951667

FIFTH FIVE-YEAR REVIEW REPORT FOR BETTER BRITE PLATING CO. CHROME AND ZINC SHOPS SUPERFUND SITE BROWN COUNTY, WISCONSIN

Prepared by

U.S. Environmental Protection Agency Region 5 Chicago, Illinois

11/18/2019

Douglas Ballotti, Director Superfund & Emergency Management Division Signed by: Environmental Protection Agency

Table of Contents

LIST OF ABBREVIATIONS & ACRONYMS	3
I. INTRODUCTION	4
FIVE-YEAR REVIEW SUMMARY FORM	5
II. RESPONSE ACTION SUMMARY	6
Basis for Taking Action	6
Response Actions	7
Status of Implementation	9
Institutional Controls	10
Systems Operations/Operation & Maintenance	13
III. PROGRESS SINCE THE LAST REVIEW	13
IV. FIVE-YEAR REVIEW PROCESS	15
Community Notification, Involvement & Site Interviews	16
Data Review	16
Site Inspection	17
V. TECHNICAL ASSESSMENT	17
QUESTION A: Is the remedy functioning as intended by the decision documents?	17
QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels, and RAOs used at t	the
time of the remedy selection still valid?	17
QUESTION C: Has any other information come to light that could call into question the	
protectiveness of the remedy?	18
VI. ISSUES/RECOMMENDATIONS	18
OTHER FINDINGS	19
VII. PROTECTIVENESS STATEMENT	20
VIII. NEXT REVIEW	21
APPENDIX A – REFERENCE LIST	22

Tables

Table 1 – Summary of Planned and/or Implemented ICs	10
Table 2 – Protectiveness Determinations/Statements from the 2014 FYR	
Table 3 – Status of Recommendations from the 2014 FYR	

APPENDIX A – Reference List

APPENDIX B - Site Chronology

APPENDIX C – Site Maps

APPENDIX D – Restrictive Covenants filed with Brown County

APPENDIX E - FYR Inspection Checklist

APPENDIX F – FYR Inspection Photo Log

APPENDIX G - Green Bay Press Gazette FYR Notification

APPENDIX H - 2019 Summary Groundwater Monitoring Report

LIST OF ABBREVIATIONS & ACRONYMS

BRRTS	Bureau for Remediation and Redevelopment Tracking System
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
CO	Continuing Obligation
COC	Contaminant of Concern
CSF	Cancer slope factor
EPA	United States Environmental Protection Agency
ES	Enforcement Standard
FYR	Five-Year Revie
ICs	Institutional Controls
ICIAP	Institutional Control Implementation Assurance Plan
LTS	Long-Term Stewardship
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NPL	National Priorities List
O&M	Operation and Maintenance
OU	Operable Unit
PAL	Preventive Action Limit
PCOR	Preliminary Close Out Report
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctane sulfonate
PPB	parts per billion
RAO	Remedial Action Objectives
RAS	Remedial Action Standard
RfD	Reference Dose
ROD	Record of Decision
RPM	Remedial Project Manager
Site	Better Brite Plating Co. Chrome and Zinc Shops Superfund Site
UU/UE	Unlimited Use and Unrestricted Exposure
VOC	Volatile Organic Compound
WAC	Wisconsin Administrative Code
WDNR	Wisconsin Department of Natural Resources

I. INTRODUCTION

The purpose of a Five-Year Review (FYR) is to evaluate the implementation and performance of a remedy in order to determine if the remedy is and will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in FYR reports such as this one. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The United States Environmental Protection Agency (EPA) is preparing this FYR pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121, consistent with the National Contingency Plan (NCP) (40 CFR Section 300.430(f)(4)(ii)) and considering EPA policy.

This is the fifth FYR for the Better Brite Plating Co. Chrome and Zinc Shops (Better Brite or Site) Superfund Site. The triggering action for this statutory FYR was the signing of the previous FYR on November 18, 2014. The FYR has been prepared due to the fact that hazardous substances, pollutants, or contaminants remain at the site above levels that allow for unlimited use and unrestricted exposure (UU/UE).

The Site consists of two Operable Units (OUs), both of which will be addressed in this FYR. OU1 and OU2 address the entire site but were designated as separate OUs for administrative purposes, OU1 was the implementation of an interim Record of Decision (ROD) in 1991, and OU2 was the final ROD signed on September 24, 1996.

The Better Brite Site FYR was led by Lauren McCarrell, EPA Remedial Project Manager (RPM). Participants included Susan Pastor, EPA Community Involvement Coordinator, and Keld Lauridsen, Wisconsin Department of Natural Resources (WDNR) RPM. EPA and WDNR are the lead agencies for developing and implementing the remedy for the Site. WDNR has reviewed all supporting documentation and provided input to EPA during the FYR process. The review began on 11/20/2018.

Site Background

The Better Brite Site is located in the City of De Pere, Brown County, Wisconsin. The Site consists of two separate properties: The Better Brite Zinc Shop and the Better Brite Chrome Shop (see Figure 1 in Appendix C). These two properties were listed as one site on the National Priorities List (NPL) August 30, 1990 (Federal Register 35502- 35512/Vol.55, No. 169) due to similarities in contaminants, site history, and ownership.

The Better Brite Plating Company began operations at the Zinc Shop in the late 1960s and was primarily engaged in plating 15-20-foot rollers for paper mills in the area. By 1978, chrome plating operations began at the Chrome Shop, and operations at the Zinc Shop were converted to zinc plating only. Vertical in-ground dip tanks were used for chromium plating operations. Known chemicals used include muriatic acid, sodium hypochlorite, degreasers containing VOCs, chromic acid, and sodium cyanide solutions.

Operational practices were poor. Numerous complaints from neighbors and employees regarding spills and dumping prompted initial investigations by WDNR in 1979. Limited site investigations and remedial efforts were conducted during the 1980s. The Better Brite Plating Company filed for bankruptcy protection and discontinued operations at the Chrome Shop in 1985, but operations continued at the Zinc Shop until 1989. Investigations found that vertical tanks at the Chrome Shop had

leaked between 20,000 and 60,000 gallons of chrome plating solution while the plant was in operation. Early investigations discovered high concentrations of chromium, zinc, cadmium, and cyanide in stored waste, surface water, and soil samples.

Both the Chrome and Zinc Shop properties are located in a mixed residential/commercial area situated approximately a quarter mile west of the Fox River. Land use is expected to remain the same in the foreseeable future. Several homes directly border both properties, with the nearest residence located across the street to the south of the Zinc Shop property. Approximately seven single-family residences are adjacent to the Chrome Shop property. Commercial operations nearby include a foundry on South Sixth Street, a heating and air conditioning contractor, and a resale shop adjacent to the Zinc Shop.

According to the Final Design report (HIS Geotrans, December 3, 1998), an estimated 46,000 people obtained drinking water from municipal wells within three miles of the Better Brite Site. The City of De Pere had six municipal wells, but as of 2007 the city uses Lake Michigan water. One municipal well was located 250 feet northwest of the Zinc Shop but was abandoned. A 1991 door-to-door survey located five unused and two used private wells near the site, but these wells were abandoned according to the City of De Pere. The private wells drew water from the dolomite or the sandstone formations.

SITE IDENTIFICATION						
Site Name: Better B	ame: Better Brite Plating Company Chrome and Zinc Shops					
EPA ID: WIT560	010118					
Region: 5	State: WI	City/County: De Pere/Brown				
		SITE STATUS				
NPL Status: Final						
Multiple OUs? Yes	Has the Yes	ne site achieved construction completion?				
	REVIEW STATUS					
Lead agency: EPA	Lead agency: EPA					
Author name (Federal	or State Project M	anager): Lauren McCarrell				
Author affiliation: U.S. EPA Region 5						
Review period: 11/20/2018 - 8/13/2019						
Date of site inspection: 5/14/2019						
Type of review: Statutory						
Review number: 5						
Triggering action date: 11/18/2014						
Due date (five years after triggering action date): 11/18/2019						

FIVE-YEAR REVIEW SUMMARY FORM

II. RESPONSE ACTION SUMMARY

Basis for Taking Action

Hazardous substances have been released at the Better Brite Site. These substances include volatile organic compounds (VOCs), cyanide, and metals, especially chromium and hexavalent chromium. Exposure through direct contact, inhalation and ingestion to soil and groundwater contaminated with site contaminants of concern (COCs) posed risks to human health. An ecological risk assessment was not conducted because this is primarily a groundwater remedy and soil contamination was removed through removal actions or stabilized under a cap. Soil removal took place as an initial response action to respond to the immediate threat to human health posed by contaminated soils at both the Chrome and Zinc Shop properties. Soil was removed from the properties in 1993 and soil stabilization activities at the Chrome Shop property were conducted in 1999.

Response Actions

Initial Response

The imminent public health threats at the Better Brite Site were addressed between 1980 and 1995 through WDNR enforcement actions and EPA removal actions. These resulted in the disposal of all containerized waste, contaminated debris, and shallow contaminated soil; construction of fencing; placement of clean soil over the remaining contaminated soil; and construction and operation of a groundwater extraction and treatment system.

Chrome Shop

From 1979-1990, ongoing investigations and litigation by WDNR resulted in limited measures to remove or contain contamination. EPA prepared a response plan in 1979, which the Better Brite Plating Company implemented, including excavation of a groundwater collection trench, installation of surface water controls and groundwater monitoring wells, and limited soil removal. Groundwater from the collection trench was discharged to a City of De Pere sanitary sewer. Following the 1985 bankruptcy, the Chrome Shop building was demolished and removed, the holding pond was excavated, and the former building area was capped with clay. In April 1986, EPA removed four subsurface plating tanks from the Chrome Shop property. In September 1986, EPA prepared a Site Assessment and Emergency Action Plan, which concluded that the Chrome Shop property area posed an immediate threat to human health. From September 1986 to April 1987, EPA completed actions that removed 83 tons of contaminated soil, 9,279 gallons of chromic acid, 3,600 gallons of caustic liquid, 550 gallons of cyanide solution, 150 pounds of cyanide sludge, and 500 gallons of flammable liquid.

The Better Brite Plating Company discontinued pumping from the collection trench in 1986. As a result, chromium contaminated surface water began collecting in nearby yards. As an interim measure in March 1988, EPA started pumping from the collection trench and discharging waste to the sanitary sewer. In 1990, EPA built a 2,000 gallon per day system to treat groundwater prior to discharging to the sanitary sewer, and initiated pumping from a recovery well in addition to the collection trench. In 1993, EPA replaced the recovery well and groundwater collection trench with an engineered groundwater collection sump.

As part of EPA's ongoing removal action, EPA excavated and removed approximately 10,000 tons of contaminated soil, concrete, and debris in 1993. Contaminated surface soil was excavated from the Chrome Shop property, and some from adjacent properties. A smaller area was excavated to a depth of 20 feet, where sampling indicated that soils outside of and below the excavated area was not contaminated. The excavated area was subsequently filled with clean soil.

Zinc Shop

In October 1989, EPA performed a site assessment at the Zinc Shop. The assessment confirmed WDNR's discovery of contamination and illegally stored hazardous substances. Based on the results of the site assessment, EPA conducted a removal action from December 27, 1989 to October 22, 1993 that entailed sampling and sorting hazardous materials; securing, decontaminating, and heating the building; removing waste, and compiling the analytical results from previous investigations.

In 1990 as part of the removal action, EPA constructed a groundwater recovery sump along the east side of the building. Contaminated groundwater from the sump was trucked to the Chrome Shop for pretreatment. Approximately 350 cubic yards of chromium contaminated soil was excavated during installation of the sump. In 1991, EPA conducted additional decontamination of the building and investigated beneath the concrete slab foundation. The original sump was replaced with a larger sump following further excavation in 1993. Until the fall of 1999, contaminated groundwater was regularly extracted from the sump and trucked to the Chrome Shop for treatment.

The Zinc Shop burned down in September 1992. From November 1992 to January 1993, EPA removed the remains of the building, the slab foundation, and two 15-foot long vertical in-ground dip tanks as part of the ongoing removal action. Contaminated soil was excavated from beneath the foundation until clean soil was reached. Approximately 6,032 tons of chromium contaminated soil, concrete, and building debris were removed from the Site.

Remedy Selection

On June 28, 1991, EPA issued an interim ROD that required the following:

- Expand the operation of the treatment facility in order to meet the pretreatment standards set by the City of De Pere's publicly owned treatment works;
- Improve surface water drainage and modify the groundwater collection system to prevent contamination leaving the area;
- Secure the site with fencing and siding material to prevent contact with contaminated soil and debris; and
- Install monitoring wells to serve as an early detection system for a nearby municipal well and monitor potential contamination within the deep aquifer.

On September 24, 1996, EPA issued a ROD for the final remedial action at the Site. This ROD added the following requirements:

- Extract and treat groundwater from the sump at the Zinc Shop;
- Relocate the treatment plant from the Chrome Shop to the Zinc Shop;
- Stabilize hexavalent chromium in soil and groundwater to prevent further migration;

- Construct new exterior foundation drains at two properties near the Zinc Shop and pump collected water to the treatment facility. If necessary, any additional soil contamination found near the Zinc Shop will be removed, treated and disposed of;
- Continue groundwater monitoring at the Chrome Shop and Zinc Shop to evaluate the effectiveness of the remedial action; and
- Implement Institutional Controls (ICs) and site access restrictions such as deed restrictions placed on the Zinc and Chrome Shop properties to prevent activities that could affect the remedy, including subsurface excavation and water well installation.

Implementation of the 1991 interim ROD and the 1996 final ROD were treated as separate OUs, OU1 and OU2, respectively, for administrative purposes.

Remedial Action Objectives (RAOs) were developed for the Site to address groundwater and soil contamination. The RAOs listed in the ROD include:

- Prevent migration of contaminants in groundwater, and in the long term to remediate the groundwater to protect human health and the environment, and to meet state and federal standards; and
- Prevent human exposure to contaminated soils and groundwater that pose unacceptable risks.

The 1996 ROD Summary included an assessment of the remaining risks from groundwater contamination. EPA and WDNR concluded that WAC NR 140 Enforcement Standards (ESs) and Preventive Action Limits (PALs) provide sufficient protection of public health for residential groundwater use. The remedy is intended to achieve compliance with PALs for all COCs at the Better Brite site. The COCs identified in 1996 ROD include:

Contaminant	PAL in parts per billion (ppb)				
Inc	Inorganics				
Aluminum	NA				
Antimony	1.2				
Arsenic	1				
Beryllium	0.4				
Cadmium	0.5				
Calcium	NA				
Cobalt	8				
Chromium	10				
Hexavalent Cr	NA				
Iron	150*				
Magnesium	NA				
Manganese	60				
Nickel	20				
Potassium	NA				
Silver	10				
Thallium	0.4				
Vanadium	6				

Chrome Shop COCs:

VOCs		
Carbon Disulfide	200	
1,1-Dichloroethene	0.7	
Tetrachloroethene	0.5	
1,1,1-Trichloroethane	40	
Trichloroethene	0.5	
= Public Welfare Standard		

Notes: * NA Public Welfare Standard

= Not Available

Zinc Shop COCs:

Contaminant	PAL in parts per billion (ppb)		
Inorganics			
Aluminum	NA		
Antimony	1.2		
Beryllium	0.4		
Calcium	NA		
Cobalt	8		
Chromium	10		
Hexavalent Cr	NA		
Cyanide	40		
Iron	150*		
Lead	1.5		
Magnesium	NA		
Manganese	60		
Nickel	20		
Potassium	NA		
Sodium	NA		
Thallium	0.4		
Vanadium	6		
VOCs			
Carbon Disulfide	200		
Carbon Tetrachloride	0.5		
1,2-Dichloroethane	0.5		
1,1,2-Trichloroethane	0.5		

Notes: *

NA

Public Welfare Standard =

Not Available =

Chromium (both total and hexavalent) at the Chrome Shop property, and chromium (both total and hexavalent), cyanide, and nickel at the Zinc Shop property, were identified as the primary inorganic contaminants. VOCs were detected in excess of NR 140 PALs at both the Chrome and Zinc Shop properties, but the VOC contaminant plume was found to be limited to the respective property areas.

Status of Implementation

Activities from the interim ROD and removal activities were concluded prior to the implementation of the final 1996 ROD. The remedy is still ongoing for OU2 or the final ROD for the Better Brite site. The remedial design, construction and Operation and Maintenance (O&M) for the final ROD have been conducted by WDNR under a cooperative agreement with EPA. Sampling, treatability, design, and construction oversight were performed by HIS Geotrans under a contract with WDNR. WDNR selected RMT, Inc. to perform construction of the remedy. The sampling, treatability, and design work for the remedial actions are summarized in the Final Design Report.

EPA and WDNR have determined that chromium is the primary COC in groundwater at both the Zinc Shop and Chrome Shop properties. A large percentage of the chromium was present in the form of hexavalent chromium, also the most mobile and toxic form of chromium. The current Remedial Action Standard (RAS) for chromium is the WAC NR 140 PAL: 10 parts per billion (ppb).

Chrome Shop

Construction activities began at the Better Brite Site on August 23, 1999. The area with groundwater impacted by hexavalent chromium at the Chrome Shop was stabilized by adding a chemical reductant to the soil to a depth of 20 feet. Approximately 15,000 cubic yards of soil were treated. The mixing was performed primarily using a backhoe with a rototiller type attachment. The treated soil was field tested and stockpiled after field tests indicated that treatment was sufficient. After final treatment, all the chromium leaching results were less than the PAL (10 ppb). Soil stabilization at the Chrome Shop property was completed on October 29, 1999.

The treated soils were deposited and compacted back into the excavation. The appearance of the Chrome Shop property was restored, and the treated soil was protected from erosion and human contact by backfilling and grading in order to improve drainage, along with placement of topsoil, seeding and mulching. Approximately 1,080 cubic yards of topsoil were spread on the Chrome Shop property to provide a four-inch cover over the stabilized soil and staging areas. The area was then seeded and mulched, completing the soil stabilization at the Chrome Shop property. Each monitoring well is protected by a locked steel casing.

Zinc Shop

Relocation and restart of the groundwater recovery and treatment system at the Zinc Shop property was completed by the end of 1999. This included pumping groundwater from new exterior foundation drains at two nearby residences to the treatment system. Disturbed areas were restored and covered with four inches of topsoil or four inches of crushed aggregate and asphalt paving. Approximately 2,100 square feet were paved, and 45 cubic yards of topsoil were spread. A fence was installed around the Zinc Shop sump, and treatment facilities were enclosed within a locked building. Monitoring wells are protected by a locked steel casing. The removal of hexavalent chromium contaminated groundwater and subsequent pretreatment prior to discharge to the sanitary sewer is ongoing at the Zinc Shop property.

Institutional Controls

EPA conducted a review of the ICs and has determined that they are currently adequate to protect human health and the environment. As part of this FYR, EPA performed the following activities related to the IC evaluation:

- A preliminary review of the Environmental Protection Easement and Declaration of Restrictive Covenant dated April 14, 2010;
- A site inspection; and

• An evaluation of the effectiveness of the ICs.

Each area where ICs are necessary to assure protectiveness is identified in Table 1, below.

Media, engineered controls, and areas that do not support UU/UE based on current conditions	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcel(s)	IC Objective	Title of IC Instrument Implemented and Date (or planned)
Soil/Groundwater	Yes	Yes	Chrome Shop area of soil treatment owned by City of De Pere	Restrict groundwater use, soil excavation,	 Municipal groundwater use restrictions (De Pere Municipal Code,
	Yes	Yes	Chrome Shop area of soil treatment not owned by City of De Pere	and disturbing the cap.	 Chapter 26, August 7, 2001). Well drilling restrictions (De Pere Municipal Code, Chapter 26, 8 WAC)
			Zinc Shop area of groundwater contamination owned by the City	Requires connection to sewer and water system. Prohibits cross connections from the city water	 Chapter 26 & WAC NR# 812, effective February 1, 1991; renumbered NR#812 September 1994). Restrictive covenants filed with Brown County, April 2010. State of Wisconsin
Groundwater	Yes	Yes	Zinc Shop area of groundwater contamination not owned by the City	system and a private source. Requires a permit for private well installation. Requires abandonment of unused or previously abandoned wells.	 State of Wisconsin Continuing Obligation (CO) April 2010 (Statute 292.12). WDNR Bureau for Remediation and Redevelopment Tracking System (BRRTS) database, April 2010 Wisconsin Statute 292.12(2)(c)).
				new well construction and pump installation.	

Table 1: Summary of Planned and/or Implemented ICs

Status of Access Restrictions and ICs:

The City of De Pere assumed ownership of the Better Brite properties in 2001. City ownership and oversight by WDNR and EPA provide assurance that the remedial actions will be properly maintained, and that the contaminated areas will not be improperly developed in the future. The City has no plans to sell the Better Brite properties at this time. The portion of the Zinc Shop that is paved with asphalt is being leased by the City for parking. Currently, the City has no other plans for the Better Brite properties.

For the areas where the residual contamination that remains following a cleanup is above state standards¹, the State of Wisconsin, under the statutory authority of 292.12² has placed a continuing obligation (CO) on the property to ensure protection of human health and the environment. A CO is a legal requirement that applies to a property even after ownership changes. Information on COs can be found at:

https://dnr.wi.gov/topic/brownfields/residual.html

WDNR provides searchable online databases containing information on the investigation and cleanup of potential and confirmed contamination of soil and groundwater in the state of Wisconsin. In accordance with Wisconsin Statute 292.12(2)(c), the approved continuing obligations will be listed on a Continuing Obligation database, known as the Bureau for Remediation and Redevelopment Tracking System (BRRTS) at https://dnr.wi.gov/topic/Brownfields/botw.html, in order to provide public notice of residual contamination. Additionally, relevant requirements, limitations, or conditions imposed at the property will be listed in the database. Sites can also be viewed on the Remediation and Redevelopment Sites Map, which is a map view layer at the same web address. WDNR approval prior to well construction or reconstruction is required for all sites with residual contamination shown on the Continuing Obligation database, in accordance with WAC NR 812.09(4)(w). This requirement applies to private drinking water wells and high capacity wells. The BRRTS on the Web database allows people to search properties with the intent of purchasing land, governments planning redevelopment, businesses planning expansion, and well drillers. Information on the Chrome Shop property, including the CO Packet, can be found at:

https://dnr.wi.gov/botw/GetActivityDetail.do?detailSeqNo=32842#co

And information on the Zinc Shop property and the CO Packet can be found at:

https://dnr.wi.gov/botw/GetActivityDetail.do?detailSeqNo=32846

Wisconsin Statute 292.12 grants WDNR the authority to implement, require and enforce compliance with the requirements under Wisconsin Statute 292.12 and the rules promulgated under the statute. The continuing obligation regulations required under Wisconsin Statute 292.12 help ensure long-term

¹ Chapter 160 of the Wisconsin Statutes authorizes WDNR to set numerical Groundwater Protection Standards, and WAC NR 140 is the administrative rule that contains the standards themselves.

² Wisconsin Statute 292.12(2)(c), regarding Sites with Residual Contamination states that the WDNR may "impose limitations or other conditions related to property, in accordance with rules promulgated by the department, to ensure that conditions at the site remain protective of public health, safety, and welfare and the environment, and, as applicable, to promote economic development."

protection of public health and the environment in accordance with state laws and the required restrictions on groundwater use will meet the objectives of the remedy.

The City of De Pere's drinking water wells are no longer in operation, as the city now uses Lake Michigan water. The City of De Pere regulates all well construction, use, and abandonment within the city limits. Chapter 26 of the municipal code of De Pere includes the following requirements: if the building is adjacent to an installed water line, the owner is required to connect to the City water line; cross connections between City and private water supplies are prohibited; a permit is required for any well, constructed, installed, or maintained (the permit can be revoked if the well water is found to be contaminated); and, unused wells must be abandoned in accordance with WAC NR# 812. WAC NR 812 also prohibits installation of new wells within 1,200 feet of a hazardous waste treatment facility.

An Environmental Protection Easement and Declaration of Restrictive Covenant (restrictive covenant or covenant) was filed on April 14, 2010 on the affected properties owned by the City, a copy of which is provided in Appendix D. The covenant provides property use restrictions that will run with the land for purpose of protecting human health and the environment until such time as EPA and WDNR determine that no monitoring of any media within the Site is required. The following covenants, conditions, and restrictions apply to the use of the properties: 1) the prohibition of groundwater use for consumptive or other uses without prior approval from WDNR and EPA; 2) the prohibition to excavate soils or disturb the cap in the Chrome and Zinc Shop areas of the Site; and 3) the prohibition of excavating or grading of the land surface, filling on the capped area, plowing for agricultural cultivation, and construction or installation of a building or other structure with a foundation that would sit on or be placed within the cap or cover in the Chrome and Zinc Shop areas. There are no plans to pursue restrictive covenants on affected properties that are not owned by the city, because City and WDNR regulations should be effective in preventing residential groundwater use, and an agreement between the City of De Pere and WDNR will ensure notification to WDNR should construction permits be issued in the general area of either site. The State of Wisconsin's CO and listing on WDNR's BRRTS database provide an additional layer of protection for the Site.

Current Compliance:

Based on inspections and discussions with WDNR, EPA is not aware of Site or media uses which are inconsistent with the stated objectives to be achieved by the ICs. The remedy appears to be functioning as intended. No Site uses which are inconsistent with the implemented ICs or remedy IC objectives were noted during the Site inspection.

IC Follow up Actions Needed:

EPA will continue to evaluate the ICs and develop an Institutional Control Implementation Assurance Plan (ICIAP) or equivalent document that will include IC evaluation activities and the development of long-term stewardship procedures. The IC evaluation activities will include, as needed, updated maps depicting current conditions in areas that do not allow for UU/UE and conducting title work to ensure no prior encumbrances exist on the Site that are inconsistent with the ICs.

Long-Term Stewardship:

Since compliance with ICs is necessary to assure the protectiveness of the remedy, planning for long-term stewardship (LTS) is required to ensure that the ICs are maintained, monitored, and enforced so

that the remedy continues to function as intended. LTS involves assuring effective procedures are in place to properly maintain, monitor, and enforce ICs at the Site. The ICIAP will include procedures to ensure LTS such as regular inspection of the engineering controls and access controls at the Site and review of the ICs at the Site.

The ICIAP will also include a requirement for an annual certification by WDNR to EPA that ICs are in place and effective. Finally, development of a communications plan to provide routine remedy updates and use of the State's "one-call" system to receive notifications of dig sites in the vicinity of the remedial system/components should be explored by WDNR.

Systems Operations/Operation & Maintenance

EPA funded WDNR to perform the remedy at the Better Brite Site under a cooperative agreement until July 18, 2011, after which WDNR became solely responsible for financing O&M. The 1996 ROD predicted annual O&M costs of approximately \$103,400. Current annual O&M costs are approximately \$25,000 per year. O&M at the Better Brite Site includes running the groundwater treatment plant, disposal of treatment byproducts, and annual groundwater sampling and analysis. There are currently no substantive problems with system operation or environmental monitoring.

HIS Geotrans, a WDNR contractor, prepared a Quality Assurance Project Plan for Groundwater Monitoring, finalized September 28, 1998, and a Remedial Action Documentation Report, finalized February 21, 2000. Together these documents provide a plan for long-term monitoring, sampling, analysis, validation, health and safety, maintaining the grounds, and the content of monitoring reports. These documents function as an O&M plan for the remedies at the site and include the same procedures outlined in an O&M plan. Until March 31, 2009, the City of De Pere was responsible for O&M of the Zinc Shop groundwater removal system under an agreement with WDNR. O&M was performed by City of De Pere wastewater treatment staff. In April 2009, Foth Infrastructure and Environment (Foth) assumed responsibility for O&M under a contract with WDNR. Foth follows the procedures outlined in the previous O&M documents and has prepared a Better Brite Water Treatment Procedures document on July 21, 2011 to record the water treatment process at the Zinc Shop property.

III. PROGRESS SINCE THE LAST REVIEW

This section includes the protectiveness determinations and statements from the last FYR as well as the recommendations from the last FYR and the current status of those recommendations.

OU #	Protectiveness Determination	Protectiveness Statement
1, 2, Sitewide	Short-term Protective	The Better Brite Site remedy currently protects human
		health and the environment in the short term. The
		groundwater extraction and treatment system began
		operating at the Zinc Shop in November of 1999 and is
		maintained by WDNR. A Preliminary Closeout Report
		(PCOR) for the Site was signed in February 2000. The
		Grant Street Municipal well, located 250 feet northwest
		of the Zinc Shop, has been abandoned and the City of

Table 2: Protectiveness Determinations/Statements from the 2014 FYR

De Pere now draws its drinking water from Lake
Michigan. Groundwater quality and public health
concerns are regularly assessed at both the Zinc and
Chrome Shop properties. The groundwater plume is
controlled by the extraction system at the Zinc Shop, and
groundwater monitoring indicates exposure risks to
neighboring property owners are within limits
established under Wisconsin Administrative Code NR
140 Enforcement Standards (ESs) and Preventive Action
Limits (PALs) at both the Zinc and Chrome Shop
properties. The primary COC remaining above the RAS
at the Better Brite Site is hexavalent chromium;
however, soil stabilization at the Chrome Shop appears
to have significantly lowered the concentrations of
hexavalent chromium. WDNR will conduct
environmental monitoring and operate the groundwater
extraction and treatment system at the Zinc Shop until
RASs are achieved. Further, ICs are in place to aid in
achieving short-term protectiveness. In order for the
remedy to be protective in the long term, a review of the
ICs is needed to ensure that the remedy continues to
function as intended and that effective procedures are in
place for long-term stewardship of the Better Brite Site.
An Institutional Control Implementation Assurance Plan
(ICIAP) or equivalent document should be prepared and
implemented.

LADIC 5. Dullas of Recommendations from the 201 ± 1 T
--

OU#	Issue	Recommendations	Current Status	Current Implementation Status Description	Completion Date (if applicable)
OU1, OU2	A review of the ICs is needed to ensure that the remedy continues to function as intended and that effective procedures are in place for long-term stewardship of the Better Brite Site.	Prepare and implement an ICIAP or equivalent document to ensure long-term stewardship.	Ongoing	All ICs required in the ROD as part of the response action to help ensure long-term protection have been put in place. EPA is still in the process of preparing an ICIAP or equivalent document to ensure long-term stewardship is maintained. It is expected that this will be completed by 12/31/2020 as reported in the issues/recommendations table in this FYR.	N/A
OU1, OU2	Concern about effectiveness of stabilization treatment and off- site migration of the hexavalent chromium contaminated	Further evaluate the effectiveness of the soil stabilization and the potential for off-site migration of hexavalent chromium	Ongoing	Groundwater contamination above the ES is still present within the area of soil stabilization. Nevertheless, contaminant concentrations have been significantly decreasing compared to historical groundwater concentrations	N/A

	groundwater at the Chrome Shop	contaminated groundwater at the Chrome Shop		within the soil stabilization area. Downgradient monitoring wells continue to show no signs of plume migration. Further evaluation of the effectiveness of soil stabilization and the potential for off-site migration of hexavalent chromium contaminated groundwater is ongoing through continued groundwater monitoring downgradient of the plume.	
OU1, OU2	Concerns about groundwater sampling procedures	Evaluate whether it is possible to collect groundwater samples using a low-flow sampling procedure and the advisability of field filtration	Completed	Both a bailer and low flow sampling techniques have been used to collect samples from the monitoring wells on Site. Similar results using either of the two sampling techniques indicates that the sampling method does not significantly impact the analytical results. WDNR has determined that field filtration for hexavalent chromium is not advisable. Because both sampling techniques indicate similar analytical results, a bailer will continue to be utilized for sample collection due to its reduced costs, however low flow sampling techniques will be used for wells where a standard bailer cannot freely go down well piping (wells W-1, W-1A and MW-2). Discussions regarding whether to collect groundwater samples using a low-flow sampling procedure for all wells should be continued once chromium levels are decreasing to levels close to the ES.	6/19/2019

IV. FIVE-YEAR REVIEW PROCESS

Community Notification, Involvement & Site Interviews

A public notice was published in the Green Bay Press Gazette on 12/21/2018, stating that there was a FYR and inviting the public to submit any comments to EPA (see Appendix G). No comments concerning the Better Brite site or the fifth FYR process were received during this period and no interviews were conducted by EPA. However, the RPM routinely discusses Site issues with WDNR

staff. The results of the review and the report will be made available at the Site information repository located at the Brown County Library, Kress Family Branch, 333 N. Broadway, De Pere, Wisconsin.

Data Review

This FYR consisted of a review of relevant documents including O&M records and monitoring data, previous FYRs, remedial investigation reports, and decision documents. Monitoring data was compared to applicable soil and groundwater cleanup standards, as identified in the September 24, 1996 ROD.

The primary COC remaining at the Better Brite Site above the RAS is hexavalent chromium (with a WAC NR 140 PAL of 10 ppb). Currently, monitoring wells MW-111, MW115, MW115A, and MW116 are sampled at the Chrome Shop property and monitoring wells W-1, W-1A, MW3R, MW-5, MW6, MW-9, MW-10 and the sump are sampled at the Zinc Shop property on an annual basis, except no wells were sampled in 2017 as a cost-savings measure implemented by WDNR. Well PF-MW-2 was also sampled at the Zinc Shop in 2015, 2016, and 2018. Maps showing the location of these wells are provided in Appendix H. Wisconsin groundwater ES exceedances for hexavalent chromium remain at both locations.

At the former Chrome Shop site (as of the most recent sampling in May 2019) the groundwater ES and PAL for hexavalent chromium were exceeded in monitoring well MW-116. The highest concentration detected during the review period (2015 to 2019) was in October 2015 at 16,500 ppb. Since 2015, hexavalent chromium concentrations have been decreasing from previous sampling events. In May 2019, hexavalent chromium was detected at a concentration of 9,800 ppb (down from a high of 54,000 ppb in May 2005). Groundwater samples were also analyzed for VOCs at MW-116. 1,1-Dichloroethene concentrations were detected above the ES and PAL with the highest concentration of 44.3 ppb in May 2019. Tetrachloroethene, 1,1,1-trichloroethane, and trichloroethene concentrations were detected above PALs throughout the review period, but below ESs. VOC groundwater monitoring results, including historical concentrations, are included in Appendix H.

Although groundwater contamination above ESs is still present within the area of soil stabilization, concentrations have been significantly decreasing compared to historical groundwater concentrations. Downgradient monitoring wells continue to show no signs of plume migration. The effectiveness of soil stabilization and the potential for off-site migration of hexavalent chromium contaminated groundwater will continue to be evaluated through groundwater monitoring downgradient of the plume.

At the former Zinc Shop site, from October 2015 through May 2019, the groundwater ES and PAL for hexavalent chromium was exceeded in monitoring wells:

- W-1 (4,400 ppb in May 2019, down from a high of 10,300 ppb in October 2015),
- W-1A (1,800 ppb in May 2019, down from a high of 3,300 ppb in October 2015),
- MW-3/MW3R (380 ppb in September 2016, decreased to 88 ppb in May 2019, down from a high of 3,500 ppb in June 2001)
- MW-5 (460 ppb in September 2016, not detected in May 2019, down from a high of 4,900 ppb in October 2006)
- MW-6 (3,500 ppb in September 2016, decreased to 1,200 ppb in May 2019, down from a high of 47,000 ppb in October 1994),

- MW-10 (10,300 ppb in October 2015, decreased to 1,500 ppb in May 2019, down from a high of 60,800 ppb in October 1994),
- The sump (14,000 in September 2016, decreased to 8,100 ppb in May 2019, down from 144,900 ppb in October 1994).

Groundwater samples were also analyzed for cyanide and VOCs at the sump location. The highest concentrations of cyanide detected during the review period was in October 2015 at 220 ppb. Since 2015, cyanide concentrations decreased and was detected at 100 ppb in May 2019. 1,1-Dichloroethene, tetrachloroethene, and 1,1,1-trichloroethane concentrations were detected above PALs in October 2015, but decreased below PALs in May 2019, except for 1,1-dichloroethene which decreased and was detected at 1.2 ppb.

The Zinc Shop sump and monitoring well data appear to indicate an overall decreasing trend in hexavalent chromium, cyanide, and VOCs during the review period and over the long-term in the source area, but concentrations of hexavalent chromium still far exceed the PALs. In order to reach concentrations below PALs per the ROD is likely to take an extended time frame.

The most recent summary of monitoring results, which includes historical results and a photographic survey of the monitoring wells, is provided in Appendix H. Other COCs were either below PALs or were not analyzed. During the Remedial Investigation, VOCs only exceeded PALs near the sumps and, therefore, were only sampled at discrete locations at MW-116 and the Zinc shop sump. The data has consistently indicated that the total chromium in groundwater is mostly, if not all, hexavalent chromium, and the other COCs identified in the ROD are not the focus of the remedy.

Site Inspection

The inspection of the Site was conducted on 5/14/2019. In attendance were Lauren McCarrell, EPA, Keld Lauridsen, WDNR, and Nick Glander, Foth Infrastructure and Environment. The purpose of the inspection was to assess the protectiveness of the remedy. The Site Inspection Checklist is included as Appendix E, and the inspection photo log is included in Appendix F.

The inspection team examined the groundwater extraction and treatment system at 315 S. Sixth Street and the overall condition of the Better Brite Site. The groundwater extraction, collection, and treatment equipment were all in good condition and functioning properly. The sump fencing, treatment facility building, and monitoring wells all appeared to be in good condition and were properly secured/locked. The Chrome Shop property is currently an open field maintained by the City of De Pere. No erosion damage was observed. Since the last FYR, the resale shop adjacent to the Zinc Shop constructed an addition expanding the building north in the parking lot area, abutting well MW-10. The resale shop also expanded the parking lot west to Sixth Street, south of the extraction and treatment building. Construction activities were completed in accordance with the restrictive covenant filed with Brown County. These expansions did not appear to disturb the effectiveness of the soil cap or result in the damage of any Site monitoring wells. The additional asphalt parking lot further protects human exposure from soil or water contamination. EPA did not observe any significant issues impacting current or future protectiveness of the remedy during the site inspection.

V. TECHNICAL ASSESSMENT

QUESTION A: Is the remedy functioning as intended by the decision documents?

Yes.

The Site inspection and current review of data, documents, Applicable or Relevant and Appropriate Requirements, and risk assumptions, indicate that the remedy is functioning as intended by the ROD. The only COC remaining above the RAS at the Better Brite Site is hexavalent chromium, and soil stabilization at the Chrome Shop property appears to have significantly lowered the concentrations of hexavalent chromium.

Cleanup levels are on the path to being achieved, however there is some concern about the effectiveness of stabilization treatment and off-site migration of the hexavalent chromium contaminated groundwater at the Chrome Shop. As discussed in the Data Review section, the current remedy to reduce hexavalent chromium concentrations below the RAS will likely take an extended time frame. The ROD states the selected remedy is expected to take a very extended time period, but also refers to FYRs to assess whether newly developed technologies exist to achieve NR 140 WAC standards. Additional actions may be needed to address these concerns, and new opportunities or technologies may exist to improve remedy performance and significantly shorten the time frame to achieve cleanup levels.

System operations appear to be working in a manner that will continue to maintain the effectiveness of the remedy and costs remain significantly below predictions from the 1996 ROD. Access controls (fencing) at the Site were not required by the ROD and are not necessary because all potential routes of exposure to contaminated soil have been eliminated. Restrictive covenants placed on property owned by the City of De Pere, and State and local controls on the installation of water supply wells, prevent risks from residential groundwater use. An ICIAP or equivalent document should be developed to ensure that LTS procedures are developed and implemented so that ICs are properly maintained, monitored, and enforced.

QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels, and RAOs used at the time of the remedy selection still valid?

No.

The exposure assumptions used to assess Site risks included both current exposures and potential future exposures. There have been no changes in the toxicity factors for the COCs that were used in the baseline risk assessment. The assumptions are conservative and reasonable in evaluating risk and developing risk-based cleanup levels. No changes to these assumptions or the cleanup levels developed for them are warranted, and there has been no change to the standardized risk assessment methodology that could affect the protectiveness of the remedy.

There may be some changes related to exposure pathways and new contaminants. Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and other perfluoroalkyl substances (together, PFASs) are a class of man-made chemicals that have been widely used as a surfactant, wetting agent, and mist suppressing agent for chrome plating. PFAS use for second generation wetting agent fume suppressant was first reported in the chromium plating industry in 1954. Numerous sites are known to have environmental media with PFAS contamination from metal plating and finishing operations. On May

19, 2016, EPA's Office of Water published health advisories for PFOA and PFOS to provide water systems, and state, tribal, and local officials, with information on the health risk of these chemicals. The health advisories are not regulations and EPA does not have national drinking water regulations for PFOA or PFOS. The final Health Effects Support Documents for PFOS and PFOA publish an oral non-cancer toxicity value, or Reference Dose (RfD), of $2x10^{-5}$ mg/kg-day for both PFOS and PFOA. The Health Effects Support document for PFOA also derived a cancer slope factor (CSF) of 0.07 mg/kg/day. The PFOA and PFOS RfDs and the PFOA CSF were approved for use at Superfund sites to ensure protection of human health. PFOA/PFOS have not yet been evaluated as potential COCs at the Site. EPA recommends that PFOA/PFOS be evaluated as potential COCs and whether further investigation is necessary to characterize these contaminants.

As discussed in the Site Inspection section above, the resale shop expanded their building and the asphalt parking lot at the Zinc Shop. This expansion does not change any of the exposure pathways at the Site, and furthermore protects human exposure from soil or water contamination.

QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?

No.

No new ecological risks have been identified, there have been no impacts from natural disasters, and no other information has come to light that could affect the protectiveness of the remedy.

VI. ISSUES/RECOMMENDATIONS

Issues and Recom	mendations Identifie	d in the Five-Year R	leview:	
OU(s): 1, 2	Issue Category: Ins	stitutional Controls		
	Issue: A review of function as intended stewardship of the E	the ICs is needed to e and that effective prosection Better Brite Site.	ensure that the remedy ocedures are in place	y continues to for long-term
	Recommendation: ensure long-term ste	Prepare and implementation ewardship.	ent an ICIAP or equiv	valent document to
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date
No	Yes	EPA/State	EPA	12/31/2020

OU(s): 1,2	Issue Category: Remedy Performance
	Issue: Concern about effectiveness of stabilization treatment and off-site migration of the hexavalent chromium contaminated groundwater at the Chrome Shop.

	Recommendation: Further evaluate the effectiveness of the soil stabilization and the potential for off-site migration of hexavalent chromium contaminated groundwater at the Chrome Shop.			
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date
No	Yes	EPA/State	EPA/State	11/30/2021

OU(s): 1,2	Issue Category: Mo	onitoring			
	Issue: PFOA/PFOS concern.	have not been evalua	ted as potential conta	minants of	
	Recommendation: Determine if PFOA/PFOS are potential contaminants of concern and whether further investigation is necessary to characterize the contaminants.				
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date	
No	Yes	EPA/State	EPA/State	12/31/2020	

OTHER FINDINGS

In addition, the following are recommendations that were identified during the FYR and may accelerate site close out and improve O&M, but do not affect current nor future protectiveness:

- In addition to the concerns about the effectiveness of the stabilization remedy and its continuing impact to groundwater concentrations, the RAO "to remediate the groundwater to protect human health and the environment and to meet state and federal standards" per the ROD is likely to take an extended time frame. Evaluate newly developed technologies and opportunities to improve remedy performance that may significantly shorten the time frame to achieve the RAOs. EPA recommends completing a Site-wide Remedy Optimization Review of the present remedy to determine what can be done, if anything, to address the goal of achieving state and federal standards in a reasonable time frame.
- Update O&M and Monitoring plans with the decision to include a re-evaluation of whether to collect groundwater samples using a low-flow sampling procedure once chromium levels are decreased to levels close to the ESs

VII. PROTECTIVENESS STATEMENT

	Protectiveness Statement(s)
Operable Unit:	Protectiveness Determination:
1	Short-term Protective

Protectiveness Statement:

The Better Brite Site remedy currently protects human health and the environment. All immediate threats to human health and the environment have been controlled. Exposure pathways that could result in unacceptable risks are being monitored and controlled through the annual monitoring of groundwater via the long-term monitoring network at the Site. However, in order for the remedy to be protective in the long term, the following actions need to be taken to ensure protectiveness: develop and implement long-term stewardship procedures for monitoring and tracking compliance with existing ICs by developing an ICIAP or equivalent document for the Site; evaluate the effectiveness of the soil stabilization and the potential for off-site migration of hexavalent chromium contaminated groundwater at the Chrome Shop; and, determine if PFOA/PFOS are potential contaminants of concern and whether further investigation is necessary to characterize these contaminants.

Protectiveness Statement(s)

Operable Unit: 2

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The Better Brite Site remedy currently protects human health and the environment. All immediate threats to human health and the environment have been controlled. Exposure pathways that could result in unacceptable risks are being monitored and controlled through the annual monitoring of groundwater via the long-term monitoring network at the Site. However, in order for the remedy to be protective in the long term, the following actions need to be taken to ensure protectiveness: develop and implement long-term stewardship procedures for monitoring and tracking compliance with existing ICs by developing an ICIAP or equivalent document for the Site; evaluate the effectiveness of the soil stabilization and the potential for off-site migration of hexavalent chromium contaminated groundwater at the Chrome Shop; and, determine if PFOA/PFOS are potential contaminants of concern and whether further investigation is necessary to characterize these contaminants.

Sitewide Protectiveness Statement

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The Better Brite Site remedy currently protects human health and the environment. All immediate threats to human health and the environment have been controlled. Exposure pathways that could result in unacceptable risks are being monitored and controlled through the annual monitoring of groundwater via the long-term monitoring network at the Site. However, in order for the remedy to be protective in the long term, the following actions need to be taken to ensure protectiveness: develop and implement long-term stewardship procedures for monitoring and tracking compliance with existing ICs by developing an ICIAP or equivalent document for the Site; evaluate the effectiveness of the soil stabilization and the potential for off-site migration of hexavalent chromium contaminated groundwater at the Chrome Shop; and, determine if PFOA/PFOS are potential contaminants of concern and whether further investigation is necessary to characterize these contaminants.

VIII. NEXT REVIEW

The next FYR report for the Better Brite Superfund Site is required five years from the completion date of this review.

APPENDIX A – REFERENCE LIST

Record of Decision, EPA, 6/28/1991. SEMS Document 180766

Superfund State Contract for an Interim Remedial Action at the Better Brite Plating Co. Chrome and Zinc Shop Site between the State of Wisconsin and the U.S. Environmental Protection Agency, EPA, 7/16/1991. SEMS Document 901365

Record of Decision, EPA, 9/24/1996. SEMS Document 180759

First Five-Year Review, EPA, 11/23/1999. SEMS Document 149716

Preliminary Closeout Report, EPA, 2/8/2000. SEMS Document 347869

Second Five-Year Review, EPA, 11/23/2004. SEMS Document 224718

Third Five-Year Review, EPA, 11/20/2009. SEMS Document 342705

Final Design Report, HIS GeoTrans, WDNR, 9/28/1998. SEMS Document 386123

Environmental Protection Easement and Declaration of Restrictive Covenants, City of De Pere, WDNR, 4/14/2010. BRRTS #: 02-05-000030/02-05-000031

Better Brite Water Treatment Procedures, Foth Infrastructure & Environment, LLC, WDNR, 7/21/2011.

Fourth Five-Year Review, EPA, 11/18/2014. SEMS Document 482270

Superfund Property Reuse Evaluation Checklist for Reporting the Sitewide Ready-for-Anticipated Use GPRA Measure, EPA, 4/14/2015. SEMS Document 485601

Summary of the October 22, 2015 Groundwater Sampling Events at the Former Better Brite Chrome and Zinc Shops, OMNNI Associates, Inc., WDNR, 11/9/2015.

Summary of the September 19 & 20, 2016 Groundwater Sampling Events at the Former Better Brite Chrome and Zinc Shops, OMNNI Associates, Inc., WDNR, 10/10/2016.

Annual Treatment Summary, Foth Infrastructure & Environment, LLC, WDNR, 4/30/2018

Summary of the June 12 & 13, 2018 Groundwater Sampling Events at the Former Better Brite Chrome and Zinc Shops, OMNNI Associates, Inc., WDNR, 8/21/2018.

Summary of the May 14 & 15, 2019 Groundwater Sampling Events at the Former Better Brite Chrome and Zinc Shops, OMNNI Associates, Inc., WDNR, 6/28/2019.

BRRTS website for the Chrome Shop: https://dnr.wi.gov/botw/GetActivityDetail.do?detailSeqNo=32842#co

BRRTS website for the Zinc Shop: https://dnr.wi.gov/botw/GetActivityDetail.do?detailSeqNo=32846

APPENDIX B

Site Chronology

Site Chronology

Event	Date
Initial discovery of problem or contamination	1979
Proposed for NPL	October 26, 1989
Final NPL listing	August 30, 1990
Fund-lead Removal actions	October 1986 and October 1993
State-lead Remedial Investigation/Feasibility Study completed	September 1995
Interim ROD signature	June 28, 1991
Final ROD signature	September 24, 1996
Remedial design complete	December 3, 1998
Superfund State Contract, Cooperative Agreement, or Federal Facility Agreement signature	July 16, 1991
On-site remedial action construction start	August 23, 1999
First Five-Year Review	November 23, 1999
Construction completion date (EPA issued Preliminary Closeout Report)	February 8, 2000
Second Five-Year Review	November 23, 2004
Third Five-Year Review	November 20, 2009
Restrictive covenant filed with Brown County	April 14, 2010
Zinc Shop groundwater removal and treatment system upgraded	2011
End of Cooperative Agreement to perform remedy O&M between EPA and WDNR	July 18, 2011
Fourth Five-Year Review	November 11, 2014
Site-Wide Ready for Anticipated Use Determination	April 14, 2015

APPENDIX C

Site Maps

Figure 1: Site Map

.

S

- Monitoring Well Groundwater Elevation (1-ft contour)

100 Feet

APPENDIX D

Restrictive covenants filed with Brown County

	Ongoing	Cleanups with Cover	Continuing Obligations Sheet	April, 2010 (RR 5391)
Purpose				· · · · · ·
This cover sheet summariz mechanisms that: 1) Require or restri 2) Minimize human 3) Give notice of th Learn more about continuin	es continuing obliga ct certain actions to n and natural resource ne existence of resid ng obligations at <u>htt</u>	tions regarding environn protect human health or ce exposure to contamina ual contamination p://dnr.wi.gov/topic/brow	nental conditions on this property. Continuing obl the environment. ttion, and/or <u>vnfields/residual.html</u>	igations are legal
DNR Property Infor	mation:		DNR Approval Date	e: Jun 28, 1991
BRRTS #:	02-05-000031	FID #:	405022420	1
ACTIVITY NAME:	Better Brite - Zinc	(SF)		
PROPERTY ADDRESS:	315 South Sixth St			
MUNICIPALITY:	De Pere			
PARCEL ID #:	WD-103-1			
*WTN	A COORDINATES	5:	WTM COORDINATES REPRESENT:	
X: 673	3170 Y: 443	082	O Approximate Center Of Continuing Obligati	ons
* Coordinate	s are in WTM83, NAD8.	3 (1991)	• Approximate Source Parcel Center	
Please use	the CLEAN system	at http://dnr.wi.gov/topic	c/brownfields/clean.htm for additional DNR site in	formation.
EPA Superfund Info	ormation (if appl	icable):		
EPA ID: WIT56	0010118 To vie	ew more information clic	k on the EPA ID.	
SITE NAME: BETTER F	BRITE PLATING C	O. CHROME AND ZIN	C SHOPS	
Requirements for <i>all</i> p 1. Properly manage cor 2. DNR approval is req	properties with Contaminated soil if i uired if a water su	ontinuing Obligations t is excavated. Sample pply well will be const	s e and arrange appropriate treatment or disposa tructed or reconstructed.	1.
	Site	e-Specific Requireme	nt(s) - (BRRTS Action Code)	
$\mathbf{\overline{X}}$ A "cap" over the conta	minated area must b	e: (222)	A structural impediment (e.g. building)	is present which
Constructed & N	Maintained X	Maintained	may be required if the impediment is re	noved. (224)
 ☐ A vapor mitigation system must be: (226) ☐ Constructed & Maintained ☐ Maintained 		Maintained	DNR has directed a local government up action and a LGU liability exemption ap exemption does not transfer to future pr	nit (LGU) to take an pplies. This (vate owners (230)
The need for vapor con if a building will be co	ntrol technology mus nstructed. (228)	st be evaluated	Another type of continuing obligation 1 in DNR's remedial action plan approval	nas been established
The approved soil clear industrial use of the pr	nup level is suitable operty. (220)	for	Explain:	
DNR has approved con and certain maintenance	nstruction on an abar ce requirements appl	ndoned landfill y. (402) or (404)		

	Declaration	of Restrictiv	ve Covenants	CATHY WILLIOU BROWN COUNTY REC	TTE CORDER
Document Number		Document Title		GREEN BAY, V	i I
				RECORDED ON 04/14/2010 11:3	1 18:29AN
				REC FEE: 69.00	
				EXEMPT # PAGES: 30	
	•				
· .				Recording Area	
		· .		City of De Pere	
				c/o Judith Schmidt-	Lehman Seet
			•	De Pere, WI 54115	
	•		•	<u> </u>	
				WD-103-1 & WD-145	
				Parcel Identification Number (FIN	y ·
			• •		
	•				
	-				
		•			
		•			
	•				

ENVIRONMENTAL PROTECTION EASEMENT AND DECLARATION OF RESTRICTIVE COVENANTS

1. This Environmental Protection Easement and Declaration of Restrictive Covenants is made this B day of March, 2010, by and between the City of DePere, Wisconsin, ("Grantor"), having an address of 335 S. Broadway Street, DePere, WI, and Wisconsin Department of Natural Resources ("Grantee"), having an address of 101 South Webster Street, Madison, WI. Grantee, Wisconsin Department of Natural Resources, is acquiring this interest pursuant to \$292.31 Wis. Stat. The Grantor and Grantee intend that the provisions of this Environmental Protection Easement and Declaration of Restrictive Covenants also be for the benefit of the United States, a third party beneficiary.

WITNESSETH:

2. WHEREAS, Grantor is the owner of two parcels of land located in the County of Brown, State of Wisconsin, more particularly described on **Exhibit A** attached hereto and made a part hereof (the "Property"); and

3. WHEREAS, the Property comprises the Better Brite Superfund Site ("Site"), which the U.S. Environmental Protection Agency ("EPA"), pursuant to Section 105 of the Comprehensive Environmental Response, Compensation and Liability Act ("CERCLA"), 42 U.S.C. § 9605, placed on the National Priorities List, set forth at 40 C.F.R. Part 300, Appendix B, by publication in the Federal Register on August 30, 1990; and

4. WHEREAS, in a Record of Decision dated September 24, 1996 (the "ROD"), the EPA Region 5 Regional Administrator selected a "remedial action" for the Site, which provides, in part, for the following actions: Extraction of groundwater at Zinc Shop; Relocation of treatment plant from Chrome Shop to Zinc Shop; Stabilization of hexavalent chromium in soil; Construction of new external foundation drains at two (2) properties near the Zinc Shop with collected water pumped to the pretreatment facility at the Zinc Shop; and, continued groundwater monitoring at the Chrome Shop and the Zinc Shop (**Exhibit C**). With the exception of postremedial groundwater monitoring, the remedial action has been implemented at the Site; and

5. WHEREAS, the parties to this document, wishing to achieve necessary postremedial environmental institutional controls, agree that this document will provide for; 1) a

grant of a right of access over the Property to the Grantee for purposes of implementing, facilitating and monitoring the remedial action until such time as EPA/WDNR determine that no monitoring of any media within the Site is required; and 2) to impose on the Property use restrictions as covenants that will run with the land for purpose of protecting human health and the environment until such time as EPA/WDNR determine that no monitoring of any media within the Site is required; and

6. WHEREAS, Grantor has cooperated fully with the Grantee in the implementation of all response actions at the Site and wishes to continue to do so.

NOW, THEREFORE:

7. Grant: Grantor, on behalf of itself, its successors and assigns, in consideration of the remedial action performed pursuant to the September 1996 ROD and 2004 CERCLA Fiveyear Review Report (a copy of which is available in the DePere Branch of the Brown County Public Library), does hereby covenant and declare that the Property shall be subject to the restrictions on use set forth below for so long as continued monitoring is required, and does give, grant and convey to the Grantee, and its assigns, with general warranties of title, 1) the right to enforce said use restrictions, and 2) an environmental protection easement of the nature and character, and for the purposes hereinafter set forth, with respect to the Property, that will run with the land for the purpose of protecting human health and the environment until such time as EPA/WDNR determine that no monitoring of any media within the Site is required.

8. <u>Purpose</u>: It is the purpose of this instrument to convey to the Grantee real property rights, which will run with the land, to facilitate the remediation of past environmental contamination and to protect human health and the environment by reducing the risk of exposure to contaminants. It is also the purpose of this instrument that the EPA as Third Party Beneficiary shall have the right to enforce the terms of this instrument.

9. <u>Third Party Beneficiary:</u> Grantor on behalf of itself and its successors, transferees and assigns and the Grantee on behalf of itself and its successors, transferees, and assigns hereby agree that the United States and its successors and assigns shall be the Third Party Beneficiary under this instrument.

10. <u>Restrictions on use</u>: The following covenants, conditions, and restrictions apply to the use of the Property, run with the land for the benefit of the Grantee and the EPA as Third Party Beneficiary and are binding upon the Grantor including its successors, transferees, assigns or other person acquiring an interest in the Property and their authorized agents, employees, or persons acting under their direction and control, for the purpose of protecting human health and the environment until such time as EPA/WDNR determine that no monitoring of any media within the Site is required: a) To prohibit use of groundwater for consumptive or other uses without prior approval of WDNR and EPA on the Property; b) To prohibit excavation of soils or disturbance of the cap in the Chrome and Zinc shop areas of the Site (Exhibit D); and, c) to prohibit the following activities on the cap or cover in Exhibit E (unless prior written approval has been obtained from the WDNR or its successor or assign): (i) excavating or grading of the land surface; (ii) filling on the capped area; (iii) plowing for agricultural cultivation; and (iv) construction or installation of a building or other structure with a foundation that would sit on or be placed within the cap or cover in the Chrome and Zinc shop areas.

11. <u>Modification of restrictions:</u> Any request for modification or rescission of this instrument shall be made to the Grantee and the EPA at the addresses provided in Section 21 of this instrument. This instrument may be modified or rescinded only with the written approval of the EPA Superfund Division Director and the Director of the WDNR. Grantor on behalf of its successors, transferees, assigns or other person acquiring an interest in the Property agrees to record any EPA approved and WDNR approved modification to or rescission of this instrument with the Brown County Register of Deeds and a recorded copy shall be returned to the EPA and the WDNR at the addresses provided in Section 21 of this instrument.

12. <u>Environmental Protection Easement</u>: Grantor hereby grants to the Grantee for its use a right of access at all reasonable times to the Property for purposes of protecting human health and the environment until such time as EPA/WDNR determine that no monitoring of any media within the Site is required:

- a) Implementing the response actions in the ROD;
- b) Verifying any data or information submitted to EPA concerning the property or Site;
- c) Verifying that no action is being taken on the Property in violation of the terms of this instrument or of any federal or state environmental laws or regulations;
- Monitoring response actions on the Site and conducting investigations relating to contamination on or near the Site, including, without limitation, sampling of air, water, sediments, soils, and specifically, without limitation, obtaining split or duplicate samples;
- e) Conducting periodic reviews of the remedial action, including but not limited to, reviews required by applicable statutes and/or regulations; and
- f) Implementing additional or new response actions that either the Grantee or the U.S. EPA determine i) are necessary to protect the public health or the environment because either the original remedial action has proven to be ineffective or because new technology has been developed which will accomplish the purposes of the remedial action in a significantly more efficient or cost effective manner; and ii)
such additional or new response actions will not impose any significantly greater burden on the Property or unduly interfere with the then existing uses of the Property.

13. <u>Reserved rights of Grantor</u>: Grantor hereby reserves unto itself, its successors, and assigns, all rights and privileges in and to the use of the Property which are not incompatible with the restrictions, rights and easements granted herein.

14. <u>EPA Entry, Access and Response Authority</u>: The Grantor and Grantee consent to officers, employees, contractors, and authorized representatives of the EPA entering and having continued access to this property for the purposes described in paragraph 12. Nothing in this document shall limit or otherwise affect EPA's rights of entry and access pursuant to any and all powers conveyed by applicable federal or state environmental laws and regulations or EPA's authority to take response actions under CERCLA, the NCP, or other federal law.

15. <u>No Public Access and Use</u>: No right of access or use by the general public to any portion of the Property is conveyed by this instrument.

16. <u>Notice requirement</u>: Grantor agrees to include in any instrument conveying any interest in any portion of the Property, executed after the date of this instrument, including but not limited to deeds, leases and mortgages, a notice which is in substantially the following form:

NOTICE: THE INTEREST CONVEYED HEREBY IS SUBJECT TO AN ENVIRONMENTAL PROTECTION EASEMENT AND DECLARATION OF RESTRICTIVE COVENANTS, DATED , 20_, RECORDED IN THE PUBLIC LAND RECORDS OF THE BROWN COUNTY REGISTER OF DEEDS, ON _____, 20__, IN BOOK _____, PAGE ____, IN FAVOR OF, AND ENFORCEABLE BY THE WISCONSIN DEPARTMENT OF NATURAL RESOURCES AS GRANTEE AND THE UNITED STATES OF AMERICA AS THIRD PARTY BENEFICIARY.

Within thirty (30) days of the date any such instrument of conveyance is executed, Grantor must provide Grantee with a recorded copy of said instrument.

17. <u>Administrative jurisdiction</u>: The federal agency having administrative jurisdiction over the interests acquired by the United States by this instrument is the EPA. The WDNR has administrative jurisdiction over the interests acquired by this instrument.

18. <u>Enforcement</u>: The Grantee and the EPA, shall be entitled to enforce, individually or jointly, the terms of this instrument by all legal remedies available, including specific performance or other legal process. All remedies available hereunder shall be in addition to any and all other

remedies at law or in equity, including CERCLA. Enforcement of the terms of this instrument shall be at the discretion of the Grantee or the EPA, and any forbearance, delay or omission to exercise enforcement rights shall not be deemed to be a waiver by the Grantee or the EPA of the same or any other term, or of any other rights of the Grantee or the EPA, under this instrument.

19. <u>Damages</u>: Grantee and EPA shall be entitled to recover damages for violations of the terms of this instrument, or for any injury to the remedial action, to the public or to the environment protected by this instrument.

20. <u>Covenants</u>: Grantor hereby covenants to and with the Grantee and the United States and its assigns, that the Grantor is lawfully seized in fee simple of the Property, that the Grantor has a good and lawful right and power to sell and convey it or any interest therein, that the Property is free and clear of encumbrances, except those noted on **Exhibit B** attached hereto, and that the Grantor will warrant and defend the title thereto.

21. <u>Notices</u>: Any notice, demand, request, consent, approval, or communication that either party desires or is required to give to the other shall be in writing and shall either be served personally or sent by first class mail, postage prepaid, addressed as follows:

To Grantor:

To Grantee:

City Clerk-Treasurer 335 S. Broadway Street DePere, WI 54115 Director, Bureau of Remediation and Redevelopment Wisconsin Department of Natural Resources 101 South Webster Street Madison, WI 53707-7921

To Third Party Beneficiary:

U.S. Environmental Protection Agency Region 5 Administrator 77 West Jackson Boulevard Chicago, IL 60604

22. <u>General provisions</u>:

a) <u>Controlling law</u>: The interpretation and performance of this instrument shall be governed by the laws of the United States or, if there are no applicable federal laws, by the law of the state of Wisconsin.

b) <u>Liberal construction</u>: If any provision of this instrument is found to be ambiguous, an interpretation consistent with the purpose of this instrument that would render the provision valid shall be favored over any interpretation that would render it invalid.

c) <u>Severability</u>: If any provision of this instrument is found to be invalid, the remainder of the provisions of this instrument shall not be affected thereby.

d) <u>Entire Agreement</u>: This instrument sets forth the entire agreement of the parties with respect to rights and restrictions created hereby, and supersedes all prior discussions, negotiations, understandings, or agreements relating thereto, all of which are merged herein.

e) <u>No Forfeiture</u>: Nothing contained herein will result in a forfeiture or reversion of Grantor's title in any respect.

f) Successors: The covenants, terms, conditions, and restrictions of this instrument shall be binding upon, and inure to the benefit of the parties hereto and their respective personal representatives, heirs, successors, and assigns and shall continue as a servitude running with the Property for purposes of protecting human health and the environment until such time as EPA/WDNR determine that no monitoring of any media within the Site is required. The term "Grantor", wherever used herein, and any pronouns used in place thereof, shall include the persons and/or entities named at the beginning of this document, identified as "Grantor" and their personal representatives, heirs, successors, and assigns. The term "Grantee", wherever used herein, and any pronouns used in place thereof, shall include the persona representatives, heirs, successors, and assigns. The term "Grantee", wherever used herein, and any pronouns used in place thereof, shall include the personal representatives, heirs, successors, and assigns. The term "Grantee", wherever used herein, and any pronouns used in place thereof, shall include the personal representatives, heirs, successors, and assigns. The term "Grantee", wherever used herein, and any pronouns used in place thereof. Here and their personal representatives, heirs, successors, and assigns. The rights of the Grantee and Grantor under this instrument are freely assignable, subject to the notice provisions hereof. However, the rights of the Grantee may be assigned only to a governmental entity with authority to assume the rights and obligations of that Grantee.

g) <u>Termination of Rights and Obligations</u>: A party's rights and obligations under this instrument terminate upon transfer of the party's interest in the Easement or Property, except that liability for acts or omissions occurring prior to transfer shall survive transfer.

h) <u>Captions</u>: The captions in this instrument have been inserted solely for convenience of reference and are not a part of this instrument and shall have no effect upon construction or interpretation.

i) <u>Counterparts</u>: The parties may execute this instrument in two or more counterparts, which shall, in the aggregate, be signed by both parties; each counterpart shall be deemed an original instrument as against any party who has signed it. In the event of any disparity between the counterparts produced, the recorded counterpart shall be controlling.

To Have And To Hold So Long As WDNR/EPA Determine That Monitoring Of Media Inside The Site Is Necessary For The Protection Of Human Health And The Environment.

IN WITNESS WHEREOF, Grantor has caused this Agreement to be signed in its name.

Executed this $\frac{250}{30}$ day Cinualy 20/6. _ day of

CITY OF DE PERE

hichael J. Walso, Mayor

harlene Charlene M. Peterson, Clerk- Treasurer

STATE OF WISCONSIN)

BROWN COUNTY

personally came before me this <u>as</u> day of <u>lon</u>, 2010, 1.2 Charlene futersor the abovenamed <u>Whill Will</u> known as the person(s) who executed the foregraft and the person and acknowledge the same. AOTAR Notary Public, Unifar L. Bistory My Commission Expires: 9-210-10 PUBL1C OFWIS

Drafted by: Irlith Schmidt-Jehman

This Environmental Protection Easement and Declaration of Restrictive Covenants is accepted this 18^{n} day of 16^{n} , 20/2.

8

STATE OF WISCONSIN WISCONSIN DEPT. OF NATURAL RESOURCES By: 4 Ja Matthew J. Frank þ

Secretary

STATE OF WISCONSIN) 000)SS. DANE COUNES DANE COUNES \mathcal{O}_{F} with scale before me this \mathcal{O}_{F} day of MARCH, 2010, the abovenamed \mathcal{O}_{T} Henderson known as the person(s) who executed the foregoing instrument and acknowledge the same \mathcal{O}_{F} and acknowledge the same. Ellivna Korkmaust Notary Public Ervira Kalaratih My Commission Expires: in permanent 6.

Attachments:	Exhibit A	-	legal description(s) of the Property
	Exhibit B	-	list of recorded title encumbrances (Title Search)
	Exhibit C	-	Groundwater monitoring wells and ground water pump and treat system
	Exhibit D	-	Zinc and Chrome Shop Areas - prohibit disturbance of Soils
	Exhibit E	-	Survey of Cap Area

9

.

EXHIBIT A TO

ENVIRONMENTAL PROTECTION EASEMENT AND DECLARATION OF RESTRICTIVE COVENANTS

LR NO. 57231 Page 3 of 3

Exhibit A

LEGAL DESCRIPTION:

A parcel of land being part of Lot One Hundred Sixty-seven (167), according to the recorded Assessor's Plat of West De Pere (f/k/a Assessor's Plat of Nicolet), in the City of De Pere, Brown County, Wisconsin, described as follows:

Beginning at the intersection of the West line of the right of way of the Wisconsin Central Limited Railroad Company and the South right of way line of Lande Street; thence along the arc of a 2775.99 foot radius Curve to the West right of way line of the Wisconsin Central Limited Railroad Company on a chord which Bears South 32 deg. 52 min. 30 sec: West and is 553.14 feet in length to the South line of Lot 167; thence North 87 deg. 25 min. 18 sec. West, 187.67 feet along said South line to the West line of said Lot 167; thence North 06 deg. 11 min. 23 sec. East, 250.51 feet along said West line; thence South 87 deg. 26 min. 46 sec. East, 155.90 feet; thence North 19 deg. 54 min. 46 sec. East (recorded as North 19 deg. 53 min. 30 sec. East), 262.95 feet to a point on the North line of Lot 167; thence South 81 deg. 14 min. 00 sec. East, 217.96 feet to the point of beginning.

(Better Brite - Chrome) EXHIBIT A

LR NO. 57230 Page 3 of 3

Exhibit A

LEGAL DESCRIPTION:

1.10

The Northerly 42 feet of the Southerly 120 feet of the Westerly 131 feet of Lot One Hundred Twenty (120); and the Southerly 33 2/3 feet of Lot One Hundred Seventeen (117) and the Northerly 65 1/3 feet of Lot 120; all according to the recorded Plat of Assessor's Subdivision of Lands in Nicolet, in the City of De Pere, West side of Fox River, Brown County, Wisconsin.

(Better Brite - Zinc) EXHIBIT A

. 3.31

di di di seria di

EXHIBIT B TO

2 I

ENVIRONMENTAL PROTECTION EASEMENT AND DECLARATION OF RESTRICTIVE COVENANTS

Bay Title & Abstract, Inc.

345 S. Monroe Avenue Green Bay, WI 54301 Phone: (920) 431-6100

LETTER REPORT

Attn: Penny Hubbard Greene

LR NO. 61926

A Search of the records in the office of the BROWN County Register of Deeds, BROWN County Clerk of Courts and BROWN County Treasurer was conducted on the following:

TRACT DATE: 11/2/2009 12:01:00AM

ADDRESS: 315 S. Sixth Street De Pere, WI 54115

TITLE VESTS:

City of De Pere by virtue of a Quit Claim Deed dated April 11, 2001 and recorded April 11, 2001 as Doc. No. 1805129.

MORTGAGES:

No open mortgages of record.

JUDGMENTS, TAX LIENS AND /OR CONSTRUCTION LIENS:

None of record.

TAX PARCEL NO. WD-103-1

PROPERTY TAXES:

NOTE: The 2008 Real Estate Taxes are EXEMPT.

LR NO. 61926 Page 2 of 3

The Undersigned hereby certifies that this report is compiled from the public records of the county in which the property described herein is located. Liability herein is expressly limited to the cost of this report. No liability is assumed for facts not shown in detail. This report is not to be used as evidence of title in lieu of a certified abstract or title insurance.

Certification is only made from the date present owners received title to the tract date stated herein.

No search has been made for special improvement bonds, special assessments, deferred charges for public works, easements or encroachments.

Thank you for the opportunity to serve your title needs.

Sincerely,

BAY TIT TRACT, INC

LR NO. 61926 Page 3 of 3

Exhibit A

,

LEGAL DESCRIPTION:

The Northerly 42 feet of the Southerly 120 feet of the Westerly 131 feet of Lot One Hundred Twenty (120); and the Southerly 33 2/3 feet of Lot One Hundred Seventeen (117) and the Northerly 65 1/3 feet of Lot 120; all according to the recorded Plat of Assessor's Subdivision of Lands in Nicolet, in the City of De Pere, West side of Fox River, Brown County, Wisconsin.

Bay Title & Abstract, Inc.

345 S. Monroe Avenue Green Bay, WI 54301 Phone: (920) 431-6100

LETTER REPORT

Attn: Keld Lauridsen Wisconsin Dept. of Natural Resources

LR NO. 57230

A Search of the records in the office of the BROWN County Register of Deeds, BROWN County Clerk of Courts and BROWN County Treasurer was conducted on the following:

TRACT DATE: 5/22/2007 12:01:00AM

ADDRESS: 315 S. Sixth Street De Pere, WI 54115

TITLE VESTS:

î .'•

City of De Pere by virtue of a Quit Claim Deed dated April 11, 2001 and recorded April 11, 2001 as Doc. No. 1805129.

MORTGAGES:

No open mortgages of record.

No Easements or Restrictions found.

JUDGMENTS, TAX LIENS AND /OR CONSTRUCTION LIENS:

None of record.

TAX PARCEL NO. WD-103-1

PROPERTY TAXES:

NOTE: The 2006 Real Estate Taxes are EXEMPT.

LR NO. 57230 Page 2 of 3

The Undersigned hereby certifies that this report is compiled from the public records of the county in which the property described herein is located. Liability herein is expressly limited to the cost of this report. No liability is assumed for facts not shown in detail. This report is not to be used as evidence of title in lieu of a certified abstract or title insurance.

Certification is only made from the date present owners received title to the tract date stated herein.

No search has been made for special improvement bonds, special assessments, deferred charges for public works, easements or encroachments.

Thank you for the opportunity to serve your title needs.

Sincerely,

١,

BAY TITLE & ABSTRAC

LR NO. 57230 Page 3 of 3

Exhibit A

1

LEGAL DESCRIPTION:

,

, r →

The Northerly 42 feet of the Southerly 120 feet of the Westerly 131 feet of Lot One Hundred Twenty (120); and the Southerly 33 2/3 feet of Lot One Hundred Seventeen (117) and the Northerly 65 1/3 feet of Lot 120; all according to the recorded Plat of Assessor's Subdivision of Lands in Nicolet, in the City of De Pere, West side of Fox River, Brown County, Wisconsin.

INVOICE

345 SOUTH MONROE AVENUE GREEN BAY, WI 54301 (920) 431-6100 INVOICE NUMBER: B57230-IN

INVOICE DATE: 05/31/07

CUSTOMER NO .: WDNR

Wis. Dept. of Natural Resource PO Box 10448 Green Bay, WI 54307

Attn: Keld Lauridsen DESCRIPTION

PROPERTY REPORT

150.00

AMOUNT

City of De Pere 315 S. Sixth Street Tax Parcel #WD-103-1

THANK YOU FOR YOUR ORDER WE APPRECIATE YOUR BUSINESS

INVOICE TOTAL:

150.00

RECEIVED SEP 1 5 2000

.

Bay Title & Abstract, Inc.

345 S. Monroe Avenue Green Bay, Wi 54301 Phone: (920) 431-6100

LETTER REPORT

Attn: Penny Hubbard Greene

2

LR NO. 61927

A Search of the records in the office of the BROWN County Register of Deeds, BROWN County Clerk of Courts and BROWN County Treasurer was conducted on the following:

TRACT DATE: 11/2/2009 12:01:00AM

ADDRESS: 500 Block Lande Street De Pere, WI 54115

TITLE VESTS:

City of De Pere by virtue of a Quit Claim Deed dated July 17, 2001 and recorded July 17, 2001 as Doc. No. 1827756.

MORTGAGES:

No open mortgages of record.

JUDGMENTS, TAX LIENS AND /OR CONSTRUCTION LIENS:

None of record.

TAX PARCEL NO. WD-145

PROPERTY TAXES:

NOTE: The 2008 Real Estate Taxes are EXEMPT.

LR NO. 61927 Page 2 of 3

The Undersigned hereby certifies that this report is compiled from the public records of the county in which the property described herein is located. Liability herein is expressly limited to the cost of this report. No liability is assumed for facts not shown in detail. This report is not to be used as evidence of title in lieu of a certified abstract or title insurance.

Certification is only made from the date present owners received title to the tract date stated herein.

No search has been made for special improvement bonds, special assessments, deferred charges for public works, easements or encroachments.

Thank you for the opportunity to serve your title needs.

Sincerely,

T, INC BAY TITLE

LR NO. 61927 Page 3 of 3

Exhibit A

LEGAL DESCRIPTION:

A parcel of land being part of Lot One Hundred Sixty-seven (167), according to the recorded Assessor's Plat of West De Pere (f/k/a Assessor's Plat of Nicolet), in the City of De Pere, Brown County, Wisconsin, described as follows:

Beginning at the intersection of the West line of the right of way of the Wisconsin Central Limited Railroad Company and the South right of way line of Lande Street; thence along the arc of a 2775.99 foot radius curve to the West right of way line of the Wisconsin Central Limited Railroad Company on a chord which bears South 32 deg. 52 min. 30 sec. West and is 553.14 feet in length to the South line of Lot 167; thence North 87 deg. 25 min. 18 sec. West, 187.67 feet along said South line to the West line of said Lot 167; thence North 06 deg. 11 min. 23 sec. East, 250.51 feet along said West line; thence South 87 deg. 26 min. 46 sec. East, 155.90 feet; thence North 19 deg. 54 min. 46 sec. East (recorded as North 19 deg. 53 min. 30 sec. East), 262.95 feet to a point on the North line of Lot 167; thence South 81 deg. 14 min. 00 sec. East, 217.96 feet to the point of beginning.

地的 有真 初始

OFFICE OF RESULT

U.S. ENVIRONMENTAL PROTECTION AGENCY

NOV 0 9 2009

OFFICE OF REGIONAL COUNSEL

EXHIBITS C, D AND E TO

ENVIRONMENTAL PROTECTION EASEMENT AND DECLARATION OF RESTRICTIVE COVENANTS

[Note that the area where disturbance of soils is prohibited and the cap location is approximately the area formerly enclosed by the fence shown the figure labeled 7-3.]

.

APPENDIX E

FYR Inspection Checklist

I. SITE INFORMATION					
Site name: Better Brite Plating Co. Chrome and Zinc Shops	Date of inspection: 5/14/2019				
Location and Region: De Pere, Wisconsin, Region 5	EPA ID: WIT560010118				
Agency, office, or company leading the FYR: USEPA	Weather/temperature: Sunny, 70 degrees F				
Remedy Includes: (Check all that apply)					
□ Landfill cover/containment	□ Monitored natural attenuation				
\boxtimes Access controls	□ Groundwater containment				
☑ Institutional controls	□ Vertical barrier walls				
\boxtimes Groundwater pump and treatment	\Box Other: in-situ stablilization and solidification				
□ Surface water collection and treatment	treatment of chromium contaminated soils and groundwater				
Attachments:					
\boxtimes Inspection team roster attached	\boxtimes Site map attached				

	II. INTERVIEWS (Check all that apply)					
1.	O&M Site Manager Nick Glander,TitleClick or tap to enter a date.					
	Interviewed: \square at site \square at office \square by phone Phone Number: Click here to enter text	∢t.				
	Problems, suggestions:					
	Click or tap here to enter text.					
2.	O&M Staff Name , Title , Click or tap to enter a date.					
	Interviewed: \Box at site \Box at office \Box by phone Phone Number: Click here to enter text	۲t.				
	Problems, suggestions:					
	Click or tap here to enter text.					
3.	Local regulatory authorities and response agencies (i.e., State and Tribal offices, emergency response office, police department, office of public health or environmental health, zoning offic recorder of deeds, or other city and county offices, etc.) Fill in all that apply.	e,				
	Agency: WDNR					
	Contact: Keld Lauridsen, Project Manager, 5/14/2019, P: (920) 662-5420					
	Problems, suggestions: \Box Report attached					
	No Problems					
	Agency: Click or tap here to enter text.					
	Contact: Name , Title , Click or tap to enter a date., P: Phone Number					
	Problems, suggestions:					
	Click or tap here to enter text.					
	Agency: Click or tap here to enter text.					
	Contact: Name , Title , Click or tap to enter a date., P: Phone Number					
	Problems, suggestions:					
	Click or tap here to enter text.					
	Agency: Click or tap here to enter text.					
	Contact: Name , Title , Click or tap to enter a date., P: Phone Number					
	Problems, suggestions:					
	Click or tap here to enter text.					
4.	Other Interviews (optional):					
	Click or tap here to enter text.					

	III. ON-SITE DOCUMENTS & RECORDS VERIFIED (Check all that apply)					
1.	O&M Documents					
	⊠ O&M manual	🛛 Readily available	\boxtimes Up to date	\Box N/A		
	□ As-built drawings	\Box Readily available	\Box Up to date	\Box N/A		
	⊠ Maintenance logs	🛛 Readily available	\boxtimes Up to date	\Box N/A		
	Remarks: Click or tap here to ente	r text.				
2.	Site-Specific Health and Safety	Plan	□ Readily availa	ble		
	Contingency Plan/Emergency	Response Plan	🗆 Readily availa	ble		
	Remarks: Click or tap here to enter	er text.				
3.	O&M and OSHA Training Rec	ords				
		□ Readily available	\boxtimes Up to date	\Box N/A		
	Remarks: Click or tap here to enter	er text.				
4.	Permits and Service Agreement	S				
	□ Air discharge permit	□ Readily available	\Box Up to date	🖾 N/A		
	□ Effluent discharge	□ Readily available	\Box Up to date	\Box N/A		
	□ Waste disposal, POTW	□ Readily available	\Box Up to date	\Box N/A		
	□ Other permits: Click or tap her	e to enter text.				
	Remarks: Click or tap here to enter	er text.				
5.	Gas Generation Records					
		□ Readily available	\Box Up to date	⊠ N/A		
	Remarks: Click or tap here to enter	er text.				
6.	Settlement Monument Records					
		□ Readily available	\Box Up to date	⊠ N/A		
	Remarks: Click or tap here to enter	er text.				
7.	Groundwater Monitoring Reco	rds				
		🛛 Readily available	\Box Up to date	\Box N/A		
	Remarks: Click or tap here to enter	er text.				
8.	Leachate Extraction Records					
		□ Readily available	\Box Up to date	⊠ N/A		
	Remarks: Click or tap here to ente					

9.	Discharge Compliance	Records			
	□ Air	\Box Readily available \Box		\Box Up to date	e □N/A
	⊠Water (effluent)	🖂 Readil	y available	\boxtimes Up to date	e □ N/A
	Remarks: Click or tap he	ere to enter text.			
10.	Daily Access/Security I	Logs			
			v available	\Box Up to date	N/A
	Remarks: Click or tap he	ere to enter text.	,	_ op 10 000	
	remainer ener or up in	IV	O&M COSTS		
1.	O&M Organization				
	\Box State in-house		🛛 Conti	actor for State	
	\square PRP in-house			actor for PRP	
	Federal Eacility in he			actor for Edda	ol Facility
	Demorke: Click or ten h	ouse			ar l'achity
2		ere to enter text.			
2.	U&M Cost Records				
	⊠ Readily available	\Box Up to date		ing mechanish	n/agreement in place
	Original O&M cost estin			Breakdown attached	
	Tota	l annual cost by year	for review perio	d if available	
	From	To	Total cost		
	date.	enter a date.	enter text.	ere to	Breakdown attached
	From	То	Total cost		
	Click or tap to enter a	Click or tap to	Click or tap h	ere to	Breakdown attached
	date.	enter a date.	enter text.		
	From Click or tan to enter a	10 Click or tap to	l otal cost Click or tap h	ere to	Braakdown attachad
	date.	enter a date.	enter text.		Dreakdown attached
	From	То	Total cost		
	Click or tap to enter a	Click or tap to	Click or tap h	ere to	Breakdown attached
	date.	enter a date.	enter text.		
	From Click or tan to enter a	To Click or tap to	Total cost	ere to	Prookdown attachad
	date.	enter a date.	enter text.		i breakdown adached
2	Unanticinated on Unuc	uelly High O&M C	osts During Dov	iow Poriod	
5.	Describe costs and roose				
1	Click or tap here to enter	r text.			

	V. ACCESS AND INSTITUTIONAL CONTROLS						
		⊠ Applicable		\Box N/A			
1.	Fe	encing Damaged	\Box Location shown on site map	□ Ga	tes secured	\Box N/A	
	Re	emarks: Click or tap here to ent	ter text.				
2.	O	ther Access Restrictions	\Box Location shown on site map	□ Ga	ates secured		
	Re	emarks: Click or tap here to ent	ter text.				
3.	In	stitutional Controls (ICs)					
	A.	Implementation and Enforc	ement				
		Site conditions imply ICs not	properly implemented	\Box Yes	🛛 No	\Box N/A	
		Site conditions imply ICs not	being fully enforced	\Box Yes	🛛 No	\Box N/A	
		Type of monitoring (e.g., self-	-reporting, drive by)	Click or tag	p here to ent	er text.	
		Frequency		Click or tag	p here to ent	er text.	
		Responsible party/agency		City of De	Pere		
		Contact: Name , Title	, Click or tap to enter a date., P: P	hone Number			
		Reporting is up-to-date		\Box Yes	□ No	\Box N/A	
		Reports are verified by the lea	d agency	\Box Yes	□ No	\Box N/A	
		Specific requirements in deed met	or decision documents have been	\Box Yes	□ No	□ N/A	
		Violations have been reported		\Box Yes	🗆 No	\Box N/A	
		Other problems or suggestions	5:				
		Report attached					
	B.	Adequacy \boxtimes ICs are a	dequate \Box ICs are inad	equate	\Box N/A		
		Remarks: Click or tap here to	enter text.				
4.	Ge	neral					
	A.	Vandalism/Trespassing	\Box Location shown on site map	\boxtimes No vand	dalism evide	nt	
		Remarks: Click or tap here to	enter text.				
	B.	Land use changes on site	□ N/A				
		Remarks: Building addition to pump house at the Zinc Shop	o the Thirft Shop and additional park	king area pave	d with aspha	lt south of	
	C.	Land use changes off site	□ N/A				
		Remarks: Click or tap here to	enter text.				

			VI. GENERAL SITE CONDITIONS	
1.	Ro	ads	⊠ Applicable	\Box N/A
	A.	Roads damaged	Location shown on site map	\boxtimes Roads adequate \square N/A
		Remarks: Click or tap here	to enter text.	
	B.	Other Site Conditions		
		Remarks: Click or tap here	to enter text.	
			VII. LANDFILL COVERS	
1.	La	andfill Surface	□ Applicable	N/A
	A.	Settlement (Low Spots)	□ Location Shown on Site Map	□ Settlement Not Evident
		Areal Extent: Click or tap h	here to enter text. Depth:	Click or tap here to enter text.
		Remarks: Click or tap here	to enter text.	
	B.	Cracks	□ Location Shown on Site Map	□ Cracking Not Evident
		Lengths: Click or tap here to enter text.	Widths: Click or tap here to enter text.	Depths: Click or tap here to enter text.
		Remarks: Click or tap here	to enter text.	
	C.	Erosion	□ Location Shown on Site Map	□ Erosion Not Evident
		Areal Extent: Click or tap h	here to enter text. Depth:	Click or tap here to enter text.
		Remarks: Click or tap here	to enter text.	
	D.	Holes	□ Location Shown on Site Map	□ Holes Not Evident
		Areal Extent: Click or tap h	here to enter text. Depth:	Click or tap here to enter text.
		Remarks: Click or tap here	to enter text.	
	E.	Vegetative Cover	□ Grass	Cover Properly Established
		□ Tress/Shrubs (indicate si	ze and locations on a diagram	□ No Signs of Stress
		Remarks: Click or tap here	to enter text.	
	F.	Alternative Cover (armor	red rock, concrete, etc.)	□ N/A
		Remarks: Click or tap here	to enter text.	
	G.	Bulges	□ Location Shown on Site Map	□ Bulges Not Evident
		Areal Extent: Click or tap h	here to enter text. Height	Click or tap here to enter text.
		Remarks: Click or tap here	to enter text.	
	H.	Wet Areas/Water Damag	e 🗌 Wet Areas/Water Da	amage Not Evident

		□ Wet Areas	□ Location Shown on Site Map	Areal Extent: Click or tap here to enter text.
		□ Ponding	□ Location Shown on Site Map	Areal Extent: Click or tap here to enter text.
		□ Seeps	□ Location Shown on Site Map	Areal Extent: Click or tap here to enter text.
		□ Soft Subgrade	□ Location Shown on Site Map	Areal Extent: Click or tap here to enter text.
		Remarks: Click or ta	p here to enter text.	
	I.	Slope Instability	□ Location Shown on Site Map	□ Slope Instability Not Evident
			□ Slides	Areal Extent: Click or tap here to enter text.
		Remarks: Click or ta	p here to enter text.	
2.	Be	nches	□ Applicable	\Box N/A
	(He	orizontally constructed ler to slow down the y	d mounds of earth placed across a steep velocity of surface runoff and intercept	o landfill side slope to interrupt the slope in and convey the runoff to a lined channel.)
	A.	Flows Bypass Bencl	h 🗆 Location Shown on Site Map	\boxtimes N/A or Okay
		Remarks: Click or ta	p here to enter text.	·
	B.	Bench Breached	□ Location Shown on Site Map	⊠ N/A or Okay
		Remarks: Click or ta	p here to enter text.	
	C.	Bench Overtopped	\Box Location Shown on Site Map	\boxtimes N/A or Okay
		Remarks: Click or ta	p here to enter text.	
3.	Le	tdown Channels	□ Applicable	🖾 N/A
	(Cl slo wit	hannel lined with eros pe of the cover and w thout creating erosion	ion control mats, riprap, grout bags, or ill allow the runoff water collected by t gullies.)	gabions that descend down the steep side the benches to move off of the landfill cover
	A.	Settlement	□ Location Shown on Site Map	□ Settlement Not Evident
		Areal Extent: Click	or tap here to enter text.	Depth: Click or tap here to enter text.
		Remarks: Click or ta	p here to enter text.	
	B.	Material Degradati	on 🛛 Location Shown on Site Ma	p Degradation Not Evident
		Material Type: Click	a or tap here to enter text.	Areal Extent: Click or tap here to enter text.
		Remarks: Click or ta	p here to enter text.	
	C.	Erosion	□ Location Shown on Site Ma	p 🛛 Erosion Not Evident

		Areal Extent: Click or tap here to enter text.		Depth: Click or tap here to enter text.	
		Remarks: Click or tap here to enter text.			
	D.	Undercutting	□ Location Shown	on Site Map	□ Undercutting Not Evident
		Areal Extent: Click or tap h	ere to enter text.	Depth:	Click or tap here to enter text.
		Remarks: Click or tap here	to enter text.		
	E.	Obstructions	□ Location Shown	on Site Map	□ Undercutting Not Evident
		Type: Click or tap here to e	enter text.		
		Areal Extent: Click or tap h	ere to enter text.	Size: C	lick or tap here to enter text.
		Remarks: Click or tap here	to enter text.		
	F.	Excessive Vegetative Grov	wth 🗆 Location S	hown on Site Map	□ Excessive Growth Not Evident
		Areal Extent: Click or tap h	ere to enter text.	□ Vegetation flow	on in channels does not obstruct
		Remarks: Click or tap here	to enter text.		
4.	Co	ver Penetrations	□ Applicat	ble	□ N/A
	A.	Gas Vents	\Box Active		□ Passive
		□ Properly secured/locked		□ Functioning	□ Routinely sampled
		\Box Good condition		\Box Evidence of lea	kage at penetration
		□ Needs Maintenance		\Box N/A	
		Remarks: Click or tap here	to enter text.		
	B.	Gas Monitoring Probes			
		□ Properly secured/locked		□ Functioning	□ Routinely sampled
		\Box Good condition		\Box Evidence of lea	kage at penetration
		□ Needs Maintenance		\Box N/A	
		Remarks: Click or tap here	to enter text.		
	C.	Monitoring Wells			
		□ Properly secured/locked		□ Functioning	\Box Routinely sampled
		□ Good condition		□ Evidence of leakage at penetration	
		□ Needs Maintenance		\Box N/A	
		Remarks: Click or tap here	to enter text.		
	D.	Leachate Extraction Well	s		

		□ Properly secured/locked		□ Functioning	□ Routinely sampled
		□ Good condition		□ Evidence of leaka	age at penetration
		□ Needs Maintenance	Needs Maintenance		
		Remarks: Click or tap here to enter text.			
	E.	Settlement Monuments	Located	□ Routinely Survey	ved 🗆 N/A
		Remarks: Click or tap here to ent	ter text.		
5.	Ga	s Collection and Treatment	□ Applicat	ole	\Box N/A
	A.	Gas Treatment Facilities			
		□ Flaring	\Box Thermal	Destruction	\Box Collection for Reuse
		□ Good condition	\Box Needs M	laintenance	
		Remarks: Click or tap here to ent	ter text.		
	B.	Gas Collection Wells, Manifold	s, and Piping		
		\Box Good condition	\Box Needs M	laintenance	\Box N/A
		Remarks: Click or tap here to enter text.			
	C.	. Gas Monitoring Facilities (e.g. gas monitorin		g of adjacent homes o	or buildings)
		\Box Good condition	\Box Needs M	laintenance	\boxtimes N/A
		Remarks: Click or tap here to ent	ter text.		
6.	Co	over Drainage Layer	□ Applicat	ole	□ N/A
	A.	Outlet Pipes Inspected	□ Function	ning	\boxtimes N/A
		Remarks: Click or tap here to ent	ter text.		
	B.	Outlet Rock Inspected	□ Function	ning	\bowtie N/A
		Remarks: Click or tap here to ent	ter text.		
7.	De	tention/Sediment Ponds	□ Applicable		\bowtie N/A
	A.	Siltation	□ Siltation N	ot Evident	X/A
		Areal Extent: Click or tap here to	enter text.	Depth: Click	or tap here to enter text.
		Remarks: Click or tap here to ent	ter text.		
	B.	Erosion	Erosion N	ot Evident	
		Areal Extent: Click or tap here to	enter text.	Depth: Click	or tap here to enter text.
		Remarks: Click or tap here to ent	ter text.		
	C.	Outlet Works	□ Functionin	g	⊠ N/A
Site Inspection Checklist

		Remarks: Click or tap here to e	enter text.	
	D.	Dam	□ Functioning	× N/A
		Remarks: Click or tap here to e	enter text.	
8.	Re	taining Walls	□ Applicable	⊠ N/A
	A.	Deformations	□ Location Shown on Site Map	□ Deformation Not Evident
		Horizontal Displacement: Click	k or tap here to enter text.	
		Vertical Displacement: Click of	r tap here to enter text.	
		Rotational Displacement: Click	x or tap here to enter text.	
		Remarks: Click or tap here to e	enter text.	
	B.	Degradation	\Box Location Shown on Site Map	□ Deformation Not Evident
		Remarks: Click or tap here to e	enter text.	
9.	Per	rimeter Ditches/Off-Site Disch	arge 🛛 Applicable	⊠ N/A
	A.	Siltation	□ Location Shown on Site Map	□ Siltation Not Evident
		Areal Extent: Click or tap here	to enter text. Depth: Click	x or tap here to enter text.
		Remarks: Click or tap here to e	enter text.	
	B.	Vegetative Growth	\Box Location Shown on Site Map	\Box N/A
		□ Vegetation Does Not Imped	le Flow	
		Areal Extent: Click or tap here	to enter text. Type: Click	or tap here to enter text.
		Remarks: Click or tap here to e	enter text.	
	C.	Erosion	\Box Location Shown on Site Map	Erosion Not Evident
		Areal Extent: Click or tap here	to enter text. Depth: Click	x or tap here to enter text.
		Remarks: Click or tap here to e	enter text.	
	D.	Discharge Structure	□ Functioning	\Box N/A
		Remarks: Click or tap here to e	enter text.	
		VII	II. VERTICAL BARRIER WALLS	
				⊠ N/A
1.	Set	tlement	Location Shown on Site Map	□ Settlement Not Evident
	Are	eal Extent: Click or tap here to e	enter text. Depth: (Click or tap here to enter text.
	Re	marks: Click or tap here to enter	r text.	
2.	Per	rformance Monitoring Ty	ype of Monitoring: Click or tap here to	enter text.

	□ Performance Not Monitored		□ Evidence of Breachin	ıg
	Frequency: Click or tap here to e	nter text.	Head Differential: Click	or tap here to enter text.
	Remarks: Click or tap here to ent	er text.		
	IX. GROU	NDWATER/SURF	FACE WATER REMEI	DIES
	🛛 Applicable		[□ N/A
1.	Groundwater Extraction Wells	, Pumps, and Pipel	ines 🛛 🖾 Applie	cable \Box N/A
	A. Pumps, Wellhead Plumbing	g, and Electrical	Γ	□ N/A
	⊠ Good Condition	🛛 All Required W	Vells Properly Operating	□ Needs Maintenance
	Remarks: Click or tap here to	enter text.		
	B. Extraction System Pipeline	s, Valves, Valve Bo	xes, and Other Appurte	enances
	⊠ Good Condition		\Box N	eeds Maintenance
	Remarks: Click or tap here to	enter text.		
	C. Spare Parts and Equipmen	t	\Box Ne	eeds to be Provided
	⊠ Readily Available	🛛 Good Conditio	n 🗆 Re	equires Upgrade
	Remarks: Click or tap here to	enter text.		
2.	Surface Water Collection Struc	ctures, Pumps, and	Pipelines 🛛 Applie	cable
2.	Surface Water Collection Struct	ctures, Pumps, and ps, and Electrical	Pipelines 🖂 Applie	cable
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition	etures, Pumps, and ps, and Electrical □ Needs Mainten	Pipelines 🖂 Applie	cable
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to	etures, Pumps, and ps, and Electrical Needs Mainten enter text.	Pipelines 🛛 Applic	cable 🗆 N/A
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection Structures	etures, Pumps, and ps, and Electrical Needs Mainten enter text. ystem Pipelines, Va	Pipelines 🛛 Applia ance alves, Valve Boxes, and	cable
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection Structures ⊠ Good Condition	etures, Pumps, and ps, and Electrical Needs Mainten enter text. ystem Pipelines, Va	Pipelines 🛛 Applic ance alves, Valve Boxes, and ance	cable
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection S ⊠ Good Condition Remarks: Click or tap here to Remarks: Click or tap here to	etures, Pumps, and ps, and Electrical Needs Mainten enter text. ystem Pipelines, Va Needs Mainten	Pipelines 🛛 Applia ance alves, Valve Boxes, and ance	cable
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection Structures ⊠ Good Condition Remarks: Click or tap here to Collection Structures Collection Structures B. Surface Water Collection Structures Collection Structures Structures Remarks: Click or tap here to C. Spare Parts and Equipment	etures, Pumps, and ps, and Electrical Needs Maintena enter text. ystem Pipelines, Va Needs Maintena enter text. t	Pipelines ⊠ Applia ance alves, Valve Boxes, and ance □ Ne	cable
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection S ⊠ Good Condition B. Surface Water Collection S Collection Condition Remarks: Click or tap here to C. Spare Parts and Equipment □ Readily Available	etures, Pumps, and ps, and Electrical □ Needs Maintena enter text. ystem Pipelines, Va □ Needs Maintena enter text. t © Good Conditio	Pipelines ⊠ Applia ance alves, Valve Boxes, and ance □ Ne n □ Re	cable □ N/A Other Appurtenances weds to be Provided equires Upgrade
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection S ⊠ Good Condition Remarks: Click or tap here to C. Spare Parts and Equipment □ Readily Available Remarks: Click or tap here to	etures, Pumps, and ps, and Electrical □ Needs Maintena enter text. ystem Pipelines, Va □ Needs Maintena enter text. t ⊠ Good Conditio enter text.	Pipelines ⊠ Applia ance ance alves, Valve Boxes, and ance ance □ Ne n □ Re	cable □ N/A Other Appurtenances weds to be Provided equires Upgrade
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection S ⊠ Good Condition Remarks: Click or tap here to C. Spare Parts and Equipmen □ Readily Available Remarks: Click or tap here to	etures, Pumps, and ps, and Electrical □ Needs Maintena enter text. ystem Pipelines, Va □ Needs Maintena enter text. t ⊠ Good Conditio enter text. ⊠ Applicable	Pipelines ⊠ Applia ance alves, Valve Boxes, and ance n □ Ne n □ Re	cable □ N/A Other Appurtenances eeds to be Provided equires Upgrade A
3.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection S ⊠ Good Condition B. Surface Water Collection S ⊠ Good Condition Remarks: Click or tap here to C. Spare Parts and Equipment □ Readily Available Remarks: Click or tap here to Treatment System A. Treatment Train (Check condition)	etures, Pumps, and ps, and Electrical □ Needs Maintena enter text. ystem Pipelines, Va □ Needs Maintena enter text. t ⊠ Good Conditio enter text. ⊠ Applicable mponents that app	Pipelines ⊠ Applia ance ance alves, Valve Boxes, and ance □ Ne n □ Ne n □ Ne µly) □ N/	cable □ N/A Other Appurtenances weds to be Provided equires Upgrade A
2.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection S W Good Condition B. Surface Water Collection S W Good Condition Remarks: Click or tap here to C. Spare Parts and Equipment □ Readily Available Remarks: Click or tap here to Treatment System A. Treatment Train (Check cond)	etures, Pumps, and ps, and Electrical □ Needs Maintena enter text. ystem Pipelines, Va □ Needs Maintena enter text. t ⊠ Good Conditio enter text. X Applicable pmponents that app □ Oil/Water Sepa	Pipelines ⊠ Applia ance ance alves, Valve Boxes, and ance □ Ne n □ Ne n □ Ne unce □ Ne n □ Ne □ N/ □ N/ ly) □ Bio	cable □ N/A Other Appurtenances weds to be Provided equires Upgrade A oremediation
3.	Surface Water Collection Struct A. Collection Structures, Pum ⊠ Good Condition Remarks: Click or tap here to B. Surface Water Collection S ⊠ Good Condition B. Surface Water Collection S ⊡ Good Condition Remarks: Click or tap here to C. Spare Parts and Equipment □ Readily Available Remarks: Click or tap here to Treatment System A. Treatment Train (Check cond) □ Air Stripping	etures, Pumps, and ps, and Electrical □ Needs Maintena enter text. ystem Pipelines, Va □ Needs Maintena enter text. t ⊠ Good Conditio enter text. ⊠ Good Conditio enter text. ⊠ Applicable pmponents that app □ Oil/Water Sepa □ Carbon Absorb	Pipelines ⊠ Applia ance ance alves, Valve Boxes, and ance □ Ne n □ Ne n □ Ne unce □ Ne n □ Ne unce □ Ne n □ Re unce □ Ne unce □ Ne <t< th=""><th>cable □ N/A Other Appurtenances weds to be Provided equires Upgrade A oremediation</th></t<>	cable □ N/A Other Appurtenances weds to be Provided equires Upgrade A oremediation

		Additive (e.g. chelation agent, floccul sodium hydroxide, polymer and floccula	ent) Sulfuric acit, sodium b	bisulfite, magnesium hydroxide,
		□ Others Click or tap here to enter text.		
		\boxtimes Good Condition		□ Needs Maintenance
		\boxtimes Sampling ports properly marked and the same set of the sa	functional	
		Sampling/maintenance log displayed	and up to date	
		⊠ Equipment properly identified		
		☑ Quantity of groundwater treated annu	ally Click or tap here to ent	ter text.
		\Box Quantity of surface water treated annu	ally Click or tap here to en	iter text.
		Remarks: Click or tap here to enter text.		
	B.	Electrical Enclosures and Panels (proj	perly rated and functional	l)
		⊠ N/A	□ Needs Maintenance	
		Remarks: Click or tap here to enter text.		
	C.	Tanks, Vaults, Storage Vessels	□ N/A	
		☑ Proper Secondary Containment	\boxtimes Good Condition	□ Needs Maintenance
		Remarks: Click or tap here to enter text.		
	D.	Discharge Structure and Appurtenand	ces	
		□ N/A	\boxtimes Good Condition	□ Needs Maintenance
		Remarks: Click or tap here to enter text.		
	E.	Treatment Building(s)		
		□ N/A	\boxtimes Good condition (e	sp. roof and doorways)
		□ Needs repair	\boxtimes Chemicals and equ	ipment properly stored
		Remarks Click or tap here to enter text.		
	F.	Monitoring Wells (Pump and Treatmo	ent Remedy)	□ N/A
		\square Properly secured/locked	\boxtimes Functioning	
		\boxtimes Routinely sampled	\boxtimes All required wells	located
		\boxtimes Good condition	\Box Needs Maintenanc	e
		Remarks Click or tap here to enter text.		
4.	Mo	onitoring Data		
	A.	Monitoring Data:		

Site Inspection Checklist

	\boxtimes Is Routinely Submitted on Time	me	□ Is of Accepta	able Quality											
	B. Monitoring Data Suggests:														
	⊠ Groundwater plume is effecti	vely contained	⊠ Contaminant	concentrations are declining											
5.	Monitored Natural Attenuation	n													
	A. Monitoring Wells (natural	attenuation remedy	y)	⊠ N/A											
	□ Properly secured/locked	□ Functioning		\Box Routinely sampled											
	\Box All required wells located	\Box Needs Mainten	ance	\Box Good condition											
	Remarks: Click or tap here to e	enter text.													
	X. OTHER REMEDIES If there are remedies applied at the site which are not covered above, attach an inspection sheet														
	If there are remedies applied at the describing the physical nature and would be soil vapor extraction.	he site which are not d condition of any f	covered above, a acility associated	ttach an inspection sheet with the remedy. An example											
		XI. OVERALL O	BSERVATIONS	5											
1.	Implementation of the Remedy	7													
	Describe issues and observations Begin with a brief statement of v minimize infiltration and gas em There are no issues with the OU monitoring of groundwater.	relating to whether what the remedy is to ission, etc.). /OU2 remedy involv	the remedy is effe accomplish (i.e., ving groundwater	ective and functioning as designed. to contain contaminant plume, pump and treatment and continued											
2.	Adequacy of O&M														
	Describe issues and observations particular, discuss their relations	related to the imple	ementation and sco d long-term prote	ope of O&M procedures. In ctiveness of the remedy.											
	There are no issues, the pump ho	ouse is properly main	ntained												
3.	Early Indicators of Potential R	emedy Problems													
	Describe issues and observations frequency of unscheduled repairs in the future.	such as unexpected that suggest that the	changes in the co e protectiveness o	ost or scope of O&M or a high of the remedy may be compromised											
	No problems														
4.	Early Indicators of Potential R	emedy Problems													
	Describe possible opportunities f	for optimization in n	nonitoring tasks o	r the operation of the remedy.											
	Describe possible opportunities f	or optimization in n	nonitoring tasks of	r the operation of the remedy.											

APPENDIX F

FYR Inspection Photo Log

Better Brite Plating Company Chrome and Zinc Shops Superfund Site EPA FYR Inspection May 14, 2019 Lauren McCarrell, RPM, EPA R5

Photo 1 Description: additional asphalt parking lot for resale shop Location: Zinc Shop

Photo 2 Description: additional asphalt parking lot south of pump and treat system Location: Zinc Shop

Photo 3 Description: building addition to resale shop Location: Zinc Shop

Photo 4 Description: Pump and treatment system house and additional parking lot in background Location: Zinc Shop

Photo 5 Description: Sump for pump and treat system Location: Zinc Shop

APPENDIX G

Green Bay Press Gazette FYR Notification

Former Outagamie sheriff candidate charged with child porn

Alison Dirr Appleton Post-Crescent **USA TODAY NETWORK - WISCONSIN**

OSHKOSH - A recent candidate for Outagamie County sheriff was charged Thursday in federal court with distribution and possession of child pornography.

Alex Bebris, 49, of Neenah faces a mandatory minimum of five years and a maximum of 20 years in federal prison if convicted, according to a statement from the U.S. Department of Justice.

In September, Facebook told the National Center for Missing and Exploited Children that a user had sent child pornography images through its messenger system to another user. The Wisconsin Internet Crimes Against Children Taskforce found that the images were sent from the IP address at Bebris' residence, according

EPA Begins Review of Better Brite Plating Chrome & Zinc Shops Superfund Site DePere, Wisconsin

U.S. Environmental Protection Agency is conducting a fiveyear review of the Better Brite Superfund site, 519 Lande St. DePere, Wis. The Superfund law requires regular checkups of sites that have been cleaned up - with waste managed on-site - to make sure the cleanup continues to protect people and the environment. This is the fifth review of the site.

EPA's 1996 plan to clean up chromium, zinc, cadmium and cyanide in the soil and groundwater included replacing the groundwater removal and treatment system at the Chrome Shop, treating the soil and groundwater by stabilizing the chromium, continuing groundwater removal and treatment at the Zinc Shop and isolating the recharge of contaminated groundwater to basement sumps in a nearby residence.

More information is available at the Brown County Library, Kress Family Branch, 333 N. Broadway, DePere, and at www.epa.gov/superfund/better-brite-plating. The review should be completed by November 2019.

The five-year-review is an opportunity for you to tell EPA about site conditions and any concerns you have.Contact:

Susan Pastor Community Involvement Coordinator 312-353-1325 pastor.susan@epa.gov

Bill Ryan Remedial Project Manager 312-353-4374 ryan.williamj@epa.gov

You may also call EPA toll-free at 800-621-8431, 8:30 a.m. to 4:30 p.m., weekdays

to the statement.

His residence was searched on Wednesdav.

"A preliminary forensic examination of the hard drive on Bebris' computer revealed images of pornography involving children ranging in age from approximately one to ten years old," according to

the statement. Bebris was booked into the Winnebago County Jail

about 12:45 p.m. on Wednesday, the jail said previously. Bebris, one of three Republican candidates who ran to succeed retiring Outagamie County Sheriff Brad Gehring, did not advance in the Aug. 14 primary.

According to the criminal complaint, on Dec. 13, the Winnebago County Sheriff's Department was contacted by a member of the Wisconsin Internet Crimes Against Children Taskforce regarding two cybertips.

Investigators from the sheriff's department and the Wisconsin Department of Justice Division of Criminal Investigation searched Bebris' apartment Wednesday morning, Sheriff's Lt. Chris Braman told USA TODAY NETWORK-Wisconsin.

Bebris told investigators that he lives alone at the apartment, the complaint states.

Investigators seized "quite a few" electronic devices, and a Division of Criminal Investigation analyst performed initial forensic tests on those devices at the home. That allows investigators in such cases to quickly access images and determine whether to make an arrest, Braman said.

The criminal complaint states a computer was seized from a bedroom in the apartment, and a DCI analyst found 89 files "of interest" on the computer's hard drive.

Investigators who reviewed the images saw "numerous images that meet the state and federal statutory requirements for child pornography," the complaint states. The seized devices will be sent to the Wisconsin State Crime Laboratory in Madison, where analysts will perform a more detailed analysis.

Bebris was arrested "as a result of evidence seized during the search," the sheriff's department said in the statement Thursday.

"We're really early on in the investigation," Braman said. "We just got the tip last week. And we have to get enough information to do the search warrant, and we try to do it as soon as we can, as safely as we can. There's more investigation on the back end of these types of cases."

Bebris was present during the search and cooperated with investigators.

From 2006 to 2017, Bebris served as director of public safety — a dual role of police chief and fire chief — for Oakwood, Ohio, a suburb of Dayton. He returned to Wisconsin in November with plans to retire from law enforcement and to start new businesses.

TODAY'S MARKET REPORT

PRESS-GAZETTE INDEX

The Press-Gazette Index consists of 44 publicly traded companies either based in Wisconsin or with significant local operations. A full list of stocks and activity is available online at www.greenbaypressgazette.com.

NAME	DIV	YLD	PE	LAST	CHG	YEAR %CHG
AT&T Inc	2.04	7.1	6	28.65	-1.17	-16.4
AMD				17.94	22	+65.8
AlliantEg s	1.34	3.1	22	43.82	+.10	+5.4
AsscdBanc	0.68	3.5	12	19.38	03	-21.6
BkofAm	0.60	2.5	11	24.11	07	-16.1
BkMont g	4.00		7	65.65	37	-12.2
Bemis	1.24	2.8	18	44.96	80	-0.6
ChesEng			3	1.84	18	-44.0
DeanFoods	0.12	3.1	28	3.93	27	-61.1
Gannett n	0.64	6.8		9.36	09	-15.0
GenElec	0.04	.5		7.44	22	-53.7
HarleyD	1.48	4.5	11	33.01	24	-32.2
HeartFn	0.56	1.3	14	44.08	+.01	-17.2
Humana	2.00	.7	23	278.09	-5.20	+16.1
iShEMkts	0.59	1.5		38.79	+.30	-14.1
iS Eafe	1.66	2.8		58.58	24	-13.1
IntPap	1.90	4.8	13	39.56	-1.04	-26.4
Inv QQQ	1.31	.9		152.29	-2.24	-1.5
JPMorgCh	2.24	2.3	13	96.45	84	-6.3
JohnContl n	1.04	3.4	21	30.49	34	-14.9
KimbClk	4.00	3.5	25	114.07	+.19	-2.2
Kohls	2.44	4.1	10	59.97	-1.69	+21.2
MGE Engy	1.35	2.0	29	66.82	33	+10.3
Manitowc rs				14.22	24	-63.5
Marcus	0.60	1.5	31	38.81	-1.09	+45.4
Mondelez	1.04	2.5	20	41.16	25	-2.1
NicoletBc n			13	47.85	+1.50	-17.4
OshkoshCp	0.96	1.6	14	60.61	-1.47	-29.7
Plexus				50.51	-1.01	-16.2
ProctGam	2.87	3.2	22	90.98	78	+3.2
RegalBel	1.12	1.6	12	68.32	-1.17	-9.7
S&P500ETF	4.13	1.7		247.17	-4.09	-4.7
SchndrNt n	0.24	1.3		18.33	29	-32.3
SnapOn	3.80	2.7	13	139.95	-2.30	-15.5
SPDR Fncl	0.46	2.0		23.40	21	-14.4
TreeHseF			16	50.83	52	+5.2
UnilevNV	1.43	2.6		54.21	+.04	-1.6
US Bancrp	1.48	3.2	12	45.77	45	-13.0
UtdhlthGp	3.60	1.5	22	242.44	-7.87	+14.3
VanEGold	0.06	.3		20.67	+.72	-9.9
WEC Engy	2.21	3.1	23	71.74	+.43	+11.2
WalMart	2.08	2.4	50	87.28	-3.27	-6.2
WellsFargo	1.72	3.7	11	46.04	+.37	-21.6
Weyerhsr	1.36	6.1	17	22.22	98	-30.9

WISCONSIN	AGRICULTUR	E HIGH	LOW	SETTLE	CHG.
COMMODITIES	Corn	382.75	375	375.25	-6.50
CONINIODITIES	Soybeans	905.50	892.75	893.50	-6.50
A look at the	Oats	287.25	277.25	278.25	-8.25
market prices of select	Live Cattle	120.42	119.22	120.22	+.50
raw materials and	Feeder Cattl	le 147.67	145.67	147.42	+1.22
	Lean Hogs	63.42	61.80	62.37	33
agriculture.	Wheat	527.75	521.25	523.50	+1
	Lumber	339.7	332.7	334.8	-1.0
	FUELS	CLOSE	PVS	%CHG	%YTD
A PARA	RBOB Gas	1.32	1.39	-4.61	-26.50
	Crude Oil	45.88	47.96	-4.77	-24.06
ESO-VY	Nat Gas	3.58	3.73	-3.84	+21.33
	Heating Oil	1.75	1.81	-3.09	-15.70
CRUDE					
	METALS	CLOSE	PVS	%CHG	%YTD
COPPER	Copper	2.70	2.72	72	-17.61
SILVER	Gold	1263.60	1252.10	+.92	-3.27
GOLD	Platinum	795.80	796.00	03	-14.81
PLATINUM	Silver	14.75	14.70	+.35	-13.52

GET MORE ONLINE

Go to www.greenbaypressgazette.com and click on Business for more stocks and business news.

Come to Avada and see the SONIC enchant

APPENDIX H

2019 Summary Groundwater Monitoring Report

ENGINEERING ARCHITECTURE ENVIRONMENTAL PLANNING

OMNNI ASSOCIATES, INC. ONE SYSTEMS DRIVE APPLETON, WI 54914-1654 TEL: 920-735-6900

June 28, 2019

Mr. Keld Lauridsen Hydrogeologist/Project Manager WDNR-Northeast Region RR 2984 Shawano Avenue Green Bay, WI 54313-6727

RE: Summary of the May 14 & 15, 2019 groundwater sampling events at the former Better Brite Chrome and Zinc Shops.

Dear Keld:

The purpose of this letter report is to summarize the groundwater sampling events conducted on May 14 & 15, 2019 at the former Better Brite chrome and zinc shops. The former Better Brite facilities are located at 519 Lande Street (chrome shop, BRRTS # 02-05-000030) and 315 S. 6th Street (zinc shop, BRRTS # 02-05-000031), De Pere, Wisconsin. (See Figure 1 – Site Location Map.) This report includes:

- Figure 1 Site Location Map
- Figure 2 Monitoring Wells Chrome Site
- Figure 3 Monitoring Wells Zinc Site
- Well Specific Field Sheets
- Table 1 Groundwater Analytical Summary, Better Brite Chrome Shop
- Table 2 Groundwater Analytical Summary, Better Brite Zinc Shop
- Monitoring Well Photograph Summary
- Laboratory Report

Groundwater elevations were only taken at the monitoring points that were sampled. Groundwater elevations were recorded on the well specific field sheets. (See Well Specific Field Sheets.)

Monitoring points W-1 and W-1A would allow the water level meter probe to be placed down the PVC pipe. However, a standard bailer would not freely go down the PVC pipe. (See Monitoring Well Photograph Summary.) A peristaltic pump was used to collect the samples. FOTH purged these monitoring points several times in the weeks leading up to OMNNI's sampling. Monitoring well covers were inspected at all monitoring points that could be located during the sampling event. The conditions of the covers were noted on the well specific field sheets and photographs of the covers were taken. (See Well Specific Field Sheets and Monitoring Well Photograph Summary.)

Color, odor, and turbidity observations were recorded on well specific field sheets. The well specific field sheets also list the measured depth to water from the top of the PVC pipe, mean sea level groundwater elevation, the length of time spent purging and the approximate gallons of groundwater purged from each monitoring well/piezometer prior to taking the groundwater sample. (See Well Specific Field Sheets.)

Purged groundwater from the monitoring wells and piezometers was collected in 5-gallon buckets. The purged groundwater was placed into the sump in the treatment building located at the former zinc shop site for treatment.

Unfiltered groundwater samples collected from the monitoring wells and zinc shop sump were submitted for laboratory hexavalent chromium analysis. Unfiltered groundwater from the zinc shop sump was also analyzed for cyanide and volatile organic compounds (VOCs). Unfiltered groundwater from monitoring well MW-116 was also analyzed for VOCs. Groundwater analytical methods are included with the laboratory report. (See Laboratory Report.) The laboratory analysis has been summarized in Table 1 and Table 2. (See Table 1 – Groundwater Analytical Summary, Better Brite – Chrome Shop and Table 2 - Groundwater Analytical Summary, Better Brite – Zinc Shop.)

All monitoring locations had lower hexavalent chromium laboratory analysis results than recent events, with the exception of MW-111 which was the same as the 2018 sampling event. In general, VOC results for the zinc shop sump and MW-116 were similar when compared to past sampling events. Groundwater enforcement standard exceedances for hexavalent chromium remain at both sites. At the former chrome shop site, the hexavalent chromium groundwater enforcement standard exceedance remains in MW-116. Groundwater enforcement standard and preventive action limit exceedances of VOCs remain in MW-116. At the former zinc shop site, the hexavalent chromium groundwater enforcement standard and preventive action limit exceedances of VOCs remain in MW-116. At the former zinc shop site, the hexavalent chromium groundwater enforcement standard was exceeded in monitoring points W-1, W-1A, MW-6, MW-10 and the sump. Groundwater preventive action limit exceedance for cyanide was found in the sump.

Mr. Keld Lauridsen Page 3 of 3

If you have any questions on the enclosed information, please contact me at 920/830-6174 or by email at kkennedy@omnni.com.

Sincerely, OMNNI Associates, Inc.

Kimberly Kennedy Kimberly Kennedy

Environmental Techniciain

Attachments

F:\ENVIROW1969A07 (Better Brite State Lead)\GIS\SiteLocationmap.mxd

Well Specific Field Sheets

Facility Name:Former Better Brite - Chrome ShopDate:May 15, 2019Weather Conditions:Sunny, 75FPerson(s) Sampling:Kim KennedySampling Equipment:Dedicated bailers, Solonist 101 water level meter.

Well Name	MW101	MW104A	MW106	MW106A	MW107	MW107A	MW108	MW108A	MW110	MW110A	MW111	MW112	MW13	MW115	MW115A	MW116
Top of PVC Casing Elevation (MSL)			606.21	606.36	608.41	608.33	604.22	604.44	603.05	603.31	600.76	600.61	611.08	601.04	601.01	604.28
Depth to Bottom of Well (ft)		18.30	14.65	32.09		39.33	15.82	33.27	14.76	23.80	14.38	15.86	15.08	14.48	23.45	18.88
Water Elevation (MSL)	_	_	_	_	_	_	_	_	_	_	596.83	_	_	597.69	589.49	602.70
Measured Depth to Water (ft)	_	_	_	_	_	_	_	_	_	_	3.93	_	-	3.35	11.52	1.58
Time Purging Begun	_	_	_	_		_	_	_	_	_	10:43 AM	_	_	11:20 AM	11:07 AM	10:17 AM
Time Purging Completed	_	_	_	_	-	_	_	_	_	_	10:52 AM	_	-	11:31 AM	11:16 AM	10:27 AM
Amount Purged (gal)		_	_	_	-	_	_	_	_	_	7.0	_	_	7.0	7.5	11.3
Purged Dry? (Y/N)	_	_	_	_	_	_	_	_	_	_	N	_	_	Y	Y	N
Color (Y/N)	_	_	_	_	-	_	_	_	_	_	N	_	-	N	N	YELLOW
Odor (Y/N)	_	_	_	_	_	_	_	_	_	_	N	_	_	N	SLIGHT	N
Turbidity (Y/N)	_	-	_	-	_	-	_	_	_	_	Y	_	-	Y	Y	N
Time Sample Withdrawn	_	_	_	_	l	_	_	_	_	_	10:52 AM	_		11:36 AM	11:32 AM	10:27 AM
Well secured? (Y/N)	_	_	_	_	_	_	_	_	_	_	Y	_	_	Y	Y	Y
Cover Condition	Cover in good condition. Both bolts secure.	One bolt snapped off. Cover in good condition.	Cover in good condition. Both bolts secure.	Concrete surround slightly moves. Both bolts secure.	Cover in good condition. Both bolts secure.											

Well Specific Field Sheets

Facility Name:Former Better Brite - Zinc ShopDate:May 14, 2019Weather Conditions:Sunny, 73FPerson(s) Sampling:Kim KennedySampling Equipment:Dedicated bailers, Solonist 101 water level meter, perastaltic pump for W-1, W-1A.

Well Name	W-1 (1,2,4)	W-1A (1,2,4)	MW2	MW3R	MW5	MW5A	MW6 (4)	MW6A (4)	MW7	MW7A	MW8	MW8A	MW9	MW10 (4)	MW 11	MW12	Zinc Sump (3)
Top of PVC Casing Elevation (MSL)				602.88	600.81	600.81			600.60	600.51	598.18	598.59	601.66		602.41	599.65	603.99
Depth to Bottom of Well (ft)	19.9	31.54	17.65	16.72	15.30	29.72	18.43	18.48	15.86	26.73	11.41	21.73	16.30	14.77	15.62	10.04	20.40
Water Elevation (MSL)	_	_		595.83	593.15	_	_	_		_			594.77	_	_	_	_
Measured Depth to Water (ft)	13.73	15.75	_	7.05	7.66	_	10.80	_	_	_	_	_	6.89	4.85	_	_	_
Time Purging Begun	(3)	(3)	i (3)	12:32 PM	1:33 PM	_	11:18 AM	_	_	_	_	_	9:43 AM	10:31 AM	_	_	_
Time Purging Completed	mple	mple	mple	12:41 PM	1:43 PM	_	11:27 AM	_	_	_	_	_	9:56 AM	10:45 AM	_	_	_
Amount Purged (gal)	ab Sa	ab Sa	ab Sa	6.3	5.0	_	5.0	_	_	_	_	_	6.3	6.5	_	_	_
Purged Dry? (Y/N)	Gra	Gra	Gra	N	N	_	N	_	_	_	_	_	N	N	_	_	_
Color (Y/N)	L. YELLOW	N	_	N	N	_	N	_	_		_	_	N	N	_	_	YELLOW
Odor (Y/N)	N	N	_	N	N	_	Ν	_	_	_	_	_	N	N	_	_	Ν
Turbidity (Y/N)	Y	N		N	N	_	N	_		_			N	N	_	_	N
Time Sample Withdrawn	12:11 PM	11:58 AM	_	12:41 PM	1:43 PM	_	11:27 AM	_	_		_	_	9:56 AM	10:45 AM	_	_	1:08 PM
Well secured? (Y/N)	Y	Y	_	Y	Y	_	Y	_	_	_	_	_	Y	Y	_	_	Y
Cover Condition	Cover in good condition. Both bolts secure.	Cover in good condition. Both bolts secure.	Pro-top in good condition (some rust). Lock secure.	One bolt snapped off. Cover in good condition.	Cover in good condition. Both bolts secure.	Cover in good condition. Both bolts secure.	Pro-top in good condition (some rust). Lock secure.	Pro-top in good condition (some rust). Lock secure.	Cover in good condition. Both bolts secure.	Cover is flush when bolted, but well and plug are raised when cover is off. Both bolts secure.	Cover in good condition. Both bolts secure.	Cover in good condition. Both bolts secure.	Gate overgrown with vegetation. Cover in good condition. Locks secure.				

1 Depth to bottom of the well is suspect. Felt like soft bottom (sediment).

2 A standard bailer would not fit down the monitoirng well.

3 Sump was not running at time of sample collection.

4 Well height modified. New elevation unknown.

											0	Detected Pa	rameters (µ	g/L)										
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2- DCE	PCE	1,1,1-TCA	1,1,2-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.5	0.7	7	0.5	40	0.5	0.5	0.02
NR140 Enforcement	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	5	7	70	5	200	5	5	0.2
	Aug-94	620000	694000	NA	NA	NA																		
Chrome Sump	Oct-94	300200	297000	NA	NA	NA																		
(Abandoned)	Apr-98	195000	192000	NA	NA	NA																		
	Jul-98	132000		NA	NA	NA																		
	Aug-94	25800	22000	NA	NA	NA																		
French Drain	Oct-94	32000	31700	NA	NA	NA																		
	Apr-98	1060	1010	NA	NA	NA																		
	Jul-98	336	312	NA	NA	NA																		
B-101	Aug-94	<10	<3.4	NA	NA	NA																		
	Oct-94	<10		NA	NA	NA																		
	Aug-94	7	<2.8	NA	NA	NA																		
	DUP.	<10	<2.8	NA	NA	NA																		
	Oct-94	<10 J	<3.4 J	NA	NA	NA																		
MW 400	DUP.	<10 J	<3.4 J	NA	NA	NA																		
10100-100	Apr-98	<10	<5	NA	NA	NA																		
	DUP	<10	<5	NA	NA	NA																		
	May-00	<4.2	4	NA	NA NA	NA																		
	8/26/10	<3.9	5.4	NA	NA NA	NA																		
	6/16/11	<3.9	NA	NA	NA NA	NA NA																		
	Aug-94	<10	<2.8	N/A N/A	NA NA	N/A N/A																		
	Oct-94	<10 J	<3.4 J	N/A N/A	NA NA	NA NA																		
MW-106A	Apr-98	<10	<0	NA																				
	Nay-00	<4.2	9.4	NA																				
	8/20/10	<3.9	I.I J NA	N/A N/A	NA NA	NA NA																		
MW/ 106B	0/10/11	<3.9	11/5	11/4	INA	INA																		
(Abandoned)	Aug-94	<10	NA	NA	NA	NA																		
	Aug-94	<10	4.1 BJ	NA	NA	NA																		
	Oct-94	<10 J	<3.4	NA	NA	NA																		
	Apr-98	<10	<5	NA	NA	NA																		
	May-00	<4.2	4.2	NA	NA 50	NA																		
	Jun-01	NA	NA	530	50	NA 1000																		
	Nov-01	<4.2	26	3900	NA NA	1800																		
MW-107	May-02	7.8	1.2	<u>230</u>	NA NA	2300																		
	Nov 02	NA	1.9	8200	1/0000	2300																		
	Nov-02	14.2	1.6	/02.00	95000	1700																		
	May-03	<4.2 6.5	1.0	260	100000	NA																		
	May-04	<5.0	0.90	380	97000	NA																		
	8/26/10	<3.9	16.4	4010	16400	NA																		
	6/16/11	<3.9	NA	3130	83600	NA																		
	Aug-94	<10	<2.8	NA	NA	NA																		
	Oct-Q/	<10.1	<341	NA	NA	NA																		
	Apr-98	<10	<5	NA	NA	NA																		
MW-107A	Mav-00	<4.2	16	NA	NA	NA																		
	8/26/10	<3.9	23.2	NA	NA	NA																		
	6/16/11	<3.9	NA	NA	NA	NA																		
MW-107B (Abandoned)	Aug-94	<10	NA	NA	NA	NA																		

												Detected Pa	arameters (µ	g/L)										
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2- DCE	PCE	1,1,1-TCA	1,1,2-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.5	0.7	7	0.5	40	0.5	0.5	0.02
NR140 Enforceme	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	5	7	70	5	200	5	5	0.2
	Aug-94	<10	<2.8	NA	NA	NA																		
	Oct-94	<10	<3.4 J	NA	NA	NA																		
	Apr-98	<10	NA	NA	NA	NA																		
NAVA 400	DUP	<10	<5	NA	NA	NA																		
10100-108	Jul-09	NA	16.0	NA	NA	NA																		
	8/26/10	<3.9	4.6"J"	NA	NA	NA																		
	6/16/11	<3.9	NA	NA	NA	NA																		
	12/5/13	<3.4	NA	NA	NA	NA																		
	Aug-94	<10	3.0 BJ	NA	NA	NA																		
	Oct-94	<10	<3.4 J	NA	NA	NA																		
	Apr-98	<10	<5	NA	NA	NA																		
NUN 4004	May-00	<4.2	55	NA	NA	NA																		
WW-108A	Jul-09	NA	NA	NA	NA	NA																		
	8/26/10	<3.9	1.3"J"	NA	NA	NA																		
	6/16/11	<3.9	1.3"J"	NA	NA	NA																		
	12/5/13	<8.6	NA	NA	NA	NA																		
MW-108B (Abandoned)	Aug-94	<10	NA	NA	NA	NA																		
	Aug-94	6780	9570	NA	NA	NA																		
MW/ 400	Oct-94	2400	1980	NA	NA	NA																		
(Abandoned)	DUP.	3100	1700	NA	NA	NA																		
(Abalidofied)	Apr-98	16500	18600	NA	NA	NA																		
	Jul-98	12200	11100	NA	NA	NA																		
	Aug-94	<10	<2.8	NA	NA	NA																		
MW-109A	Oct-94	<10	1.3 B	NA	NA	NA																		
(Abandoned)	Apr-98	<10	<5	NA	NA	NA																		
	Jul-98	<10	7	NA	NA	NA																		
MW-109B	Aug-94	<10	NA	NA	NA	NA																		
(Abandoned)	Oct-94	<10	NA	NA	NA	NA																		
	Aug-94	<10	3.6 BJ	NA	NA	NA																		
	Oct-94	<10	<3.4 J	NA	NA	NA																		
	Apr-98	<10	<5	NA	NA	NA																		
	May-00	<4.2	<u>37</u>	NA	NA	NA																		
	May-04	<2.5	<u>11</u>	3400	<u>230000</u>	NA																		
	May-05	<5.0	0.89	82	70000	NA																		
MW-110	Oct-06	<6.8	1.8	NA	NA	NA																		
	8/21/07	NA	7.4	NA	NA	NA																		
	7/21/09	NA	5.3	NA	NA	NA								1							1		-	
	8/26/10	<3.9	2.0 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.75	NA	<0.57	NA	<0.45	<0.9	NA	<0.48	<0.18
	6/16/11	<3.9	NA	NA	NA	NA																		
	10/24/12	<3.9	NA	NA	NA	NA																		
	12/5/13	<3.4	NA	NA	NA	NA																		

												Detected Pa	arameters (µ	ıg/L)										
Sample Location	Date	Hexavalent	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-	PCE	1,1,1-TCA	1,1,2-TCA	TCE	VC
NR140 Preventive	Action Limit		10	150	125 000		12	1	0.5	40	20	10	0.4	8	6	85	0.5	07	DCE 7	0.5	40	0.5	0.5	0.02
NR140 Enforceme	nt Standard	100	100	200	250,000	NOFAL	6	10	5	200	100	50	0.4	0	30	850	5	7	70	5	200	5	5	0.02
	Auroct	100	100	500	200,000	NA	0	10	5	200	100	50	4	40	50	000	5	,	70	5	200	5	5	0.2
	Aug-94	<10	<2.8	NA NA	NA NA	NA NA	-																	
	Oct-94	<10	<3.4 J	NA	NA	NA	-																	
	Apr-98	<10	<5	NA	NA	NA	-																	
N/N/ 110A	May-00	<4.2	<u>25</u>	NA	NA	NA	-																	
IVIVV-TTUA	Oct-06	<6.8	4.2	NA	NA	NA	-																	
	8/21/07	NA	1.9	NA	NA	NA	-																	
	7/21/09	NA	1.3	NA	NA	NA										0.75								
	8/26/10	<3.9	1.8 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.75	NA	<0.57	NA	<0.45	<0.9	NA	<0.48	<0.18
	6/16/11	<3.9	NA	NA	NA	NA																		
	Aug-94	<10	<3.4	NA	NA	NA	-																	
	DUP.	<10	<3.4	NA	NA	NA	-																	
	Oct-94	<10	<0.70	NA	NA	NA	-																	
	Apr-98	226	<5	NA	NA	NA	-																	
	Jul-98	<u>22</u>	<u>27</u>	NA	NA	NA	-																	
	Nov-98	<0.5	<0.5	NA	NA	NA	-																	
	May-00	<4.2	<u>36</u>	NA	NA	NA	-																	
	Nov-02	<4.2	<u>43</u>	4400	<u>130000</u>	2600	-																	
	DUP	<4.2	<u>38</u>	3400	100000	280	-																	
	May-03	5.2	33	2700	98000	1400	-																	
	May-04	<u>50</u>	150	5000	93000	NA	-																	
	May-05	250	260	<u>200</u>	87000	NA																		
MW-111	Nov-05	<5.0	<u>39</u>	12000	98000	NA	-																	
	DUP	<5.0	<u>55</u>	21000	96000	NA																		
	Oct-06	<6.8	<u>16</u>	NA	NA	NA																		
	8/21/07	NA	<u>25</u>	NA	NA	NA																		
	7/21/09	NA	<u>23.6</u>	NA	NA	NA																		
	8/26/10	<3.9	<u>19.8</u>	NA	NA	NA																		
	6/16/11	<3.9	NA	NA	NA	NA																		
	10/24/11	<3.9	NA	NA	NA	NA																		
	10/24/12	<3.9	NA	NA	NA	NA																		
	12/5/13	<3.4	NA	NA	NA	NA																		
	10/22/15	<3.9	NA	NA	NA	NA	4																	
	9/20/16	<51	NA	NA	NA	NA	4																	
	6/13/18	<130	NA	NA	NA	NA	4																	
L	5/15/19	<130	NA	NA	NA	NA	4																	
	Oct-94	<10	<0.70	NA	NA	NA																		
	Nov-94	<10	<2.5	NA	NA	NA																		
MW-112	Apr-98	<10	<5	NA	NA	NA																		
	May-00	<4.2	4.1	NA	NA	NA																		
	8/26/10	<3.9	3.9	NA	NA	NA																		
	6/16/11	<3.9	NA	NA	NA	NA																		
	Aug-94	140	<u>99.7</u>	NA	NA	NA	1																	
	Oct-94	<10 J	8.6 B	NA	NA	NA																		
	May-95	<u>43</u>	20.3	NA	NA	NA																		
MW-113	Apr-98	<10	<5	NA	NA	NA																		
	Jul-98	<10	12	NA	NA	NA																		
	May-00	<4.2	<u>22</u>	NA	NA	NA																		
	8/26/10	<3.9	24.3	NA	NA	NA	1																	
	6/16/11	<3.9	NA	NA	NA	NA	1																	

											[Detected Pa	rameters (ug/L)										
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2- DCE	PCE	1,1,1-TCA	1,1,2-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.5	0.7	7	0.5	40	0.5	0.5	0.02
NR140 Enforceme	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	5	7	70	5	200	5	5	0.2
	Mar-95	<10 J	<2.9	NA	NA	NA																		
NAVA/ 114	DUP.	<10 J	<2.9	NA	NA	NA																		
(Abandoned)	May-95	<10 J	<1.0	NA	NA	NA																		
(Abandoned)	DUP.	<10 J	<1.0	NA	NA	NA																		
	Apr-98	<10	<5	NA	NA	NA																		
	May-00	<4.2	6.0	NA	NA	NA																		
	Jun-01	<4.2	<0.52	<u>160</u>	92	NA																		
	Nov-01	<4.2	<u>12</u>	1100	NA	3000																		
	DUP	<4.2	<u>10</u>	3300	NA	3300																		
	May-02	<4.2	<u>38</u>	19000	NA	2800																		
	Nov-02	<4.2	<u>38</u>	7000	<u>130000</u>	3100																		
	May-03	<4.2	260	9700	90000	1400																		
	DUP	<4.2	<u>56</u>	3600	89000	1400																		
	May-04	<2.5	1.3	<u>130</u>	34000	NA																		
	May-05	<5.0	1.1	320	44000	NA																		
NAVA 445	Oct-06	<6.8	2.6	NA	NA	NA																		
10100-115	8/21/07	NA	10	NA	NA	NA																		
	7/21/09	NA	5.8	INA 0500	INA 0.4000	INA NA																		
	8/26/10	<3.9	1.6 J	3530	24800	NA																		
	6/16/11	<3.9	NA	4460	10000	INA NA																		
	10/24/11	<3.9	NA	NA NA	NA NA	NA NA																		
	10/24/12	<3.9	NA	NA NA	NA NA	NA NA																		
	10/16/14	<0.7	NA NA	NA	ΝA	NA																		
	10/10/14	<3.9	NA NA	NA	NA	NA																		
	9/20/16	<3.9	NΔ	NA	NA	NA																		
	6/13/18	<130	ΝA	ΝA	NΔ	NΔ																		
	5/15/19	<51	NA	NA	NA	NA																		
	May-00	<42	12.0	NA	NA	NA																		
	Oct-06	<6.8	4.6	NA	NA	NA																		
	8/21/07	NA	2.7	NA	NA	NA																		
	7/21/09	NA	2.9	NA	NA	NA																		
	8/26/10	<3.9	1.4 J	NA	NA	NA																		
	6/16/11	<3.9	NA	NA	NA	NA																		
MW-115A	10/24/12	<3.9	NA	NA	NA	NA																		
	12/5/13	<8.6	NA	NA	NA	NA																		
	10/16/14	<3.9	NA	NA	NA	NA																		
	10/22/15	<3.9	NA	NA	NA	NA																		
	9/20/16	<26	NA	NA	NA	NA																		
	6/13/18	<130	NA	NA	NA	NA																		
	5/15/19	<51	NA	NA	NA	NA																		

												Detected Pa	arameters (µ	ıg/L)										
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	n 1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2- DCE	PCE	1,1,1-TCA	1,1,2-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.5	0.7	7	0.5	40	0.5	0.5	0.02
NR140 Enforceme	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	5	7	70	5	200	5	5	0.2
	May-00	1600	470	NA	NA	NA																		
	DUP.	1500	460	NA	NA	NA																		
	Nov-00	37	23	NA	NA	NA																		
	DUP	46	24	NA	NA	NA																		
	Jun-01	4400	2300	840	2100	NA																		
	Nov-01	3300	2100	690	NA	2400																		
	May-02	12000	7300	530	NA	2500																		
	Nov-02	5100	3200	720	20000	2900																		
	May-03	8900	6000	410	2700000	1700																		
	May-04	28000	22000	43	19000	NA																		
	DUP	28000	22000	<u>280</u>	24000	NA																		
	May-05	52000	52000	950	1900000	NA																		
	DUP	54000	53000	710	1800000	NA																		
	Nov-05	50000	61000	840	1800000	NA																		
	Oct-06	39000	36000	900	1800000	NA																		
MW-116	DUP	42000	36000	NA	NA	NA																		
	8/21/07	NA	39,000	NA	NA	NA																		
	7/21/09	NA	25,500	NA	NA	NA																		
	8/26/10	21,300	19,200	478	1330000	NA	162	<u>2.4 J</u>	0.43 J	NA	10.3	<0.46	<2.2	NA	NA	30.9	NA	22.1	NA	3.2	76.9	NA	<u>1.1</u>	0.21 J
	8/26/10 LF	20,200	17,700	NA	NA	NA																		
	4/25/11	34,600	NA	NA	1030000	NA																		
	6/16/11	13,800	NA	<u>240</u>	1660000	NA	3.4 "J"	NA	NA	NA	NA	NA	NA	NA	NA	28.1	NA	25.9	NA	<u>1.2</u>	<u>84.1</u>	NA	<u>2.2</u>	<0.18
	10/24/11	18,300	NA	NA	NA	NA																		
	10/24/12	22,300	NA	NA	NA	NA																		
	12/5/13	17,600	NA	NA	NA	NA																		
	DUP	17,500	NA	NA	NA	NA																		
	10/16/14	13,300	NA	NA	NA	NA																		
	10/22/15	16,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	43.5	0.32 J	40.6	1.5	1.7	145	0.46 J	<u>1.6</u>	0.27 J
	9/20/16	16,100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	34.8	< 0.34	34.8	1.2 J	<u>1.4 J</u>	<u>135</u>	<0.39	<u>1.5 J</u>	<0.35
	6/13/18	12,100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	34.4	< 0.34	37.4	0.93 J	<u>1.1 J</u>	<u>125</u>	<0.39	<u>1.5 J</u>	<0.35
	5/15/19	9,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	38.9	<0.28	44.3	1.3	<u>1.2</u>	<u>142</u>	<0.55	<u>2.1</u>	<0.17
CSTW1	4/25/11	<3.9	NA	NA	1,180,000	NA																		
CSTW2	4/25/11	<3.9	NA	NA	2,840,000	NA																		
CSTW3	4/25/11	1,000	NA	NA	2,010,000	NA]																	
CSTW4	4/25/11	<3.9	NA	NA	426,000	NA]																	
CSTW5	4/25/11	4.9 "J"	NA	NA	592,000	NA]																	
CSTW6	4/25/11	<3.9	NA	NA	608000	NA]																	

										Detect	ed Parame	ters (µg/L)									
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,1-DCE	PCE	1,1,1-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.7	0.5	40	0.5	0.02
NR140 Enforceme	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	7	5	200	5	0.2
	10/22/15	10,300	NA	NA	NA	NA	(Grab Sa	mple, no _l	purging)												
W/-1	9/19/16	9600	NA	NA	NA	NA	(Grab Sa	mple, pre	viously pu	rged)											
	6/12/18	6600	NA	NA	NA	NA	(Grab Sa	mple, pre	viously pu	rged)											
	5/14/19	4400	NA	NA	NA	NA	(Grab Sa	mple, pre	viously pu	rged)											
	10/22/15	3,300	NA	NA	NA	NA	(Grab Sa	mple, no _l	purging)												
W-1A	9/19/16	2800	NA	NA	NA	NA	(Grab Sa	mple, pre	viously pu	rged)											
	6/12/18	2700	NA	NA	NA	NA	(Grab Sa	mple, pre	viously pu	rged)											
	5/14/19	1800	NA	NA	NA	NA	(Grab Sa	mple, pre	viously pu	rged)											
	May-00	<4.2	7.6	NA	NA	NA															
	Jun-01	<4.2	7.1	NA	NA	NA															
	Nov-01	<4.2	<u>10</u>	NA	NA	NA															
	May-02	<4.2	<0.52	NA	NA	NA															
PF-MW-2	Nov-02	<4.2	2.4	NA	NA	NA															
	May-03	<4.2	<u>49</u>	NA	NA	NA															
	10/22/15	<3.9	NA	NA	NA	NA	(Grab Sa	mple, no _l	purging)												
	9/19/16	<5.1	NA	NA	NA	NA	(Grab Sa	mple, pre	viously pu	rged)											
	6/13/18	<26	NA	NA	NA	NA	(Grab Sa	mple, pre	viously pu	rged)											
	May-00	230	330	NA	NA	NA															
	Nov-00	<u>50</u>	130	NA	NA	NA															
	Jun-01	3500	2200	NA	NA	NA															
	Nov-01	<u>38</u>	1700	NA	NA	NA															
	May-02	<4.2	220	NA	NA	NA															
	Nov-02	<4.2	<u>18</u>	NA	NA	NA															
	May-03	110	<u>55</u>	NA	NA	NA															
	Dup	<u>83</u>	<u>49</u>	NA	NA	NA															
	May-04	<u>89</u>	190	NA	NA	NA															
	May-05	<5.0	17	NA	NA	NA															
MW-3/MW3R	7/21/09	NA	717	NA	NA	NA															
	8/24/10	660	552	NA	NA	NA															
	6/28/11	2800	NA	NA	NA	NA															
	10/24/11	2200	NA	NA	NA	NA															
	10/23/12	560	NA	NA	NA	NA															
	12/5/13	140	NA	NA	NA	NA															
	10/16/14	190	NA	NA	NA	NA															
	10/22/15	100	NA	NA	NA	NA															
	9/19/16	380	NA	NA	NA	NA															
	6/12/18	<130	NA	NA	NA	NA															
	5/14/19	<u>88</u>	NA	NA	NA	NA															

										Detect	ed Parame	ters (µg/L)					-	-			
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,1-DCE	PCE	1,1,1-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.7	0.5	40	0.5	0.02
NR140 Enforcement	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	7	5	200	5	0.2
	Aug-94	<10	<3.4	NA	NA	NA															
	DUP	<10	<3.4	NA	NA	NA															
	Oct-94	<10 J	<3.4 J	NA	NA	NA															
	DUP	<10 J	<3.4 J	NA	NA	NA															
	Apr-98	<10	<5	NA	NA	NA															
	May-00	<4.2	4.6	NA	NA	NA															
N4)A/ 4	Nov-00	<4.2	2.4	NA	NA	NA															
(Abandoned)	Jun-01	<4.2	<u>12</u>	NA	NA	NA															
(/ ibanaonoa)	Nov-01	<4.2	7.4	NA	NA	NA															
	May-02	<4.2	1.4	NA	NA	NA															
	Nov-02	<4.2	<u>15</u>	NA	NA	NA															
	May-03	<4.2	27	NA	NA	NA															
	May-04	<2.5	1.8	NA	NA	NA															
	May-05	<5.0	9	NA	NA	NA															
	Nov-05	<5.0	<u>12</u>	NA	NA	NA															
	Aug-94	<10	<3.4	NA	NA	NA															
	Oct-94	<10 J	6.0 B	NA	NA	NA															
	Apr-98	<10	<5	NA	NA	NA															
	May-00	<4.2	8.7	NA	NA	NA															
	Nov-00	<4.2	3.7	NA	NA	NA															
	Jun-01	<4.2	3.7	NA	NA	NA															
(Abandoned)	Nov-01	<4.2	<u>13</u>	NA	NA	NA															
(/ 10411401104)	May-02	<4.2	<u>38</u>	NA	NA	NA															
	Nov-02	<4.2	28	NA	NA	NA															
	May-03	<4.2	32	NA	NA	NA															
	May-04	<2.5	0.75	NA	NA	NA															
	May-05	<5.0	2	NA	NA	NA															
	Nov-05	<5.0	2.8	NA	NA	NA															
MW-4B	Oct-94	<10	<0.70	NA	NA	NA															
(Abandoned)	Nov-94	<10	<2.5	NA	NA	NA															

										Detect	ed Paramet	ers (µg/L)									
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,1-DCE	PCE	1,1,1-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.7	0.5	40	0.5	0.02
NR140 Enforceme	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	7	5	200	5	0.2
	Aug-94	1590	827	NA	NA	NA															
	Oct-94	460 J	299 J	NA	NA	NA															
	DUP	510 J	763 J	NA	NA	NA															
	Apr-98	212	631	NA	NA	NA															
	DUP	207	667	NA	NA	NA															
	Jul-98	1420	1230	NA	NA	NA															
	May-00	120	190	NA	NA	NA															
	Nov-00	<4.2	6.6	NA	NA	NA															
	Jun-01	590	450	NA	NA	NA															
	Nov-02	2200	2200	NA	NA	NA															
	DUP	2200	2200	NA	NA	NA															
	May-03	4900	3600	NA	NA	NA															
MW-5	May-04	4700	3100	NA	NA	NA															
	May-05	4000	3200	NA	NA	NA															
	Oct-06	4900	4000	NA	NA	NA															
	8/21/07	NA	2,700	NA	NA	NA															
	7/21/09	NA	2,210	NA	NA	NA															
	8/24/10	1,300	1,180	NA	NA	NA															
	6/28/11	970	NA	NA	NA	NA															
	10/24/11	1,100	NA	NA	NA	NA															
	10/23/12	970	NA	NA	NA	NA															
	12/5/13	1000	NA	NA	NA	NA															
	10/22/15	330	NA	NA	NA	NA															
	9/19/16	460	NA	NA	NA	NA															
	6/12/18	180	NA	NA	NA	NA															
	5/14/19	<51	NA	NA	NA	NA															
	Aug-94	<10	<3.4	NA NA	NA NA	NA NA															
	Oct-94	<10	<3.4 J	NA NA	NA NA	NA NA															
	Apr-98	<10	C>	NA NA	NA NA																
	Nov 00	<4.2 240	0.0	NA NA	NA NA	NA NA															
	lup 01	-4.2	2.0	ΝΔ	ΝA																
MW-5A	Nov 02	<4.2	24	NΔ	NΔ	NΔ															
	May-02	<4.2	22	NA	NA	NA															
		<4.2	10	NA	NA	NA															
	May-04	<25	27	NA	NA	NA															
	May-04	<5.0	7.6	NA	NA	NA															
	8/24/10	<3.9	2.5".1"	NA	NA	NA															
	6/28/11	<3.9	NA	NA	NA	NA															
MW-5B	Aug-94	NA	NA	NA	NA	NA															
(Abandoned)	Oct-94	<10	<5	NA	NA	NA															

										Detect	ed Paramet	ters (µg/L)									
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,1-DCE	PCE	1,1,1-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.7	0.5	40	0.5	0.02
NR140 Enforcement	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	7	5	200	5	0.2
	Aug-94	15900	39200	NA	NA	NA															
	Oct-94	47000	41,900 J	NA	NA	NA															
	Apr-98	7650	4560	NA	NA	NA															
	May-00	23000	26000	NA	NA	NA															
	Nov-00	26000	23000	NA	NA	NA															
	Jun-01	14000	15000	NA	NA	NA															
	Nov-01	25000	29000	NA	NA	NA															
	May-02	13000	13000	NA	NA	NA															
	Nov-02	21000	22000	NA	NA	NA															
	May-03	11000	9300	NA	NA	NA															
	May-04	13000	15000		NA NA	NA NA															
	May-05	12000	11000		NA NA	NA NA															
MW-6	DUP Oct 06	12000	12000	NA	NA NA	NA NA															
		12000	12000		NΔ	ΝA															
	8/21/07	NA	8 900	NA	NA	NA															
	7/21/09	NA	10,400	NA	NA	NA															
	8/24/10	8400	7.540	NA	NA	NA															
	6/28/11	5200	NA	NA	NA	NA															
	10/24/11	6.500	NA	NA	NA	NA															
	10/23/12	7,300	NA	NA	NA	NA															
	12/5/13	6,100	NA	NA	NA	NA															
	10/16/14	3,300	NA	NA	NA	NA															
	10/22/15	360	NA	NA	NA	NA															
	9/20/16	3500	NA	NA	NA	NA															
	6/13/18	1400	NA	NA	NA	NA															
	5/14/19	1200	NA	NA	NA	NA															
	Aug-94	<10	4.9 B	NA	NA	NA															
	Oct-94	<10	<3.4 J	NA	NA	NA															
	Apr-98	<10	<5	NA	NA	NA															
	May-00	6.6	22	NA	NA	NA															
	Nov-00	<4.2	<u>13</u>	NA	NA	NA															
	6/01	<4.2	<u>11</u>	NA	NA	NA															
MW-6A	Nov-01	<4.2	7.1	NA	NA	NA															
	May-02	<4.2	51		NA NA	NA NA															
	Nov-02	<4.2	83		NA NA	NA NA															
	May-03	<4.2	59	NA NA	NA NA	NA NA															
	May 05	<2.5	3.4	NΔ	NΔ	NΔ															
	8/24/10	< 3.0	1 7" "	NA	NA	NA															
	6/28/11	<3.9	NA	NA	NA	NA															
MW-6B (Abandoned)	Aug-94	<10	NA	NA	NA	NA															

Sample Location Date Hexavalant (Nervaniur Altonomut Original Difference (Nervaniur Alto Proventive Action Limit 100 100 150 125,000 NO PAL 1.2 1 0.5 40 20 10 0.4 8 6 85 0.7 0.5 400 0.5 NR140 Enforcement Standard 100 100 250,000 NO PEL 1.2 1 0.5 40 20 10 0.4 8 6 850 0.7 0.5 40 0.5 NR140 Enforcement/Standard 100 300 250,000 NO PEL 6 10 5 200 100 50 2 40 30 850 7 5 200 5 VDLP <10 -5 NA	
NR140 Preventive Action Limit 10 100	VC
Inverse Tub Tu	0.00
Inverse Emolectment outroation 100 100 200 2000 NO ES 6 10 5 200 100 50 2 40 30 850 7 5 200 5 Mug-94 <10	0.02
Aug-94 <10 6.6 BJ NA NA NA DUP <2.8	0.2
MW-7 DuP. <td< td=""><td></td></td<>	
MW-7 Oct-94 Apr-98 <10 36.4.1 NA NA NA NA MW-7 MA NA NA NA MW-7 Mov-00 <4.2	
Apr-98 <10 <5 NA NA NA DUP <10	
DUP <10 <5 NA NA NA May-00 <4.2	
May-00 <4.2 3.9 NA NA NA Nov-00 <4.2	
MW-70 <4.2 1.1 NA NA NA MW-71 X X X X MW-701 <4.2	
Jun-01 <4.2 2.7 NA NA NA MW-7 Mov-01 <4.2	
NW-7 Nov-01 c4.2 9.7 NA NA NA May-02 c4.2 3.2 NA NA NA Nov-02 c4.2 1.9 NA NA NA May-03 c4.2 0.91 NA NA NA May-04 c2.5 0.88 NA NA NA May-05 c5.0 32 NA NA NA May-05 c5.0 32 NA NA NA M2/107 NA 4.4 NA NA NA 8/21/07 NA 4.4 NA NA 8/24/10 c3.9 3.7"J" NA NA 6/28/11 <3.9	
May-02 <4.2 3.2 NA NA NA Nov-02 <4.2	
Nov-02 <4.2 1.9 NA NA NA May-03 <4.2	
May-03 <4.2 0.91 NA NA NA May-04 <2.5 0.88 NA NA NA May-05 <5.0 32 NA NA NA 8/21/07 NA 4.4 NA NA NA 8/21/07 NA 4.4 NA NA NA 8/21/07 NA 9 NA NA NA 8/21/07 NA 9 NA NA NA 8/21/10 <3.9 3.7"J" NA NA NA 6/28/11 <3.9 NA NA NA Aug-94 <10 <2.8 NA NA Apr-98 <10 <5 NA NA May-00 <4.2 4.7 NA NA Nov-00 7.9 5 NA NA	
May-04 <2.5 0.88 NA NA NA May-05 <5.0 32 NA NA NA 8/21/07 NA 4.4 NA NA NA 7/21/09 NA 9 NA NA NA 8/24/10 <3.9 3.7"J" NA NA NA 6/28/11 <3.9 NA NA NA Aug-94 <10 <2.8 NA NA NA Aug-94 <10 <2.8 NA NA NA May-00 <4.2 4.7 NA NA NA May-00 <4.2 4.7 NA NA NA Nov-00 7.9 5 NA NA NA	
May-05 <5.0 32 NA NA NA 8/21/07 NA 4.4 NA NA NA 7/21/09 NA 9 NA NA NA 8/24/10 <3.9	
8/21/07 NA 4.4 NA NA NA 7/21/09 NA 9 NA NA NA 8/24/10 <3.9	
//21/09 NA 9 NA NA NA 8/24/10 <3.9	
8/24/10 <3.9 3.7'J NA NA NA 6/28/11 <3.9	
6/26/11 <3.9	
Alg-94 <10 <2.8 NA NA NA Oct-94 <10 J <3.4 J NA NA NA Apr-98 <10 <5 NA NA NA May-00 <4.2 4.7 NA NA NA Nov-00 7.9 5 NA NA NA	
Oct-94 <10 J <3.4 J NA NA Apr-98 <10	
Apr-98 <10 <5 NA NA NA May-00 <4.2	
May-00 <4.2 4.7 NA NA NA Nov-00 7.9 5 NA NA NA	
NOV-UU 7.9 5 INA INA INA	
$MW\text{-}7A \qquad \qquad NW\text{-}0 \qquad VA\text{-} \qquad VA \qquad NA \qquad NA$	
$\frac{Nid/O2}{Nid} \neq \frac{4.2}{O} = 0.09 NA \qquad NA \qquad NA$	
$\frac{1}{100-102} < \frac{4.2}{2} \qquad 0.95 \qquad \frac{1}{100} \qquad \frac{1}{100}$	
$\frac{Nid_{V}(O)}{Nid} = \frac{O_{V}}{O} = O_{\mathsf{$	
$\frac{May \sqrt{5}}{5} = \frac{50}{6} = \frac{100}{6} = $	
$6/2\pi/10$ <3.9 NA NA NA NA	
Apr-98 <10 <5 NA NA NA	
Mav-00 -4 2 15 NA NA NA	
Nov-00 13 13 NA NA NA	
Jun-01 5.3 2 NA NA NA	
Nov-01 <4.2 2.3 NA NA NA	
MW-8 DUP <4.2 6.7 NA NA NA	
May-02 <4.2 4 NA NA NA	
Nov-02 <4.2 23 NA NA NA	
Mav-03 <4.2 2.2 NA NA NA	
May-04 <2.5 1.7 NA NA NA	
May-05 <5.0 1.1 NA NA NA	
8/21/07 NA 2.3 NA NA NA	
8/24/10 <3.9 <u>96</u> NA NA NA	
6/28/11 <3.9 NA NA NA NA	

NA - Compound not analyzed

Underlined - Concentration exceeds preventive action limit Bolded - Concentration exceeds enforcement standard

										Detect	ed Paramet	ters (µg/L)									
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,1-DCE	PCE	1,1,1-TCA	TCE	VC
NR140 Preventive	Action Limi	t 10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.7	0.5	40	0.5	0.02
NR140 Enforceme	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	7	5	200	5	0.2
	Oct-94	<10	<0.70	NA	NA	NA															
	Nov-94	<10	<2.5	NA	NA	NA															
	Apr-98	<10	<5	NA	NA	NA															
	May-00	<4.2	<u>16</u>	NA	NA	NA															
	Nov-00	<4.2	<u>34</u>	NA	NA	NA															
	Jun-01	<4.2	3.7	NA	NA	NA															
	Nov-01	<4.2	<u>14</u>	NA	NA	NA															
MW-8A	May-02	<4.2	2.5	NA	NA	NA															
	DUP	<4.2	<u>11</u>	NA	NA	NA															
	Nov-02	<4.2	<u>20</u>	NA	NA	NA															
	May-03	<4.2	<u>13</u>	NA	NA	NA															
	May-04	3.9	0.59	NA	NA	NA															
	May-05	<5.0	2.6	NA	NA	NA															
	8/21/07	NA	0.92	NA	NA	NA															
	8/24/10	<3.9	1.7"J"	NA	NA	NA															
	6/28/11	<3.9	NA	NA	NA	NA															
	Aug-94	400	697	NA	NA	NA															
	Oct-94	470 J	442 J	NA	NA	NA															
	Apr-98	209	<5	NA NA	NA NA	NA NA															
	Jul-98	<u>60</u>	<u>/5</u>	NA NA	NA NA	NA NA															
		13	<u>15</u> 51	NA NA	NA NA	NA NA															
	DUP lup-01	<u>19</u> 28	<u>180</u>	ΝΔ	ΝA	ΝA															
	Nov-01	35	76	NA	NA	NA															
	May-02	75	72	NA	NA	NA															
	Nov-02	67	80	NA	NA	NA															
	May-03	32	53	NA	NA	NA															
	May-04	54	63	NA	NA	NA															
104/0	Dup	50	46	NA	NA	NA															
10100-9	May-05	28	41	NA	NA	NA															
	Oct-06	17	34	NA	NA	NA															
	8/21/07	NA	52	NA	NA	NA															
	7/21/09	NA	<u>33.3</u>	NA	NA	NA															
	8/24/10	27	30.3	NA	NA	NA															
	6/28/11	14	NA	NA	NA	NA															
	10/23/12	18 J	NA	NA	NA	NA															
	12/5/13	<3.4	NA	NA	NA	NA															
	10/16/14	<3.9	NA	NA	NA	NA															
	10/22/15	<3.9	NA	NA	NA	NA															
	9/19/16	<26	NA	NA	NA	NA															
	6/12/18	<130	NA	NA	NA	NA															
1	5/14/19	<51	NA NA	NA NA	I NA	NA NA															

										Detect	ed Paramet	ters (µg/L)									[
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,1-DCE	PCE	1,1,1-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.7	0.5	40	0.5	0.02
NR140 Enforceme	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	7	5	200	5	0.2
	Aug-94	60300	53100	NA	NA	NA			•												<u></u>
	Oct-94	60800 J	43,500 J	NA	NA	NA															
	Nov-00	20000	18000	NA	NA	NA															
	Jun-01	<4.2	<u>20</u>	NA	NA	NA															
	Nov-02	35000	38000	NA	NA	NA															
	May-03	38000	37000		NA NA	NA NA															
MW-10	Nov 05	23000	12000	NA	NA	NA															
	Oct-06	14000	13000	NA	NA	NA															
	8/21/07	NA	17.000	NA	NA	NA															
	10/22/15	10.300	NA	NA	NA	NA															
	9/19/16	9,800	NA	NA	NA	NA															
	6/12/18	3,200	NA	NA	NA	NA															
	5/14/19	1,500	NA	NA	NA	NA															
	May-95	<10	<1.0	NA	NA	NA															
	Apr-98	<10	<5	NA	NA	NA															
	May-00	<4.2	7.0	NA	NA	NA															
	Nov-00	<4.2	4.1	NA	NA	NA															
	Jun-01	<4.2	3.6	NA	NA	NA															
M/M/ 11	Nov-01	<4.2	7.8	NA	NA	NA															
	May-02	17	<20	NA	NA NA	NA NA															
	May-03	<4.2	12	NA	NA	NA															
	May-04	<4.2	23	NA	NA	NA															
	May-05	<5.0	2.0	NA	NA	NA															
	8/24/10	<3.9	8.9	NA	NA	NA															
	6/28/11	<3.9	NA	NA	NA	NA															
	Mar-95	<10 J	<2.9	NA	NA	NA															
	May-95	<10	<1.0	NA	NA	NA															
	Apr-98	<10	<5	NA	NA	NA															
	May-00	<4.2	4.8	NA	NA	NA															
	Nov-00	<4.2	6	NA	NA	NA															
	jun-01	<4.2	6.4	NA	NA	NA															
MW-12	Nov-01	<4.2	< 0.52	NA	NA	NA															
	May-02	<4.2	4.8	NA	NA	NA															
	Nov-02	<4.2	1.3		NA NA	NA NA															
	May-04	<4.2	1.3	NA	NA	NA															
	May-04	<2.0	8.1	NA	NA	NA															
	8/24/10	<3.9	6.5	NA	NA	NA															
	6/28/11	<3.9	NA	NA	NA	NA															
MAL 10	Mar-95	<10 J	<2.9	NA	NA	NA															
10100-13	May-95	<10	<1.0	NA	NA	NA															

										Detect	ed Parame	ters (µg/L)									
Sample Location	Date	Hexavalent Chromium	Chromium	Iron	Sulfate	Sulfide	Antimony	Arsenic	Cadmium	Cyanide	Nickel	Silver	Thallium	Cobalt	Vanadium	1,1-DCA	1,1-DCE	PCE	1,1,1-TCA	TCE	VC
NR140 Preventive	Action Limit	10	10	150	125,000	NO PAL	1.2	1	0.5	40	20	10	0.4	8	6	85	0.7	0.5	40	0.5	0.02
NR140 Enforceme	nt Standard	100	100	300	250,000	NO ES	6	10	5	200	100	50	2	40	30	850	7	5	200	5	0.2
	Aug-94	89000	209000	NA	NA	NA															
	Oct-94	144900	277000	NA	NA	NA															
	Apr-98	66000	38300	NA	NA	NA															
	Jul-98	131000	131000	NA	NA	NA															
	May-00	1800	1700	NA	NA	NA															
	Nov-00	41000	27000	NA	NA	NA															
	Jun-01	40000	110000	NA	NA	NA															
	Nov-01	23000	56000	NA	NA	NA															
	May-02	43000	14000	NA	NA	NA															
	Nov-03	23000	30000	NA	NA	NA															
	May-03	8400	6800	NA	NA	NA															
	May-04	24000	6400	NA	NA	NA															
Zinc Sump	May-05	15000	13000	NA	NA	NA															
Zine Sump	Oct-06	7500	5900	NA	NA	NA															
	8/21/07	NA	20,000	NA	NA	NA															
	7/21/09	NA	14,800	NA	NA	NA															
	8/24/10	12,100	11,300	NA	NA	NA	90.6	NA	NA	<u>40</u>	NA	NA	<2.2	2.5 J	4.7 J	<0.75	<0.57	<0.45	1.5	<0.48	<0.18
	6/28/11	4100	NA	NA	NA	NA	6.6	NA	NA	250	NA	NA	<2.2	2.5 J	4.7 J	1.2	<u>2.8</u>	0.84	38.9	<0.48	<0.18
	10/24/11	3,700	NA	NA	NA	NA	6.0 "J"	NA	NA	220	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/23/12	110	NA	NA	NA	NA	NA	NA	NA	<u>40</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/5/13	5,100	NA	NA	NA	NA	NA	NA	NA	340	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/16/14	9,600	NA	NA	NA	NA	NA	NA	NA	<u>190</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/22/15	10,200	NA	NA	NA	NA	NA	NA	NA	220	NA	NA	NA	NA	NA	2.9	<u>2.5</u>	<u>1.2</u>	<u>49.0</u>	<0.33	<0.18
	9/19/16	14,000	NA	NA	NA	NA	<7.3	NA	NA	<u>160</u>	NA	NA	NA	NA	NA	1.4	<u>1.2</u>	<u>0.79J</u>	22.6	<0.33	<0.18
	6/13/18	9900	NA	NA	NA	NA	NA	NA	NA	<u>51</u>	NA	NA	NA	NA	NA	<0.24	<0.41	<0.50	2.1	<0.33	<0.18
	5/14/19	8100	NA	NA	NA	NA	NA	NA	NA	<u>100</u>	NA	NA	NA	NA	NA	0.68J	<u>1.2</u>	0.45J	14.1	<0.26	<0.17
Private	Aug-94	<10	<10	NA	NA	NA															
	Aug-94	<10	<10	NA	NA	NA															
Municipal	DUP.	<10	<10	NA	NA	NA															
manopar	Oct-94	<10	<10	NA	NA	NA															
	DUP.	<10	<10	NA	NA	NA															
USGS	Oct-94	<10	0.75 B	NA	NA	NA															
USGS-A	Oct-94	<10	11.9	NA	NA	NA															

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

May 28, 2019

Brian Wayner Omnni Associates, Inc. One Systems Drive Appleton, WI 549141654

RE: Project: N1969A07/010 BETTER BRITE Pace Project No.: 40187578

Dear Brian Wayner:

Enclosed are the analytical results for sample(s) received by the laboratory on May 14, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A-VM

Steven Mleczko steve.mleczko@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Chris Rogers, OMNNI ASSOCIATES, INC.

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas/NELAP Certification #: E-10177 Kentucky UST Certification #: 80226 Kentucky WW Certification #: 98019 Michigan Department of Environmental Quality, Laboratory #9050 Ohio VAP Certification #: CL0065 Oklahoma Certification #: 2018-101 Texas Certification #: T104704355 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-16-00257

SAMPLE SUMMARY

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40187578001	TRIP BLANK	Water	05/14/19 09:15	05/14/19 15:39
40187578002	W-1	Water	05/14/19 12:11	05/14/19 15:39
40187578003	W-1A	Water	05/14/19 11:58	05/14/19 15:39
40187578004	MW-3R	Water	05/14/19 12:41	05/14/19 15:39
40187578005	MW-5	Water	05/14/19 13:43	05/14/19 15:39
40187578006	MW-6	Water	05/14/19 11:27	05/14/19 15:39
40187578007	MW-9	Water	05/14/19 09:56	05/14/19 15:39
40187578008	MW-10	Water	05/14/19 10:45	05/14/19 15:39
40187578009	ZINC SUMP	Water	05/14/19 13:08	05/14/19 15:39

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

SAMPLE ANALYTE COUNT

Project:N1969A07/010 BETTER BRITEPace Project No.:40187578

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40187578001	TRIP BLANK	EPA 8260	LAP	64	PASI-G
40187578002	W-1	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187578003	W-1A	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187578004	MW-3R	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187578005	MW-5	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187578006	MW-6	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187578007	MW-9	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187578008	MW-10	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187578009	ZINC SUMP	EPA 8260	LAP	64	PASI-G
		SM 3500-Cr B (Online)	DEY	1	PASI-G
		EPA 335.4	GWA	1	PASI-I

. .

ANALYTICAL RESULTS

Project: N1969A07/010 BETTER BRITE

Pace Project No .:

-

40187578

Sample: TRIP BLANK	Lab ID:	40187578001	Collected: 05/14/19 09:15			Received: 05/14/19 15:39 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Benzene	<0.25	ug/L	1.0	0.25	1		05/16/19 12:37	71-43-2	
Bromobenzene	<0.24	ug/L	1.0	0.24	1		05/16/19 12:37	108-86-1	
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		05/16/19 12:37	74-97-5	
Bromodichloromethane	<0.36	ug/L	1.2	0.36	1		05/16/19 12:37	75-27-4	
Bromoform	<4.0	ug/L	13.2	4.0	1		05/16/19 12:37	75-25-2	
Bromomethane	<0.97	ug/L	5.0	0.97	1		05/16/19 12:37	74-83-9	
n-Butylbenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 12:37	104-51-8	
sec-Butylbenzene	<0.85	ug/L	5.0	0.85	1		05/16/19 12:37	135-98-8	
tert-Butylbenzene	<0.30	ug/L	1.0	0.30	1		05/16/19 12:37	98-06-6	
Carbon tetrachloride	<0.17	ug/L	1.0	0.17	1		05/16/19 12:37	56-23-5	
Chlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 12:37	108-90-7	
Chloroethane	<1.3	ug/L	5.0	1.3	1		05/16/19 12:37	75-00-3	
Chloroform	<1.3	ug/L	5.0	1.3	1		05/16/19 12:37	67-66-3	
Chloromethane	<2.2	ug/L	7.3	2.2	1		05/16/19 12:37	74-87-3	
2-Chlorotoluene	<0.93	ug/L	5.0	0.93	1		05/16/19 12:37	95-49-8	
4-Chlorotoluene	<0.76	ug/L	2.5	0.76	1		05/16/19 12:37	106-43-4	
1,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		05/16/19 12:37	96-12-8	
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		05/16/19 12:37	124-48-1	
1,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		05/16/19 12:37	106-93-4	
Dibromomethane	<0.94	ug/L	3.1	0.94	1		05/16/19 12:37	74-95-3	
1,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 12:37	95-50-1	
1,3-Dichlorobenzene	<0.63	ug/L	2.1	0.63	1		05/16/19 12:37	541-73-1	
1,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		05/16/19 12:37	106-46-7	
Dichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		05/16/19 12:37	75-71-8	
1,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 12:37	75-34-3	
1,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 12:37	107-06-2	
1,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1		05/16/19 12:37	75-35-4	
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		05/16/19 12:37	156-59-2	
trans-1,2-Dichloroethene	<1.1	ug/L	3.6	1.1	1		05/16/19 12:37	156-60-5	
1,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		05/16/19 12:37	78-87-5	
1,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		05/16/19 12:37	142-28-9	
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		05/16/19 12:37	594-20-7	
1,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		05/16/19 12:37	563-58-6	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		05/16/19 12:37	10061-01-5	
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		05/16/19 12:37	10061-02-6	
Diisopropyl ether	<1.9	ug/L	6.3	1.9	1		05/16/19 12:37	108-20-3	
Ethylbenzene	<0.22	ug/L	1.0	0.22	1		05/16/19 12:37	100-41-4	
Hexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1		05/16/19 12:37	87-68-3	
Isopropylbenzene (Cumene)	<0.39	ug/L	5.0	0.39	1		05/16/19 12:37	98-82-8	
p-Isopropyltoluene	<0.80	ug/L	2.7	0.80	1		05/16/19 12:37	99-87-6	
Methylene Chloride	<0.58	ug/L	5.0	0.58	1		05/16/19 12:37	75-09-2	
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		05/16/19 12:37	1634-04-4	
Naphthalene	<1.2	ug/L	5.0	1.2	1		05/16/19 12:37	91-20-3	
n-Propylbenzene	<0.81	ug/L	5.0	0.81	1		05/16/19 12:37	103-65-1	
Styrene	<0.47	ug/L	1.6	0.47	1		05/16/19 12:37	100-42-5	
1,1,1,2-Tetrachloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 12:37	630-20-6	

. .

ANALYTICAL RESULTS

Project: N1969A07/010 BETTER BRITE

Pace Project _

. _.

-

No.:	40187578	

Sample: TRIP BLANK	Lab ID:	40187578001	Collected: 05/14/19 09:15			Received: 05/14/19 15:39 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 12:37	79-34-5	
Tetrachloroethene	<0.33	ug/L	1.1	0.33	1		05/16/19 12:37	127-18-4	
Toluene	<0.17	ug/L	5.0	0.17	1		05/16/19 12:37	108-88-3	
1,2,3-Trichlorobenzene	<0.63	ug/L	5.0	0.63	1		05/16/19 12:37	87-61-6	
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		05/16/19 12:37	120-82-1	
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		05/16/19 12:37	71-55-6	
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		05/16/19 12:37	79-00-5	
Trichloroethene	<0.26	ug/L	1.0	0.26	1		05/16/19 12:37	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		05/16/19 12:37	75-69-4	
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		05/16/19 12:37	96-18-4	
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		05/16/19 12:37	95-63-6	
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		05/16/19 12:37	108-67-8	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/16/19 12:37	75-01-4	
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		05/16/19 12:37	179601-23-1	
o-Xylene	<0.26	ug/L	1.0	0.26	1		05/16/19 12:37	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	87	%	70-130		1		05/16/19 12:37	460-00-4	
Dibromofluoromethane (S)	104	%	70-130		1		05/16/19 12:37	1868-53-7	
Toluene-d8 (S)	95	%	70-130		1		05/16/19 12:37	2037-26-5	
Sample: W-1	Lab ID:	40187578002	Collecte	d: 05/14/19	9 12:11	Received: 05	5/14/19 15:39 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytical	Method: SM 35	500-Cr B (C	Online)					
Chromium, Hexavalent	4.4	mg/L	0.43	0.13	25		05/15/19 09:15		
Sample: W-1A	Lab ID:	40187578003	Collecte	d: 05/14/19	9 11:58	Received: 05	5/14/19 15:39 M	atrix: Water	
-	5								. .
Parameters	Results	Units	LOQ	LOD		Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytical	Method: SM 35	500-Cr B (C	nline)					
Chromium, Hexavalent	1.8	mg/L	0.17	0.051	10		05/15/19 09:15		
Sample: MW-3R	Lab ID:	40187578004	Collecte	d: 05/14/19	9 12:41	Received: 05	5/14/19 15:39 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytical	Method: SM 35	500-Cr B (C	Online)					
Chromium, Hexavalent	0.088	ma/l	0.043	0.013	2.5		05/15/19 09:15		
	0.000		0.010	0.010			30, 10, 10, 00, 10		

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 401

No ·	10187578	
INO.:	4010/3/0	

Sample: MW-5	Lab ID: 4	40187578005	Collecte	d: 05/14/19	9 13:43	Received: 05	/14/19 15:39 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytical M	/lethod: SM 35	00-Cr B (C	Online)					
Chromium, Hexavalent	<0.051	mg/L	0.17	0.051	10		05/15/19 09:15		D3
Sample: MW-6	Lab ID: 4	40187578006	Collecte	d: 05/14/19	9 11:27	Received: 05	/14/19 15:39 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytical M	/lethod: SM 35	00-Cr B (C	Online)					
Chromium, Hexavalent	1.2	mg/L	0.17	0.051	10		05/15/19 09:15		
Sample: MW-9	Lab ID: 4	40187578007	Collecte	d: 05/14/19	9 09:56	Received: 05	/14/19 15:39 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytical M	/lethod: SM 35	00-Cr B (C	nline)					
Chromium, Hexavalent	<0.051	mg/L	0.17	0.051	10		05/15/19 09:15		D3
Sample: MW-10	Lab ID: 4	40187578008	Collecte	d: 05/14/19	9 10:45	Received: 05	/14/19 15:39 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytical M	/lethod: SM 35	00-Cr B (C	Online)					
Chromium, Hexavalent	1.5	mg/L	0.43	0.13	25		05/15/19 09:15		
Sample: ZINC SUMP	Lab ID: 4	40187578009	Collecte	d: 05/14/19	9 13:08	Received: 05	/14/19 15:39 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical M	lethod: EPA 8	260						
Benzene	<0.25	ug/L	1.0	0.25	1		05/16/19 12:59	71-43-2	
Bromobenzene	<0.24	ug/L	1.0	0.24	1		05/16/19 12:59	108-86-1	
Bromochloromethane	<0.36	ug/L	5.0	0.36	1		05/16/19 12:59	74-97-5	
Bromodichloromethane	<0.36	ug/L	1.2	0.36	1		05/16/19 12:59	75-27-4	
Bromotorm	<4.0	ug/L	13.2	4.0	1		05/16/19 12:59	/5-25-2	D4
Bromomethane	<0.97	ug/L	5.0	0.97	1		05/16/19 12:59	14-83-9	K1
	<0./1	ug/∟	2.4	0.71	1		05/16/19 12:59	104-51-8	
sec-Butylbenzene	<0.85	ug/∟	5.0	0.85	1		05/16/19 12:59	135-98-8	
Carbon totrachlarida	<0.30	ug/L	1.0	0.30	1		05/10/19 12:59	90-00-0 56 22 5	
Chlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 12:59	108-90-7	

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

Sample: ZINC SUMP	Lab ID: 40187578009 Collected: 05/14/19 13:08 Received: 05/14/19 15:39 N					atrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	I Method: EPA 8	260						
Chloroethane	<1.3	ug/L	5.0	1.3	1		05/16/19 12:59	75-00-3	R1
Chloroform	<1.3	ug/L	5.0	1.3	1		05/16/19 12:59	67-66-3	
Chloromethane	<2.2	ug/L	7.3	2.2	1		05/16/19 12:59	74-87-3	R1
2-Chlorotoluene	<0.93	ug/L	5.0	0.93	1		05/16/19 12:59	95-49-8	
4-Chlorotoluene	<0.76	ug/L	2.5	0.76	1		05/16/19 12:59	106-43-4	
1,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		05/16/19 12:59	96-12-8	
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		05/16/19 12:59	124-48-1	
1,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1		05/16/19 12:59	106-93-4	
Dibromomethane	<0.94	ug/L	3.1	0.94	1		05/16/19 12:59	74-95-3	
1,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1		05/16/19 12:59	95-50-1	
1,3-Dichlorobenzene	<0.63	ug/L	2.1	0.63	1		05/16/19 12:59	541-73-1	
1,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1		05/16/19 12:59	106-46-7	
Dichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1		05/16/19 12:59	75-71-8	R1
1,1-Dichloroethane	0.68J	ug/L	1.0	0.27	1		05/16/19 12:59	75-34-3	
1,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 12:59	107-06-2	M1
1,1-Dichloroethene	1.2	ug/L	1.0	0.24	1		05/16/19 12:59	75-35-4	R1
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1		05/16/19 12:59	156-59-2	
trans-1,2-Dichloroethene	<1.1	ug/L	3.6	1.1	1		05/16/19 12:59	156-60-5	
1,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1		05/16/19 12:59	78-87-5	
1,3-Dichloropropane	<0.83	ug/L	2.8	0.83	1		05/16/19 12:59	142-28-9	
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		05/16/19 12:59	594-20-7	
1,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1		05/16/19 12:59	563-58-6	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		05/16/19 12:59	10061-01-5	
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		05/16/19 12:59	10061-02-6	
Disopropyl ether	<1.9	ug/L	6.3	1.9	1		05/16/19 12:59	108-20-3	M1
Ethylbenzene	<0.22	ug/L	1.0	0.22	1		05/16/19 12:59	100-41-4	
Hexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1		05/16/19 12:59	87-68-3	
Isopropylbenzene (Cumene)	<0.39	ug/L	5.0	0.39	1		05/16/19 12:59	98-82-8	
p-Isopropyltoluene	<0.80	ug/L	2.7	0.80	1		05/16/19 12:59	99-87-6	
Methylene Chloride	<0.58	ug/L	5.0	0.58	1		05/16/19 12:59	75-09-2	
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		05/16/19 12:59	1634-04-4	
Naphthalene	<1.2	ug/L	5.0	1.2	1		05/16/19 12:59	91-20-3	
n-Propyibenzene	<0.81	ug/L	5.0	0.81	1		05/16/19 12:59	103-65-1	
Styrene	<0.47	ug/L	1.6	0.47	1		05/16/19 12:59	100-42-5	
1,1,1,2- letrachloroethane	<0.27	ug/L	1.0	0.27	1		05/16/19 12:59	630-20-6	
1,1,2,2- letrachloroethane	<0.28	ug/L	1.0	0.28	1		05/16/19 12:59	79-34-5	
Tetrachloroethene	0.45J	ug/L	1.1	0.33	1		05/16/19 12:59	127-18-4	
Ioluene	<0.17	ug/L	5.0	0.17	1		05/16/19 12:59	108-88-3	
1,2,3-Trichlorobenzene	<0.63	ug/L	5.0	0.63	1		05/16/19 12:59	87-61-6	
1,2,4-Trichlere athene	<0.95	ug/L	5.0	0.95	1		05/16/19 12:59	120-82-1	
	14.1	ug/L	1.0	0.24	1		05/16/19 12:59	71-55-6	
1,1,2-I richloroethane	<0.55	ug/∟	5.0	0.55	1		05/16/19 12:59	79-00-5	
Triphlereflueremethere	<0.26	ug/L	1.0	0.26	1		05/16/19 12:59	79-01-0 75 60 4	D4
	<0.21	ug/∟	1.0	0.21	1		05/16/19 12:59	10-09-4	K.I
1,2,3-I richioropropane	<0.59	ug/L	5.0	0.59	1		05/16/19 12:59	90-18-4	
1,∠,4-Trimetnyibenzene	<0.84	ug/∟	2.8	0.84	1		05/16/19 12:59	92-63-6	

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 401

<u>.</u>	40187578	

Sample: ZINC SUMP	Lab ID:	40187578009	Collected	: 05/14/19	9 13:08	Received: 05	/14/19 15:39 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		05/16/19 12:59	108-67-8	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/16/19 12:59	75-01-4	R1
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		05/16/19 12:59	179601-23-1	
o-Xylene	<0.26	ug/L	1.0	0.26	1		05/16/19 12:59	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	85	%	70-130		1		05/16/19 12:59	460-00-4	
Dibromofluoromethane (S)	103	%	70-130		1		05/16/19 12:59	1868-53-7	
Toluene-d8 (S)	96	%	70-130		1		05/16/19 12:59	2037-26-5	
Chromium, Hexavalent	Analytical	Method: SM 35	600-Cr B (On	line)					
Chromium, Hexavalent	8.1	mg/L	0.86	0.26	50		05/15/19 09:15		
335.4 Cyanide, Total	Analytical	Method: EPA 3	35.4 Prepar	ation Meth	od: EPA	335.4			
Cyanide	0.10	mg/L	0.012	0.0037	1	05/23/19 08:16	05/23/19 16:40	57-12-5	

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

$\sim \sim$	Detal	~

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Associated Lab Samples: 40187578001, 40187578009 Matrix: Water Associated Lab Samples: 40187578001, 40187578009 Matrix: Water Associated Lab Samples: 40187578001, 40187578009 Matrix: Water 1,11.7:Tetrachhoroethane ugL <0.27 1.0 05/16/19 10:23 1,11.2-Tetrachhoroethane ugL <0.28 1.0 05/16/19 10:23 1,12.2:Tetrachhoroethane ugL <0.24 1.0 05/16/19 10:23 1,10-Dichloroethane ugL <0.24 1.0 05/16/19 10:23 1,2.3:Trichloroptopane ugL <0.64 1.8 05/16/19 10:23 1,2.3:Trichloroptopane ugL <0.83 2.8 05/16/19 10:23 1,2.3:Trichloroptopane ugL <0.83 2.8 05/16/19 10:23 1,2.4:Trichloroptopane ugL <0.83 2.8 05/16/19 10:23 1,2.3:Trichloroptopane ugL <0.83 2.8 05/16/19 10:23 1,2.4:Trichloroptopane ugL <0.83	QC Batch: 321411		Analysis Met	hod: El	PA 8260	-
Resolution Nature Autority of Computer Consequence Associated Lab Samples: 40187578001, 40187578009 Matrix: Water Associated Lab Samples: 40187578001, 40187578009 Elank Reporting 1.1,12-Tetrachloroethane ugL 40.27 1.0 05/16/19 10:23 1.1,12-Tetrachloroethane ugL 40.24 1.0 05/16/19 10:23 1.1,12-Tetrachloroethane ugL 40.25 1.0 05/16/19 10:23 1.1,12-Tetrachloroethane ugL 40.24 1.0 05/16/19 10:23 1.1-Dichloroethane ugL 40.24 1.0 05/16/19 10:23 1.2,2-Trichloropene ugL 40.35 5.0 05/16/19 10:23 1.2,3-Trichloropopane ugL 40.35 5.0 05/16/19 10:23 1.2,4-Trinethylbrezne ugL 40.33 2.8 05/16/19 10:23 1.2,2-Trichloropopane ugL 40.33 2.8 05/16/19 10:23 1.2,2-Dichrorethane (EDB) ugL 40.33 2.8 05/16/19 10:23 1.2,2-Dichroethane ugL <td< td=""><td>QC Batch Method: EPA 8260</td><td></td><td colspan="2">Analysis Description:</td><td>260 MSV</td><td></td></td<>	QC Batch Method: EPA 8260		Analysis Description:		260 MSV	
Associated Lab Samples: 4013/51000 METHOD BLANK: 1866651 Associated Lab Samples: 4013/578001 Parameter Units 1.1.12-Tetrachtoroethane ug/L 0.24 1.0 0.711/chioroethane ug/L 0.24 1.0 06/16/19 10:23 1.1.2-Tetrachtoroethane ug/L -0.24 1.0 06/16/19 10:23 1.2.3-Trichtoroethane ug/L -0.24 1.0 06/16/19 10:23 1.2.3-Trichtoroberzene ug/L -0.54 1.8 06/16/19 10:23 1.2.4-Trichtoroberzene ug/L -0.84 2.8 06/16/19 10:23 1.2.4-Trichtoroberzene ug/L -0.28 1.0 06/16/19 10:23 1.2.4-Trichtoroperzene ug/L -0.28 1.0 06/16/19 10:23		79001 40197579000	/	0		
METHOD BLANK: 1866651 Matrix: Water Associated Lab Samples: 40187578001, 40187578001 Elank Reporting Limit Analyzed Qualiflers 1,1,1,2-Tetrachloroethane ug/L -0.27 1.0 05/16/19 10.23 Qualiflers 1,1,2-Tetrachloroethane ug/L -0.28 1.0 05/16/19 10.23 Qualiflers 1,1-Dichloroethane ug/L -0.24 1.0 05/16/19 10.23 Qualiflers 1,1-Dichloroethane ug/L -0.24 1.0 05/16/19 10.23 Qualiflers 1,2.3-Trichloropopane ug/L -0.63 5.0 05/16/19 10.23 Qualiflers 1,2.4-Trinethybenzene ug/L -0.63 5.0 05/16/19 10.23 Qualiflers 1,2-Dichlorobenzene ug/L -0.83 2.8 05/16/19 10.23 Qualiflers 1,2-Dichlorobenzene ug/L -0.83 2.8 05/16/19 10.23 Qualiflers 1,2-Dichloropopane ug/L -0.83 2.8 05/16/19 10.23 Qualiflers 1,2-Dichloropopane <td>Associated Lab Samples. 401073</td> <td>76001, 40167576009</td> <td></td> <td></td> <td></td> <td></td>	Associated Lab Samples. 401073	76001, 40167576009				
Associated Lab Samples: 40187578001, 40187578001 Blank Result Reporting Linit Analyzed Analyzed Qualifiers 1,1,1,2-Tetrachloroethane ug/L <0.27	METHOD BLANK: 1866651		Matrix:	Water		
Blank Parameter Reporting Unit Analyzed Analyzed Qualifiers 11.1.2-Tertachioresthane ugL <0.27	Associated Lab Samples: 401875	78001, 40187578009				
Parameter Units Result Linit Analyzed Qualifiers 1,1,1,2-Tetrachloroethane upL -0.27 1.0 05/16/19 10:23 1,1,1-Trichloroethane upL -0.25 5.0 05/16/19 10:23 1,1.2-Tetrachloroethane upL -0.25 5.0 05/16/19 10:23 1,1-Dichloroethane upL -0.24 1.0 05/16/19 10:23 1,1-Dichloroethane upL -0.55 5.0 05/16/19 10:23 1,2.3-Trichloroptopane upL -0.59 5.0 05/16/19 10:23 1,2.3-Trichloroptopane upL -0.63 5.0 05/16/19 10:23 1,2.4-Trichlorobenzene upL -0.83 2.8 05/16/19 10:23 1,2.4-Trichlorobenzene upL -0.83 2.8 05/16/19 10:23 1,2.4-Trichloroptopane upL -0.83 2.8 05/16/19 10:23 1,2-Dichloroethazene upL -0.28 1.0 05/16/19 10:23 1,2-Dichloroethazene upL -0.83 2.8 05/16/19 10:23			Blank	Reporting		
1.1.2. Tetrachloroethane ug/L 0.27 1.0 05/16/19 10:23 1.1.1.7 Trichloroethane ug/L 0.24 1.0 05/16/19 10:23 1.1.2. Trichloroethane ug/L 0.28 1.0 05/16/19 10:23 1.1.2. Trichloroethane ug/L 0.27 1.0 05/16/19 10:23 1.1.Dichloroethane ug/L 0.27 1.0 05/16/19 10:23 1.1.Dichloroethene ug/L 0.24 1.0 05/16/19 10:23 1.2.3. Trichlorobenzene ug/L 0.56 5.0 05/16/19 10:23 1.2.3. Trichlorobenzene ug/L 0.58 5.0 05/16/19 10:23 1.2.4.Trimethylbenzene ug/L 0.83 2.8 05/16/19 10:23 1.2.Dichlorobenzene ug/L 0.83 2.8 05/16/19 10:23 1.2.Dichlorobenzene ug/L 0.087 2.9 05/16/19 10:23 1.2.Dichloroporpane ug/L 0.087 2.9 05/16/19 10:23 1.2.Dichloropropane ug/L 0.87 2.9 05/16/19 10:23 1.3.Dic	Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-richicorostianae ug/L <0.27						
1,1,2,1,2,2-Terachioroethane ug/L <0,24	1,1,1,2-Tetrachioroethane	ug/L	<0.27	1.0	05/16/19 10:23	
1,1,2-richtoroethane ug/L <0.25		ug/L	<0.24	1.0	05/10/19 10.23	
1,1-2.hichoroberhaneug/L<0.355.00.00.01310.231,1-Dichoroethaneug/L<0.27	1, 1, 2, 2- Tetrachioroethane	ug/L	<0.28	1.0	05/16/19 10:23	
1,1-Dichorosetheneug/L $< 0.2/$ 1,00.6/16/1910:231,1-Dichoropropeneug/L < 0.54 1.805/16/1910:231,2,3-Trichlorobenzeneug/L < 0.59 5.005/16/1910:231,2,3-Trichlorobenzeneug/L < 0.59 5.005/16/1910:231,2,4-Trinethylbenzeneug/L < 0.84 2.805/16/1910:231,2-Dichorobenzeneug/L < 0.84 2.805/16/1910:231,2-Dibromo-3-chloropropaneug/L < 0.84 2.805/16/1910:231,2-Dichorobenzeneug/L < 0.83 2.805/16/1910:231,2-Dichorobenzeneug/L < 0.28 1.005/16/1910:231,2-Dichorobenzeneug/L < 0.28 1.005/16/1910:231,3-Dichorobenzeneug/L < 0.28 1.005/16/1910:231,3-Dichorobenzeneug/L < 0.87 2.905/16/1910:231,3-Dichorobenzeneug/L < 0.83 2.805/16/1910:231,3-Dichoropropaneug/L < 0.83 2.805/16/1910:232,2-Dichorobenzeneug/L < 0.83 2.805/16/1910:232,2-Dichoropropaneug/L < 0.83 2.805/16/1910:232,2-Dichoropropaneug/L < 0.36 5.005/16/1910:232,2-Dichoropropaneug/L < 0.76 2.505/16/1910:232,2-Dichoropropaneug/L $< 0.$	1,1,2-Trichloroethane	ug/L	<0.55	5.0	05/16/19 10:23	
1,1-Dichoropropene ug/L <0.24	1,1-Dichloroethane	ug/L	<0.27	1.0	05/16/19 10:23	
1,1-Dichloropropene ug/L <0.54	1,1-Dichloroethene	ug/L	<0.24	1.0	05/16/19 10:23	
1,2.3-Trichloroberzene ug/L <0.63	1,1-Dichloropropene	ug/L	<0.54	1.8	05/16/19 10:23	
1,2,3-Tinchioropropane ug/L <0.59	1,2,3-Irichlorobenzene	ug/L	<0.63	5.0	05/16/19 10:23	
1,2,4-Tinchlorobenzene ug/L <0.95	1,2,3-Trichloropropane	ug/L	<0.59	5.0	05/16/19 10:23	
1,2,4 Trimethylbenzene ug/L <0.84	1,2,4-Trichlorobenzene	ug/L	<0.95	5.0	05/16/19 10:23	
1,2-Dibromo-3-chloropropane ug/L <1.8	1,2,4-Trimethylbenzene	ug/L	<0.84	2.8	05/16/19 10:23	
1,2-Dibromoethane (EDB) ug/L <0.83	1,2-Dibromo-3-chloropropane	ug/L	<1.8	5.9	05/16/19 10:23	
1,2-Dichlorobenzene ug/L <0.71	1,2-Dibromoethane (EDB)	ug/L	<0.83	2.8	05/16/19 10:23	
1,2-Dichloroethane ug/L <0.28	1,2-Dichlorobenzene	ug/L	<0.71	2.4	05/16/19 10:23	
1,2-Dichloropropane ug/L <0.28	1,2-Dichloroethane	ug/L	<0.28	1.0	05/16/19 10:23	
1,3-5.Trimethylbenzene ug/L <0.87	1,2-Dichloropropane	ug/L	<0.28	1.0	05/16/19 10:23	
1,3-Dichlorobenzene ug/L <0.63	1,3,5-Trimethylbenzene	ug/L	<0.87	2.9	05/16/19 10:23	
1,3-Dichloropropane ug/L <0.83	1,3-Dichlorobenzene	ug/L	<0.63	2.1	05/16/19 10:23	
1,4-Dichlorobenzene ug/L <0.94	1,3-Dichloropropane	ug/L	<0.83	2.8	05/16/19 10:23	
2,2-Dichloropropane ug/L <2.3	1,4-Dichlorobenzene	ug/L	<0.94	3.1	05/16/19 10:23	
2-Chlorotoluene ug/L <0.93	2,2-Dichloropropane	ug/L	<2.3	7.6	05/16/19 10:23	
4-Chlorotoluene ug/L <0.76	2-Chlorotoluene	ug/L	<0.93	5.0	05/16/19 10:23	
Benzene ug/L <0.25 1.0 05/16/19 10:23 Bromobenzene ug/L <0.24	4-Chlorotoluene	ug/L	<0.76	2.5	05/16/19 10:23	
Bromobenzene ug/L <0.24 1.0 05/16/19 10:23 Bromochloromethane ug/L <0.36	Benzene	ug/L	<0.25	1.0	05/16/19 10:23	
Bromochloromethane ug/L <0.36 5.0 05/16/19 10:23 Bromodichloromethane ug/L <0.36	Bromobenzene	ug/L	<0.24	1.0	05/16/19 10:23	
Bromodichloromethane ug/L <0.36 1.2 05/16/19 10:23 Bromoform ug/L <4.0	Bromochloromethane	ug/L	<0.36	5.0	05/16/19 10:23	
Bromoformug/L<4.013.205/16/19 10:23Bromomethaneug/L<0.97	Bromodichloromethane	ug/L	<0.36	1.2	05/16/19 10:23	
Bromomethaneug/L <0.97 5.0 $05/16/19$ $10:23$ Carbon tetrachlorideug/L <0.17 1.0 $05/16/19$ $10:23$ Chlorobenzeneug/L <1.3 5.0 $05/16/19$ $10:23$ Chloroethaneug/L <1.3 5.0 $05/16/19$ $10:23$ Chloromethaneug/L <1.3 5.0 $05/16/19$ $10:23$ Chloromethaneug/L <2.2 7.3 $05/16/19$ $10:23$ Chloromethaneug/L <2.2 7.3 $05/16/19$ $10:23$ cis-1,2-Dichloroetheneug/L <0.27 1.0 $05/16/19$ $10:23$ cis-1,3-Dichloropropeneug/L <3.6 12.1 $05/16/19$ $10:23$ Dibromochloromethaneug/L <2.6 8.7 $05/16/19$ $10:23$ Dibromothlaneug/L <0.94 3.1 $05/16/19$ $10:23$ Dichlorodifluoromethaneug/L <0.50 5.0 $05/16/19$ $10:23$ Disopropyl etherug/L <0.50 5.0 $05/16/19$ $10:23$ Dispropyl etherug/L <0.22 4.0 $0.5/16/19$ $10:23$	Bromoform	ug/L	<4.0	13.2	05/16/19 10:23	
Carbon tetrachlorideug/L <0.17 1.0 $05/16/19$ $10:23$ Chlorobenzeneug/L <0.71 2.4 $05/16/19$ $10:23$ Chloroethaneug/L <1.3 5.0 $05/16/19$ $10:23$ Chloromethaneug/L <1.3 5.0 $05/16/19$ $10:23$ Chloromethaneug/L <2.2 7.3 $05/16/19$ $10:23$ cis-1,2-Dichloroetheneug/L <0.27 1.0 $05/16/19$ $10:23$ cis-1,3-Dichloropropeneug/L <3.6 12.1 $05/16/19$ $10:23$ Dibromomethaneug/L <2.6 8.7 $05/16/19$ $10:23$ Dibromomethaneug/L <0.94 3.1 $05/16/19$ $10:23$ Dibromomethaneug/L <0.50 5.0 $05/16/19$ $10:23$ Dibromomethaneug/L <0.50 5.0 $05/16/19$ $10:23$ Disopropyl etherug/L <0.50 5.0 $05/16/19$ $10:23$ Dispropyl etherug/L <0.22 4.0 $0.5/16/19$ $10:23$	Bromomethane	ug/L	<0.97	5.0	05/16/19 10:23	
Chlorobenzeneug/L<0.712.405/16/19 10:23Chloroethaneug/L<1.3	Carbon tetrachloride	ug/L	<0.17	1.0	05/16/19 10:23	
Chloroethaneug/L<1.35.0 $05/16/19$ $10:23$ Chloroformug/L<1.3	Chlorobenzene	ug/L	<0.71	2.4	05/16/19 10:23	
Chloroform ug/L <1.3 5.0 05/16/19 10:23 Chloromethane ug/L <2.2	Chloroethane	ug/L	<1.3	5.0	05/16/19 10:23	
Chloromethane ug/L <2.2 7.3 05/16/19 10:23 cis-1,2-Dichloroethene ug/L <0.27	Chloroform	ug/L	<1.3	5.0	05/16/19 10:23	
cis-1,2-Dichloroethene ug/L <0.27	Chloromethane	ug/L	<2.2	7.3	05/16/19 10:23	
cis-1,3-Dichloropropene ug/L <3.6	cis-1,2-Dichloroethene	ug/L	<0.27	1.0	05/16/19 10:23	
Dibromochloromethane ug/L <2.6 8.7 05/16/19 10:23 Dibromomethane ug/L <0.94	cis-1,3-Dichloropropene	ug/L	<3.6	12.1	05/16/19 10:23	
Dibromomethane ug/L <0.94 3.1 05/16/19 10:23 Dichlorodifluoromethane ug/L <0.50	Dibromochloromethane	ug/L	<2.6	8.7	05/16/19 10:23	
Dichlorodifluoromethane ug/L <0.50 5.0 05/16/19 10:23 Diisopropyl ether ug/L <1.9	Dibromomethane	ug/L	<0.94	3.1	05/16/19 10:23	
Disopropyl ether ug/L <1.9 6.3 05/16/19 10:23 Ethylpopropyl ug/L <0.2	Dichlorodifluoromethane	ug/L	<0.50	5.0	05/16/19 10:23	
	Diisopropyl ether	ua/L	<1.9	6.3	05/16/19 10:23	
	Ethylbenzene	ug/L	<0.22	1.0	05/16/19 10:23	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

METHOD BLANK: 186665	51	Matrix:	Water		
Associated Lab Samples:	40187578001, 40187578009				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	ug/L	<1.2	5.0	05/16/19 10:23	
Isopropylbenzene (Cumene)) ug/L	<0.39	5.0	05/16/19 10:23	
m&p-Xylene	ug/L	<0.47	2.0	05/16/19 10:23	
Methyl-tert-butyl ether	ug/L	<1.2	4.2	05/16/19 10:23	
Methylene Chloride	ug/L	<0.58	5.0	05/16/19 10:23	
n-Butylbenzene	ug/L	<0.71	2.4	05/16/19 10:23	
n-Propylbenzene	ug/L	<0.81	5.0	05/16/19 10:23	
Naphthalene	ug/L	<1.2	5.0	05/16/19 10:23	
o-Xylene	ug/L	<0.26	1.0	05/16/19 10:23	
p-Isopropyltoluene	ug/L	<0.80	2.7	05/16/19 10:23	
sec-Butylbenzene	ug/L	<0.85	5.0	05/16/19 10:23	
Styrene	ug/L	<0.47	1.6	05/16/19 10:23	
tert-Butylbenzene	ug/L	<0.30	1.0	05/16/19 10:23	
Tetrachloroethene	ug/L	<0.33	1.1	05/16/19 10:23	
Toluene	ug/L	<0.17	5.0	05/16/19 10:23	
trans-1,2-Dichloroethene	ug/L	<1.1	3.6	05/16/19 10:23	
trans-1,3-Dichloropropene	ug/L	<4.4	14.6	05/16/19 10:23	
Trichloroethene	ug/L	<0.26	1.0	05/16/19 10:23	
Trichlorofluoromethane	ug/L	<0.21	1.0	05/16/19 10:23	
Vinyl chloride	ug/L	<0.17	1.0	05/16/19 10:23	
4-Bromofluorobenzene (S)	%	93	70-130	05/16/19 10:23	
Dibromofluoromethane (S)	%	103	70-130	05/16/19 10:23	
Toluene-d8 (S)	%	93	70-130	05/16/19 10:23	

LABORATORY CONTROL SAMPLE: 1866652

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		49.8	100	70-130	
1,1,1-Trichloroethane	ug/L	50	49.0	98	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	37.6	75	70-130	
1,1,2-Trichloroethane	ug/L	50	39.7	79	70-130	
1,1-Dichloroethane	ug/L	50	41.8	84	73-150	
1,1-Dichloroethene	ug/L	50	61.6	123	73-138	
1,1-Dichloropropene	ug/L	50	46.4	93	70-130	
1,2,3-Trichlorobenzene	ug/L	50	41.6	83	70-130	
1,2,3-Trichloropropane	ug/L	50	36.2	72	70-130	
1,2,4-Trichlorobenzene	ug/L	50	44.2	88	70-130	
1,2,4-Trimethylbenzene	ug/L	50	46.9	94	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	34.6	69	64-129	
1,2-Dibromoethane (EDB)	ug/L	50	40.5	81	70-130	
1,2-Dichlorobenzene	ug/L	50	46.3	93	70-130	
1,2-Dichloroethane	ug/L	50	37.7	75	75-140	
1,2-Dichloropropane	ug/L	50	44.6	89	73-135	
1,3,5-Trimethylbenzene	ug/L	50	47.9	96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

LABORATORY CONTROL SAMPLE: 1866652

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.3-Dichlorobenzene	ua/L		48.4	97	70-130	
1,3-Dichloropropane	ug/L	50	39.8	80	70-130	
1,4-Dichlorobenzene	ug/L	50	45.5	91	70-130	
2,2-Dichloropropane	ug/L	50	53.5	107	70-130	
2-Chlorotoluene	ug/L	50	45.9	92	70-130	
4-Chlorotoluene	ug/L	50	47.5	95	70-130	
Benzene	ug/L	50	40.2	80	70-130	
Bromobenzene	ug/L	50	45.7	91	70-130	
Bromochloromethane	ug/L	50	44.7	89	70-130	
Bromodichloromethane	ug/L	50	44.2	88	70-130	
Bromoform	ug/L	50	44.2	88	68-129	
Bromomethane	ug/L	50	62.8	126	18-159	
Carbon tetrachloride	ug/L	50	48.3	97	70-130	
Chlorobenzene	ug/L	50	47.6	95	70-130	
Chloroethane	ug/L	50	47.2	94	53-147	
Chloroform	ug/L	50	45.3	91	74-136	
Chloromethane	ug/L	50	44.0	88	29-115	
cis-1,2-Dichloroethene	ug/L	50	46.0	92	70-130	
cis-1,3-Dichloropropene	ug/L	50	45.9	92	70-130	
Dibromochloromethane	ug/L	50	41.0	82	70-130	
Dibromomethane	ug/L	50	42.9	86	70-130	
Dichlorodifluoromethane	ug/L	50	31.0	62	10-130	
Diisopropyl ether	ug/L	50	37.7	75	70-130	
Ethylbenzene	ug/L	50	50.7	101	80-124	
Hexachloro-1,3-butadiene	ug/L	50	46.6	93	70-130	
Isopropylbenzene (Cumene)	ug/L	50	54.7	109	70-130	
m&p-Xylene	ug/L	100	104	104	70-130	
Methyl-tert-butyl ether	ug/L	50	57.4	115	54-137	
Methylene Chloride	ug/L	50	56.6	113	73-138	
n-Butylbenzene	ug/L	50	49.1	98	70-130	
n-Propylbenzene	ug/L	50	48.4	97	70-130	
Naphthalene	ug/L	50	35.6	71	70-130	
o-Xylene	ug/L	50	53.9	108	70-130	
p-Isopropyltoluene	ug/L	50	50.1	100	70-130	
sec-Butylbenzene	ug/L	50	50.1	100	70-130	
Styrene	ug/L	50	52.4	105	70-130	
tert-Butylbenzene	ug/L	50	48.4	97	70-130	
Tetrachloroethene	ug/L	50	46.0	92	70-130	
Toluene	ug/L	50	45.1	90	80-126	
trans-1,2-Dichloroethene	ug/L	50	59.7	119	73-145	
trans-1,3-Dichloropropene	ug/L	50	39.0	78	70-130	
Trichloroethene	ug/L	50	46.9	94	70-130	
Trichlorofluoromethane	ug/L	50	55.4	111	76-147	
Vinyl chloride	ug/L	50	46.9	94	51-120	
4-Bromofluorobenzene (S)	%			103	70-130	
Dibromofluoromethane (S)	%			99	70-130	
Toluene-d8 (S)	%			94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

MATRIX SPIKE & MATRIX S	PIKE DUPI	1867198										
			MS	MSD								
		40187578009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	<0.27	50	50	45.0	48.1	90	96	70-130	7	20	
1,1,1-Trichloroethane	ug/L	14.1	50	50	54.1	56.2	80	84	70-130	4	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.28	50	50	38.7	39.8	77	80	70-130	3	20	
1,1,2-Trichloroethane	ug/L	<0.55	50	50	39.4	41.0	79	82	70-137	4	20	
1,1-Dichloroethane	ug/L	0.68J	50	50	38.5	41.1	76	81	73-153	7	20	
1,1-Dichloroethene	ug/L	1.2	50	50	49.5	63.4	97	124	73-138	25	20	R1
1,1-Dichloropropene	ug/L	<0.54	50	50	41.6	45.9	83	92	70-130	10	20	
1,2,3-Trichlorobenzene	ug/L	<0.63	50	50	38.5	41.3	77	83	70-130	7	20	
1,2,3-Trichloropropane	ug/L	<0.59	50	50	44.7	44.5	89	89	70-130	0	20	
1,2,4-Trichlorobenzene	ug/L	<0.95	50	50	40.1	43.5	80	87	70-130	8	20	
1,2,4-Trimethylbenzene	ug/L	<0.84	50	50	42.1	46.5	84	93	70-130	10	20	
1,2-Dibromo-3-	ug/L	<1.8	50	50	35.9	37.4	72	75	58-129	4	20	
chloropropane	•											
1,2-Dibromoethane (EDB)	ug/L	<0.83	50	50	41.2	41.7	82	83	70-130	1	20	
1,2-Dichlorobenzene	ug/L	<0.71	50	50	41.6	44.8	83	90	70-130	7	20	
1,2-Dichloroethane	ug/L	<0.28	50	50	36.9	38.4	74	77	75-140	4	20	M1
1,2-Dichloropropane	ug/L	<0.28	50	50	39.5	41.9	79	84	71-138	6	20	
1,3,5-Trimethylbenzene	ug/L	<0.87	50	50	42.2	46.2	84	92	70-130	9	20	
1,3-Dichlorobenzene	ug/L	<0.63	50	50	43.7	47.1	87	94	70-130	7	20	
1,3-Dichloropropane	ug/L	<0.83	50	50	39.3	41.5	79	83	70-130	5	20	
1,4-Dichlorobenzene	ug/L	<0.94	50	50	41.0	44.7	82	89	70-130	9	20	
2,2-Dichloropropane	ug/L	<2.3	50	50	48.4	52.6	97	105	70-130	8	20	
2-Chlorotoluene	ug/L	<0.93	50	50	40.5	44.4	81	89	70-130	9	20	
4-Chlorotoluene	ug/L	<0.76	50	50	42.1	46.0	84	92	70-130	9	20	
Benzene	ug/L	<0.25	50	50	39.2	42.2	78	84	70-130	7	20	
Bromobenzene	ug/L	<0.24	50	50	42.5	45.7	85	91	70-130	7	20	
Bromochloromethane	ug/L	<0.36	50	50	41.6	43.0	83	86	70-130	3	20	
Bromodichloromethane	ug/L	<0.36	50	50	40.9	42.3	82	85	70-130	3	20	
Bromoform	ug/L	<4.0	50	50	38.9	40.6	78	81	68-129	4	20	
Bromomethane	ug/L	<0.97	50	50	54.8	69.3	110	139	15-170	23	20	R1
Carbon tetrachloride	ug/L	<0.17	50	50	42.9	47.0	86	94	70-130	9	20	
Chlorobenzene	ug/L	<0.71	50	50	43.2	46.9	86	94	70-130	8	20	
Chloroethane	ug/L	<1.3	50	50	41.2	51.0	82	102	51-148	21	20	R1
Chloroform	ug/L	<1.3	50	50	41.3	43.8	82	87	74-136	6	20	
Chloromethane	ug/L	<2.2	50	50	39.1	48.5	78	97	23-115	22	20	R1
cis-1,2-Dichloroethene	ug/L	<0.27	50	50	42.3	44.4	85	89	70-131	5	20	
cis-1,3-Dichloropropene	ug/L	<3.6	50	50	41.8	43.7	84	87	70-130	4	20	
Dibromochloromethane	ug/L	<2.6	50	50	41.3	43.3	83	87	70-130	5	20	
Dibromomethane	ug/L	<0.94	50	50	40.6	41.2	81	82	70-130	2	20	
Dichlorodifluoromethane	ug/L	<0.50	50	50	26.8	34.2	54	68	10-132	24	20	R1
Diisopropyl ether	ug/L	<1.9	50	50	34.6	36.5	69	73	70-130	5	20	M1
Ethylbenzene	ug/L	<0.22	50	50	44.5	48.8	89	98	80-125	9	20	
Hexachloro-1,3-butadiene	ug/L	<1.2	50	50	50.9	55.1	102	110	70-130	8	20	
lsopropylbenzene (Cumene)	ug/L	<0.39	50	50	45.4	50.0	91	100	70-130	10	20	
m&p-Xylene	ug/L	<0.47	100	100	90.2	99.1	90	99	70-130	9	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

MATRIX SPIKE & MATRIX SP												
			MS	MSD								
		40187578009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Methyl-tert-butyl ether	ug/L	<1.2	50	50	55.4	57.1	111	114	51-145	3	20	
Methylene Chloride	ug/L	<0.58	50	50	46.2	54.1	92	108	73-140	16	20	
n-Butylbenzene	ug/L	<0.71	50	50	44.5	49.5	89	99	70-130	11	20	
n-Propylbenzene	ug/L	<0.81	50	50	42.0	47.1	84	94	70-130	11	20	
Naphthalene	ug/L	<1.2	50	50	36.2	37.3	72	75	70-130	3	20	
o-Xylene	ug/L	<0.26	50	50	45.6	49.2	91	98	70-130	8	20	
p-Isopropyltoluene	ug/L	<0.80	50	50	45.3	50.1	91	100	70-130	10	20	
sec-Butylbenzene	ug/L	<0.85	50	50	44.8	48.9	90	98	70-130	9	20	
Styrene	ug/L	<0.47	50	50	44.2	47.5	88	95	70-130	7	20	
tert-Butylbenzene	ug/L	<0.30	50	50	43.1	48.1	86	96	70-130	11	20	
Tetrachloroethene	ug/L	0.45J	50	50	44.9	48.4	89	96	70-130	7	20	
Toluene	ug/L	<0.17	50	50	42.7	46.5	85	93	80-131	8	20	
trans-1,2-Dichloroethene	ug/L	<1.1	50	50	52.2	59.1	104	118	73-148	12	20	
trans-1,3-Dichloropropene	ug/L	<4.4	50	50	37.5	39.4	75	79	70-130	5	20	
Trichloroethene	ug/L	<0.26	50	50	41.7	45.4	83	91	70-130	9	20	
Trichlorofluoromethane	ug/L	<0.21	50	50	48.4	62.2	97	124	74-147	25	20	R1
Vinyl chloride	ug/L	<0.17	50	50	41.4	51.0	83	102	41-129	21	20	R1
4-Bromofluorobenzene (S)	%						94	96	70-130			
Dibromofluoromethane (S)	%						96	98	70-130			
Toluene-d8 (S)	%						99	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	N1969	A07/010 BET	TER BRITE										
Pace Project No.:	401875	578											
QC Batch:	32139	97		Anal	ysis Metho	d:	SM 3500-Cr	B (Online))				
QC Batch Method:	SM 3	500-Cr B (Oı	nline)	Analy	ysis Descri	ption:	Chromium,	Hexavalen	t by 3500				
Associated Lab San	nples:	401875780 401875780	02, 4018757800 09	3, 4018757	78004, 401	87578005,	401875780	06, 401875	578007, 40	187578008	3,		
METHOD BLANK:	186654	17			Matrix: W	ater							
Associated Lab San	nples:	401875780 401875780	02, 4018757800 09	3, 4018757	78004, 401	87578005,	401875780	06, 401875	578007, 40	187578008	3,		
				Blai	nk	Reporting							
Paran	neter		Units	Res	ult	Limit	Analy	/zed	Qualifier	S			
Chromium, Hexaval	lent		mg/L	<	0.0051	0.01	7 05/15/19	9 09:15					
LABORATORY COM	NTROL	SAMPLE:	1866548			_		_					
Dama			11-26-	Spike	LC	S	LCS	% R	ec				
Paran	neter		Units	Conc.	Res	Suit	% Rec		ts	Qualifiers	_		
Chromium, Hexaval	lent		mg/L	0	.3	0.30	98	8 9	90-110				
MATRIX SPIKE & M	IATRIX	SPIKE DUPL	ICATE: 1866	549	MCD	1866550)						
			40187578002	IVIJ Sniko	IVIJU Sniko	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chromium, Hexaval	ent	mg/L	4.4	7.5	7.5	11.7	11.2	98	91	90-110	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	N1969A07/010 BE	TTER BRITE										
Pace Project No.:	40187578											
QC Batch:	502028		Anal	ysis Metho	d: I	EPA 335.4						
QC Batch Method:	EPA 335.4		Anal	ysis Descri	ption:	335.4 Cyani	de, Total					
Associated Lab Sar	mples: 40187578	009										
METHOD BLANK:	2316680			Matrix: W	ater							
Associated Lab Sar	nples: 40187578	009										
			Bla	nk	Reporting							
Parar	neter	Units	Res	sult	Limit	Analy	/zed	Qualifiers	6			
Cyanide		mg/L	<	0.0037	0.01	2 05/23/19	9 16:34					
LABORATORY CO	NTROL SAMPLE:	2316681										
			Spike	LC	S	LCS	% R	ec				
Parar	neter	Units	Conc.	Res	sult	% Rec	Limi	ts C	Qualifiers	_		
Cyanide		mg/L	0	.1	0.12	116	6 9	90-110 L5				
MATRIX SPIKE & N	ATRIX SPIKE DUF	PLICATE: 2316	682		2316683	5						
			MS	MSD								
		50225774001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cyanide	mg/L	ND	0.1	0.1	0.10	0.11	103	103	90-110	0	20	
MATRIX SPIKE SA	MPLE:	2316684										
			50228	5774011	Spike	MS		MS	% Rec			
Parar	neter	Units	Re	esult	Conc.	Result	%	Rec	Limits		Qualif	iers
Cyanide		mg/L	0.19			0.1 0.23 37			90-110 M0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

PASI-I Pace Analytical Services - Indianapolis

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- L5 LCS recovery exceeded QC limits. Batch accepted based on matrix spike recovery within LCS limits.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187578

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40187578001	TRIP BLANK	EPA 8260	321411		
40187578009	ZINC SUMP	EPA 8260	321411		
40187578002	W-1	SM 3500-Cr B (Online)	321397		
40187578003	W-1A	SM 3500-Cr B (Online)	321397		
40187578004	MW-3R	SM 3500-Cr B (Online)	321397		
40187578005	MW-5	SM 3500-Cr B (Online)	321397		
40187578006	MW-6	SM 3500-Cr B (Online)	321397		
40187578007	MW-9	SM 3500-Cr B (Online)	321397		
40187578008	MW-10	SM 3500-Cr B (Online)	321397		
40187578009	ZINC SUMP	SM 3500-Cr B (Online)	321397		
40187578009	ZINC SUMP	EPA 335.4	502028	EPA 335.4	502239

	(Please Print Clearly)				\sim					Ц	PPER M	IDWEST	<u>REGION</u>	Page 1	of [
Company Na	ame: OMNNI ASSOCIE	Hes)	1	-		, 8		M	N: 612-	607-1700	WI: 920-469-2436	S (algo-	- 1
Branch/Loca	ation: AQUIETON			_	Pace	eAna	liytic							- Lot \$ 75	78
Project Con	tact: Kim Kennedy		1 /			www.p	BCCIBDS.	oom					Quote #:		
Phone:	920.830.6174	F			CH/	AIN	OF	= Cl	USI	IOD	Y		Mail To Contact:	Kin Kennedy	
Project Num	iber: NI9109007 DID		A=N	lone B	=HCL C	=H2SO4	*Presery D=HNO	ation Cod 3 E=DIV	998 Nater F≖	Methanol	G=NaOH		Mail To Company:	OMNNI ASSO	riates
Project Nam	18: RETER ROITE		H=S	odium Bis	ulfate Solu	ition	I=Sodiu	m Thiosulfi	ato J=(Other			Mail To Address:	one systems	DRIVE
Project State	•: W1		FILTI	ERED? S/NO)	Y/N	N	N	Ń				T		APOLETON MIL	1012
Sampled By	(Print): King Kennody		PRESE		Pick	A	B	6					Invoice To Contact:	Internation C	
Sampled By	(Sign): K - K -	/		,==,	24 24	\uparrow							Invoice To Company:	10,	
PO #:		Regulatory			sted	١.							Invoice To Address:	710	
Data Pack	age Options MS/MSD	Ma	trix Code	8	= anba	155		611							
(ы	lable) On your sample	A = Air 3 = Biota	W = Water DW = Drink	ing Water	88	120		8						KKenned y @Onn	ini.com
	A Level IV	C = Charcoal D = Oil C = Soil	GW = Grou SW = Surfa	nd Water ce Water	lyse	158	J	2					Invoice To Phone:	920.735.6900	T
PACE LAB #	your sample	BI = Sludge COLL DATE	WP = Wipe LECTION TIME	MATRO	- W	¥₹	9	5					CLIENT COMMENTS	LAB COMMENTS (Lab Use Only)	Profile #
001	TRUC BUANK	5/14	0915	W			×								1
062	W-1	1	1211	GW		X									
003	W-IA		1158	1		X									
004	MW-3R		1241			X									
005	MWS		1343			X								$-\mathcal{O}\mathcal{O}$	
006	MW-6		1127			X									
007	MW-9		1956			X									
800	MW-10		1045			X									
Dog	Zinc Sump		1308			X	×	X							
													21		
												h			
Rush Tu (Rush `	urnaround Time Requested - Prelim TAT subject to approval/surcharge) Date Needed:	IS Relin Relin	quished By: KMC)K	\checkmark		Dat 5 Dat	te/Time:	153	Rec Rec	eiver By:	Ŵ	Date/Time:	21539 (US	Ject No. 7578
Transmit Pre	elim Rush Results by (complete what you wa	ant):			"						<u> </u>		V	Receipt Temp =	2 Min
Email #1: Email #2:		Relin	quished By:				Dat	te/Time:		Rec	eived By:		Date/Time:	Sample Re	Ceipt pH
felephone:		Relin	quished By:				Dat	e/Time:		Rec	eived By:		Date/Time:	OK / Ad	justed
ax:	Samples on HOLD are subject to	Relin	quished By:				Dat	e/Time:		Rec	eived By:		Date/Time:	<u>Cooler Cus</u> Present / No	tody Seal ot Present

Cl	ient	Na Al	me: Il cont	ainers	D	M, g prese	<i>N</i> ervatio	N on have	/ e been	check	ed and 1b Lot#	noted of pH	Sa below:	mpl	e P Pro □Nº	rese $ject$	erva t #	Lab S		ecei U	pt F S servati	`orn 7	y pH adj	usted):	-				Initia comp	l when	Pace A 1241 J	nalytica Bellevue Green Date/ Time:	ll Services, LLେ Street, Suite ଏଇ Bay, WI 5430କ୍ସ ଅନ୍ତ୍ର ଅନ୍ତ୍ର ଅନ୍ତ୍ର ଅନ୍ତ୍ର
				Glas	S						Plast	ic:					Vi	als				Jars		G	enera	al	s (>6mm) *	5	Act pH ≥9	≥12	Ø	ljusted	Volume
Pace Lab #	AG1U	AG1H	AG4S	AG4U	AGSU	AG2S	BG3U	BP1U	BP2N	BP2Z	BP3U	BP3B	BP3N	BP3S	DG9A	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	WGFU	WPFU	SP5T	ZPLC	BN	VOA Vial	H2SO4 pF	NaOH+Zn	NaOH pH	HNO3 pH	pH after ac	(mL)
001					0000000000													2															2.5 / 5 / 10
002																																	2.5/5/10
003																																	2.5 / 5 / 10
004																															dis		2.5/5/10
005																																	2.5 / 5 / 10
006																															and and a second		2.5/5/10
007																																	2.5 / 5 / 10
008				-							ļļ												ļ										2.5 / 5 / 10
009				<u> </u>							1				12,55,500			2															2.5 / 5 / 10
010										<u> </u>										ļ						L							2.5/5/10
011																																	2.5 / 5 / 10
012																					ļ												2.5/5/10
013							· · ·																										2.5 / 5 / 10
014																			ļ										Colligation				2.5/5/10
015																																	2.5/5/10
											ļ								ļ	<u> </u>	ļ												2.5/5/10
																									100000000								2.5/5/10
018																																	2.5/5/10
019																																	2.5 / 5 / 10
020																																	2.5/5/10
Ex	ceptic	ons to p	oreserv	vation o	heck/	VÓÅ,	Çolif	orm, T	юс, т	ΌΧ, Τ	он, о	&G, V	VI DRO), Phen	olics,	Other:				Не	adspac	e in V	OA Vi	als (>6	mm) :	□Yes		□N/A	*If yes	s look i	n headsp	oace colu	ımn
AG1U	1 lite	r amb	er gla	iss			<u></u>	BP	1U	1 lite	r plast	ic un	ores			DG	9A	40 m	L amb	er asc	orbic	· · · · · · · · · · · ·		JG	FU	4 oz	amber	iar ur	pres				
AG1H	1 lite	er amb	er gla	ass HC	L			BP	2N	500 r	nL pla	stic H	INO3			DG	9T	40 m	L amb	er Na	Thio			we	FU	4 oz	clear j	ar unp	ores				
AG4S	125	mL an	nber g	glass H	12804	ļ		BP	2Z	500 r	nL pla	stic N	laOH,	Znact		VG	9U	40 m	L clea	r vial	unpre	S		WP	FU	4 oz	plastic	: jar u	npres			0	
AG4U	1201	mL an	nber g	giass u	npres			BP	3U m	250 n	nL pla	stic u	npres			VG	9H	40 m		r vial	HCL			0.5	-	100							1
AG3U AG2S	500	nL an nL an	nber g	giass u Flass F	npres [2SO4	L		BP RP	эв 3N	250 n 250 n	nL pia nL pia	istic N istic H	INO3			VG VC	91VI 9D	40 m 40 m	L clea	r vial r vial	MeOł D1	1		SP 7 D	51 LC	120 r zinle	nL pla	istic N	la Thio	osulfat	e		
BG3U	250	nL cle	ear gl	ass un	pres			BP	3S	250 n	nL pla	stic H	12 <u>SO</u> 4			10		TO III.		1 viai					GN:	zipio	c oag						

Page <u>1</u> of

Interview production Issuing Authority Issuing Authority Issuing Authority Project # Project # Contract Colspan="2">Issuing Authority Contract Colspan="2">Project # Contract Colspan="2">Contract Colspan="2">Contract Colspan="2">Contract Colspan="2">Issuing Authority Contract Colspan="2">Project # Contract Colspan="2">Contract Colspan="2">Samples Colspan="2">Contract Colspan="2" Con		Docu Sample Conditio	ment Name:	Document R	evised: 25Apr2018
1241 Bellevue Street. Green Bay, WI 54302 F-GB-C-031-Rev.07 Pace Green Bay Quality Office Sample Condition Upon Receipt Form (SCUR) Project # Office I Speedee I UPS I Waltco WORT : Course I Speedee I UPS I Waltco Wort I Pace Other Project #		Doc	sument No.:	Issuir	g Authority:
Sample Condition Upon Receipt Form (SCUR) Project # Courter: CS Logistics Fed Ex Speedee UPS Walco Cutor Clear Pace Other Walco Walco Cutor Scale index Lyse Kno Seals index Lyse Kno Seals index Lyse Kno Tracking # Cutor Stamples Present: Lyse Kno Seals index Lyse Kno Seals index Lyse Kno Termometer Used SR Material: Deuble Wrap, Matchait Type of Les: QMA Biblogical Tissue is Frozen: Lyse Kno Termo Bhat Present: Lyse Kno Biblogical Tissue is Frozen: Lyse Kno Dete: Samples on kee. cooling process has begun Coolor Temperatur Uncorn Lyse Kno Biblogical Tissue is Frozen: Lyse Kno Dete: Samples on kee. cooling process has begun Coolor Temperatur Uncorn Lyse Kno Samples Antrive Muthin Hold Time: Pace Regime Kno Samples Antrive Muthin Hold Time: Dete: Samples Antrive Muthin Hold Time: Dete: Samples Antrive Muthin Hold Time: Dete: Samples Antrive Muthin Hold Time: Samples Antrive Muthin Hold Time: Dete: Samples Antrise Antrive Muthin Hold Time: <td< td=""><td>1241 Bellevue Street, Green Bay, WI 54302</td><td>F-GB-</td><td>C-031-Rev.07</td><td>Pace Green</td><td>Bay Quality Office</td></td<>	1241 Bellevue Street, Green Bay, WI 54302	F-GB-	C-031-Rev.07	Pace Green	Bay Quality Office
Client Name:MNN_I Courier: CS Logistics Fed Ex Especide □ UPS F Waltco k_Client Pace Other:	Sample (Condition Upo	Project #:		
Courier: C SL Logistics F Fed Ex F Speedee F UPS F Waltco KClient Pace Other: Texting # Custody Seal on Cooler/Box Present: F yes K no Seals Intact: F yes F no Custody Seal on Samples Present: F yes K no Seals Intact: F yes F no Custody Seal on Samples Present: F yes K no Seals Intact: F yes F no Custody Seal on Samples Present: F yes K no Seals Intact: F yes F no Custody Seal on Samples Present: F yes K no Seals Intact: F yes F no Custody Seal on Samples Present: F yes K no Seals Intact: F yes F no Custody Seal on Samples Present: F yes K no Seals Intact: F yes F no Percent sample and the soft of the form of the	Client Name:			0#:40)187578
Client Pace Other: Tracking f: Custody Seal on Cooler/Box Present: [] yes K no Seals intact: [] yes [] no Custody Seal on Samples Present: [] yes K no Seals intact: [] yes [] no Packing Material: [] Bubble Wrag K Bubble Bags [] None [] Other Thermometer Used SR - // K Bubble Bags [] None [] Other Cooler Temperature Uncor: // K Bubble Bags [] None [] Other Cooler Temperature Uncor: // K Bubble Bags [] None [] Other Temp Shubb above freezing to SC. Chain of Custody Filed Out [] Yes D No Biological Tissue is Frozen: [] yes [] no Persone examining contexts: Data:	Courier: CS Logistics Fed Ex Speede		Valtco		
Acting st: Acting st: <td>Client 🔲 Pace Other:</td> <td></td> <td></td> <td></td> <td></td>	Client 🔲 Pace Other:				
Custody Seal on Cooler/Box Present: [] yes Kno Seals intact: [] yes [] no Custody Seal on Samples Present: [] yes Kno Seals intact: [] yes [] no Person examining contents: Thermometer Used SR - WW Type of ice: Cert Blue Dry None Cooler Temperature Uncor: Corr. Temp Blue Present: [] yes K no Biological Tissue is Frozen: [] yes [] no Person examining contents: Date:	Tracking #:		40	187578	
Custody Seal on Samples Present: Pecking Material: Bubble Bags Type of Lee: Thermometer Used SR - Mark Present: Tope of Lee: Type of Lee: Thermometer Used SR - Mark Present: Tope of Lee: Type of Lee: Thermometer Used Samples may be received to 5°C. Biological Tissue is Frozen: Types Tope of Lee: Types Tope of Lee: Type of L	Custody Seal on Cooler/Box Present: 🔽 yes	no Seals intact	: 🔽 yes 🦵 no		
according material. Display Organ (2000) Performance (2000) Type of Ice: Cife: Blue Dry None X samples on ice, cooling process has begun Cooler Temperature Uncorr. If Zero Biological Tissue is Frozen: [] yes [] no Person examining contents: Temp Blank Present: [] yes [] no Biological Tissue is Frozen: [] yes [] no Person examining contents: Temp Should beable freezing to 6°C. Biological Tissue is Frozen: [] yes [] no Person examining contents: Data of Custody Present: [] yes [] no Initials: Initials: Chain of Custody Relinquished: [] Yes [] No INA 1. Chain of Custody Relinquished: [] Yes [] No INA 1. Samples Anrived within Hold Time: [] Yes [] No DateTime: Samples Samples freezen upon receipt Is	Custody Seal on Samples Present: Uses	RO Seals intact	: 🗖 yes 🗖 no		
Cooler Temperature Uncor: // Corr: Temp Blank Present: yes No Biological Tissue is Frozen: yes Intermediation of the second of the sec	Thermometer Used SR - NA	Type of Ice: Wat	Blue Dry None	Complea en ise	
Temp Blank Present: yes Yes No Biological Tissue is Frozen: yes Inc Temp should be above freezing to 6°C. Biological Tissue is Frozen: yes Inc Date: 5-44-454 Chain of Custody Present Øres No Inka 1. Chain of Custody Present Øres Inc Inka 1. Chain of Custody Present Øres Inko Inka 1. Chain of Custody Present Øres Inko Inka 1. Chain of Custody Present Øres Inko Inka 1. Samples frazen upon receipt Øres Inko Inka Inka -VOA Samples frazen upon receipt Øres Inko Inka Inka Samples Anrived within Hold Time Øres Inko Inka Inka Samples frazen upon receipt Øres Inko Inka Inka Inka Sufficient Volume: Øres Inko Inka Inka Inka Inka Inka Inka -Pace In Containers Used: Øres Inko Inka Inka Inka	Cooler Temperature Uncorr: ROT ICorr:	Type of ice. Oper		Samples on ice,	cooling process has begun
Term should be above freezing to 6°C. Date:: 5-14-1344. Bidla Samples may be received at a °CC. Initiality: Chain of Custody Present Øres Chain of Custody Present Øres Chain of Custody Present Øres Samples May be received at a °CC. Øres Chain of Custody Present Øres Samples forzen upon receipt Øres VoA Samples forzen upon receipt Øres Stort Hold Time Analysis (<72hr):	Temp Blank Present: yes no	Biological	Tissue is Frozen: 🔲 ye	sTno	Person examining contents:
Chain of Custody Present: Ves INo Int Chain of Custody Relinquished: Ves INo INo 2. Sampler Name & Signature on COC: Ves INo INo 3. Samples Name & Signature on COC: Ves INo Date/Time: Secondary VOA Samples frozen upon receipt Ves INo Date/Time: Secondary Soft Hold Time Analysis (<f2hr):< td=""> Ves INo 6. Secondary Sufficient Volume: For Analysis: Ves INo No INo Sufficient Volume: fives INo INo INo Ino -Pace Containers Used: fives INo INo Ino Ino -Pace IR Containers Used: fives INo Ino Ino Ino -Includes date/time/ID/Analysis Matrix: Matrix: Ino Ino Ino -Includes date/time/ID/Analysis Matrix: Matrix: Ino Ino Ino -Includes date/time/ID/Analysis Matrix: Matrix: Ino Ino Ino Viet Notification/Resolution:<</f2hr):<>	Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C.				Pate:
Chain of Custody Filled Out: Image: Second Seco	Chain of Custody Present:		1.		
Chain of Custody Relinquished: Øres No 3. Sampler Name & Signature on COC: Øres No 4. Samples Arrived within Hold Time: Øres No 5. - VOA Samples frozen upon receipt Øres No 6. Stort Hold Time Analysis (Øres No 6. Rush Turn Around Time Requested: Øres Øres 7. Sufficient Volume: 8. - - For Analysis: Øres No 9. - -Pace Containers Used: Øres No 9. - -Pace Containers Used: Øres No 9. - -Pace IR Containers Used: Øres No 9. - -Pace IR Containers Used: Øres No 10. - Containers Intact: Øres No 10. - Filtered volume received for Dissolved tests Øres No 12. No 0.0/lect friends -Includes date/time/ID/Analysis Matrix: Øres No No/lect Friends 5/fends 'ipo	Chain of Custody Filled Out:		2.		· · · · · · · · · · · · · · · · · · ·
Sampler Name & Signature on COC: Pres No INA 4. Samples Arrived within Hold Time: Pres No 5. - VOA Samples frozen upon receipt IVes No Date/Time: Short Hold Time Analysis (IVes No 6. Rush Turn Around Time Requested: IVes No 6. Sufficient Volume: 8. - -	Chain of Custody Relinquished:		3.	·	
Samples Arrived within Hold Time: Image: Pres Dive Since Date/Time: 5. - VOA Samples frozen upon receipt Image: Pres Dive Since Date/Time: 5. Short Hold Time Analysis (<72hr):	Sampler Name & Signature on COC:		4.		
- VOA Samples frozen upon receipt □Yes □No Date/Time: Short Hold Time Analysis (<72hr):	Samples Arrived within Hold Time:	Yes 🗆 No	5.		
Short Hold Time Analysis (<72hr):	- VOA Samples frozen upon receipt		Date/Time:		
Rush Turn Around Time Requested: IVes IVes <td>Short Hold Time Analysis (<72hr):</td> <td>ØYes □No</td> <td>6.</td> <td></td> <td></td>	Short Hold Time Analysis (<72hr):	ØYes □No	6.		
Sufficient Volume: 8. For Analysis: Ives Pace Containers Used: Ives -Pace Containers Used: Ives -Pace Containers Used: Ives -Pace IR Containers Used: Ives Containers Intact: Ives Itered volume received for Dissolved tests Ives Itered volume received for Dissolved tests Ives Includes date/time/ID/Analysis Matrix: Inip Blank Present: Ives Ipes INo Iniva Prip Blank Lot # (if purchased): Ives Iter No tiffcation/ Resolution: Iteresolution: Person Contacted: Date/Time: Comments/ Resolution: Date: Includes date Review: Iteresolution: Internet Manager Review: Date:	Rush Turn Around Time Requested:	□Yes 🖉No	7.		
For Analysis: Pres No MS/MSD: Pres No No Correct Containers Used: Pres No No No No -Pace Containers Used: Pres No No No No -Pace IR Containers Used: Pres No No No No Containers Intact: Pres No No 10. Containers Intact: Pres No No 11. Sample Labels match COC: Pres No No 12. No Collect Himes 57447 -includes date/time/ID/Analysis Matrix: Matrix: Mres 57447 Prip Blank Lot # (if purchased): Yes No No No No 2ace Trip Blank Lot # (if purchased): Yes No No No No No Person Contacted:	Sufficient Volume:		8.		
Correct Containers Used: Pace Containers Used: Pace IR Containers Used:	For Analysis: ZYes □No MS/MSD:				
-Pace Containers Used: Øres No N/A -Pace IR Containers Used: Yes No ÍN/A Containers Intact: Øres No ÍN/A Containers Intact: Øres No ÍN/A Sample Labels match COC: Ores Alvo ÍN/A 11. Sample Labels match COC: Ores Alvo ÍN/A 12. No Col/lect Himes -Includes date/time/ID/Analysis Matrix: Øres No N/A 13. Trip Blank Custody Seals Present Øres No N/A 13. Pace Trip Blank Lot # (if purchased): ¥233 Yes No N/A Pareson Contacted:	Correct Containers Used:	ØYes □No	9.		
_Pace IR Containers Used: □Yes No ÁN/A Containers Intact: □Yes No 10. Filtered volume received for Dissolved tests □Yes No ĎN/A 11. Sample Labels match COC: □Yes □No □N/A 12. No Conflect + friends	-Pace Containers Used:	Yes □No □N/A			
Containers Intact: Image: Second	-Pace IR Containers Used:				
Eiltered volume received for Dissolved tests IYes INO III. Sample Labels match COC: IYes INO IVA 12. No Collect fimes 57446 -Includes date/time/ID/Analysis Matrix: IVA 12. No Collect fimes 57446 Frip Blank Present: IYes INO INIA 13. 13. Frip Blank Custody Seals Present IYes INO INIA 13. Pace Trip Blank Lot # (if purchased): Y2.3 Yes INO If checked, see attached form for additional comments If checked, see attached form for additional comments Person Contacted: Date/Time: If checked, see attached form for additional comments If checked, see attached form for additional comments If checked, see attached form for additional comments Person Contacted: Date/Time: If checked, see attached form for additional comments Project Manager Review: Image: Im	Containers Intact:	ØYes □No	10.		
Sample Labels match COC: Image: Constraint of the second seco	Filtered volume received for Dissolved tests	□Yes □No ØN/A	11.		
-Includes date/time/ID/Analysis Matrix:	Sample Labels match COC:		12. No nollect	- time	
Trip Blank Present: Image: Green trip Blank Custody Seals Present Image: Green trip Blank Lot # (if purchased): Image: Green tripurchased):<	-Includes date/time/ID/Analysis Matrix:	\mathcal{W}_{-}		//////	5-14-12
Frip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Yes If checked, see attached form for additional comments Person Contacted: Comments/ Resolution: Project Manager Review:	Trip Blank Present:		13.		0
Pace Trip Blank Lot # (if purchased): 4 x y Y x y Client Notification/ Resolution: If checked, see attached form for additional comments [Person Contacted:	Trip Blank Custody Seals Present	ØYes □No □N/A			
Person Contacted: Date/Time: If checked, see attached form for additional comments L Comments/ Resolution: Date/Time: Project Manager Review: Date: Page PagePagePagePagePagePagePagePagePagePagePage	Pace Trip Blank Lot # (if purchased): 423	Terretoria			
Comments/ Resolution:	Person Contacted:	Date/	If checked Time:	d, see attached fo	orm for additional comments
Project Manager Review:	Comments/ Resolution:		· · · · · · · · · · · · · · · · · · ·		
Project Manager Review: Date: Date: Page					
Project Manager Review: Date: Date: Page_2 of Pa				· · · · · · · · · · · · · · · · · · ·	
Project Manager Review: Date: Date: Page					
Page_Page 21	Project Manager Review:			Date:	$T_{1}M_{1}$
PagePage					3 1 1 1
• •	\sim				PageOf

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

May 22, 2019

Brian Wayner Omnni Associates, Inc. One Systems Drive Appleton, WI 549141654

RE: Project: N1969A07/010 BETTER BRITE Pace Project No.: 40187620

Dear Brian Wayner:

Enclosed are the analytical results for sample(s) received by the laboratory on May 15, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A-VM

Steven Mleczko steve.mleczko@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Chris Rogers, OMNNI ASSOCIATES, INC.

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40187620001	TRIP BLANK	Water	05/15/19 00:00	05/15/19 12:32
40187620002	MW-111	Water	05/15/19 10:52	05/15/19 12:32
40187620003	MW-115	Water	05/15/19 11:36	05/15/19 12:32
40187620004	MW-115A	Water	05/15/19 11:32	05/15/19 12:32
40187620005	MW-116	Water	05/15/19 10:27	05/15/19 12:32

SAMPLE ANALYTE COUNT

Project:N1969A07/010 BETTER BRITEPace Project No.:40187620

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40187620001	TRIP BLANK	EPA 8260	HNW	64	PASI-G
40187620002	MW-111	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187620003	MW-115	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187620004	MW-115A	SM 3500-Cr B (Online)	DEY	1	PASI-G
40187620005	MW-116	EPA 8260	HNW	64	PASI-G
		SM 3500-Cr B (Online)	DEY	1	PASI-G

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

Sample: TRIP BLANK La	ab ID:	40187620001	Collected	d: 05/15/19	9 00:00	Received: 05	/15/19 12:32 Ma	atrix: Water	
Parameters Resu	lts	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Ana	alytical	I Method: EPA 8	260						
Benzene <	0.25	ug/L	1.0	0.25	1		05/17/19 23:52	71-43-2	
Bromobenzene <	0.24	ug/L	1.0	0.24	1		05/17/19 23:52	108-86-1	
Bromochloromethane <	0.36	ug/L	5.0	0.36	1		05/17/19 23:52	74-97-5	
Bromodichloromethane <	0.36	ug/L	1.2	0.36	1		05/17/19 23:52	75-27-4	
Bromoform	<4.0	ug/L	13.2	4.0	1		05/17/19 23:52	75-25-2	
Bromomethane <	0.97	ug/L	5.0	0.97	1		05/17/19 23:52	74-83-9	
n-Butylbenzene <	0.71	ug/L	2.4	0.71	1		05/17/19 23:52	104-51-8	
sec-Butylbenzene <	0.85	ug/L	5.0	0.85	1		05/17/19 23:52	135-98-8	
tert-Butylbenzene <	0.30	ug/L	1.0	0.30	1		05/17/19 23:52	98-06-6	
Carbon tetrachloride <	0.17	ug/L	1.0	0.17	1		05/17/19 23:52	56-23-5	
Chlorobenzene <	0.71	ug/L	2.4	0.71	1		05/17/19 23:52	108-90-7	
Chloroethane	<1.3	ug/L	5.0	1.3	1		05/17/19 23:52	75-00-3	
Chloroform	<1.3	ug/L	5.0	1.3	1		05/17/19 23:52	67-66-3	
Chloromethane	<2.2	ug/L	7.3	2.2	1		05/17/19 23:52	74-87-3	
2-Chlorotoluene <	0.93	ug/L	5.0	0.93	1		05/17/19 23:52	95-49-8	
4-Chlorotoluene <	0.76	ug/L	2.5	0.76	1		05/17/19 23:52	106-43-4	
1,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9	1.8	1		05/17/19 23:52	96-12-8	
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1		05/17/19 23:52	124-48-1	
1,2-Dibromoethane (EDB) <	0.83	ug/L	2.8	0.83	1		05/17/19 23:52	106-93-4	
Dibromomethane <	0.94	ug/L	3.1	0.94	1		05/17/19 23:52	74-95-3	
1,2-Dichlorobenzene <	0.71	ug/L	2.4	0.71	1		05/17/19 23:52	95-50-1	
1,3-Dichlorobenzene <	0.63	ug/L	2.1	0.63	1		05/17/19 23:52	541-73-1	
1,4-Dichlorobenzene <	0.94	ug/L	3.1	0.94	1		05/17/19 23:52	106-46-7	
Dichlorodifluoromethane <	0.50	ug/L	5.0	0.50	1		05/17/19 23:52	75-71-8	
1,1-Dichloroethane <	0.27	ug/L	1.0	0.27	1		05/17/19 23:52	75-34-3	
1,2-Dichloroethane <	0.28	ug/L	1.0	0.28	1		05/17/19 23:52	107-06-2	
1,1-Dichloroethene <	0.24	ug/L	1.0	0.24	1		05/17/19 23:52	75-35-4	
cis-1,2-Dichloroethene <	0.27	ug/L	1.0	0.27	1		05/17/19 23:52	156-59-2	
trans-1,2-Dichloroethene	<1.1	ug/L	3.6	1.1	1		05/17/19 23:52	156-60-5	
1,2-Dichloropropane <	0.28	ug/L	1.0	0.28	1		05/17/19 23:52	78-87-5	
1,3-Dichloropropane <	0.83	ug/L	2.8	0.83	1		05/17/19 23:52	142-28-9	
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1		05/17/19 23:52	594-20-7	
1,1-Dichloropropene <	0.54	ug/L	1.8	0.54	1		05/17/19 23:52	563-58-6	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1		05/17/19 23:52	10061-01-5	
trans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1		05/17/19 23:52	10061-02-6	
Diisopropyl ether	<1.9	ug/L	6.3	1.9	1		05/17/19 23:52	108-20-3	
Ethylbenzene <	0.22	ug/L	1.0	0.22	1		05/17/19 23:52	100-41-4	
Hexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1		05/17/19 23:52	87-68-3	
Isopropylbenzene (Cumene) <	0.39	ug/L	5.0	0.39	1		05/17/19 23:52	98-82-8	
p-lsopropyltoluene <	0.80	ug/L	2.7	0.80	1		05/17/19 23:52	99-87-6	
Methylene Chloride <	0.58	ug/L	5.0	0.58	1		05/17/19 23:52	75-09-2	
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1		05/17/19 23:52	1634-04-4	
Naphthalene	<1.2	ug/L	5.0	1.2	1		05/17/19 23:52	91-20-3	
n-Propylbenzene <	0.81	ug/L	5.0	0.81	1		05/17/19 23:52	103-65-1	
Styrene <	0.47	ug/L	1.6	0.47	1		05/17/19 23:52	100-42-5	
1,1,1,2-Tetrachloroethane <	0.27	ug/L	1.0	0.27	1		05/17/19 23:52	630-20-6	

Project: N1969A07/010 BETTER BRITE

Pace Project No.:

40187620

Sample: TRIP BLANK	Lab ID:	40187620001	Collecte	d: 05/15/19	9 00:00	Received: 05	5/15/19 12:32 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	I Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		05/17/19 23:52	79-34-5	
Tetrachloroethene	<0.33	ug/L	1.1	0.33	1		05/17/19 23:52	127-18-4	
Toluene	<0.17	ug/L	5.0	0.17	1		05/17/19 23:52	108-88-3	
1,2,3-Trichlorobenzene	<0.63	ug/L	5.0	0.63	1		05/17/19 23:52	87-61-6	
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		05/17/19 23:52	120-82-1	
1,1,1-Trichloroethane	<0.24	ug/L	1.0	0.24	1		05/17/19 23:52	71-55-6	
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		05/17/19 23:52	79-00-5	
Trichloroethene	<0.26	ug/L	1.0	0.26	1		05/17/19 23:52	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		05/17/19 23:52	75-69-4	
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		05/17/19 23:52	96-18-4	
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		05/17/19 23:52	95-63-6	
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		05/17/19 23:52	108-67-8	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/17/19 23:52	75-01-4	
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		05/17/19 23:52	179601-23-1	
o-Xylene	<0.26	ug/L	1.0	0.26	1		05/17/19 23:52	95-47-6	
Surrogates		Ū							
4-Bromofluorobenzene (S)	100	%	70-130		1		05/17/19 23:52	460-00-4	
Dibromofluoromethane (S)	101	%	70-130		1		05/17/19 23:52	1868-53-7	
Toluene-d8 (S)	99	%	70-130		1		05/17/19 23:52	2037-26-5	
Sample: MW-111	Lab ID:	40187620002	Collecte	d: 05/15/1	9 10:52	Received: 05	5/15/19 12:32 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytica	Method: SM 35	500-Cr B (O	Inline)					
Chromium, Hexavalent	<0.13	mg/L	0.43	0.13	25		05/16/19 09:30		D3
Sample: MW-115	Lab ID:	40187620003	Collecte	d: 05/15/1	9 11:36	Received: 05	5/15/19 12:32 Ma	atrix: Water	
_									- ·
Parameters	Results -	Units	LOQ	LOD		Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytica	Method: SM 35	500-Cr B (O	Online)					
Chromium, Hexavalent	<0.051	mg/L	0.17	0.051	10		05/16/19 09:30		D3
Sample: MW-115A	Lab ID:	40187620004	Collecte	d: 05/15/1	9 11:32	Received: 05	5/15/19 12:32 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytica	Method: SM 35	500-Cr B (O	Online)					
Chromium, Hexavalent	<0.051	ma/l	0.17	0.051	10		05/16/19 09:30		D3
		····ə, 🛏	5.11	0.001			30, 10, 10, 00,00		

REPORT OF LABORATORY ANALYSIS

Project: N1969A07/010 BETTER BRITE

Pace Project No.:

: 40187620

Sample: MW-116 Lab	ID: 40187620005	Collecte	d: 05/15/19	9 10:27	Received: 05/1	5/19 12:32 Ma	atrix: Water	
Parameters Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Analyt	ical Method: EPA 8	260						
Benzene <0.2	5 ug/L	1.0	0.25	1		05/17/19 21:15	71-43-2	
Bromobenzene <0.2	4 ug/L	1.0	0.24	1		05/17/19 21:15	108-86-1	
Bromochloromethane <0.3	6 ug/L	5.0	0.36	1		05/17/19 21:15	74-97-5	
Bromodichloromethane <0.3	6 ug/L	1.2	0.36	1		05/17/19 21:15	75-27-4	
Bromoform <4.	0 ug/L	13.2	4.0	1		05/17/19 21:15	75-25-2	
Bromomethane <0.9	7 ug/L	5.0	0.97	1		05/17/19 21:15	74-83-9	
n-Butylbenzene <0.7	1 ug/L	2.4	0.71	1		05/17/19 21:15	104-51-8	
sec-Butylbenzene <0.8	5 ug/L	5.0	0.85	1		05/17/19 21:15	135-98-8	
tert-Butylbenzene <0.3	0 ug/L	1.0	0.30	1		05/17/19 21:15	98-06-6	
Carbon tetrachloride <0.1	7 ug/L	1.0	0.17	1		05/17/19 21:15	56-23-5	
Chlorobenzene <0.7	1 ug/L	2.4	0.71	1		05/17/19 21:15	108-90-7	
Chloroethane <1.	3 ug/L	5.0	1.3	1		05/17/19 21:15	75-00-3	
Chloroform <1.	3 ug/L	5.0	1.3	1		05/17/19 21:15	67-66-3	
Chloromethane <2.	2 ug/L	7.3	2.2	1		05/17/19 21:15	74-87-3	
2-Chlorotoluene <0.9	3 ug/L	5.0	0.93	1		05/17/19 21:15	95-49-8	
4-Chlorotoluene <0.7	6 ug/L	2.5	0.76	1		05/17/19 21:15	106-43-4	
1.2-Dibromo-3-chloropropane <1.	8 ug/L	5.9	1.8	1		05/17/19 21:15	96-12-8	
Dibromochloromethane <2.	6 ug/L	8.7	2.6	1		05/17/19 21:15	124-48-1	
1,2-Dibromoethane (EDB) <0.8	3 ug/L	2.8	0.83	1		05/17/19 21:15	106-93-4	
Dibromomethane <0.9	4 ua/L	3.1	0.94	1		05/17/19 21:15	74-95-3	
1.2-Dichlorobenzene <0.7	1 ua/L	2.4	0.71	1		05/17/19 21:15	95-50-1	
1.3-Dichlorobenzene <0.6	3 ua/L	2.1	0.63	1		05/17/19 21:15	541-73-1	
1,4-Dichlorobenzene <0.9	4 ug/L	3.1	0.94	1		05/17/19 21:15	106-46-7	
Dichlorodifluoromethane <0.5	0 ug/L	5.0	0.50	1		05/17/19 21:15	75-71-8	
1.1-Dichloroethane 38.	9 ug/L	1.0	0.27	1		05/17/19 21:15	75-34-3	
1.2-Dichloroethane <0.2	8 ua/L	1.0	0.28	1		05/17/19 21:15	107-06-2	
1.1-Dichloroethene 44.	3 ua/L	1.0	0.24	1		05/17/19 21:15	75-35-4	
cis-1.2-Dichloroethene 1.	3 ug/L	1.0	0.27	1		05/17/19 21:15	156-59-2	
trans-1.2-Dichloroethene <1.	1 uɑ/L	3.6	1.1	1		05/17/19 21:15	156-60-5	
1.2-Dichloropropane <0.2	8 ug/L	1.0	0.28	1		05/17/19 21:15	78-87-5	
1.3-Dichloropropane <0.8	3 ua/L	2.8	0.83	1		05/17/19 21:15	142-28-9	
2.2-Dichloropropane <2	3 ua/L	7.6	2.3	1		05/17/19 21:15	594-20-7	
1,1-Dichloropropene <0.5	4 ug/L	1.8	0.54	1		05/17/19 21:15	563-58-6	
cis-1.3-Dichloropropene <3.	6 ug/L	12.1	3.6	1		05/17/19 21:15	10061-01-5	
trans-1.3-Dichloropropene <4	4 ug/L	14.6	4.4	1		05/17/19 21:15	10061-02-6	
Diisopropyl ether <1	9 ua/L	6.3	1.9	1		05/17/19 21:15	108-20-3	
Ethylbenzene <0.2	2 ua/L	1.0	0.22	1		05/17/19 21:15	100-41-4	
Hexachloro-1.3-butadiene <1.	2 ua/L	5.0	1.2	1		05/17/19 21:15	87-68-3	
Isopropylbenzene (Cumene) <0.3	9 ua/L	5.0	0.39	1		05/17/19 21:15	98-82-8	
p-Isopropyltoluene <0.8	0 ua/L	2.7	0.80	1		05/17/19 21:15	99-87-6	
Methvlene Chloride <0.5	8 ua/L	5.0	0.58	1		05/17/19 21:15	75-09-2	
Methyl-tert-butyl ether <1	2 ua/l	4.2	1.2	1		05/17/19 21:15	1634-04-4	
Naphthalene <1	2 ua/L	5.0	1.2	1		05/17/19 21:15	91-20-3	
n-Propylbenzene <0.8	1 ua/L	5.0	0.81	1		05/17/19 21:15	103-65-1	
Styrene <0.4	7 ua/L	1.6	0.47	1		05/17/19 21:15	100-42-5	
1,1,1,2-Tetrachloroethane <0.2	7 ug/L	1.0	0.27	1		05/17/19 21:15	630-20-6	

Project: N1969A07/010 BETTER BRITE

Pace Project No.:

40187620

Sample: MW-116	Lab ID: 40187620005 Collected: 05/15/19 10:27 Received: 05/15/19 12:32 Matrix:								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		05/17/19 21:15	79-34-5	
Tetrachloroethene	1.2	ug/L	1.1	0.33	1		05/17/19 21:15	127-18-4	
Toluene	<0.17	ug/L	5.0	0.17	1		05/17/19 21:15	108-88-3	
1,2,3-Trichlorobenzene	<0.63	ug/L	5.0	0.63	1		05/17/19 21:15	87-61-6	
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		05/17/19 21:15	120-82-1	
1,1,1-Trichloroethane	142	ug/L	1.0	0.24	1		05/17/19 21:15	71-55-6	
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		05/17/19 21:15	79-00-5	
Trichloroethene	2.1	ug/L	1.0	0.26	1		05/17/19 21:15	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		05/17/19 21:15	75-69-4	
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		05/17/19 21:15	96-18-4	
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		05/17/19 21:15	95-63-6	
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		05/17/19 21:15	108-67-8	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/17/19 21:15	75-01-4	
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		05/17/19 21:15	179601-23-1	
o-Xylene	<0.26	ug/L	1.0	0.26	1		05/17/19 21:15	95-47-6	
Surrogates		-							
4-Bromofluorobenzene (S)	99	%	70-130		1		05/17/19 21:15	460-00-4	
Dibromofluoromethane (S)	102	%	70-130		1		05/17/19 21:15	1868-53-7	
Toluene-d8 (S)	99	%	70-130		1		05/17/19 21:15	2037-26-5	
Chromium, Hexavalent	Analytica	Method: SM 35	500-Cr B (O	nline)					
Chromium, Hexavalent	9.8	mg/L	0.86	0.26	50		05/16/19 09:30		

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

QC Batch: 321680 Analysis Method: EPA 8260 QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Associated Lab Samples: 40187620005 Matrix: Water Associated Lab Samples: 40187620001, 40187620005 Matrix: Water Associated Lab Samples: 40187620001, 40187620005 Blank Reporting 1,1,1:2-Tetrachtoroethane ug/L <0.24 1.0 06/17/19 15:37 1,1,2:2-Tetrachtoroethane ug/L <0.27 1.0 06/17/19 15:37 1,1:2-Tetrachtoroethane ug/L <0.55 5.0 05/17/19 15:37 1,1:2-Tetrachtoroethane ug/L <0.64 1.8 05/17/19 15:37 1,2:3-Trichtoroberzene ug/L <0.63 5.0 05/17/19 15:37 1,2:3-Trichtoroberzene ug/L <0.84 2.8 05/17/19 15:37 1,2:3-Trichtoropropane ug/L <0.83 2.8 05/17/19 15:37 1,2:3-Trichtoropropane ug/L <0.83 2.8 05/17/19 15:37 1,2:3-Trichtoropropane ug/L <0.83	Pace Project No.: 40187	620						
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Associated Lab Samples: 40187620001, 40187620005 Matrix: Water Associated Lab Samples: 40187620001, 40187620005 Matrix: Water Associated Lab Samples: 40187620001, 40187620005 Blank Reporting Units Analyzed Qualifiers 1,1,1,2-Tetrachloroethane ug/L <0.27 1.0 05/17/19 15:37 1,1,2-Trichloroethane ug/L <0.28 1.0 05/17/19 15:37 1,1,2-Tetrachloroethane ug/L <0.24 1.0 05/17/19 15:37 1,1-Dichloroethane ug/L <0.24 1.0 05/17/19 15:37 1,1-Dichloroptene ug/L <0.63 5.0 05/17/19 15:37 1,2.3-Trichloroptene ug/L <0.63 5.0 05/17/19 15:37 1,2.3-Trichloroptene ug/L <0.83 2.8 06/17/19 15:37 1,2.3-Trichloroptenzene ug/L <0.83 2.8 06/17/19 15:37 1,2.4-Trichlorobenzene ug/L <0.83 2.8 06/17/19 15:37 1,2.0-100000000000000000000000000000000000	QC Batch: 3216	Analysis Meth	nod:	EF	PA 8260			
Associated Lab Samples: 40187620001, 40187620005 Matrix: Water Associated Lab Samples: 40187620001, 40187620005 Matrix: Water Associated Lab Samples: 40187620001, 40187620005 Elimit Analyzed Qualifiers 1,1,1,2-Tetrachloroethane ug/L <0.27	QC Batch Method: EPA	8260	Analysis Des	cription:	82	60 MSV		
METHOD BLANK: 1868100 Associated Lab Samples: 40187620001, 40187620005 Matrix: Water Parameter Units Result Reporting Limit Analyzed Qualifiers 1,1,1,2-Tertachloroethane ug/L <0.24	Associated Lab Samples:	40187620001, 40187620005		1		-		
METHOD BLANK: 1686100 Matrix: Water Associated Lab Samples: 40187620001, 40187620005 Blank Reporting Limit Analyzed Qualifiers. 1,1,1,2:Tetrachloroethane ug/L <0.27		, 						
Baseciated Lab Samples: 40187620001, 40187620005 Blank Result Reporting Limit Analyzed Qualifiers 1,1,1-2.Tetrachloroethane ug/L <0.27	METHOD BLANK: 18681	00	Matrix:	Water				
Blank Result Reporting Limit Analyzed Analyzed Qualifiers 1,1,1,2-Tretachioroethane ug/L <0.27	Associated Lab Samples:	40187620001, 40187620005						
Parameter Units Result Limit Analyzed Qualifiers 1,1,1,2-Tetrachloroethane ug/L <0.27			Blank	Reporting	g			
1,1,2-Tetrachloroethane ug/L <0.27	Parameter	Units	Result	Limit	-	Analyzed	Qualifiers	
1,1,1-Trichloroethane ug/L <0.24	1,1,1,2-Tetrachloroethane	ug/L	<0.27		1.0	05/17/19 15:37		
1,1,2-Tetrachloroethane ug/L <0.28	1,1,1-Trichloroethane	ug/L	<0.24		1.0	05/17/19 15:37		
1,1.2-Trichloroethane ug/L <0.55	1,1,2,2-Tetrachloroethane	ug/L	<0.28		1.0	05/17/19 15:37		
1.1-Dichloroethane ug/L <0.27	1.1.2-Trichloroethane	ug/L	<0.55		5.0	05/17/19 15:37		
1,1-Dichloroptopene ug/L <0.24	1,1-Dichloroethane	ug/L	<0.27		1.0	05/17/19 15:37		
1.1-Dickloropropene ug/L <0.54	1,1-Dichloroethene	ua/L	<0.24		1.0	05/17/19 15:37		
1,2,3-Trichlorobenzene ug/L <0.63	1,1-Dichloropropene	ug/L	<0.54		1.8	05/17/19 15:37		
12,3-Trichloropropane ug/L <0.59 5.0 05/17/19 15:37 1,2,4-Trichlorobenzene ug/L <0.95	1,2,3-Trichlorobenzene	ua/L	< 0.63		5.0	05/17/19 15:37		
1.2,4-Trichlorobenzene ug/L <0.84	1,2,3-Trichloropropane	ua/L	<0.59		5.0	05/17/19 15:37		
1.2.4 - Trimethylbenzene ug/L <0.84	1.2.4-Trichlorobenzene	ua/L	< 0.95		5.0	05/17/19 15:37		
1.2-Dibrom-3-chloropropaneug/L<1.85.9 $05/77/19$ 15:371,2-Dibromoethane (EDB)ug/L<0.83	1.2.4-Trimethvlbenzene	ua/L	<0.84		2.8	05/17/19 15:37		
1.2-Dibromoethane (EDB)ug/L<0.832.8 $05/77/19$ 15.37 1,2-Dichlorobenzeneug/L<0.71	1,2-Dibromo-3-chloropropa	ne ua/L	<1.8		5.9	05/17/19 15:37		
J2-Dichlorobenzeneug/L 0.71 2.4 $05/17/19$ 15.37 1,2-Dichloropropaneug/L <0.28 1.0 $05/17/19$ 15.37 1,2-Dichloropropaneug/L <0.28 1.0 $05/17/19$ 15.37 1,3-Dichloropropaneug/L <0.87 2.9 $05/17/19$ 15.37 1,3-Dichlorobenzeneug/L <0.63 2.1 $05/17/19$ 15.37 1,3-Dichloropropaneug/L <0.83 2.8 $05/17/19$ 15.37 1,4-Dichlorobenzeneug/L <0.94 3.1 $05/17/19$ 15.37 2,2-Dichloropropaneug/L <2.3 7.6 $05/17/19$ 15.37 2-Chlorotolueneug/L <0.93 5.0 $05/17/19$ 15.37 2-Chlorotolueneug/L <0.76 2.5 $05/17/19$ 15.37 Bromobenzeneug/L <0.25 1.0 $05/17/19$ 15.37 Bromobenzeneug/L <0.36 1.2 $05/17/19$ 15.37 Bromodichloromethaneug/L <0.36 1.2 $05/17/19$ 15.37 Chlorobenzeneug/L <0.71 2.4 $05/17/19$ 15.37 Chlorobenzeneug/L <td>1,2-Dibromoethane (EDB)</td> <td>ua/L</td> <td><0.83</td> <td></td> <td>2.8</td> <td>05/17/19 15:37</td> <td></td>	1,2-Dibromoethane (EDB)	ua/L	<0.83		2.8	05/17/19 15:37		
J2-Dichloroethaneug/Ld.0.281.005/17/1915:371,2-Dichloropropaneug/L<0.28	1,2-Dichlorobenzene	ua/L	<0.71		2.4	05/17/19 15:37		
J2-Dichloropropaneug/L<0.281.005/17/1915:371,3-Dichlorobenzeneug/L<0.87	1,2-Dichloroethane	ua/L	<0.28		1.0	05/17/19 15:37		
1.3.5-Trinethylbenzene ug/L <0.87	1.2-Dichloropropane	ua/L	<0.28		1.0	05/17/19 15:37		
1.3-Dichlorobenzene ug/L 0.63 2.1 05/17/19 15:37 1,3-Dichloropropane ug/L <0.83	1,3,5-Trimethylbenzene	ug/L	<0.87		2.9	05/17/19 15:37		
1.3-Dichloropropane ug/L <0.83	1,3-Dichlorobenzene	ua/L	< 0.63		2.1	05/17/19 15:37		
1.4-Dichlorobenzeneug/L < 0.94 3.1 $05/17/19$ 15.37 2.2-Dichloropropaneug/L < 2.3 7.6 $05/17/19$ 15.37 2.2-Chlorotolueneug/L < 0.93 5.0 $05/17/19$ 15.37 2-Chlorotolueneug/L < 0.76 2.5 $05/17/19$ 15.37 Benzeneug/L < 0.25 1.0 $05/17/19$ 15.37 Bromobenzeneug/L < 0.24 1.0 $05/17/19$ 15.37 Bromochloromethaneug/L < 0.36 5.0 $05/17/19$ 15.37 Bromodichloromethaneug/L < 0.36 1.2 $05/17/19$ 15.37 Bromothaneug/L < 0.17 1.0 $05/17/19$ 15.37 Chlorobenzeneug/L < 0.17 1.0 $05/17/19$ 15.37 Chlorobenzeneug/L < 0.71 2.4 $05/17/19$ 15.37 Chlorobenzeneug/L < 1.3 5.0 $05/17/19$ 15.37 Chlorobenzeneug/L < 2.2 7.3 $05/17/19$ 15.37 Chloromethaneug/L < 2.2 7.3 $05/17/19$ 15.37 Chloromethaneug/L < 2.6 8.7 $05/17/19$ 15.37 Dibromochloromethaneug/L	1,3-Dichloropropane	ua/L	<0.83		2.8	05/17/19 15:37		
2.2-Dichloropropaneug/L < 2.3 7.6 $0.6/17/19$ 15.372.2-Dichlorotolueneug/L < 0.93 5.0 $05/17/19$ 15.372-Chlorotolueneug/L < 0.76 2.5 $05/17/19$ 15.37Benzeneug/L < 0.25 1.0 $05/17/19$ 15.37Bromobenzeneug/L < 0.24 1.0 $05/17/19$ 15.37Bromochloromethaneug/L < 0.36 5.0 $05/17/19$ 15.37Bromodichloromethaneug/L < 0.36 1.2 $05/17/19$ 15.37Bromodichloromethaneug/L < 0.36 1.2 $05/17/19$ 15.37Bromodithloromethaneug/L < 0.36 1.2 $05/17/19$ 15.37Bromodithloromethaneug/L < 0.97 5.0 $05/17/19$ 15.37Bromothaneug/L < 0.17 1.0 $05/17/19$ 15.37Chlorobenzeneug/L < 0.17 1.0 $05/17/19$ 15.37Chlorothaneug/L < 1.3 5.0 $05/17/19$ 15.37Chlorothaneug/L < 1.3 5.0 $05/17/19$ 15.37Chloromethaneug/L < 2.2 7.3 $05/17/19$ 15.37Chloromethaneug/L < 2.2 7.3 $05/17/19$ 15.37Chlorothaneug/L < 2.6 8.7 $05/17/19$ 15.37Dibromochloromethaneug/L < 2.6 8.7 $05/17/19$ 15.37Dibromomethaneug/L < 0.50 5.0 $05/17/19$ <td>1,4-Dichlorobenzene</td> <td>ua/L</td> <td>< 0.94</td> <td></td> <td>3.1</td> <td>05/17/19 15:37</td> <td></td>	1,4-Dichlorobenzene	ua/L	< 0.94		3.1	05/17/19 15:37		
2-Chlorotolueneug/L<0.935.005/17/1915:374-Chlorotolueneug/L<0.76	2.2-Dichloropropane	ua/L	<2.3		7.6	05/17/19 15:37		
4-Chlorotoluene ug/L <0.76	2-Chlorotoluene	ug/L	<0.93		5.0	05/17/19 15:37		
Benzene ug/L <0.25	4-Chlorotoluene	ug/L	<0.76		2.5	05/17/19 15:37		
Bromobenzene ug/L <0.24 1.0 05/17/19 15:37 Bromochloromethane ug/L <0.36	Benzene	ua/L	<0.25		1.0	05/17/19 15:37		
Bromochloromethane ug/L <0.36 5.0 05/17/19 15:37 Bromodichloromethane ug/L <0.36	Bromobenzene	ua/L	<0.24		1.0	05/17/19 15:37		
Bromodichloromethane ug/L <0.36	Bromochloromethane	ua/L	< 0.36		5.0	05/17/19 15:37		
Bromoform ug/L <4.0 13.2 05/17/19 15.37 Bromomethane ug/L <0.97	Bromodichloromethane	ug/L	< 0.36		1.2	05/17/19 15:37		
Bromomethane ug/L <0.97	Bromoform	ua/L	<4.0	1	13.2	05/17/19 15:37		
Carbon tetrachloride ug/L <0.17	Bromomethane	ua/L	<0.97		5.0	05/17/19 15:37		
Chlorobenzene ug/L <0.71	Carbon tetrachloride	ua/L	<0.17		1.0	05/17/19 15:37		
Chloroethane ug/L <1.3	Chlorobenzene	ua/L	<0.71		2.4	05/17/19 15:37		
Chloroform ug/L <1.3	Chloroethane	ug/L	<1.3		5.0	05/17/19 15:37		
Chloromethane ug/L <2.2	Chloroform	ug/L	<1.3		5.0	05/17/19 15:37		
cis-1,2-Dichloroethene ug/L <0.27	Chloromethane	ug/L	<2.2		7.3	05/17/19 15:37		
cis-1,3-Dichloropropene ug/L <3.6	cis-1,2-Dichloroethene	ug/L	<0.27		1.0	05/17/19 15:37		
Dibromochloromethane ug/L <2.6 8.7 05/17/19 15:37 Dibromomethane ug/L <0.94	cis-1,3-Dichloropropene	ug/L	<3.6	1	12.1	05/17/19 15:37		
Dibromomethane ug/L <0.94 3.1 05/17/19 15:37 Dichlorodifluoromethane ug/L <0.50	Dibromochloromethane	ug/L	<2.6		8.7	05/17/19 15:37		
Dichlorodifluoromethane ug/L <0.50 5.0 05/17/19 15:37 Diisopropyl ether ug/L <1.9	Dibromomethane	ug/L	<0.94		3.1	05/17/19 15:37		
Diisopropyl ether ug/L <1.9 6.3 05/17/19 15:37 Ethylbenzene ug/L <0.22	Dichlorodifluoromethane	ug/L	<0.50		5.0	05/17/19 15:37		
Ethylbenzene ug/L <0.22 1.0 05/17/19 15:37	Diisopropyl ether	ua/L	<1.9		6.3	05/17/19 15:37		
	Ethylbenzene	ug/L	<0.22		1.0	05/17/19 15:37		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

METHOD BLANK: 18681	00	Matrix:	Water		
Associated Lab Samples:	40187620001, 40187620005				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	ug/L	1.3J	5.0	05/17/19 15:37	
Isopropylbenzene (Cumene) ug/L	<0.39	5.0	05/17/19 15:37	
m&p-Xylene	ug/L	<0.47	2.0	05/17/19 15:37	
Methyl-tert-butyl ether	ug/L	<1.2	4.2	05/17/19 15:37	
Methylene Chloride	ug/L	<0.58	5.0	05/17/19 15:37	
n-Butylbenzene	ug/L	<0.71	2.4	05/17/19 15:37	
n-Propylbenzene	ug/L	<0.81	5.0	05/17/19 15:37	
Naphthalene	ug/L	<1.2	5.0	05/17/19 15:37	
o-Xylene	ug/L	<0.26	1.0	05/17/19 15:37	
p-Isopropyltoluene	ug/L	<0.80	2.7	05/17/19 15:37	
sec-Butylbenzene	ug/L	<0.85	5.0	05/17/19 15:37	
Styrene	ug/L	<0.47	1.6	05/17/19 15:37	
tert-Butylbenzene	ug/L	<0.30	1.0	05/17/19 15:37	
Tetrachloroethene	ug/L	<0.33	1.1	05/17/19 15:37	
Toluene	ug/L	<0.17	5.0	05/17/19 15:37	
trans-1,2-Dichloroethene	ug/L	<1.1	3.6	05/17/19 15:37	
trans-1,3-Dichloropropene	ug/L	<4.4	14.6	05/17/19 15:37	
Trichloroethene	ug/L	<0.26	1.0	05/17/19 15:37	
Trichlorofluoromethane	ug/L	<0.21	1.0	05/17/19 15:37	
Vinyl chloride	ug/L	<0.17	1.0	05/17/19 15:37	
4-Bromofluorobenzene (S)	%	100	70-130	05/17/19 15:37	
Dibromofluoromethane (S)	%	101	70-130	05/17/19 15:37	
Toluene-d8 (S)	%	100	70-130	05/17/19 15:37	

LABORATORY CONTROL SAMPLE: 1868101

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		52.4	105	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	50.3	101	70-130	
1,1,2-Trichloroethane	ug/L	50	54.3	109	70-130	
1,1-Dichloroethane	ug/L	50	56.7	113	73-150	
1,1-Dichloroethene	ug/L	50	57.2	114	73-138	
1,2,4-Trichlorobenzene	ug/L	50	48.1	96	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	44.4	89	64-129	
1,2-Dibromoethane (EDB)	ug/L	50	52.1	104	70-130	
1,2-Dichlorobenzene	ug/L	50	47.5	95	70-130	
1,2-Dichloroethane	ug/L	50	54.1	108	75-140	
1,2-Dichloropropane	ug/L	50	53.8	108	73-135	
1,3-Dichlorobenzene	ug/L	50	47.3	95	70-130	
1,4-Dichlorobenzene	ug/L	50	47.4	95	70-130	
Benzene	ug/L	50	58.5	117	70-130	
Bromodichloromethane	ug/L	50	56.2	112	70-130	
Bromoform	ug/L	50	46.2	92	68-129	
Bromomethane	ug/L	50	42.4	85	18-159	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

LABORATORY CONTROL SAMPLE: 1868101

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride	ug/L		51.1	102	70-130	
Chlorobenzene	ug/L	50	50.3	101	70-130	
Chloroethane	ug/L	50	50.5	101	53-147	
Chloroform	ug/L	50	54.9	110	74-136	
Chloromethane	ug/L	50	36.5	73	29-115	
cis-1,2-Dichloroethene	ug/L	50	54.7	109	70-130	
cis-1,3-Dichloropropene	ug/L	50	49.4	99	70-130	
Dibromochloromethane	ug/L	50	46.0	92	70-130	
Dichlorodifluoromethane	ug/L	50	34.2	68	10-130	
Ethylbenzene	ug/L	50	56.0	112	80-124	
Isopropylbenzene (Cumene)	ug/L	50	56.7	113	70-130	
m&p-Xylene	ug/L	100	113	113	70-130	
Methyl-tert-butyl ether	ug/L	50	55.9	112	54-137	
Methylene Chloride	ug/L	50	56.2	112	73-138	
o-Xylene	ug/L	50	55.1	110	70-130	
Styrene	ug/L	50	54.5	109	70-130	
Tetrachloroethene	ug/L	50	53.0	106	70-130	
Toluene	ug/L	50	55.0	110	80-126	
trans-1,2-Dichloroethene	ug/L	50	56.4	113	73-145	
trans-1,3-Dichloropropene	ug/L	50	48.2	96	70-130	
Trichloroethene	ug/L	50	54.5	109	70-130	
Trichlorofluoromethane	ug/L	50	54.4	109	76-147	
Vinyl chloride	ug/L	50	49.2	98	51-120	
4-Bromofluorobenzene (S)	%			107	70-130	
Dibromofluoromethane (S)	%			101	70-130	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE & MATRIX SP	PIKE DUP	LICATE: 1868		1868139	1							
			MS	MSD								
		40187733004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	<0.24	50	50	55.1	55.9	110	112	70-130	1	20	
1,1,2,2-Tetrachloroethane	ug/L	<0.28	50	50	52.3	52.4	105	105	70-130	0	20	
1,1,2-Trichloroethane	ug/L	<0.55	50	50	56.4	56.8	113	114	70-137	1	20	
1,1-Dichloroethane	ug/L	<0.27	50	50	58.7	59.6	117	119	73-153	1	20	
1,1-Dichloroethene	ug/L	<0.24	50	50	60.0	60.9	120	122	73-138	1	20	
1,2,4-Trichlorobenzene	ug/L	<0.95	50	50	51.0	51.4	102	102	70-130	1	20	
1,2-Dibromo-3-	ug/L	<1.8	50	50	46.6	47.1	93	94	58-129	1	20	
chloropropane												
1,2-Dibromoethane (EDB)	ug/L	<0.83	50	50	53.9	54.7	108	109	70-130	1	20	
1,2-Dichlorobenzene	ug/L	<0.71	50	50	49.6	50.2	99	100	70-130	1	20	
1,2-Dichloroethane	ug/L	<0.28	50	50	55.9	56.8	112	114	75-140	1	20	
1,2-Dichloropropane	ug/L	<0.28	50	50	55.4	56.8	111	114	71-138	3	20	
1,3-Dichlorobenzene	ug/L	<0.63	50	50	49.6	49.9	99	100	70-130	1	20	
1,4-Dichlorobenzene	ug/L	<0.94	50	50	49.7	49.9	99	100	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

MATRIX SPIKE & MATRIX SP	PIKE DUP	LICATE: 1868	138		1868139)						
			MS	MSD								
		40187733004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	<0.25	50	50	60.9	61.7	122	123	70-130	1	20	
Bromodichloromethane	ug/L	<0.36	50	50	58.6	59.6	117	119	70-130	2	20	
Bromoform	ug/L	<4.0	50	50	48.0	48.1	96	96	68-129	0	20	
Bromomethane	ug/L	<0.97	50	50	49.2	51.5	98	103	15-170	5	20	
Carbon tetrachloride	ug/L	<0.17	50	50	53.3	54.1	107	108	70-130	2	20	
Chlorobenzene	ug/L	<0.71	50	50	52.6	52.4	105	105	70-130	0	20	
Chloroethane	ug/L	<1.3	50	50	52.6	53.9	105	108	51-148	2	20	
Chloroform	ug/L	<1.3	50	50	57.1	57.9	114	116	74-136	1	20	
Chloromethane	ug/L	<2.2	50	50	37.8	38.7	76	77	23-115	2	20	
cis-1,2-Dichloroethene	ug/L	<0.27	50	50	57.0	58.2	114	116	70-131	2	20	
cis-1,3-Dichloropropene	ug/L	<3.6	50	50	51.4	52.2	103	104	70-130	2	20	
Dibromochloromethane	ug/L	<2.6	50	50	47.7	48.1	95	96	70-130	1	20	
Dichlorodifluoromethane	ug/L	<0.50	50	50	35.6	35.9	71	72	10-132	1	20	
Ethylbenzene	ug/L	<0.22	50	50	58.3	58.7	117	117	80-125	1	20	
Isopropylbenzene (Cumene)	ug/L	<0.39	50	50	58.9	59.4	118	119	70-130	1	20	
m&p-Xylene	ug/L	<0.47	100	100	117	117	117	117	70-130	0	20	
Methyl-tert-butyl ether	ug/L	<1.2	50	50	58.3	59.2	117	118	51-145	2	20	
Methylene Chloride	ug/L	<0.58	50	50	58.2	59.4	116	119	73-140	2	20	
o-Xylene	ug/L	<0.26	50	50	57.2	57.3	114	115	70-130	0	20	
Styrene	ug/L	<0.47	50	50	56.3	56.7	113	113	70-130	1	20	
Tetrachloroethene	ug/L	<0.33	50	50	55.1	55.4	110	111	70-130	0	20	
Toluene	ug/L	<0.17	50	50	56.8	57.4	114	115	80-131	1	20	
trans-1,2-Dichloroethene	ug/L	<1.1	50	50	58.8	59.6	118	119	73-148	1	20	
trans-1,3-Dichloropropene	ug/L	<4.4	50	50	49.8	49.9	100	100	70-130	0	20	
Trichloroethene	ug/L	<0.26	50	50	56.3	58.1	113	116	70-130	3	20	
Trichlorofluoromethane	ug/L	<0.21	50	50	56.4	57.6	113	115	74-147	2	20	
Vinyl chloride	ug/L	<0.17	50	50	52.0	51.6	104	103	41-129	1	20	
4-Bromofluorobenzene (S)	%						106	106	70-130			
Dibromofluoromethane (S)	%						100	100	70-130			
Toluene-d8 (S)	%						99	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	N1969A07/010 BE	TTER BRITE										
Pace Project No.:	40187620											
QC Batch:	321534		Analy	ysis Metho	d:	SM 3500-C	r B (Online)	1				
QC Batch Method:	SM 3500-Cr B (C	Online)	Analy	ysis Descri	iption:	Chromium,						
Associated Lab Sar	nples: 401876200	002, 4018762000	3, 4018762	20004, 401	87620005							
METHOD BLANK:	1867274			Matrix: W	/ater							
Associated Lab Sar	nples: 401876200	002, 4018762000	3, 4018762	20004, 401	87620005							
			Blar	nk	Reporting							
Paran	neter	Units	Res	ult	Limit	Anal	yzed	Qualifie	rs			
Chromium, Hexaval	lent	mg/L	<	0.0051	0.01	05/16/1	9 09:30					
LABORATORY COI	NTROL SAMPLE:	1867275										
			Spike	LC	CS	LCS	% Re	ec				
Paran	neter	Units	Conc.	Re	sult	% Rec	Limi	ts	Qualifiers			
Chromium, Hexaval	lent	mg/L	0.	.3	0.30	9	9 9	90-110				
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 1867	276		186727	7						
			MS	MSD								
		40187620002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chromium, Hexaval	ent mg/L	<0.13	7.5	7.5	7.0	7.3	93	97	90-110	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: N1969A07/010 BETTER BRITE

Pace Project No.: 40187620

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40187620001	TRIP BLANK	EPA 8260	321680		
40187620005	MW-116	EPA 8260	321680		
40187620002	MW-111	SM 3500-Cr B (Online)	321534		
40187620003	MW-115	SM 3500-Cr B (Online)	321534		
40187620004	MW-115A	SM 3500-Cr B (Online)	321534		
40187620005	MW-116	SM 3500-Cr B (Online)	321534		

REPORT OF LABORATORY ANALYSIS

	(Please Print Clearly)]								<u>UPP</u>	<u>er mic</u>	DWEŞT F	<u>REGION</u>		Page	1 of \
Company Nam	· OMNNI ASSO	ciptes		, p							MN:	612-60	07-1700	WI: 920-469-2436	1.10	~ . ~	
Branch/Locatio	" Appleton			\square	Pace	eAna	alytic	cal*							4018	Now	
Project Contac	" Kinkeneay		1 /			www.p	xacelabs	.00m						Quote #:			
Phone:	920.830.6172	L	1 '	(CH/	AIN		FC	US	ТС	וסכ	1		Mail To Contact:	Kina	KROOR	
roject Numbe	NIGUGAO7/010	2		None B=	HCL C	=H2SO4	*Preser	vation Co	xdes Water	=_Meth	and G	-NaOH		Mail To Company:	(DAAA)	MUNTEC	et olas
roject Name:	Better Brite	-	H=5	Sodium Bisu	ulfate Solu	ition	I=Sodiu	im Thiosu	lifate J	=Other		-NaOn	_	Mail To Address:	ONE	Sustems	Deivle
oject State:	WI	-	FILT	ERED? S/NO)	Y/N		N		T			T				0-1011B	-A-
mpled By (Pr	int): Kim Kenned	1	PRESE	RVATION	Pick		2							Invoice To Contact:	mpp	ETDO WI	<u>54914</u>
mpled By (Si	gn): K~K~/	5	1		- Calcon	+ -								Invoice To Company:	$\mid S$	<u>م</u>	
)#:	1 21	Regulatory														TNA	
ata Package	Options MS/MSD	Mat	I trix Code	8	ienb	E.	1							INVOICE TO Address:		、 "「E	
(billable	evel III	\ ≃ Air I = Biota	W = Water DW = Drink	ing Water	S Re	29									KKen	medyac	mni .
	evel IV	C = Charcoal D = Oil C = Soil	GW = Grou SW ≃ Surfa	nd Water	lyse	AN (A	J							Invoice To Phone:	920	135.690	0
CE LAB #	your sample s	I = Sludge COLL	WW = Was WP = Wipe ECTION		Ana	18 F	9							CLIENT COMMENTS	LAB (Profile
- 100	TRIP BLANK	LAB		GW			\mathbf{x}									<u> </u>	1
D2	MW-111	5-15	10:52			X										21	
03	MIN-IIS	1	11:20			X										X, \vdash	
JYY I	MW-115A		1132			X										dV	
200	MW-116	J	1027			X	X									<u> </u>	
					ş												
					1												
Rush Turna (Rush TAT	round Time Requested - Prelims subject to approval/surcharge)	S Reling	uished By:	K~	6	· · · · ·	Dat 5-1	e/Time: 5-19	123	2	Receive	l d By: n_b	Real	for 05/5/19	232		oject No.
D ransmit Prelim F	ate ineeded: Rush Results by (complete what you wa	Relinq nt):	uished By:	(U .		Dat	e/Time:			Received	d By:	T	Date/Time:		7010	1420
1#1:		Relinq	uished By:				Dat	e/Time:			Received	d By:		Date/Time:		-Receipt Temp =	KOI "
1 #2: hone:		Relina	uished Bv:				Det	e/Time'			Receiver	1 Byr				Sample R	ecelpt pH
												<i>.</i> Оу.		Date/Time:		<u>Cooler Cus</u>	stody Seal
Sampi special r	es on HOLD are subject to	Relinq	uished By:				Date	e/Time:			Received	l By:		Date/Time:		Present / N	ot Present

Cl	ient	Na	me:			0 _r	γ	hr					Sa -	mpl	le P Pro	rese	e rv a t #	ntior	n Re Y	eceij 0 (pt <u>F</u>	[orn] (n V	0	_						Pace / 1241	Analytica Bellevu Green	al Services, LLC e Street, Suite 9 Bay, WI 54302
		A	ll cont	ainers	needin	ig pres	ervatio	on hav	e been	i check La	ed and 1b Lot#	l noted # of pH	below paper	∶ □Yes	□No		X	Lab S	td #ID	of pre	servat	on (if	pH adj	usted):					Initia comp	l when bleted:		Date/ Time:	٩
				Clas	_						Dias	.		. 1		· · ·	\ /!	- 1 -		-	[. 1	nm) *		H ≥9				
				Glas	>			- - 4, -			Plas	LIC				L	VI	ais				Jars		G	enera	al	s (>6r	<u>S</u> I	Act p	212	ß	ljusted	Volume
Pace Lab #	AG1U	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1U	BP2N	BP2Z	BP3U	BP3B	BP3N	BP3S	DG9A	DG9T	VG9U	H6DV	M69V	VG9D	JGFU	WGFU	WPFU	SP5T	ZPLC	S	VOA Vial	12SO4 pH	VaOH+Zn	VaOH pH	Hd EONH	H after ac	(mL)
001																		2									1				Ţ		2.5 / 5 / 10
002						<u> </u>					1																						2.5/5/10
003																																	2.5/5/10
004													-					0															2.5/5/10
005																		3	F	i.1	IA	2											2.5/5/10
007							-											Þ	2	121	Ľ												2.5/5/10
008																																	2.5/5/10
009																																	2.5/5/10
010																																	25/5/10
011																																	2.5 / 5 / 10
012																																	2.5/5/10
013																																	2.5/5/10
014																																	2.5/5/10
015																																	2.5 / 5 / 10
016																																	2.5 / 5 / 10
017																	1.																2.5 / 5 / 10
018																																	2.5/5/10
019																																	2.5 / 5 / 10
020																																	2.5 / 5 / 10
E	ceptio	ns to p	reserv	ation (check	VOA,	Golif	orm, T	ЮС, Τ	ЮX, Т	ОН, О	&G, V	/I DRC), Phen	olics,	Other:				He	adspac	e in V	OA Vi	als (>6	mm) :	Fres	□No	□N/A	*If yes	look i	n headsj	oace col	umn
AG1U AG1H AG4S AG4U AG5U AG2S BC3U	1 lite 1 lite 125 r 120 r 100 r 500 r	r amb r amb nL an nL an nL an nL an	er gla er gla iber g iber g iber g	iss HC lass HC lass I lass u lass H	CL 12SO ⁴ inpres inpres 12SO ⁴			BP BP BP BP BP BP	1U 2N 2Z 3U 3B 3N	1 liter 500 n 500 n 250 n 250 n 250 n	r plast nL pla nL pla nL pla nL pla nL pla	tic unp astic H astic N astic u astic N astic H astic H	ores INO3 IaOH, Inpres IaOH INO3	Znact		DG DG VG VG VG	9A 9T 9U 9H 9M 9D	40 ml 40 ml 40 ml 40 ml 40 ml 40 ml	L amb L amb L clea L clea L clea L clea	er asc er Na r vial 1 r vial 1 r vial 1 r vial 1	orbic Thio unpre HCL MeOI DI	s		JG WG WP SP ZP	FU FU FU 5T LC	4 oz a 4 oz a 4 oz j 120 n ziploo	amber clear j plastic nL pla c bag	jar un ar unp jar un istic N	npres pres npres la Thic	sulfat	e		

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page <u>1</u> of <u>2</u>

Client Courier: Tracking Custody Custody Packing Thermoi	241 Bellevue Street, Green Bay, WI 54303 Sample Name: Omono CS Logistics Fed Ex Speed Client Pace Other: #:	2 F-GB Condition Upo ee UPS I	-C-031-Rev.07	Pace Green Ba	187620
Client Courier: Tracking Custody Custody Packing Thermoi	Sample Name: Dmm CS Logistics Fed Ex Speed Client Pace Other: #:	ee UPS	Project #:	scur) WO# : 40	187620
Client Courier: Tracking Custody Custody Packing Thermoi	Name: Dmm CS Logistics Fed Ex Speed Client Pace Other: #:		Project #:	WO#:40	187620
Client Courier: Tracking Custody Custody Packing Thermoi	Name:	ee UPS	Project #: Waltco	WO# : 40	187620
Courier: Fracking Custody Custody Packing Fhermoi	Client Pace Other:	ee UPS V	Waltco	₩U# · 40 	187620
Fracking Custody Custody Packing Fhermoi	Client Pace Other:	Fino Seals intac			
Fracking Custody Custody Packing Fhermor	g#: Seal on Cooler/Box Present:	Pho Seals intac			
Custody Custody Packing Fhermoi	Seal on Cooler/Box Present: yes Seal on Samples Present: yes Material: Bubble Wrap Bubb	F ho Seals intac		40187620	
Custody Packing Fhermoi	Seal on Samples Present: Uyes	DO Soola integ	t: 🔽 yes 🗖 no		
Packing Thermoi	Material: Bubble Wrap Bubl	no seals intac	t: 🔽 yes 🗖 no		
i nermoi		ole Bags 🔲 Nor	ne F Other		
Cooler T	emperature Uncorr: (Corr. 1	Type of Ice: (Wei	Blue Dry None	Samples on ice, co	oling process has begun
Temp Bl	ank Present: Ves Pro	Biological	Tissue is Frozen:		son examinind contents
Cemp sho	uld be above freezing to 6°C.			Date	5115119
Biota Sam	pples may be received at ≤ 0°C.				
Chain of	Custody Present:		A 1.	-	
Chain of	Custody Filled Out:		A 2.		an a the
			A [3.		·····
	Arrived within Used Times		A 4.		
samples		μ∐Yes ∐No	5.		
Short He			Date/Time:		
Rush Tu	rn Around Time Requested:		7		
Sufficien	t Volume:		8		
	For Analysis: Tyes DNo MS/MSD	:⊡Yes □++15 □N//	4		
Correct C	Containers Used:		9.		
-Pace	Containers Used:	PYes DNO DN/	A		
-Pace	IR Containers Used:		4		
Containe	rs Intact:		10.	-	
iltered v	volume received for Dissolved tests	□Yes □No □N//	A 11.		·······
Sample L	abels match COC:	□Yes ZNo □N//	12. no times		
-Inclu	des date/time/ID/Analysis Matrix:	\mathbb{N}		6011119	
Γrip Blan	k Present:	ØYes □No □N/A	A 13.		
Frip Blan	k Custody Seals Present	PYes No N/A	4		
Pace Trip Client No	Blank Lot # (if purchased): <u> </u>	·	If aboa	kad saa attachad fa	for additional accordants
Pe	rson Contacted:	Date	/Time:		ior auditional comments
Comme	ents/ Resolution:				
	· · · · · · · · · · · · · · · · · · ·				
					-1
					411119
Projec	t Manager Review:	\leq	X	Date:	/////