L			01/24/14 16:37	2			
	<0.36		2.0	0.36	ug/L			01/24/14 16:37	2			
cis-1,3-Dicnioropropene	<0.36		2.0	0.36	ug/L			01/24/14 16:37	2			
Dipromocnioromethane	<0.64		2.0	0.64	ug/L			01/24/14 16:37	2			

Client Sample ID: End Step 1 Date Collected: 01/20/14 16:45 Date Received: 01/23/14 10:30

TestAmerica Job ID: 500-70505-1

Lab Sample ID: 500-70505-3 Matrix: Water

Method: 8260B - Volatile Organic	Compounds	(GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	<0.66		2.0	0.66	ug/L			01/24/14 16:37	2
Dichlorodifluoromethane	<0.40		2.0	0.40	ug/L			01/24/14 16:37	2
Ethylbenzene	<0.26		1.0	0.26	ug/L			01/24/14 16:37	2
Hexachlorobutadiene	<0.52		2.0	0.52	ug/L			01/24/14 16:37	2
Isopropyl ether	<0.30		2.0	0.30	ug/L			01/24/14 16:37	2
Isopropylbenzene	<0.28		2.0	0.28	ug/L			01/24/14 16:37	2
Methyl tert-butyl ether	<0.48		2.0	0.48	ug/L			01/24/14 16:37	2
Methylene Chloride	<1.4		10	1.4	ug/L			01/24/14 16:37	2
Naphthalene	<0.32		2.0	0.32	ug/L			01/24/14 16:37	2
n-Butylbenzene	<0.26		2.0	0.26	ug/L			01/24/14 16:37	2
N-Propylbenzene	<0.26		2.0	0.26	ug/L			01/24/14 16:37	2
p-IsopropyItoluene	<0.34		2.0	0.34	ug/L			01/24/14 16:37	2
sec-Butylbenzene	<0.30		2.0	0.30	ug/L			01/24/14 16:37	2
Styrene	<0.20		2.0	0.20	ug/L			01/24/14 16:37	2
tert-Butylbenzene	<0.28		2.0	0.28	ug/L			01/24/14 16:37	2
Toluene	<0.22		1.0	0.22	ug/L			01/24/14 16:37	2
trans-1,2-Dichloroethene	10		2.0	0.50	ug/L			01/24/14 16:37	2
trans-1,3-Dichloropropene	<0.42		2.0	0.42	ug/L			01/24/14 16:37	2
Trichloroethene	300		1.0	0.38	ug/L			01/24/14 16:37	2
Trichlorofluoromethane	<0.38		2.0	0.38	ug/L			01/24/14 16:37	2
Vinyl chloride	21		1.0	0.20	ug/L			01/24/14 16:37	2
Xylenes, Total	<0.14		2.0	0.14	ug/L			01/24/14 16:37	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 125					01/24/14 16:37	2
4-Bromofluorobenzene (Surr)	102		75 - 120					01/24/14 16:37	2
Dibromofluoromethane	95		75 - 120					01/24/14 16:37	2
Toluene-d8 (Surr)	105		75 - 120					01/24/14 16:37	2
Method: 8260B - Volatile Organic	Compounds	(GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	700		20	2.4	ug/L			01/24/14 17:04	20
Tetrachloroethene	1400		20	3.4	ug/L			01/24/14 17:04	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		75 - 125					01/24/14 17:04	20
4-Bromofluorobenzene (Surr)	101		75 - 120					01/24/14 17:04	20
Dibromofluoromethane	96		75 - 120					01/24/14 17:04	20
Toluene-d8 (Surr)	101		75 - 120					01/24/14 17:04	20
Method: 6020 - Metals (ICP/MS) -	Total Recover	rable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	38	JB	100	12	ug/L		01/24/14 08:30	01/24/14 15:10	1
Manganese	39		2.5	0.76	ug/L		01/24/14 08:30	01/24/14 15:10	1
Method: 6020 - Metals (ICP/MS) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	18	JB	100	12	ug/L		01/24/14 08:30	01/24/14 15:14	1
Manganese	25		2.5	0.76	ug/L		01/24/14 08:30	01/24/14 15:14	1

1/29/2014

TestAmerica Job ID: 500-70505-1

Client Sample ID: End Step 1							Lab San	nple ID: 500-7	0505-3
Date Collected: 01/20/14 16:45								Matrix	x: Water
Date Received: 01/23/14 10:30									
General Chemistry	Pocult	Qualifier	Ы	МП	Unit	п	Broparod	Analyzod	Dil Eac
Total Dissolved Solida			10	5.6	ma/l		Flepaleu		
	1100		10	5.0	iiig/∟			01/27/14 22.40	1
Client Sample ID: End Step 2							Lab Sam	nple ID: 500-7	0505-4
Date Collected: 01/20/14 19:45								Matrix	x: Water
Date Received: 01/23/14 10:30									
									
Method: 8260B - Volatile Organic (Compounds	(GC/MS)	ы	MDI	11	_	Duananad	Analyzad	
Allalyte 1112 Tetrachloroothano				1 3			Frepareu	01/24/14 17:31	5
	<1.5		5.0	1.5	ug/L			01/24/14 17:31	5
	<1.0		5.0	1.0	ug/L			01/24/14 17:31	5
1,1,2 Triplerothane	<1.2		5.0	1.2	ug/L			01/24/14 17:31	
1, 1, 2- Inchioroethane	<1.4		5.0	0.05	ug/L			01/24/14 17.31	5
	<0.95		5.0	0.95	ug/L			01/24/14 17:31	5
1,1-Dichloropropage	<1.0		5.0	1.0	ug/L			01/24/14 17.31	
	<1.7		5.0	1.7	ug/L			01/24/14 17:31	5 F
1,2,3-Trichloropenzene	<1.2		5.0	1.2	ug/L			01/24/14 17:31	5 F
1,2,3-1 richlorebengen	<2.3		5.0	2.3	ug/L			01/24/14 17:31	
1,2,4-Trichlorobenzene	<1.0		5.0	1.0	ug/L			01/24/14 17:31	5
1,2,4- I rimetnyibenzene	<0.70		5.0	0.70	ug/L			01/24/14 17:31	5
1,2-Dibromo-3-Chloropropane	<4.4		10	4.4	ug/L			01/24/14 17:31	5
1,2-Dibromoethane	<1.8		5.0	1.8	ug/L			01/24/14 17:31	5
1,2-Dichlorobenzene	<1.4		5.0	1.4	ug/L			01/24/14 17:31	5
1,2-Dichloroethane	<1.4		5.0	1.4	ug/L			01/24/14 17:31	5
1,2-Dichloropropane	<1.0		5.0	1.0	ug/L			01/24/14 17:31	5
1,3,5-Trimethylbenzene	<0.90		5.0	0.90	ug/L			01/24/14 17:31	5
1,3-Dichlorobenzene	<0.75		5.0	0.75	ug/L			01/24/14 17:31	5
1,3-Dichloropropane	<0.65		5.0	0.65	ug/L			01/24/14 17:31	5
1,4-Dichlorobenzene	<0.75		5.0	0.75	ug/L			01/24/14 17:31	5
2,2-Dichloropropane	<1.6		5.0	1.6	ug/L			01/24/14 17:31	5
2-Chlorotoluene	<1.1		5.0	1.1	ug/L			01/24/14 17:31	5
4-Chlorotoluene	<1.0		5.0	1.0	ug/L			01/24/14 17:31	5
Benzene	<0.37		2.5	0.37	ug/L			01/24/14 17:31	5
Bromobenzene	<1.3		5.0	1.3	ug/L			01/24/14 17:31	5
Bromochloromethane	<2.0		5.0	2.0	ug/L			01/24/14 17:31	5
Bromodichloromethane	<0.85		5.0	0.85	ug/L			01/24/14 17:31	5
Bromoform	<1.4		5.0	1.4	ug/L			01/24/14 17:31	5
Bromomethane	<1.6		5.0	1.6	ug/L			01/24/14 17:31	5
Carbon tetrachloride	<1.3		5.0	1.3	ug/L			01/24/14 17:31	5
Chlorobenzene	<0.70		5.0	0.70	ug/L			01/24/14 17:31	5
Chloroethane	<1.7		5.0	1.7	ug/L			01/24/14 17:31	5
Chloroform	<1.0		5.0	1.0	ug/L			01/24/14 17:31	5
Chloromethane	<0.90		5.0	0.90	ug/L			01/24/14 17:31	5
cis-1,3-Dichloropropene	<0.90		5.0	0.90	ug/L			01/24/14 17:31	5
Dibromochloromethane	<1.6		5.0	1.6	ug/L			01/24/14 17:31	5
Dibromomethane	<1.7		5.0	1.7	ug/L			01/24/14 17:31	5
Dichlorodifluoromethane	<1.0		5.0	1.0	ug/L			01/24/14 17:31	5
Ethylbenzene	<0.65		2.5	0.65	ug/L			01/24/14 17:31	5
Hexachlorobutadiene	<1.3		5.0	1.3	ug/L			01/24/14 17:31	5
Isopropyl ether	<0.75		5.0	0.75	ug/L			01/24/14 17:31	5

Client Sample ID: End Step 2 Date Collected: 01/20/14 19:45

Date Received: 01/23/14 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	<1.2		5.0	1.2	ug/L			01/24/14 17:31	5
Methylene Chloride	<3.4		25	3.4	ug/L			01/24/14 17:31	5
Naphthalene	<0.80		5.0	0.80	ug/L			01/24/14 17:31	5
n-Butylbenzene	<0.65		5.0	0.65	ug/L			01/24/14 17:31	5
N-Propylbenzene	<0.65		5.0	0.65	ug/L			01/24/14 17:31	5
p-Isopropyltoluene	<0.85		5.0	0.85	ug/L			01/24/14 17:31	5
sec-Butylbenzene	<0.75		5.0	0.75	ug/L			01/24/14 17:31	5
Styrene	<0.50		5.0	0.50	ug/L			01/24/14 17:31	5
tert-Butylbenzene	<0.70		5.0	0.70	ug/L			01/24/14 17:31	5
Toluene	<0.55		2.5	0.55	ug/L			01/24/14 17:31	5
trans-1,2-Dichloroethene	21		5.0	1.3	ug/L			01/24/14 17:31	5
trans-1,3-Dichloropropene	<1.1		5.0	1.1	ug/L			01/24/14 17:31	5
Trichloroethene	610		2.5	0.95	ug/L			01/24/14 17:31	5
Trichlorofluoromethane	<0.95		5.0	0.95	ug/L			01/24/14 17:31	5
Vinyl chloride	56		2.5	0.50	ug/L			01/24/14 17:31	5
Xylenes, Total	<0.34		5.0	0.34	ug/L			01/24/14 17:31	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 125		01/24/14 17:31	5
4-Bromofluorobenzene (Surr)	105		75 - 120		01/24/14 17:31	5
Dibromofluoromethane	94		75 - 120		01/24/14 17:31	5
Toluene-d8 (Surr)	103		75 _ 120		01/24/14 17:31	5

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	1400		50	6.0	ug/L			01/24/14 17:59	50
Tetrachloroethene	3200		50	8.5	ug/L			01/24/14 17:59	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		75 - 125			-		01/24/14 17:59	50
4-Bromofluorobenzene (Surr)	104		75 _ 120					01/24/14 17:59	50
Dibromofluoromethane	98		75 _ 120					01/24/14 17:59	50
Toluene-d8 (Surr)	101		75 - 120					01/24/14 17:59	50

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	35	JB	100	12	ug/L		01/24/14 08:30	01/24/14 15:17	1
Manganese	64		2.5	0.76	ug/L		01/24/14 08:30	01/24/14 15:17	1
) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	12	JB	100	12	ug/L		01/24/14 08:30	01/24/14 15:21	1
Manganese	61		2.5	0.76	ug/L		01/24/14 08:30	01/24/14 15:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1100		10	5.6	mg/L			01/27/14 22:50	1

Lab Sample ID: 500-70505-4 Matrix: Water

Client Sample ID: End Step 3 Date Collected: 01/20/14 22:30

Date Received: 01/23/14 10:30

Analye Result Qualifier RL MDL Unit D Pergard Analyzed DIFS 11.13-Teriodirochane 4.10 50 10.10 ugl. 01/24/14 1820 55 11.12-Teriodirochane 4.12 50 12.2 ugl. 01/24/14 1820 55 1.12-Teriodirochane 4.14 50 1.14 ugl. 01/24/14 1820 55 1.12-Dichlorochane 4.16 50 0.16 ugl. 01/24/14 1820 55 1.12-Dichlorochane 4.17 50 0.17 ugl. 01/24/14 1820 55 1.23-Triodirochance 4.17 50 0.20 ugl. 01/24/14 1820 55 1.24-Triodirochance 4.14 50 0.10 ugl. 01/24/14 1820 55 1.2-Dichonchance 4.14 50 1.4 ugl. 01/24/14 1820 55 1.2-Dichonchance 4.14 50 1.4 ugl. 01/24/14 1820 55 1.2-Dichonchance 4.14		nic Compounds (GC/MS)							
1,1,12 1,10 1,10 1,11 <	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Tickbronchame +10 50 1.0 upd. 01/24/14 1828 5 1,12-Tickbronchame +14 50 1.4 upd. 01/24/14 1828 5 1,12-Tickbronchame +16 50 0.05 upd. 01/24/14 1828 5 1,1-Dichbronchame +16 50 0.17 upd. 01/24/14 1826 5 1,1-Dichbronchame +17 50 0.17 upd. 01/24/14 1826 5 1,2-Tichbronchame +16 50 1.5 upd. 01/24/14 1826 5 1,2-Tichbronchame +16 50 1.5 upd. 01/24/14 1826 5 1,2-Lichbronchame +18 50 1.5 upd. 01/24/14 1826 5 1,2-Dibronchame +18 50 1.4 upd. 01/24/14 1826 5 1,2-Dibronchame +18 50 1.4 upd. 01/24/14 1826 5 1,2-Dibronchame +14 50 1.4 upd. 01/24/14 1826 5 1,2-Dibronchame +14 50 1.5 upd.	1,1,1,2-Tetrachloroethane	<1.3	5.0	1.3	ug/L			01/24/14 18:26	5
1,1,2,2 Traincloronethane +12 50 1.2 updit/ 00241141826 5 1,1 Dichloronethane +0.95 50 0.95 upl. 01241141826 5 1,1 Dichloronethane +16 50 0.95 upl. 01241141826 5 1,1 Dichloronethane +16 50 0.95 upl. 01241141826 5 1,2 Jarthchoronethane +17 50 1.7 upl. 01241141826 5 1,2 Jarthchoronethane +16 50 1.6 upl. 01241141826 5 1,2 Jarthchoronethane +16 50 1.6 upl. 01241141826 5 1,2 Jarthchoronethane +14 50 1.4 upl. 01241141826 5 1,2 Jarthchoronethane +14 50 1.4 upl. 01241141826 5 1,2 Jarthchoronethane +14 50 1.4 upl. 01241141826 5 1,2 Jarthchoronethane +14 50 0.14 upl. 01241141826 5 1,2 Jarthchoronethane +14 50 0.14	1,1,1-Trichloroethane	<1.0	5.0	1.0	ug/L			01/24/14 18:26	5
1,1,2.7bd/not/shore 14 50 1.4 wg/L 01/24/14 18.26 5 1,1-Dichloroschene 0.16 50 0.05 10,1 01/24/14 18.26 5 1,1-Dichloroschene 14.7 5.0 1.7 vglL 01/24/14 18.26 5 1,1-Dichloroscherene 14.2 5.0 1.2 vglL 01/24/14 18.26 5 1,2.3-Trichloroscherene 4.16 5.0 1.6 ugL 01/24/14 18.26 5 1,2.4-Trichloroscherene 4.070 5.0 0.70 ugL 01/24/14 18.26 5 1,2.Dikronoscherene 4.14 5.0 1.4 ugL 01/24/14 18.26 5 1.2.Dikronoscherene 4.14 5.0 1.4 ugL 01/24/14 18.26 5 1.2.Dikronoscherene 4.14 5.0 1.4 ugL 01/24/14 18.26 5 1.2.Dikronoscherene 4.14 5.0 0.75 ugL 01/24/14 18.26 5 1.2.Dikronoscherene 4.05 5.0 0.05 ugL 01/24/14 18.26 5 1.2.Dichroscherene 4.05 0.0 <td>1,1,2,2-Tetrachloroethane</td> <td><1.2</td> <td>5.0</td> <td>1.2</td> <td>ug/L</td> <td></td> <td></td> <td>01/24/14 18:26</td> <td>5</td>	1,1,2,2-Tetrachloroethane	<1.2	5.0	1.2	ug/L			01/24/14 18:26	5
1.1-Dichloropennen -0.65 0.0 0.05 0.01 0.024/14 182.6 5 1.1-Dichloropennen -1.7 0.0 1.7 0.01 0.0124/14 182.6 5 1.2.3 Trichloropenne -2.2 0.0 1.2.3 0.0 1.2.4 0.0 0.0124/14 182.6 0.5 1.2.4 Trichloropenne -2.4 0.0 0.0 0.0 0.0124/14 182.6 0.5 1.2.4 Trichloropenne -0.0 0.0 0.70 0.01 0.0124/14 182.6 0.5 1.2.4 Trinchlyberszne -0.0 0.0 1.4 0.0 0.0124/14 182.6 0.5 1.2.Dichoropenne -1.4 0.0 1.4 0.0 0.024/14 182.6 0.5 1.2.Dichoropenne -1.4 0.0 0.1 0.01 0.0124/14 182.6 0.5 1.2.Dichoropenne -0.05 0.0 0.05 0.01 0.0124/14 182.6 0.5 1.2.Dichoropenne -0.05 0.0 0.05 0.01 0.0124/14 182.6 0.5 1.2.Dichoropena	1,1,2-Trichloroethane	<1.4	5.0	1.4	ug/L			01/24/14 18:26	5
1.1-Dickhorspropene <1.6	1,1-Dichloroethane	<0.95	5.0	0.95	ug/L			01/24/14 18:26	5
1.1-Dicknorphopene -1.7 5.0 1.7 upl 01/24/14 1826 5 1.2.3-Tinchkoropopane -2.3 5.0 1.2 upl 01/24/14 1826 5 1.2.4-Tinchkoropopane -2.3 5.0 0.7.0 Upl 01/24/14 1826 5 1.2.4-Tinchkyberzene -1.6 0.70 5.0 0.70 Upl 01/24/14 1826 5 1.2-Dicknorobenzene -4.4 1.0 4.4 upl 01/24/14 1826 5 1.2-Dicknorobenzene -4.4 5.0 1.4 upl 01/24/14 1826 5 1.2-Dicknorobenzene -4.4 5.0 1.4 upl 01/24/14 1826 5 1.2-Dicknorobenzene -4.0 5.0 0.50 upl 01/24/14 1826 5 1.2-Dicknorobenzene -4.0 5.0 0.50 upl 01/24/14 1826 5 1.3-Dicknorobenzene -0.5 5.0 0.55 upl 01/24/14 1826 5 2-Dicknorobenzene -0.7 5.0 0.75 upl 01/24/14 1826 5 1.3-Dicknorobenzene -0.6	1,1-Dichloroethene	<1.6	5.0	1.6	ug/L			01/24/14 18:26	5
1,2,3-Tinchhordenzene4.125.01.2 upl.01/24/14 18.265.1,2,3-Tinchhordenzene4.165.02.3upl.01/24/14 18.265.1,2,4-Tinchordenzene4.105.00.70upl.01/24/14 18.265.1,2,4-Tinchordenzene4.100.704.4upl.01/24/14 18.265.1,2.0-Dinoroschane4.45.01.4upl.01/24/14 18.265.1,2.0-Dinoroschane4.45.01.4upl.01/24/14 18.265.1,2.0-Dinoroschane4.145.01.4upl.01/24/14 18.265.1,2.0-Dinoroschane4.145.01.4upl.01/24/14 18.265.1,2.0-Dinoroschane4.105.00.75upl.01/24/14 18.265.1,3.D-Dinoroppane4.165.00.75upl.01/24/14 18.265.1,3.D-Dinoroppane4.165.01.1upl.01/24/14 18.265.1,3.D-Dinoroppane4.165.01.1upl.01/24/14 18.265.2,2.D-Cinoroblene4.115.01.1upl.01/24/14 18.265.2,2.D-Cinoroblene4.135.01.3upl.01/24/14 18.265.2,2.D-Cinoroblene4.145.01.1upl.01/24/14 18.265.2,2.D-Cinoroblene4.135.01.3upl.01/24/14 18.265.2,2.D-Cinoroblene4.145.01.1upl.01/24/14 18.265. <t< td=""><td>1,1-Dichloropropene</td><td><1.7</td><td>5.0</td><td>1.7</td><td>ug/L</td><td></td><td></td><td>01/24/14 18:26</td><td>5</td></t<>	1,1-Dichloropropene	<1.7	5.0	1.7	ug/L			01/24/14 18:26	5
1.2.3-Trichloropropene <2.3	1,2,3-Trichlorobenzene	<1.2	5.0	1.2	ug/L			01/24/14 18:26	5
1.2.4-Trinethylbenzene <1.6	1,2,3-Trichloropropane	<2.3	5.0	2.3	ug/L			01/24/14 18:26	5
1.2.0 Trimethyberzene <0.70	1,2,4-Trichlorobenzene	<1.6	5.0	1.6	ug/L			01/24/14 18:26	5
1.2.Dibrome-3-Chloropropane 4.4 10 4.4 ugL 01/24/14 18:26 5 1.2.Diblorobehane 4.14 5.0 1.4 ugL 01/24/14 18:26 5 1.2.Diblorobehane 4.14 5.0 1.4 ugL 01/24/14 18:26 5 1.2.Diblorobehane 4.14 5.0 1.4 ugL 01/24/14 18:26 5 1.3.Dibloropropane 4.05 5.0 0.05 ugL 01/24/14 18:26 5 1.3.Dibloropropane 4.05 5.0 0.05 ugL 01/24/14 18:26 5 1.3.Dibloropropane 4.05 5.0 0.075 ugL 01/24/14 18:26 5 1.4.Diblorobenzene 4.075 5.0 0.75 ugL 01/24/14 18:26 5 1.4.Diblorobenzene 4.1 5.0 1.1 ugL 01/24/14 18:26 5 2.2.Diblorboenzene 4.1 5.0 1.1 ugL 01/24/14 18:26 5 2.2.Diblorboenzene 4.1 5.0 1.3 ugL 01/24/14 18:26 5 Benzene 4.3 5.0	1,2,4-Trimethylbenzene	<0.70	5.0	0.70	ug/L			01/24/14 18:26	5
1.2-Dibromethane <1.8	1,2-Dibromo-3-Chloropropane	<4.4	10	4.4	ug/L			01/24/14 18:26	5
1.2.Dichlorobenzene <1.4	1,2-Dibromoethane	<1.8	5.0	1.8	ug/L			01/24/14 18:26	5
1.2.Dichloropene <1.4	1,2-Dichlorobenzene	<1.4	5.0	1.4	ug/L			01/24/14 18:26	5
1.2.Dichloropropane <1.0	1,2-Dichloroethane	<1.4	5.0	1.4	ug/L			01/24/14 18:26	5
1.3.B-Trimethylenzene <0.90	1,2-Dichloropropane	<1.0	5.0	1.0	ug/L			01/24/14 18:26	5
1.3-Dichloropropane <0.75	1,3,5-Trimethylbenzene	<0.90	5.0	0.90	ug/L			01/24/14 18:26	5
1.3-Dichloropropane <0.65	1,3-Dichlorobenzene	<0.75	5.0	0.75	ug/L			01/24/14 18:26	5
1.4-Dichlorobenzene	1,3-Dichloropropane	<0.65	5.0	0.65	ug/L			01/24/14 18:26	5
2.2-Dichloropropane <1.6	1,4-Dichlorobenzene	<0.75	5.0	0.75	ug/L			01/24/14 18:26	5
2-Chlorobluene <1.1 5.0 1.1 ug/L 01/24/14 18.26 5 4-Chlorobluene <1.0	2.2-Dichloropropane	<1.6	5.0	1.6	ua/L			01/24/14 18:26	5
4-Chlorothlane <1.0	2-Chlorotoluene	<1.1	5.0	1.1	ua/L			01/24/14 18:26	5
Benzene <0.37 2.5 0.37 uj/L 01/24/14 18:26 5 Bromobenzene <1.3	4-Chlorotoluene	<1.0	5.0	1.0	ua/L			01/24/14 18:26	5
Bromobenzene <1.3 5.0 1.3 ug/L 01/24/14 18:26 5 Bromodichloromethane <2.0	Benzene	<0.37	2.5	0.37	ua/L			01/24/14 18:26	5
Bromechloromethane <2.0 5.0 2.0 ug/L 01/24/14 18:26 5 Bromodichloromethane <0.85	Bromobenzene	<1.3	5.0	1.3	ua/L			01/24/14 18:26	5
Bromodichloromethane <0.85 5.0 0.85 ug/L 01/24/14 18:26 5 Bromoform <1.4	Bromochloromethane	<2.0	5.0	2.0	ug/L			01/24/14 18:26	5
Bromoform <1.4 5.0 1.4 ug/L 01/24/14 18:26 5 Bromomethane <1.6	Bromodichloromethane	<0.85	5.0	0.85	ug/L			01/24/14 18:26	5
Bromomethane <1.6 5.0 1.6 ug/L 01/24/14 18:26 5 Carbon tetrachloride <1.3	Bromoform	<1.4	5.0	1.4	ua/L			01/24/14 18:26	5
Carbon tetrachloride <1.3 5.0 1.3 ug/L 01/24/14 18:26 5 Chlorobenzene <0.70	Bromomethane	<1.6	5.0	1.6	ug/L			01/24/14 18:26	5
Chlorobenzene <0.70 5.0 0.70 ug/L 01/24/14 18:26 5 Chloroethane <1.7	Carbon tetrachloride	<1.3	5.0	1.3	ug/L			01/24/14 18:26	5
Chloroethane <1.7 5.0 1.7 ug/L 01/24/14 18:26 5 Chloroform <1.0	Chlorobenzene	<0.70	5.0	0.70	ug/L			01/24/14 18:26	5
Chloroform <1.0 5.0 1.0 ug/L 01/24/14 18:26 5 Chloromethane <0.90	Chloroethane	<1.7	5.0	1.7	ug/L			01/24/14 18:26	5
Chloromethane <0.90 5.0 0.90 ug/L 01/24/14 18:26 5 cis-1,3-Dichloropropene <0.90	Chloroform	<1.0	5.0	1.0	ug/L			01/24/14 18:26	5
cis-1,3-Dichloropropene <0.90 5.0 0.90 ug/L 01/24/14 18:26 5 Dibromochloromethane <1.6	Chloromethane	<0.90	5.0	0.90	ug/L			01/24/14 18:26	5
Dibronchloromethane <1.6 5.0 1.6 ug/L 01/24/14 18:26 5 Dibronomethane <1.7	cis-1,3-Dichloropropene	<0.90	5.0	0.90	ug/L			01/24/14 18:26	5
Dibromomethane <1.7 5.0 1.7 ug/L 01/24/14 18:26 5 Dichlorodifluoromethane <1.0	Dibromochloromethane	<1.6	5.0	1.6	ug/L			01/24/14 18:26	5
Dichlorodifluoromethane <1.0 5.0 1.0 ug/L 01/24/14 18:26 5 Ethylbenzene <0.65	Dibromomethane	<1.7	5.0	1.7	ug/L			01/24/14 18:26	5
Ethylbenzene <0.65 2.5 0.65 ug/L 01/24/14 18:26 5 Hexachlorobutadiene <1.3	Dichlorodifluoromethane	<1.0	5.0	1.0	ug/L			01/24/14 18:26	5
Hexachlorobutadiene <1.3 5.0 1.3 ug/L 01/24/14 18:26 5 Isopropyl ether <0.75	Ethylbenzene	<0.65	2.5	0.65	ug/L			01/24/14 18:26	5
Isopropyl ether <0.75 5.0 0.75 ug/L 01/24/14 18:26 5 Isopropylbenzene <0.70	Hexachlorobutadiene	<1.3	5.0	1.3	ug/L			01/24/14 18:26	5
Isopropylbenzene <0.70 5.0 0.70 ug/L 01/24/14 18:26 5 Methyl tert-butyl ether <1.2	Isopropyl ether	<0.75	5.0	0.75	ug/L			01/24/14 18:26	5
Methyl tert-butyl ether <1.2 5.0 1.2 ug/L 01/24/14 18:26 5 Methylene Chloride <3.4	Isopropylbenzene	<0.70	5.0	0.70	ug/L			01/24/14 18:26	5
Methylene Chloride <3.4 25 3.4 ug/L 01/24/14 18:26 5 Naphthalene <0.80	Methyl tert-butyl ether	<1.2	5.0	1.2	ug/L			01/24/14 18:26	5
Naphthalene <0.80 5.0 0.80 ug/L 01/24/14 18:26 5 n-Butylbenzene <0.65	Methylene Chloride	<3.4	25	3.4	ug/L			01/24/14 18:26	5
n-Butylbenzene <0.65 5.0 0.65 ug/L 01/24/14 18:26 5 N-Propylbenzene <0.65	Naphthalene	<0.80	5.0	0.80	ug/L			01/24/14 18:26	5
N-Propylbenzene <0.65 5.0 0.65 ug/L 01/24/14 18:26 5	n-Butylbenzene	<0.65	5.0	0.65	ug/L			01/24/14 18:26	5
	N-Propylbenzene	<0.65	5.0	0.65	ug/L			01/24/14 18:26	5
p-isopropyltoluene <0.85 5.0 0.85 ug/L 01/24/14 18:26 5	p-Isopropyltoluene	<0.85	5.0	0.85	ug/L			01/24/14 18:26	5
sec-Butylbenzene <0.75 5.0 0.75 ug/L 01/24/14 18:26 5	sec-Butylbenzene	<0.75	5.0	0.75	ug/L			01/24/14 18:26	5

TestAmerica Job ID: 500-70505-1

Lab Sample ID: 500-70505-5 Matrix: Water

Client Sample ID: End Step 3 Date Collected: 01/20/14 22:30

Date Received: 01/23/14 10:30

Matrix: Water	

Method: 8260B - Volatile Org	anic Compounds (GC/MS)	(Continued)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.50	5.0	0.50	ug/L			01/24/14 18:26	5
tert-Butylbenzene	<0.70	5.0	0.70	ug/L			01/24/14 18:26	5
Toluene	<0.55	2.5	0.55	ug/L			01/24/14 18:26	5
trans-1,2-Dichloroethene	20	5.0	1.3	ug/L			01/24/14 18:26	5
trans-1,3-Dichloropropene	<1.1	5.0	1.1	ug/L			01/24/14 18:26	5
Trichloroethene	570	2.5	0.95	ug/L			01/24/14 18:26	5
Trichlorofluoromethane	<0.95	5.0	0.95	ug/L			01/24/14 18:26	5
Vinyl chloride	51	2.5	0.50	ug/L			01/24/14 18:26	5
Xylenes, Total	<0.34	5.0	0.34	ug/L			01/24/14 18:26	5
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

canogato	,,	quanner			 / j =04	
1,2-Dichloroethane-d4 (Surr)	102		75 - 125	-	 01/24/14 18:26	5
4-Bromofluorobenzene (Surr)	104		75 - 120		01/24/14 18:26	5
Dibromofluoromethane	95		75 - 120		01/24/14 18:26	5
Toluene-d8 (Surr)	104		75 - 120		01/24/14 18:26	5

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	1300		50	6.0	ug/L			01/24/14 18:53	50
Tetrachloroethene	3100		50	8.5	ug/L			01/24/14 18:53	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		75 - 125			-		01/24/14 18:53	50
4-Bromofluorobenzene (Surr)	102		75 - 120					01/24/14 18:53	50
Dibromofluoromethane	95		75 - 120					01/24/14 18:53	50
Toluene-d8 (Surr)	103		75 - 120					01/24/14 18:53	50

Method: 6020 - Metals (ICP/MS	6) - Total Recover	rable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	35	JB	100	12	ug/L		01/24/14 08:30	01/24/14 15:24	1
Manganese	86		2.5	0.76	ug/L		01/24/14 08:30	01/24/14 15:24	1
- Method: 6020 - Metals (ICP/MS	6) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	20	JB	100	12	ug/L		01/24/14 08:30	01/24/14 15:27	1
Manganese	79		2.5	0.76	ug/L		01/24/14 08:30	01/24/14 15:27	1
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1200		10	5.6	mg/L			01/27/14 22:52	1

Lab Sample ID: 500-70505-5

TestAmerica Job ID: 500-70505-1

Definitions/Glossary

Client: ARCADIS U.S., Inc. Project/Site: MadisonKipp - WI001368.0011

Qualifiers

Metals

Qualifiers	5	
Metals		
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	E
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	Ð
Glossarv		

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

GC/MS VOA

Analysis Batch: 220915

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-70505-1	Trip Blank	Total/NA	Water	8260B	
500-70505-2	Pre Step Test	Total/NA	Water	8260B	
500-70505-2 - DL	Pre Step Test	Total/NA	Water	8260B	
500-70505-3	End Step 1	Total/NA	Water	8260B	
500-70505-3 - DL	End Step 1	Total/NA	Water	8260B	
500-70505-4	End Step 2	Total/NA	Water	8260B	
500-70505-4 - DL	End Step 2	Total/NA	Water	8260B	
500-70505-5	End Step 3	Total/NA	Water	8260B	
500-70505-5 - DL	End Step 3	Total/NA	Water	8260B	
LCS 500-220915/4	Lab Control Sample	Total/NA	Water	8260B	
MB 500-220915/6	Method Blank	Total/NA	Water	8260B	

Metals

Prep Batch: 220898

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-70505-2	Pre Step Test	Dissolved	Water	3005A	
500-70505-2	Pre Step Test	Total Recoverable	Water	3005A	
500-70505-3	End Step 1	Dissolved	Water	3005A	
500-70505-3	End Step 1	Total Recoverable	Water	3005A	
500-70505-4	End Step 2	Dissolved	Water	3005A	
500-70505-4	End Step 2	Total Recoverable	Water	3005A	
500-70505-5	End Step 3	Dissolved	Water	3005A	
500-70505-5	End Step 3	Total Recoverable	Water	3005A	
LCS 500-220898/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 500-220898/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 221057

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-70505-2	Pre Step Test	Dissolved	Water	6020	220898
500-70505-2	Pre Step Test	Total Recoverable	Water	6020	220898
500-70505-3	End Step 1	Dissolved	Water	6020	220898
500-70505-3	End Step 1	Total Recoverable	Water	6020	220898
500-70505-4	End Step 2	Dissolved	Water	6020	220898
500-70505-4	End Step 2	Total Recoverable	Water	6020	220898
500-70505-5	End Step 3	Dissolved	Water	6020	220898
500-70505-5	End Step 3	Total Recoverable	Water	6020	220898
LCS 500-220898/2-A	Lab Control Sample	Total Recoverable	Water	6020	220898
MB 500-220898/1-A	Method Blank	Total Recoverable	Water	6020	220898

General Chemistry

Analysis Batch: 221149

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-70505-3	End Step 1	Total/NA	Water	SM 2540C	
500-70505-4	End Step 2	Total/NA	Water	SM 2540C	
500-70505-5	End Step 3	Total/NA	Water	SM 2540C	
LCS 500-221149/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 500-221149/1	Method Blank	Total/NA	Water	SM 2540C	

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

				Percent Surrogate Recover			
		12DCE	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(75-125)	(75-120)	(75-120)	(75-120)		
500-70505-1	Trip Blank	102	100	93	104		
500-70505-2	Pre Step Test	100	102	95	104		
500-70505-2 - DL	Pre Step Test	102	103	96	102		
500-70505-3	End Step 1	102	102	95	105		
500-70505-3 - DL	End Step 1	104	101	96	101		
500-70505-4	End Step 2	102	105	94	103		
500-70505-4 - DL	End Step 2	106	104	98	101		
500-70505-5	End Step 3	102	104	95	104		
500-70505-5 - DL	End Step 3	105	102	95	103		
LCS 500-220915/4	Lab Control Sample	101	104	98	106		
MB 500-220915/6	Method Blank	105	102	96	104		

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

TOL = Toluene-d8 (Surr)

Prep Type: Total/NA

Lab Sample ID: MB 500-220915/6

Matrix: Water

Analyte

Analysis Batch: 220915

1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane

1,2-Dibromoethane 1,2-Dichlorobenzene **Client Sample ID: Method Blank**

Prep Type: Total/NA

МВ	МВ								5
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
<0.25		1.0	0.25	ug/L			01/24/14 13:53	1	
<0.20		1.0	0.20	ug/L			01/24/14 13:53	1	
<0.23		1.0	0.23	ug/L			01/24/14 13:53	1	
<0.28		1.0	0.28	ug/L			01/24/14 13:53	1	
<0.19		1.0	0.19	ug/L			01/24/14 13:53	1	8
<0.31		1.0	0.31	ug/L			01/24/14 13:53	1	
<0.34		1.0	0.34	ug/L			01/24/14 13:53	1	9
<0.24		1.0	0.24	ug/L			01/24/14 13:53	1	
<0.45		1.0	0.45	ug/L			01/24/14 13:53	1	
<0.31		1.0	0.31	ug/L			01/24/14 13:53	1	
<0.14		1.0	0.14	ug/L			01/24/14 13:53	1	11
<0.87		2.0	0.87	ug/L			01/24/14 13:53	1	
<0.36		1.0	0.36	ug/L			01/24/14 13:53	1	
<0.27		1.0	0.27	ug/L			01/24/14 13:53	1	
<0.28		1.0	0.28	ug/L			01/24/14 13:53	1	
<0.20		1.0	0.20	ug/L			01/24/14 13:53	1	
<0.18		1.0	0.18	ug/L			01/24/14 13:53	1	
<0.15		1.0	0.15	ug/L			01/24/14 13:53	1	
<0.13		1.0	0.13	ug/L			01/24/14 13:53	1	
<0.15		1.0	0.15	ug/L			01/24/14 13:53	1	
<0.32		1.0	0.32	ug/L			01/24/14 13:53	1	
<0.21		1.0	0.21	ug/L			01/24/14 13:53	1	
<0.20		1.0	0.20	ug/L			01/24/14 13:53	1	
<0.074		0.50	0.074	ug/L			01/24/14 13:53	1	
<0.25		1.0	0.25	ug/L			01/24/14 13:53	1	
<0.40		1.0	0.40	ug/L			01/24/14 13:53	1	
-0.47		1.0	0.47				04/04/44 40 50		

Method: 8260B - Volatile Organic Compounds (GC/MS)

1,2-Dichloroethane	<0.28	1.0	0.28	ug/L	01/24/14 13:53	1
1,2-Dichloropropane	<0.20	1.0	0.20	ug/L	01/24/14 13:53	1
1,3,5-Trimethylbenzene	<0.18	1.0	0.18	ug/L	01/24/14 13:53	1
1,3-Dichlorobenzene	<0.15	1.0	0.15	ug/L	01/24/14 13:53	1
1,3-Dichloropropane	<0.13	1.0	0.13	ug/L	01/24/14 13:53	1
1,4-Dichlorobenzene	<0.15	1.0	0.15	ug/L	01/24/14 13:53	1
2,2-Dichloropropane	<0.32	1.0	0.32	ug/L	01/24/14 13:53	1
2-Chlorotoluene	<0.21	1.0	0.21	ug/L	01/24/14 13:53	1
4-Chlorotoluene	<0.20	1.0	0.20	ug/L	01/24/14 13:53	1
Benzene	<0.074	0.50	0.074	ug/L	01/24/14 13:53	1
Bromobenzene	<0.25	1.0	0.25	ug/L	01/24/14 13:53	1
Bromochloromethane	<0.40	1.0	0.40	ug/L	01/24/14 13:53	1
Bromodichloromethane	<0.17	1.0	0.17	ug/L	01/24/14 13:53	1
Bromoform	<0.28	1.0	0.28	ug/L	01/24/14 13:53	1
Bromomethane	<0.31	1.0	0.31	ug/L	01/24/14 13:53	1
Carbon tetrachloride	<0.26	1.0	0.26	ug/L	01/24/14 13:53	1
Chlorobenzene	<0.14	1.0	0.14	ug/L	01/24/14 13:53	1
Chloroethane	<0.34	1.0	0.34	ug/L	01/24/14 13:53	1
Chloroform	<0.20	1.0	0.20	ug/L	01/24/14 13:53	1
Chloromethane	<0.18	1.0	0.18	ug/L	01/24/14 13:53	1
cis-1,2-Dichloroethene	<0.12	1.0	0.12	ug/L	01/24/14 13:53	1
cis-1,3-Dichloropropene	<0.18	1.0	0.18	ug/L	01/24/14 13:53	1
Dibromochloromethane	<0.32	1.0	0.32	ug/L	01/24/14 13:53	1
Dibromomethane	<0.33	1.0	0.33	ug/L	01/24/14 13:53	1
Dichlorodifluoromethane	<0.20	1.0	0.20	ug/L	01/24/14 13:53	1
Ethylbenzene	<0.13	0.50	0.13	ug/L	01/24/14 13:53	1
Hexachlorobutadiene	<0.26	1.0	0.26	ug/L	01/24/14 13:53	1
Isopropyl ether	<0.15	1.0	0.15	ug/L	01/24/14 13:53	1
Isopropylbenzene	<0.14	1.0	0.14	ug/L	01/24/14 13:53	1
Methyl tert-butyl ether	<0.24	1.0	0.24	ug/L	01/24/14 13:53	1
Methylene Chloride	<0.68	5.0	0.68	ug/L	01/24/14 13:53	1
Naphthalene	<0.16	1.0	0.16	ug/L	01/24/14 13:53	1
n-Butylbenzene	<0.13	1.0	0.13	ug/L	01/24/14 13:53	1
N-Propylbenzene	<0.13	1.0	0.13	ug/L	01/24/14 13:53	1

01/24/14 13:53

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

104

Lab Sam	ple ID: M	IB 500-220915/6
Matrix: W	later	

Analysis Batch: 220915

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.17		1.0	0.17	ug/L			01/24/14 13:53	1
sec-Butylbenzene	<0.15		1.0	0.15	ug/L			01/24/14 13:53	1
Styrene	<0.10		1.0	0.10	ug/L			01/24/14 13:53	1
tert-Butylbenzene	<0.14		1.0	0.14	ug/L			01/24/14 13:53	1
Tetrachloroethene	<0.17		1.0	0.17	ug/L			01/24/14 13:53	1
Toluene	<0.11		0.50	0.11	ug/L			01/24/14 13:53	1
trans-1,2-Dichloroethene	<0.25		1.0	0.25	ug/L			01/24/14 13:53	1
trans-1,3-Dichloropropene	<0.21		1.0	0.21	ug/L			01/24/14 13:53	1
Trichloroethene	<0.19		0.50	0.19	ug/L			01/24/14 13:53	1
Trichlorofluoromethane	<0.19		1.0	0.19	ug/L			01/24/14 13:53	1
Vinyl chloride	<0.10		0.50	0.10	ug/L			01/24/14 13:53	1
Xylenes, Total	<0.068		1.0	0.068	ug/L			01/24/14 13:53	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		75 - 125			-		01/24/14 13:53	1
4-Bromofluorobenzene (Surr)	102		75 _ 120					01/24/14 13:53	1
Dibromofluoromethane	96		75 - 120					01/24/14 13:53	1

75 - 120

Lab Sample ID: LCS 500-220915/4 Matrix: Water

Analysis Batch: 220915

Toluene-d8 (Surr)

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	56.3		ug/L		113	75 - 120	
1,1,1-Trichloroethane	50.0	51.4		ug/L		103	70 - 123	
1,1,2,2-Tetrachloroethane	50.0	58.5		ug/L		117	70 - 128	
1,1,2-Trichloroethane	50.0	52.4		ug/L		105	69 - 120	
1,1-Dichloroethane	50.0	50.0		ug/L		100	68 - 121	
1,1-Dichloroethene	50.0	49.1		ug/L		98	58 - 122	
1,1-Dichloropropene	50.0	51.7		ug/L		103	70 - 120	
1,2,3-Trichlorobenzene	50.0	46.8		ug/L		94	56 - 137	
1,2,3-Trichloropropane	50.0	54.2		ug/L		108	70 - 120	
1,2,4-Trichlorobenzene	50.0	48.3		ug/L		97	65 ₋ 121	
1,2,4-Trimethylbenzene	50.0	53.6		ug/L		107	75 ₋ 121	
1,2-Dibromo-3-Chloropropane	50.0	54.8		ug/L		110	60 ₋ 121	
1,2-Dibromoethane	50.0	51.6		ug/L		103	70 ₋ 120	
1,2-Dichlorobenzene	50.0	51.9		ug/L		104	75 - 120	
1,2-Dichloroethane	50.0	50.8		ug/L		102	69 - 120	
1,2-Dichloropropane	50.0	50.1		ug/L		100	70 - 120	
1,3,5-Trimethylbenzene	50.0	54.3		ug/L		109	75 ₋ 123	
1,3-Dichlorobenzene	50.0	51.7		ug/L		103	70 - 120	
1,3-Dichloropropane	50.0	53.1		ug/L		106	70 ₋ 120	
1,4-Dichlorobenzene	50.0	50.2		ug/L		100	75 ₋ 120	
2,2-Dichloropropane	50.0	52.2		ug/L		104	67 _ 125	
2-Chlorotoluene	50.0	53.6		ug/L		107	70 ₋ 120	
4-Chlorotoluene	50.0	53.2		ug/L		106	70 - 120	
Benzene	50.0	48.6		ug/L		97	70 - 120	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

106

Lab Sample ID: LCS 500-220915/4

Matrix:	: Water		
Analys	is Batc	h: 220915	

Toluene-d8 (Surr)

			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromobenzene			50.0	52.6		ug/L		105	70 - 120	
Bromochloromethane			50.0	49.0		ug/L		98	67 - 122	
Bromodichloromethane			50.0	54.8		ug/L		110	70 - 120	
Bromoform			50.0	49.1		ug/L		98	70 - 125	
Bromomethane			50.0	49.2		ug/L		98	50 ₋ 150	
Carbon tetrachloride			50.0	50.7		ug/L		101	70 - 125	
Chlorobenzene			50.0	51.2		ug/L		102	70 - 120	
Chloroethane			50.0	48.1		ug/L		96	50 ₋ 150	
Chloroform			50.0	50.6		ug/L		101	70 - 120	
Chloromethane			50.0	48.0		ug/L		96	50 ₋ 134	
cis-1,2-Dichloroethene			50.0	48.6		ug/L		97	70 - 120	
cis-1,3-Dichloropropene			50.0	56.2		ug/L		112	70 - 120	
Dibromochloromethane			50.0	58.2		ug/L		116	70 - 120	
Dibromomethane			50.0	50.8		ug/L		102	70 - 120	
Dichlorodifluoromethane			50.0	47.4		ug/L		95	40 - 140	
Ethylbenzene			50.0	53.0		ug/L		106	75 - 120	
Hexachlorobutadiene			50.0	48.4		ug/L		97	65 - 135	
Isopropylbenzene			50.0	54.9		ug/L		110	70 - 120	
Methyl tert-butyl ether			50.0	49.1		ug/L		98	58 - 122	
Methylene Chloride			50.0	41.7		ug/L		83	65 - 125	
Naphthalene			50.0	47.8		ug/L		96	55 - 132	
n-Butylbenzene			50.0	53.6		ug/L		107	75 ₋ 120	
N-Propylbenzene			50.0	53.7		ug/L		107	70 - 120	
p-Isopropyltoluene			50.0	53.6		ug/L		107	70 - 120	
sec-Butylbenzene			50.0	53.6		ug/L		107	70 ₋ 120	
Styrene			50.0	52.9		ug/L		106	75 - 120	
tert-Butylbenzene			50.0	54.2		ug/L		108	70 - 120	
Tetrachloroethene			50.0	51.2		ug/L		102	70 ₋ 123	
Toluene			50.0	53.4		ug/L		107	70 - 120	
trans-1,2-Dichloroethene			50.0	49.3		ug/L		99	70 ₋ 124	
trans-1,3-Dichloropropene			50.0	57.5		ug/L		115	70 - 120	
Trichloroethene			50.0	49.9		ug/L		100	70 - 120	
Trichlorofluoromethane			50.0	49.4		ug/L		99	63 ₋ 134	
Vinyl chloride			50.0	48.1		ug/L		96	62 - 138	
Xylenes, Total			100	106		ug/L		106	70 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	101		75 - 125							
4-Bromofluorobenzene (Surr)	104		75 - 120							
Dibromofluoromethane	98		75 - 120							

75 - 120

	5	
	8	
	9	
1	1	
1	2	
1		
1		

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 500-220030/1-A											Client Sa	mple ID: Metho	d Blank
Matrix: Water											Prep T	ype: Total Reco	overable
Analysis Batch: 221057												Prep Batch	: 220898
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Iron	14.5	J		100		12	ug/L			01/2	4/14 08:30	01/24/14 14:55	1
Manganese	<0.76			2.5		0.76	ug/L			01/2	4/14 08:30	01/24/14 14:55	1
- Lab Sample ID: LCS 500-220898/2-A									С	lient	Sample	ID: Lab Control	Sample
Matrix: Water											Prep T	vpe: Total Reco	overable
Analysis Batch: 221057												Prep Batch	: 220898
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Iron			1000		1030			ua/L			103	80 - 120	
Manganese			500		493			ug/l			99	80 - 120	
- Mothod: SM 2540C - Solids Tota			2)										
- Method: SM 2540C - Solids, Tota - Lab Sample ID: MB 500-221149/1 Matrix: Water	II Dissol	ved (TD	5)								Client Sa	imple ID: Metho Prep Type: 1	od Blank Fotal/NA
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149	Il Dissol	ved (TD:	5)								Client Sa	mple ID: Metho Prep Type: 1	od Blank Fotal/NA
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149	Il Dissol	ved (TD:	5)								Client Sa	mple ID: Metho Prep Type: 1	od Blank Fotal/NA
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149 Analyte	II Dissol MB Result	MB Qualifier	5)	RL		MDL	Unit		D	P	Client Sa	ample ID: Metho Prep Type: T Analyzed	od Blank Fotal/NA Dil Fac
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149 Analyte Total Dissolved Solids	MB Result <5.6	MB Qualifier	S) 	RL 10		MDL 5.6	Unit mg/L		D	P	Client Sa	Ample ID: Metho Prep Type: T Analyzed 01/27/14 22:01	Dil Fac
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149 Analyte Total Dissolved Solids	MB Result <5.6	MB Qualifier	S) 	RL 10		MDL 5.6	Unit mg/L		 	P	Client Sa repared	Analyzed 01/27/14 22:01	od Blank Fotal/NA Dil Fac 1 Sample
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149 Analyte Total Dissolved Solids Lab Sample ID: LCS 500-221149/2 Matrix: Water	MB Result <5.6	MB Qualifier	S) 	RL 10		MDL 5.6	Unit mg/L		D C	P	Client Sa repared	Analyzed 01/27/14 22:01 D: Lab Control Prep Type: 1	od Blank Fotal/NA Dil Fac 1 Sample Fotal/NA
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149 Analyte Total Dissolved Solids Lab Sample ID: LCS 500-221149/2 Matrix: Water Analysis Batch: 221149	NB Result <5.6	MB Qualifier	S) 	RL 10		MDL 5.6	Unit mg/L		_ <u>D</u> 	P	Client Sa repared	Analyzed 01/27/14 22:01 D: Lab Control Prep Type: 1	Dil Fac Dil Fac 1 Sample Fotal/NA
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149 Analyte Total Dissolved Solids Lab Sample ID: LCS 500-221149/2 Matrix: Water Analysis Batch: 221149	NB Result <5.6	MB Qualifier	S)	RL 10	LCS	MDL 5.6	Unit mg/L		D C	P	Client Sa repared	Analyzed 01/27/14 22:01 D: Lab Control Prep Type: 7	Dil Fac Dil Fac 1 Sample Fotal/NA
Method: SM 2540C - Solids, Tota Lab Sample ID: MB 500-221149/1 Matrix: Water Analysis Batch: 221149 Analyte Total Dissolved Solids Lab Sample ID: LCS 500-221149/2 Matrix: Water Analysis Batch: 221149 Analyte	MB Result <5.6	MB Qualifier	S) Spike Added	RL 10	LCS Result	MDL 5.6 Qual	Unit mg/L	Unit	C	P	Client Sa repared Sample	Analyzed 01/27/14 22:01 Chab Control Prep Type: 7 %Rec. Limits	od Blank Fotal/NA Dil Fac 1 Sample Fotal/NA

Lab Sample ID: 500-70505-1

Lab Sample ID: 500-70505-2

Lab Sample ID: 500-70505-3

Lab Sample ID: 500-70505-4

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

12

Client Sample ID: Trip Blank

Date Conected.	01/20/14 00:00
Date Received:	01/23/14 10:30

Γ	Batch	Batch		Dilution	Batch	Prepared		
	Baton	Baton		Bhation	Baton	riopaioa		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	220915	01/24/14 14:48	JLH	TAL CHI

Client Sample ID: Pre Step Test Date Collected: 01/20/14 12:25 Date Received: 01/23/14 10:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	220915	01/24/14 15:42	JLH	TAL CHI
Total/NA	Analysis	8260B	DL	20	220915	01/24/14 16:10	JLH	TAL CHI
Total Recoverable	Prep	3005A			220898	01/24/14 08:30	LA1	TAL CHI
Total Recoverable	Analysis	6020		1	221057	01/24/14 15:02	BJH	TAL CHI
Dissolved	Prep	3005A			220898	01/24/14 08:30	LA1	TAL CHI
Dissolved	Analysis	6020		1	221057	01/24/14 15:06	BJH	TAL CHI

Client Sample ID: End Step 1 Date Collected: 01/20/14 16:45 Date Received: 01/23/14 10:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	220915	01/24/14 16:37	JLH	TAL CHI
Total/NA	Analysis	8260B	DL	20	220915	01/24/14 17:04	JLH	TAL CHI
Total Recoverable	Prep	3005A			220898	01/24/14 08:30	LA1	TAL CHI
Total Recoverable	Analysis	6020		1	221057	01/24/14 15:10	BJH	TAL CHI
Dissolved	Prep	3005A			220898	01/24/14 08:30	LA1	TAL CHI
Dissolved	Analysis	6020		1	221057	01/24/14 15:14	BJH	TAL CHI
Total/NA	Analysis	SM 2540C		1	221149	01/27/14 22:48	CLB	TAL CHI

Client Sample ID: End Step 2 Date Collected: 01/20/14 19:45 Date Received: 01/23/14 10:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	220915	01/24/14 17:31	JLH	TAL CHI
Total/NA	Analysis	8260B	DL	50	220915	01/24/14 17:59	JLH	TAL CHI
Total Recoverable	Prep	3005A			220898	01/24/14 08:30	LA1	TAL CHI
Total Recoverable	Analysis	6020		1	221057	01/24/14 15:17	BJH	TAL CHI
Dissolved	Prep	3005A			220898	01/24/14 08:30	LA1	TAL CHI
Dissolved	Analysis	6020		1	221057	01/24/14 15:21	BJH	TAL CHI
Total/NA	Analysis	SM 2540C		1	221149	01/27/14 22:50	CLB	TAL CHI

Client Sample ID: End Step 3

Date Collected: 01/20/14 22:30 Date Received: 01/23/14 10:30

-	Batch	Batch		Dilution	Batch	Prenared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	220915	01/24/14 18:26	JLH	TAL CHI
Total/NA	Analysis	8260B	DL	50	220915	01/24/14 18:53	JLH	TAL CHI
Total Recoverable	Prep	3005A			220898	01/24/14 08:30	LA1	TAL CHI
Total Recoverable	Analysis	6020		1	221057	01/24/14 15:24	BJH	TAL CHI
Dissolved	Prep	3005A			220898	01/24/14 08:30	LA1	TAL CHI
Dissolved	Analysis	6020		1	221057	01/24/14 15:27	BJH	TAL CHI
Total/NA	Analysis	SM 2540C		1	221149	01/27/14 22:52	CLB	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Certification Summary

Client: ARCADIS U.S., Inc. Project/Site: MadisonKipp - WI001368.0011

13 14

TestAmerica

Laboratory: TestAmerica Chicago

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EDA Dogion	Cortification ID	Expiration Data
Alabama	Frogram			<u>Expiration Date</u>
California	NFLAP	9	01132CA	04-30-14
Georgia	State Program	4	N/A	04-30-14
Hawaii	State Program	9	N/A	04-30-14
Illinois	NELAP	5	100201	04-30-14
Indiana	State Program	5	C-II -02	04-30-14
lowa	State Program	7	82	05-01-14
Kansas	NELAP	7	E-10161	10-31-14
Kentucky (UST)	State Program	4	66	04-30-14
Louisiana	NELAP	6	30720	06-30-14
Massachusetts	State Program	1	M-IL035	06-30-14
Mississippi	State Program	4	N/A	04-30-14
North Carolina DENR	State Program	4	291	12-31-14
North Dakota	State Program	8	R-194	04-30-14
Oklahoma	State Program	6	8908	08-31-14
South Carolina	State Program	4	77001	04-30-14
Texas	NELAP	6	T104704252-09-TX	02-28-14
USDA	Federal		P330-12-00038	02-06-15
Wisconsin	State Program	5	999580010	08-31-14
Wyoming	State Program	8	8TMS-Q	04-30-14

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Page ___ of ___

Lab Work Order # 500-70505

	500-70505 COC							•								
		Telephone:				Preservative	0	C.	C.	_	<u> </u>	[Keys	
	9 The Sugar An agon	1.612.7.	76.776	2		Filtered (1)	<u>–</u> ю							Preservation H	Key: Container	nformation Key:
	Address:	Fax:	100 1 1 1	6.999738		# of Containers	2	1		L.				B. HCL	2. 1 L Amb	er
		du -		7		Container		2	3	0				D. NaOH	3. 250 ml i 4. 500 ml i	Plastic
	E City State Zip	E-mail Address:	16. 100	>		Information		AMET						E. None	5. Encore	200
	8 Mi			1.		<i> </i>				13130			,	G. Other:	0. 2 02. Gi 7. 4 oz. Gi	ass
	Project Name/Location (City, State):	Project #:	<u>vence) M</u>	3-115-1	<u>AS-COM</u>			/-	24 /					H. Other:	— 8, 8 oz, Gl 9, Other: _	L plashe
	MEC (MADISON, WI)	W1001308	82,0011				12	- len	- /					-	10.Other:	
	Sampler's Printed Name:	Sampler's Signature	30			1.	<	2						Matrix Key: SO - Soil	SE - Sediment	NL - NAPL/OII
	Nicole Ducker		_			15	1.	1	18					W - Water	SL - Sludge	SW - Sample Wipe
	Sample ID	Collectio	n Typ	e(√)	Matrix		10	1.3	$ \mathcal{R} $	/	/		/		•	54167.
		Date T	ime Comp	Grab		/ /·		'ব	<u>/</u> (/	/	[/	REMARK	5	
ł	Trip Blank	مي مس		,	W	1	(Simis	و سيرين	مس							
2	PRE STEP TEST	1/24/14 12	2265	\checkmark	W	3	١	١	سرب							
3	END STEP 1	120/14 14	045	\checkmark	\mathcal{W}	3	<u> </u>	١	ł							
4	END STEP 2	Yz0/14 10	145	~	Ŵ	3	١	١	2							
5	END STEP 3	1/20/14 25	230		\mathbb{N}	3		- 1								
	Special Instructions/Comments:								Special Q	A/QC Instru	ctions(✓):					
	Laboratory Information	on and Receipt		-	•	Relingu	lished Bv			Received By		-	Relinquished	Bv ·	Laboratory Re	eived By
	Lab Name:	Cooler Custo	dy Seal (✓)		Printeo	Name:			Printed Name:			Printed Name	2	P	rinted Name:	
	Test America		-	-	N	icole Du	tel		JEF	F LUN	1					
	\square Cooler packed with ice (\checkmark)	Intact		ot Intact	Signat	hor	>		Signature:	Kly		Signature:		S	Ignature:	
	Specify Turneround Requirements:	Sample Rece	eipt:		Firm:	- toon			Firm/Courier	1		Firm/Courter:		F	irm:	
	Standavd		· · ·	0	A	UADIS				TA						
	Shipping Tracking #:	Condition/Cod	oler Temp:	<u>. </u>	Date/1		1,1	10 4	Date/Time:	nalia	1020	Date/Time:		C	ate/Time:	
	604251121267		Diotributio		<u> 1/2</u> WHITE	<u>(2/2014</u>	<u>(4)</u>	** <u>6-0</u>		6 1 1 F	VELLOW				DINK Batained by	
	207 30626 GOIG AR FORM 01.12.2007		Distributio		VVIIII E -	- Laboratory	returns wi	แบบของแร			ICLLUW -	- гар сору			r invr Retained by	ARCADIO

13

14

Login Sample Receipt Checklist

Client: ARCADIS U.S., Inc.

Login Number: 70505

List Number: 1 Creator: Lunt, Jeff T

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	1.9
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 500-70505-1

List Source: TestAmerica Chicago

ANALYTICAL REPORT

WDNR Laboratory ID No. 721026460 WDATCP Laboratory Certification No. 105-330 EPA Laboratory ID No. WI00034

Printed: 01/30/14 Code: NNNN-S Page 1 of 1

> NLS Project: 212182

> NLS Customer: 12668

Fax: 414 276 7603 Phone: 414 276 7742

ARCADIS Inc (Milw) Client: Attn: Toni Schoen 126 North Jefferson Street #400 Milwaukee, WI 53202 6120

Project: Madison-Kipp W601368

End Step 2 (Filtered) NLS ID: 767520								
Matrix: WW								
Collected: 01/20/14 19:45 Received: 01/23/14								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
PCBs (water) by EPA 8082	see attached					01/28/14	SW846 8082	721026460
Organics Extraction (Water) for Organochlorine Pesticides/PCBs	yes					01/27/14	SW846 3510C	721026460
End Step 2 (Unfiltered) NLS ID: 767521								
Matrix: WW								
Collected: 01/20/14 19:45 Received: 01/23/14								
Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
PCBs (water) by EPA 8082	see attached					01/28/14	SW846 8082	721026460
Organics Extraction (Water) for Organochlorine Pesticides/PCBs	yes					01/27/14	SW846 3510C	721026460
Values in brackets represent results greater than or equal to the LO	D but less than the l	00 and are within	a region of "Les	e-Cortain O	uantitation"	Results greater	than or equal to the LOC) are considered

represent results greater than or equal to the LOD but less than the LOQ and are within a region of "Less Results greater than or equal to the l are considered to be in the region of "Certain Quantitation". LOD and/or LOQ tagged with an asterisk(*) are considered Reporting Limits. All LOD/LOQs adjusted to reflect dilution.

LOD = Limit of Detection DWB = Dry Weight Basis LOQ = Limit of Quantitation ND = Not Detected (< LOD)NA = Not Applicable %DWB = (mg/kg DWB) / 10000

1000 ug/L = 1 mg/L

MCL = Maximum Contaminant Levels for Drinking Water Samples. Shaded results indicate >MCL.

Reviewed by: Stonia 101

Authorized by: R. T. Krueger President

ANALYTICAL RESULTS: PCBs by Method EPA 8082 Customer: ARCADIS Inc (Milw) NLS Project: 212182 Project Description: Madison-Kipp Project Title: W601368 Template: PC

Template: PCBW Printed: 01/30/2014 17:01

Sample: 767520 End Step 2 (Filtered) Collected: 01/20/14 Analyzed: 01/2	8/14 - Analytes	: 7				Notes: AD
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	Note
PCB-1016	ND	ug/L	1	0.023	0.077	
PCB-1221	ND	ug/L	1	0.060	0.20	
PCB-1232	ND	ug/L	1	0.037	0.12	
PCB-1242	ND	ug/L	1	0.040	0.13	
PCB-1248	ND	ug/L	1	0.045	0.15	
PCB-1254	ND	ug/L	1	0.026	0.086	
PCB-1260	ND	ug/L	1	0.034	0.11	
TCMX (SURR)	73%					S

NOTES APPLICABLE TO THIS ANALYSIS:

S = This compound is a surrogate used to evaluate the quality control of a method.

AD = Additional non-target compounds were detected.

Sample: 767521 End Step 2 (Unfiltered) Collected: 01/20/14 Analyzed: 01/	/28/14 - Analyt	es: 7				Notes: AD
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	Note
PCB-1016	ND	ug/L	1	0.023	0.077	
PCB-1221	ND	ug/L	1	0.060	0.20	
PCB-1232	ND	ug/L	1	0.037	0.12	
PCB-1242	ND	ug/L	1	0.040	0.13	
PCB-1248	ND	ug/L	1	0.045	0.15	
PCB-1254	ND	ug/L	1	0.026	0.086	
PCB-1260	ND	ug/L	1	0.034	0.11	
TCMX (SURR)	67%					S

NOTES APPLICABLE TO THIS ANALYSIS:

S = This compound is a surrogate used to evaluate the quality control of a method.

AD = Additional non-target compounds were detected.

ID#:

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM Page _____ of ____

Lab Work Order #

Contact & Company Name: Toni Streen AF-(ADIS Address: Address: 1260 N Jofferson St #400 City State Zip Project Name/Location (City, State): Machison - Kipp (Machison, WI) Sampler's Printed Name: Nicole Dudy Sample ID	Telephone: 414.276.7742 Fax: 414.276.7603 E-mail Address: 1bmi. 5 here 2 arcs is s - us. 6m Project #: Mol366 Sampler's Signature: Mol366 Collection Type (*) Date Time Comp Grab	Preservative E E Filtered (*) / # of Containers 2 2 Container Information 2 2 PARAMET	ER ANALYSIS & METH	OD Preservatio A, H ₂ SO, B, HCL C, HNO ₃ D, NaOH E, None F, Other: H, Other: Matrix Key: SO - Soil W - Water T - Tissue REMAR	Keys Container Information Key: 1. 40 ml Vial 2. 1 L Amber 3. 250 ml Plastic 4. 500 ml Plastic 5. Encore 6. 2 oz. Class 7. 4 oz. Glass 8. 8 oz. Glass 9. Other: 10. Other: SE - Sediment NL - NAPL/Oil SL - Sludge SW - Sample Wipe A - Air Other:
END STEP 2	420/14 1945 / V	22		7107520	5
Special Instructions/Comments:			☐ Special QA/QC Instructions(✓):		
Laboratory Informati	on and Receipt	Relinquished By	Received By Printed Name:	Relinquished By Printed Name:	Laboratory Received By Printed Name:
Northern LakeS	□ Intact □ Not Intact Signate	rei Didei	Signaluren Artose	Signature:	signature Wy Mil Albe
Specify Turnaround Requirements:	Sample Receipt: Firm:	CADIS'	Firm/Courier:	Firm/Courier: Date/Time:	Firm:
20730826 CofC AR Form 01.12.2007	Distribution: WHITE -	2/2014 14:20 Laboratory returns with results	YELLOW –	Lab copy	PINK – Retained by ARCADIS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-71522-1

Client Project/Site: MadisonKipp WI001368.0011.00002 Revision: 1

For:

ARCADIS U.S., Inc. 126 North Jefferson Street Suite 400 Milwaukee, Wisconsin 53202

Attn: Ms. Toni Schoen

sanda.

Authorized for release by: 2/18/2014 6:47:10 PM Sandie Fredrick, Project Manager II (920)261-1660 sandie.fredrick@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	8
QC Association	9
QC Sample Results	10
Chronicle	11
Certification Summary	12
Chain of Custody	13
Receipt Checklists	14

Job ID: 500-71522-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-71522-1

Comments

No additional comments.

Receipt

The sample was received on 2/13/2014 10:35 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

Except: Sample ID updated to GWE-1 per client.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Lab Sample ID: 500-71522-1

Client Sample ID: GWE-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	Λ
Hardness as calcium carbonate	760		1.3	0.66	mg/L	1	_	SM 2340B	Total	-
Alkalinity	470	В	5.0	1.1	mg/L	1		SM 2320B	Recoverable Total/NA	5
Total Suspended Solids	1.5	J	2.5	0.70	mg/L	1		SM 2540D	Total/NA	
										8
										9
										13

TestAmerica Job ID: 500-71522-1

5
8
9
13

Method	Method Description	Protocol	Laboratory
SM 2340B	Total Hardness (as CaCO3) by calculation	SM	TAL CHI
SM 2320B	Alkalinity	SM	TAL CHI
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TestAmerica Job ID: 500-71522-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-71522-1	GWE-1	Water	02/12/14 11:45	02/13/14 10:35

TestAmerica Job ID: 500-71522-1

Client Sample ID: GWE-1 Lab Sample ID: 500-71522-1 Date Collected: 02/12/14 11:45 Matrix: Water Date Received: 02/13/14 10:35 Method: SM 2340B - Total Hardness (as CaCO3) by calculation - Total Recoverable Analyte Result Qualifier RL MDL Unit D Analyzed Prepared 760 1.3 0.66 mg/L 02/17/14 08:00 02/18/14 10:08 Hardness as calcium carbonate **General Chemistry** Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 5.0 Alkalinity 470 B 1.1 mg/L 02/14/14 09:59 2.5 0.70 mg/L 02/14/14 09:39 **Total Suspended Solids** 1.5 J

Dil Fac

Dil Fac

1

1

1

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

5

Qualifiers

General Chemistry

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	

QC Association Summary

Client: ARCADIS U.S., Inc. Project/Site: MadisonKipp WI001368.0011.00002

Method Blank

Metals

MB 500-223380/2

Prep Batch: 223548					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-71522-1	GWE-1	Total Recoverable	Water	3005A	_
Analysis Batch: 22368	30				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-71522-1	GWE-1	Total Recoverable	Water	SM 2340B	223548
General Chemistry	/				
Analysis Batch: 22328	34				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-71522-1	GWE-1	Total/NA	Water	SM 2540D	
LCS 500-223284/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 500-223284/1	Method Blank	Total/NA	Water	SM 2540D	
Analysis Batch: 22338	30				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-71522-1	GWE-1	Total/NA	Water	SM 2320B	
LCS 500-223380/27	Lab Control Sample	Total/NA	Water	SM 2320B	

Total/NA

Water

SM 2320B

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 500-223380/2 Matrix: Water											Client S	ample ID: Meth Prep Type:	od Blank Total/NA
Analysis Batch: 223380	МВ	МВ											
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Alkalinity	4.51	J		5.0		1.1	mg/L					02/14/14 09:38	1
Lab Sample ID: LCS 500-223380/27									Clie	ent	Sample	ID: Lab Contro	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 223380													
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
Alkalinity			100		94.8			mg/L		_	95	80 - 120	
Method: SM 2540D - Solids, Tot	al Suspe	nded (T	SS)										
Lab Sample ID: MB 500-223284/1											Client S	ample ID: Meth	od Blank
Matrix: Water												Prep Type:	Total/NA

Analysis Batch: 223284											
	MB	MB									
Analyte	Result	Qualifier	RL	l	MDL (Unit		D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	<0.70		2.5		0.70 r	mg/L				02/14/14 09:30	1
- Lab Sample ID: LCS 500-223284/2								Clie	nt Sample	ID: Lab Contro	ol Sample
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 223284											
		Spike		LCS	LCS					%Rec.	
Analyte		Added		Result	Qualif	fier	Unit) %Rec	Limits	
Total Suspended Solids		200		203			mg/L		101	80 - 120	

Client Sample	ID: GWE-	1					I	Lab Sample I	D: 500-71522-1
Date Collected: 02	2/12/14 11:4	45							Matrix: Water
Date Received: 02	2/13/14 10:3	35							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total Recoverable	Prep	3005A			223548	02/17/14 08:00	LA1	TAL CHI	
Total Recoverable	Analysis	SM 2340B		1	223680	02/18/14 10:08	BJH	TAL CHI	
Total/NA	Analysis	SM 2540D		1	223284		BAH	TAL CHI	
					(Start)	02/14/14 09:39			
					(End)	02/14/14 09:41			
Total/NA	Analysis	SM 2320B		1	223380	02/14/14 09:59	JLE	TAL CHI	

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Certification Summary

Client: ARCADIS U.S., Inc. Project/Site: MadisonKipp WI001368.0011.00002

TestAmerica Job ID: 500-71522-1

1 2 3 4 5 6 7 8 9 10 11 12 13

Laboratory: TestAmerica Chicago

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date		
Alabama	State Program	4	40461	04-30-14		
California	NELAP	9	01132CA	04-30-14 *		
Georgia	State Program	4	N/A	04-30-14		
Hawaii	State Program	9	N/A	04-30-14		
Illinois	NELAP	5	100201	04-30-14		
Indiana	State Program	5	C-IL-02	04-30-14 *		
lowa	State Program	7	82	05-01-14 *		
Kansas	NELAP	7	E-10161	10-31-14		
Kentucky (UST)	State Program	4	66	04-30-14		
Louisiana	NELAP	6	30720	06-30-14		
Massachusetts	State Program	1	M-IL035	06-30-14		
Mississippi	State Program	4	N/A	04-30-14		
North Carolina DENR	State Program	4	291	12-31-14		
North Dakota	State Program	8	R-194	04-30-14		
Oklahoma	State Program	6	8908	08-31-14		
South Carolina	State Program	4	77001	04-30-14		
Texas	NELAP	6	T104704252-09-TX	02-28-14		
USDA	Federal		P330-12-00038	02-06-15		
Wisconsin	State Program	5	999580010	08-31-14		
Wyoming	State Program	8	8TMS-Q	04-30-14		

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Page _/ of _/

Lab Work Order # 500 -7 / 5 2 2

13

- Contact & Company Name:	Telephone:			in the second se	-				1		_	Kasur	
ë Chan Monada	U111-221	7786	12	Preservative							P	reservation Key: Container Informati	on Key:
Address:		o == / (4) tr	- <u>~</u>	Flitered (*)	No	NO					A.	H ₂ SO ₄ 1. 40 ml Vial	
	1411 000			# or Containe		1					C C	. HNO ₃ 3. 250 ml Plastic	
2 De N. Jetterson #900	414-2-76	0-160	05	Information	4	3					E.	None 5. Encore	
		~	1	,		RAMETE	ER ANA	LYSIS 8	<u>k METH</u>	<u>OD</u>	- F.	. Other: 6. 2 oz. Glass 7. 4 oz. Glass	
MINValker W 53202	Juni Schoo	enear	Caels-1	sicon /	\sim /c	- /				' /	G	8. 8 oz. Glass	
Madilan - Kipp	1111101368	DAIL. OC	002		フ / S	7 /					/ [H	l. Other: 9, Other:	
Sampler's Printed Name:	Sampler's Signature:			3				/			/ M	latrix Key:	
Dryan Emst	pypere	$\overline{\gamma}$	X		7/30							O - Soli SE - Sediment NL - NAPI V - Water SL - Sludge SW - Sam	L/Qil Iple Wipe
V Sample ID	Collection	Туре	(✓) Mat	rix K	1/7						/ LT	- Tissue A - Air Other:	
oumpio in	Date Time	Comp	Grab	4	/	/	/	/	/	/	/ R	EMARKS	
Ela/-1	2/12/14 1145	-	X IA) /			·	[[1	(
	7.1.1.1.1.5		~ 00								- KH9	8	
											- 1873	P <u>i</u>	
												£	
											500.71522		
											1		
	ļ												
				-									
										-	· · · · · · · · · · · · · · · · · · ·		
													ľ
												,	
Special Instructions/Comments:	•	I	·		·		🗆 Special Q	A/QC Instru	tions(√):		·		
5 MAU	1 TAT												
Laboratory Information	on and Receipt			Relin	quished By	-		Received By	1 .	R	elinquished By	Laboratory Received By	<i></i>
-Test Amorica	Cooler Custody S	eal (⊻)		Ran A. 1	Tract	-		land		Printed Name:		Printed Name:	
	□ Intact		t Intact	ignature	1131			ysy		Signature:	· · · · · · · · · · · · · · · · · · ·	Signature:	
				Biza	45	$ \uparrow $	$\overline{\mathbf{x}}$	N,	$\overline{)}$				
Specify Turneround Requirements:	Sample Receipt:		·····	irm:		×	Firm/Courler:	. 100	/	Firm/Courier:		Firm:	
5 Bay			, a · · ·	APLADIS	5		14	1/Uni	cazo				
Shipping Tracking 🛃	Condition/Cooler	Temp: <u>5</u>	<u>``</u>	ate/Time:	@ 1-	TAN	Date/Time:	40	1025	Date/Time:		Date/Time:	
	p	atulh di c	L	41911			. 17	10		1			
20/30820 COIG AK Form 01.12.2007	וט	istributión:	WHI	IE – Laporator	Page	13 of 14	ι '	T	YELLOW -	- Lab copy		PINK – Retained by ARCAD 2/18/	/2014
Login Sample Receipt Checklist

Client: ARCADIS U.S., Inc.

Login Number: 71522 List Number: 1

Creator: Kelsey, Shawn M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.8c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

14

Job Number: 500-71522-1

List Source: TestAmerica Chicago

ARCADIS

Appendix C

GETS Equipment Documentation

QED Air Stripper Model ver. 2.0

Site Data

Name: Vivian Yates

Project: Madison-Kipp Air Stripper Units: English Air Temp: 48 F Water Temp: 48 F Stripper: EZ-Tray 4.x - Click for details Stripper Max Flow: 50 gpm e-mail: vivian.yates@arcadisus.com

Altitude: 400 ft Flow: 45 gpm

Stripper Air Flow: 210 cfm

ent Target (ppb)	4-Tray Results (ppb)	4-Tray % Removal	6-Tray Results (ppb)	6-Tray % Removal
				Romovar
	5.3	99.070	< 1	100.000
0	5.8	99.813	< 1	100. 000
0	30. 0	97.692	5.0	99. 615
0	< 1	100.000	< 1	100. 000
0	< 1	100.000	< 1	100.000
	0 0 0 0 0	0 5.3 0 5.8 0 30.0 0 < 1	0 5.3 99.070 0 5.8 99.813 0 30.0 97.692 0 < 1	0 5.3 99.070 < 1

Air Results									
Contami nant	4-Tray (ppmV)	4-Tray (Ib/hr)	6-Tray (ppmV)	6-Tray (Ib/hr)					
trichloroethylene (TCE)	2.8494	0. 01272	2. 8733	0. 01283					
tetrachl oroethyl ene (PERC, PCE)	12. 3694	0. 06972	12. 3915	0. 06984					
c-1, 2-di chl oroethyl ene	8. 6848	0. 02862	8. 8553	0. 02918					
vinyl chloride (chloroethylene)	0. 5400	0. 00115	0. 5409	0. 00115					
t-1, 2-di chl oroethyl ene	0. 1331	0. 00044	0. 1361	0. 00045					

Notes

Copyright -- QED Treatment Equipment, PO Box 3726, Ann Arbor, MI 48106.

PH-> 1-800-624-2026 or 1-734-995-2547, FX-> 1-734-995-1170. E-mail-><u>info@qedenv.com</u>. WEB-><u>www.qedenv.com</u>.

The QED modeler estimates unit performance for the listed contaminants. **Results** assume -

- 1. Contaminants are in the dissolved-phase, within a water matrix
- 2. Stripper Influent air is contaminant-free
- 3. Influent liquid does not have surfactants, oil, grease, other immiscible phase(s) or other Henry's constant altering additions present, such as dissolved phase polar organic contaminants
- 4. The air stripper is operated within the given parameters listed above and as instructed in the E-Z Tray O&M manual

Stripper performance shall meet or exceed either the required effluent concentration(s) or effluent estimates, whichever is greater, for the conditions supplied and assumes the influent concentrations of each contaminant are less than 25% solubility in water. QED makes no claim of the model's accuracy beyond

3/7/2014

the 25% solubility in water limit.

Contact Us

Fill out your contact and project information and click Send to have a QED Treatment application specialist contact you.

Name -	Vivian Yates]		
Company -	Company]		
Phone -	Phone	Fax -	Fax]
e-mail -	vivian.yates@arcadis-us.com	Project -	Madison-Kipp Air Stripper]
Appl i cat	Send Reset			*
Save Dat	a			
Use the changes. retri eva	following URL to reconstruct your This URL can be saved in any tex 1. This run's URL:	data fi t file	orm for future remodeling with for record keeping and later	
http://6	4.9.197.49/cgi-bin/remodel.pl?		A.	1

u=e&tw=48&ta=48&f=45&a=400&s=4.x&n=Vivia&e=vivian.yates@arcadisus.com&p=Madis&c=189,570;182,3100;81,1300;195,51;178,20;

1 Willow Avenue Oakdale, PA 15071 p. 724-703-3020 f. 724-703-3026

210 CFM
80 °F
50 %
1 ATM

Component	Inlet Concentration
trichloroethylene	0.013 LBS/hour
perchloroethylene	0.070 LBS/hour
cisdichloroethylene	0.029 LBS/hour
transdichloroethylene	0.000 LBS/hour

Report: 21.56 lbs. activated carbon per day saturated at conditions

Average Loading at Saturation

12.498 lbs./100 lbs. Carbon

Note:

Contact TIGG Corporation if comments are needed on preferential adsorption of contaminants above.

PROPRIETARY AND CONFIDENTIAL

THIS INFORMATION IS THE EXCLUSIVE PROPERTY OF TIGG CORPORATION, AND SHALL NOT BE COPIED OR DISSEMINATED WITHOUT PRIOR CONSENT. THIS COMPUTER PROJECTION IS FOR SATURATION OF TIGG 5C VAPOR PHASE ACTIVATED CARBONS. IT IS FOR GENERAL GUIDANCE ONLY AND IS NOT A PERFORMANCE GUARANTEE OF ANY SORT. IT ASSUMES CONSISTENT CONDITIONS AND PURITY LEVELS AS LISTED, BUT DOES NOT ALLOW FOR POSSIBLE COMPETITIVE ORGANICS NOT LISTED.

Run 1

Report Basis

210 CFM
80 °F
50 %
1 ATM

Com	npo	ne	nt
-----	-----	----	----

Inlet Concentration

trichloroethylene0.013 LBS/hourperchloroethylene0.070 LBS/hourcisdichloroethylene0.029 LBS/hour

transdichloroethylene	0.
-----------------------	----

0.000 LBS/hour

			LBS/100	Overall LBS/100
Band	Chemicals	Υ	LBS Carbon	LBS Carbon
1	trichloroethylene	0.12	0.203	0.203
	perchloroethylene	0.51	30.867	30.867
	cisdichloroethylene	0.37	0.040	0.040
	transdichloroethylene	0.01	0.000	0.000
	5.430 Pounds Carbon F	Per Day		
2	trichloroethylene	0.52	14.270	4.100
	perchloroethylene	0.00	0.000	22.317
	cisdichloroethylene	0.47	0.330	0.120
	transdichloroethylene	0.01	0.003	0.001
	7.511 Pounds Carbon F	Per Day		
3	trichloroethylene	0.00	0.000	1.438
	perchloroethylene	0.00	0.000	7.826
	cisdichloroethylene	0.99	4.971	3.270
	transdichloroethylene	0.01	0.036	0.024
	21.417 Pounds Carbon	Per Day		
4	trichloroethylene	0.00	0.000	1.428
	perchloroethylene	0.00	0.000	7.773
	cisdichloroethylene	0.00	0.000	3.248
	transdichloroethylene	1.00	3.858	0.050
	21.565 Pounds Carbon	Per Day		

Report: 21.56 lbs. activated carbon per day saturated at conditions

Average Loading at Saturation

12.498 lbs./100 lbs. Carbon

ARCADIS

Appendix D

GETS Piping and Instrumentation Diagram

							Professional En	igineer's Name		(MADISON-KIPP CORPORATION
							SCOTT N	MURPHY			GROUNDWATER EXTRACTION A
							Professional En	gineer's No.			
SCALE(S) AS INDICATED							36269				
							State	Date Signed	Design at Marc		I PIPING AND INSTRUME
	VERIEV	0	03/07/14	BASIS OF DESIGN	VY	RR	M	Date Signed	Project Mgr.		
EPRESENTS ONE FIG	JRE	No.	Date	Revisions	By	Ckd	VVI		JI		
INCH ON THE REPROD	UCTION	THIS DR	AWING IS THE	PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK A	ND MAY	(Designed by	Drawn by	Checked by	ARCADIS U.S., INC.	
RIGINAL DRAWING: SC	ALE	NOT	BE REPROD	PERMISSION OF SAME.	IEN		RR	VY	RR		PROCES

Bd

ΝT	IDENTIFICATION	LETTERS

READOUT OR PASSIVE FUNCTION	OUTPUT FUNCTION	MODIFIER
ALARM		
USER'S CHOICE	USER'S CHOICE	USER'S CHOICE
	CONTROL, CLOSED	
SENSOR (PRIMARY ELEMENT)		
GLASS, VIEWING DEVICE		
		HIGH
INDICATE		
	CONTROL STATION	
LIGHT		LOW
		MIDDLE,
		INTERMEDIATE
USER'S CHOICE	USER'S CHOICE	USER'S CHOICE
ORIFICE, RESTRICTION	OPEN	
POINT (TEST) CONNECTION		
RECORD	RUN	
SWITCH		
MULTIFUNCTION		MULTIFUNCTION
WELL		
UNCLASSIFIED		UNCLASSIFIED
UNCLASSIFIED		

LEGENDS NOTES:

- 1. ANY FIRST LETTER COMBINED WITH MODIFIER REPRESENTS A NEW AND SEPARATE MEASURED VARIABLE. EXAMPLES: PD = PRESSURE
- AND SEPARATE MEASURED VARIABLE. EXAMPLES: PD = PRESSURE DIFFERENTIAL FQ = FLOW TOTALIZED OR INTEGRATED. EXCEPTION IS THE MODIFIER 'J' FOR MULTIPOINT SCANNING. 2. FOR ANALYSIS NOT IDENTIFIED BY A SPECIFIC LETTER IN THE TABLE, USE FIRST LETTER 'A' NEAR THE INSTRUMENT SYMBOL, SPECIFY THE NATURE OF THE ANALYSIS. EXAMPLE: PH 3. MEANING OF A 'USER'S CHOICE' LETTER SHALL BE CONSISTENT THROUGHOUT A PROJECT, AND SHALL BE SPECIFIED IN THE DRAWING I FORM
- DRAWING LEGEND. 4. UNCLASSIFED LETTER MAY HAVE A FEW DIFFERENT MEANINGS ON A PROJECT. THE MEANING SHALL BE SPECIFIED NEAR EACH INSTRUMENT SYMBOL USING THE UNCLASSIFIED LETTER.
- 5. THE MODIFIER "SCAN" APPLIES TO MULTIPOINT PRINTING INSTRUMENTS, SUCH AS CJRS (MULTIPOINT CONDUCTIVITY RECORDER WITH ALARM SWITCHES).

GENERAL NOTES:

- 1. ALL ANALOG SETPOINTS SHALL BE FIELD ADJUSTED BY OPERATOR AT HMI INTERFACE SCREEN.
- 2. ALARMS THAT SHUT DOWN EXTRACTION WELLS AND TREATMENT EQUIPMENT MUST BE CLEARED BY OPERATOR BEFORE BEING RESTARTED.
- 3. THIS DRAWING IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
- 4. WHERE APPLICABLE, WYES AND REDUCERS SHALL BE INSTALL IN LIEU OF PIPE TAPPING.

• MADISON, WISCONSIN AND TREATMENT SYSTEM
ENTATION DIAGRAM

WI001368.0011.00004
Date

MARCH, 2014
ARCADIS
126 N. JEFFERSON ST.
SUITE 400
MILWAUKEE, WI 53202
TEL. 414.276.7742

P0

