From: Dombrowski, Frank J <frank.dombrowski@wecenergygroup.com>

Sent: Sunday, December 15, 2019 9:07 AM

To: 'Gielniewski, Margaret < gielniewski.margaret@epa.gov>

(gielniewski.margaret@epa.gov)'

Cc: Fitzpatrick, William - DNR; Bougie, Cheryl - DNR; 'Hagen, Jennifer'; 'Brian G.

Hennings (bhennings@naturalrt.com)'; 'mbyker@naturalrt.com'; 'Rolfes.sarah@epa.gov'; DNR RR NER; Krueger, Sarah E - DNR;

adrienne.korpela@jacobs.com

Subject: Former WPS Marinette MGP - Nov., 2019 USEPA Monthly Progress Report **Attachments:** 2019-12-13 WPSC-USEPA November 2019 WPSC Marinette Monthly Progress

Repo....pdf

Margaret,

Please find attached the monthly progress report for the former WPSC Marinette, WI MGP site.

As always, please feel free to contact me if there are any questions or if additional information may be needed.

Thanks,

Frank Dombrowski
Principal Environmental Consultant
WEC Energy Group - Business Services
Environmental Dept. - Land Quality Group
333 W. Everett St., A231
Milwaukee, WI 53203
Office: (414) 221-2156

Cell: (414) 587-4467 Fax: (414) 221-2022

Serving WEC Energy Group, We Energies, Wisconsin Public Service, Michigan Gas Utilities, Minnesota Energy Resources, Peoples Gas and North Shore Gas

Wisconsin Public Service Corporation

700 North Adams Street P.O. Box 19001 Green Bay, WI 54307-9001

www.wisconsinpublicservice.com

December 13, 2019

Ms. Margaret Gielniewski
Remedial Project Manager
United States Environmental Protection Agency
77 W. Jackson Blvd.
Chicago, Illinois 60604-3590

RE: November 2019 Monthly Progress Report

Marinette Former Manufactured Gas Plant

Marinette, Wisconsin

Wisconsin Public Service Corporation

CERCLA Docket No V-W-18-C-009, Site Spill ID - B5BT,

CERCLIS ID - WIN000509952

Dear Ms. Gielniewski:

Wisconsin Public Service Corporation (WPSC) is providing this monthly progress report for the WPSC Marinette Former Manufactured Gas Plant (MGP) Site.

1) PROGRESS MADE DURING THE PAST MONTH

- Prepared and submitted October 2019 Monthly Progress Report to United States Environmental Protection Agency (USEPA) by November 15, 2019.
- Continued development of a response to comments letter and Preliminary Design Investigation Work Plan (PDIWP) – Revision 1 based on USEPA comments provided on October 9, 2018.
- Discussed principal threat waste definition concerns with USEPA on November 7, 2019.
 Based on discussion, submitted a letter to USEPA on November 18, 2019 detailing a revised principal threat waste definition.

2) ANALYTICAL AND OTHER TESTING RESULTS RECEIVED

 Received analytical data packages from the Fall 2019 groundwater sampling event and uploaded into the site database. Analytical data packages and preliminary screening tables are included as an attachment to this monthly progress report.

3) PROJECTED WORK

WPSC Actions

- Submit monthly progress report to USEPA by the 15th of the month.
- Correspondence with USEPA to develop a path forward on a site-specific definition principal threat waste topic to guide the preliminary design investigation.
- Continue development of PDIWP Revision 1.

Wisconsin Public Service Corporation | A subsidiary of the WEC Energy Group

USEPA Actions

 Review November 18, 2019 letter and provided approval or comments on revised principal threat waste definition.

4) PROBLEMS OR POTENTIAL PROBLEMS ENCOUNTERED

None

5) ACTUAL OR PLANNED RESOLUTION OF PROBLEMS OR POTENTIAL PROBLEMS

None

If you have any questions, please don't hesitate to contact me at (414) 221-2156 or via email at frank.dombrowski@wecenergygroup.com.

Sincerely,

Frank Dombrowski

Principal Environmental Consultant

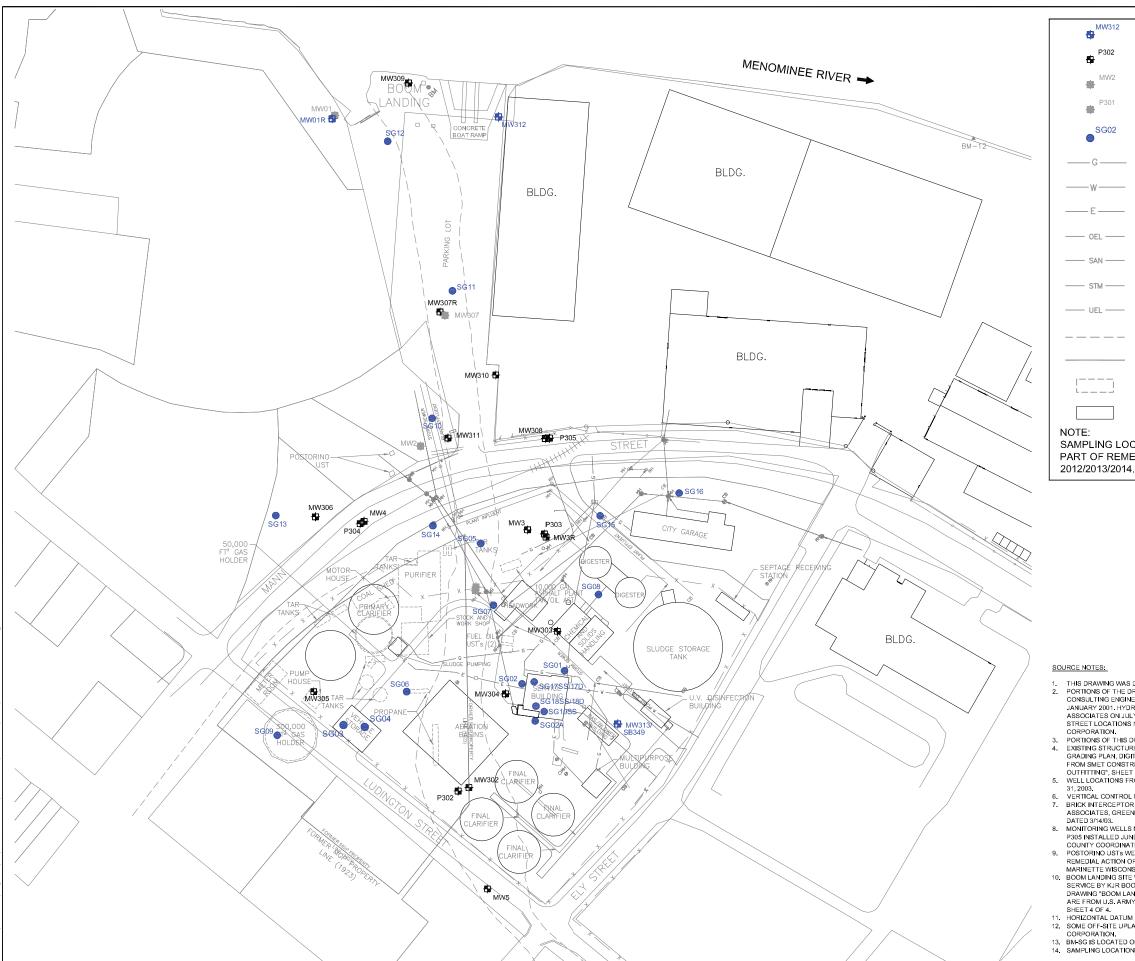
WEC Business Services - Environmental Dept.

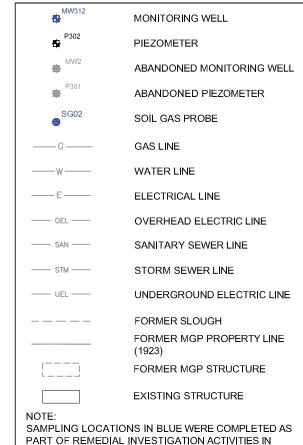
Enclosures:

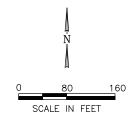
Figure 1. Site Map

Table 1. Fall 2019 Groundwater Analytical Results Screening Tables

For distribution to:


Ms. Sarah Krueger, WDNR (via US Mail and email)


Mr. William Fitzpatrick, WDNR (via US Mail and email)


Ms. Cheryl Bougie, WDNR (via email)

WDNR Northeast Region (via email to DNRRRNER@wisconsin.gov)

Ms. Adrienne Korpela, Jacobs (via email) Mr. Marcus Byker, Ramboll (via email)

SOURCE NOTES:

- THIS DRAWING WAS DEVELOPED FROM A MAP BY THE CITY OF MARINETTE.
 PORTIONS OF THE DRAWING ARE FROM A DIGITAL FILE FROM STS CONSULTANTS, LTD.
 CONSULTING ENGINEERS, GREEN BAY, WISCONSIN, PROJECT NUMBER 26936, REVISED JANUARY 2001. HYDROGRAPHIC SURVEY OF RIVER WAS PERFORMED BY AYRES AND ASSOCIATES ON JULY 24-26, 2001. VERTICAL CONTROL IS U.S.G.S. DATUM. BUILDING AND STREET LOCATIONS NORTH OF RAILROAD TRACKS WERE SUPPLIED BY MARINETTE MARINE CORPORATION.
- 3. PORTIONS OF THIS DRAWING ARE FROM HYDRO-SEARCH DRAWING.

 4. EXISTING STRUCTURES AND UTILITIES FROM FOTH & VAN DYKE ENGINEERS/ARCHITECTS, GRADING PLAN, DIGITAL FILE 7m755c06.DWG, RECORD DRAWING REVISIONS 2/22/90 AND FROM SMET CONSTRUCTION SERVICES POF DRAWING SET "MARINETTE MARINE BLDG 32 OUTFITTING", SHEET C1.1, DATED APRIL 24, 2012.

 5. WELL LOCATIONS FROM A SURVEY BY WPSC DATED OCTOBER 8, 2003, REVISED OCTOBER

- 51, 2003.
 VERTICAL CONTROL IS NAVD88 DATUM
 BRICK INTERCEPTOR SEWER REPLACEMENT TAKEN FROM DRAWING BY AYRES ASSOCIATES, GREEN BAY, WISCONSIN, JOB NO. 16-0189.10, DRAWING NO. P101, SHEET NO. 7,
- DATED 3/14/03.
 MONITORING WELLS MW2R, MW3R, MW307R INSTALLED OCTOBER 2004 AND MW308, MW310, P305 INSTALLED JUNE 2004. SURVEYED BY WPSC IN JANUARY 2005. (NAVD88, MARINETTE
- COUNTY COORDINATES).
 POSTORINO USTs WERE IDENTIFIED IN AYERS ASSOCIATES SITE ASSESSMENT AND REMEDIAL ACTION OPTIONS REPORT. CITY OF MARINETTE PROPERTY 500 MANN STREET MARINETTE WISCONSIN 54143 DATED AUGUST 2010.
- BOOM LANDING SITE WAS DEVELOPED FROM A SURVEY DONE BY WISCONSIN PUBLIC SERVICE BY KJR BOOM LANDING SITE FEATURES DEVELOPED FROM A SURVEY ON 08/14/12, DRAWING "BOOM LANDING 8_12". THE CHANNEL LIMITS AND PORTIONS OF THE SHORELINE ARE FROM U.S. ARMY CORPS OF ENGINEERS DRAWING "CONDITION OF CHANNEL-SEP. 2008", SHEET 4 OF 4.
- 11. HORIZONTAL DATUM IS MARINETTE COUNTY COORDINATE SYSTEM, UNITS=US FOOT.
- SOME OFF-SITE UPLAND FEATURES DIGITIZED FROM BING MAPS AERIAL-© 2012 MICROSOFT CORPORATION.
 BM-SG IS LOCATED ON TOP OF SHEETPILE WALL EAST OF BOAT RAMP.
- 14. SAMPLING LOCATIONS SB352 THROUGH SB370 COLLECTED BY NRT, OCTOBER 2014.

APPROVED BY DRAWING NO: снескер ву LOCATIONS $^{\circ}$ T - REVISION ? EMEDIAL INVESTIGATION REPORT - REVISION FORMER MARINETTE MGP SITE WISCONSIN PUBLIC SERVICE CORPORATION MARINETTE, WISCONSIN AND S MONITORING WELI VAPOR SAMPLING VAPOR 10 \simeq Ō

RESOURCE

PROJECT NO.

1549/17.5

FIGURE NO.

TECHNOLOGY

11/13/14 11/24/14 01/21/15

DMD

DATE DATE

NDK BGH

1549-175-B06

REFERENCE

October 2019 Groundwater Sampling Results

Wisconsin Public Service Corporation - Marinette Former MGP, Marinette, Wisconsin

CERCLIS ID -WIN000509952

			BTEX	BTEX	BTEX	BTEX	BTEX	BTEX	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
	l l	1	BILA	BILA	DILX	BILA	BILA	BILA	FAII	FAII	FAII	FAII	FAII	FAII	FAII	FAII	FAII	FAII
9-Digit Code	Sample Location	Sample Date	Benzene	Ethylbenzene	Toluene	Xylene, o	Xylenes, m + p	Xylenes, Total	Anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
	Rep	orting Units:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
			Result Flag	g Result Flag	Result Flag	Result Flag	Result Fla	g Result Flag	Result Flag	Result Flag	g Result Fla	g Result Flag	Result Fl	ag Result Flag	Result Flag	g Result Flag	Result Fla	g Result Fla
	WI Grou	undwater SL:	5	700	800	NS	NS	2,000	3,000	0.2	0.2	NS	0.2	400	400	100	3,000	250
		ndwater PAL:	0.5	140	160	NS NS	NS NS	400	600	0.02	0.02	NS NS	0.02	80	80	100	NS NS	<u>50</u>
		o Water RSL:	0.46	1.5	1,100	190	190	190	1,800	0.025	0.02	120	25	800	290	0.17	1,800	120
	10,	o water NSL.	0.40	1.5	1,100	130	190	190	1,800	0.023	0.23	120	23	800	230	0.17	1,800	120
102219012	MW03R	10/22/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.038 J	0.057	0.10	0.070	0.097	0.088	<0.0081 U	0.022 J	0.028 J	0.097
102219008/102219009 (N)	MW05	10/22/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	<0.011 U	<0.011 U	<0.0061 U	<0.0072 U	<0.014 U	<0.011 U	<0.0085 U	<0.020 U	<0.015 U	<0.0081 U
102119003	MW302	10/21/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.081	<u>0.32</u>	<u>0.30</u>	0.23	0.25	0.25	0.0099 J	0.041 J	0.031 J	0.27
102119005	MW303	10/21/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.032 J	<0.011 U	0.039	0.031 J	<u>0.032</u> J	0.020 J	<0.0084 U	<0.019 U	<0.015 U	0.043
102119002	MW304	10/21/2019	<u>11.7</u>	1.3	0.47 J	1.6	0.81 J	2.4 J	0.078	<0.011 U	<0.0060 U	<0.0071 U	<0.014 U	0.021 J	0.073	2.8	0.028 J	0.014 J
102119001	MW305	10/21/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.024 J	<0.010 U	<0.0056 U	<0.0066 U	<0.013 U	<0.010 U	<0.0077 U	0.025 J	<0.013 U	<0.0074 U
102219014	MW306	10/22/2019	<0.25 U	<0.22 U	<0.17 U	1.2	0.51 J	1.7 J	0.013 J	<0.010 U	<0.0056 U	<0.0066 U	<0.013 U	0.011 J	0.0090 J	<u>17.7</u>	0.017 J	0.26
102219016	MW307R	10/22/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.15	<u>0.052</u> J	0.076	0.046	0.13	0.32	0.41	0.067 J	0.40	0.35
102219011	MW308	10/22/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	<0.010 U	<0.010 U	0.0062 J	<0.0065 U	0.013 J	0.012 J	<0.0077 U	<0.018 U	<0.013 U	0.012 J
102219017/102219018 (N)	MW310	10/27/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.021 J	<0.010 U	0.0071 J	<0.0066 U	<0.013 U	0.033 J	0.13	0.021 J	<0.014 U	0.036 J
102219019	MW311	10/22/2019	<u>101</u>	105	4.1 J	56.8	11.9	68.8	5.9	<0.45 U	<0.24 U	<0.29 U	<0.56 U	2.3	22.5	<u>508</u>	20.0	2.2
102119006	MW313	10/21/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.032 J	<u>0.044</u> J	0.073	0.049	0.088	0.10	0.048	0.023 J	0.021 J	0.10
102119004	P302	10/21/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	<0.011 U	<0.011 U	<0.0060 U	<0.0071 U	<0.014 U	<0.011 U	<0.0084 U	<0.019 U	<0.015 U	<0.0081 U
102219013	P303	10/22/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.012 J	<0.010 U	0.0083 J	<0.0067 U	0.019 J	0.012 J	<0.0079 U	<0.018 U	<0.014 U	0.016 J
102219015	P304	10/22/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	<0.011 U	<0.011 U	0.0094 J	0.013 J	<u>0.029</u> J	0.040 J	<0.0083 U	<0.019 U	0.024 J	0.029 J
102219010	P305	10/22/2019	<0.25 U	<0.22 U	<0.17 U	<0.26 U	<0.47 U	<1.5 U	0.043 J	0.014 J	<u>0.029</u> J	0.017 J	<u>0.045</u> J	0.40	0.061	<0.020 U	0.055 J	0.39
Total Number of Samples Analyzed: 16																		
Total Nulli		f Detections:	2	16 2	16 2	16 3	16 3	3	12	5	10	16 7	16 9	16 13	16 8	16 9	9	13
		Min:	11.7	1.3	0.47	1.2	0.51	1.7	0.012	0.014	0.0062	0.013	0.013	0.011	0.009	0.021	0.017	0.012
	WI Grou	Max: undwater SL:	101 5	105 700	4.1 800	56.8 NS	11.9 NS	68.8 2,000	5.9 3,000	0.32 0.2	0.3 0.2	0.23 NS	0.25 0.2	2.3 400	22.5 400	508 100	20 3,000	2.2 250
Number of Samples that Exceed WI Groundwater SL:			2	0	0	0	0	0	0	1	1	0	1	0	0	1	0	0
	WI Groundwater PAL:			<u>140</u>	<u>160</u>	NS 2	NS 0	<u>400</u>	<u>600</u>	0.02	0.02	NS 0	0.02	<u>80</u>	<u>80</u>	<u>10</u>	<u>NS</u>	<u>50</u>
Number of Samples that Exce	0.46	0 1.5	0 1,100	0 190	190	0 190	0 1,800	0.025	0.25	0 120	7 25	0 800	0 290	0.17	0 1,800	120		
Number of Samples th		p Water RSL: p Water RSL:	2	1.5	0	0	0	0	0	4	1	0	0	0	0	3	0	0

Analyte concentration exceeds the standard for:

Bold	exceeds Groundwater Screening Level, WI
<u>Underlined</u>	exceeds Wisconsin Groundwater PAL
Italic	exceeds Tap Water RSL, WI
Pink Highlighting	exceeds GW SL; results only exceeding the PAL and/or Tap Water criteria are not highlighted.
Yellow Highlighting	analyte exceedance in statistics for one or more samples
	<u>Underlined</u> Italic Pink Highlighting

PAL from Chapter NR 140 for Groundwater Quality from Wisconsin Admin Code (Feb 2017)

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, five (5) revisions of the RSLs have been published by EPA through November 2019. As a result of these five revisions, there were no updates to the RSLs necessary for the MGP-related constituents evaluated in this table.

Lab comments, additional data qualifiers and definitions can be found in associated laboratory reports.

-- = Analysis not performed

(N) = Normalized sample locations created from combining parent and field NTU = Nephelometric Turbidity Unit

duplicate samples following EPA protocol

< = Concentration is less than the Limit of Detection (LOD)

μg/L = micrograms per liter

 μ S/cm = microsiemens per centimeter (aka micromhos per centimeter) BTEX = Benzene, Toluene, Ethylbenzene and Xylene

Deg C = degrees Celsius

J = Concentration Estimated mg/L = milligrams per liter

MGP = Manufactured Gas Plant

NS = No Standard

PAH = Polycyclic Aromatic Hydrocarbon

PAL = Preventive Action Limit; results that attain or exceed this criteria are

considered in exceedance of the PAL $\,$

RNA = Remediation by Natural Attenuation (lab and field)

RSL = Regional Screening Level

s.u. = standard units

SL = Screening Level

U = Concentration was not detected above the reported limit

DRAFT-1549_Oct2019_MPR.xlsx 1 of 2 October 2019 Groundwater Sampling Results

Wisconsin Public Service Corporation - Marinette Former MGP, Marinette, Wisconsin

CERCLIS ID -WIN000509952

			Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Inorganic	Inorganic	Inorganic	Organic	RNA	RNA	RNA	RNA	RNA	RNA	RNA
			issolved	ssolved	solved	olved	Dissolved	olved	olved	issolved	olved	Total	NO3, Total	otal	эс	хувел	depth to	ion Potential	р	tance, Field	, Water	antitative
9-Digit	Sample	Sample	n, Di	y, Di	Dis	Dissol	Se, [Diss	Diss	n, Di	Disso	it,	02 +	te, T	Methar	o pa	ıter,	lucti	Fie	duct	ture	Qua
Code	Location	Date	inur	non	per	Iron, [ane	.kel,	er,	diur	nc, [kalir	, NO2	Sulfate,	Σ	solv	dwa	Redi	F.	Con	oera	dity,
			Alum	Antimo	Cop	<u>r</u>	Mangai	Š	Silv	Vanadi	ΙZ	₹	Nitrogen	S		Dis	Groun	dation		cific	[em]	Turbidity,
			1				2						Nit				9	Oxida		Spe		F
	Don	orting Units	ug/I	ug/l	ug/l	ug/l	ug/I	ug/l	ug/l	ug/l	ua/I	ug/l	ug/l	ug/l	ug/I	mg/L	feet	millivolts	s.u.	μS/cm	Deg C	NTUs
	кер	orting Units:	μg/L Result Flag	μg/L g Result Flag	μg/L Result Fla	μg/L ag Result Fla	μg/L g Result Flag	μg/L Result Flag	Result Fl				<u>''</u>									
				· ·		,, .		,		,					Ü			,, ,	4			,, <u> </u>
	WI Grou	indwater SL:	200	6	1,300	NS	300	100	50	30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	WI Groun	idwater PAL:	<u>40</u>	<u>1.2</u>	<u>130</u>	<u>150</u>	<u>25</u>	<u>20</u>	<u>10</u>	<u>6</u>	<u>2,500</u>	<u>NS</u>	<u>2,000</u>	<u>125,000</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>
	Тар	Water RSL:	20,000	7.8	800	14,000	430	390	94	86	6,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
100010010		10/00/		la == :	I								1000	I.o. cos					I	1	1	
102219012	MW03R	10/22/2019	<117 U		7.7		383	2.1	<0.25 U	1.9 J	<20.7 U	221,000	390	18,100	239	0.68	2.63	116.5	6.83	497.2	14.41	43.58
102219008/102219009 (N)	MW05	10/22/2019	<117 U	<0.30 U	2.4 J	<116 U	312	1.1 J	<0.25 U	<0.63 U	<20.7 U	262,000	3,900	70,900	<0.66 U	0.18	5.27	108.7	7.41	1571.1	11.50	0.00
102119003	MW302	10/21/2019	<117 U	<0.30 U	5.2 J	<u>546</u>	107	4.2	<0.25 U	0.68 J	<20.7 U	295,000	<u>5,400</u>	124,000	<0.66 U	0.36	9.95	283.9	6.80	2007.2	15.09	2.20
102119005	MW303	10/21/2019	<117 U	0.37 J	<2.2 U	<u>2,240</u>	<u>5,100</u>	5.6	<0.25 U	1.1 J	<20.7 U	454,000	<95 U	123,000	149	0.17	1.25	-42.3	7.04	2182.8	15.87	19.63
102119002	MW304	10/21/2019	<117 U	1.0 J	<2.2 U	<u>987</u>	<u>1,460</u>	3.5	<0.25 U	1.3 J	<20.7 U	476,000	<95 U	37,700	1,630	0.21	3.92	-156.7	7.03	1135.3	14.16	1.12
102119001	MW305	10/21/2019	<117 U	0.34 J	3.1 J	<u>551</u>	<2.4 U	0.94 J	<0.25 U	<0.63 U	<20.7 U	310,000	<u>7,300</u>	<u>157,000</u>	<0.66 U	4.97	12.54	283.4	7.21	2,077	14.21	2.67
102219014	MW306	10/22/2019	<117 U	<0.30 U	<2.2 U	<u>2,940</u>	<u>130</u>	<0.57 U	<0.25 U	<u>7.5</u>	<20.7 U	257,000	760	4,000	1,640	0.23	1.53	-102.1	7.00	629.1	12.76	0.00
102219016	MW307R	10/22/2019	<117 U	<0.30 U	<2.2 U	<u>16,400</u>	<u>170</u>	<0.57 U	<0.25 U	<0.63 U	<20.7 U	212,000 J	<95 U	<5,000 U	7,090	0.09	2.29	-142.6	7.06	494.3	14.55	9.94
102219011	MW308	10/22/2019	<117 U	0.36 J	23.0	810	<u>4,860</u>	27.0	<0.25 U	<0.63 U	172	865,000	<95 U	299,000	468	0.17	3.79	42.5	6.60	5496.6	14.25	0.00
102219017/102219018 (N)	MW310	10/27/2019	<117 U	0.40 J	<2.2 U	3,890	<u>732</u>	1.4 J	<0.25 U	1.6 J	<20.7 U	410,000	<95 U	64,400	583	0.08	2.29	-76.2	6.75	847.1	14.76	0.00
102219019	MW311	10/22/2019	<117 U	<0.30 U	<2.2 U	32,800	<u>720</u>	0.93 J	<0.25 U	2.3	<20.7 U	726,000	<95 U	<5,000 U	9,020	0.12	3.04	-121.6	6.67	2439.3	14.35	0.00
102119006	MW313	10/21/2019	<117 U	<0.30 U	<2.2 U	13,600	<u>835</u>	4.4	<0.25 U	3.5	<20.7 U	397,000	<95 U	24,100	5,130	0.10	2.50	-142.2	6.86	908.9	16.05	47.41
102119004	P302	10/21/2019	<117 U	<0.30 U	<2.2 U	2,780	<u>399</u>	<0.57 U	<0.25 U	1.2 J	<20.7 U	263,000	<95 U	69,100	26.7	0.30	9.83	-15.1	7.04	1374.1	14.65	41.54
102219013	P303	10/22/2019	<117 U	<0.30 U	<2.2 U	<116 U	3.1 J	0.60 J	<0.25 U	<0.63 U	<20.7 U	148,000 J	<95 U	<u>857,000</u>	<0.66 U		34.80					
102219015	P304	10/22/2019	<117 U	<0.30 U	2.2 J	1,270	<u>167</u>	1.8 J	<0.25 U	0.74 J	<20.7 U		1,600		<0.66 U		34.37					
102219010	P305	10/22/2019	<117 U	<0.30 U	<2.2 U	771	<u>770</u>	1.7 J	<0.25 U	1.2 J	25.9 J	328,000	<95 U	27,000	22.0	0.26	3.40	41.0	6.89	3134.1	12.80	0.00
		·										1		-						-		
Total Numb		es Analyzed: Detections:	16 0	16 6	16 6	16 13	16 15	16 13	16 0	16 11	16 2	15 15	16 6	15 13	16 11	14 14	16 16	14 14	14 14	14 14	14 14	14 14
	.tumber Of	Min:	0	0.34	2.2	546	3.1	0.6	0	0.68	25.9	148,000	390	4,000	22	0.08	1.25	-156.7	6.6	494.3	11.5	0
	WI Corre	Max:	0	1 6	23 1,300	32,800	5,100	27 100	0	7.5 30	172	865,000	7,300	857,000	9,020	4.97	34.8	283.9	7.41	5,497	16.05	47.41
Number of Samples that Exc		indwater SL: undwater SL:	200 0	0	0	NS	300 10	0	50	0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS	NS 0	NS 0	NS 0
<u>WI Groundwater PAL: 40 1.2 130 150 25</u>						<u>20</u>	<u>10</u>	<u>6</u>	<u>2,500</u>	<u>NS</u>	2,000	<u>125,000</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>		
Number of Samples that Exce		dwater PAL: Water RSL:	0 20,000	7.8	0 800	13 14,000	14 430	390	0 94	86	0 6,000	0 NS	NS NS	NS NS	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS
Number of Samples tha	•		0	0	0	2	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																				[O:CMD 12/6,	19,C:MGP 12/9/19	QA: DJB 12/12/19]

Analyte concentration exceeds the standard for:

Bold	exceeds Groundwater Screening Level, WI
<u>Underlined</u>	exceeds Wisconsin Groundwater PAL
Italic	exceeds Tap Water RSL, WI
Pink Highlighting	exceeds GW SL; results only exceeding the PAL and/or Tap Water criteria are not highlighted.
Yellow Highlighting	analyte exceedance in statistics for one or more samples

PAL from Chapter NR 140 for Groundwater Quality from Wisconsin Admin Code (Feb 2017)

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, five (5) revisions of the RSLs have been published by EPA through November 2019. As a result of these five revisions, there were no updates to the RSLs necessary for the MGP-related constituents evaluated in this table.

Lab comments, additional data qualifiers and definitions can be found in associated laboratory reports.

-- = Analysis not performed

(N) = Normalized sample locations created from combining parent and field NTU = Nephelometric Turbidity Unit duplicate samples following EPA protocol

< = Concentration is less than the Limit of Detection (LOD)

μg/L = micrograms per liter

 μ S/cm = microsiemens per centimeter (aka micromhos per centimeter)

BTEX = Benzene, Toluene, Ethylbenzene and Xylene

Deg C = degrees Celsius J = Concentration Estimated

mg/L = milligrams per liter

MGP = Manufactured Gas Plant

NS = No Standard

PAH = Polycyclic Aromatic Hydrocarbon

PAL = Preventive Action Limit; results that attain or exceed this criteria are

considered in exceedance of the PAL

RNA = Remediation by Natural Attenuation (lab and field)

RSL = Regional Screening Level s.u. = standard units

SL = Screening Level

U = Concentration was not detected above the reported limit

DRAFT-1549_Oct2019_MPR.xlsx 2 of 2